1
|
Zhai Y, Yuan Y, Cui Y, Wang X, Zhou H, Teng Q, Wang H, Sun B, Sun H, Tang J. Suppression of PINK1 autophosphorylation attenuates pilocarpine-induced seizures and neuronal injury in rats. Brain Res Bull 2024; 219:111117. [PMID: 39522561 DOI: 10.1016/j.brainresbull.2024.111117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
PTEN-induced kinase 1 (PINK1) autophosphorylation triggers the PINK1/Parkin pathway, which is the main mitophagic pathway in the mammalian nervous system. In the present study, we aimed to mechanistically explore the role of PINK1 in pilocarpine-induced status epilepticus (SE) in Sprague-Dawley rats. Evidence from immunohistochemistry, western blotting, biochemical assays, and behavioral testing showed that pilocarpine-induced SE led to increased levels of PINK1 phosphorylation, mitophagy, mitochondrial oxidative stress, neuronal damage and learning and memory deficits. Using shRNA interference to suppress the expression of translocase outer mitochondrial membrane 7, a positive regulator of PINK1 autophosphorylation, lowered the increased levels of phosphorylated PINK1 following pilocarpine administration. It also reduced the levels of mitophagy, mitochondrial oxidative stress and neuronal damage, and attenuated seizure severity and cognitive deficits. In contrast, suppressing the expression of overlapping with the m-AAA protease 1 homolog, a negative regulator of PINK1 autophosphorylation, led to higher levels of phosphorylated PINK1 following pilocarpine administration. It also led to more serious mitophagy, neuronal damage, as well as worsened seizure severity and cognitive deficits. Our results indicate that PINK1 autophosphorylation plays a vital role in epileptic seizures and neuronal injury by mediating mitophagy. Regulating PINK1 autophosphorylation may change the adverse consequences of epilepsy, and may be an effective neuroprotective strategy.
Collapse
Affiliation(s)
- Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Yi Yuan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Xiaoqian Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Hua Zhou
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Qian Teng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Hongjin Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Bohan Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Jianhua Tang
- Affiliated Yantai Mountain Hospital, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
2
|
Neal ES, Xu W, Borges K. Metabolic aspects of genetic ion channel epilepsies. J Neurochem 2024; 168:3911-3935. [PMID: 37594756 PMCID: PMC11591411 DOI: 10.1111/jnc.15938] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/17/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
Nowadays, particularly in countries with high incomes, individual mutations in people affected by genetic epilepsies are identified, and genetic therapies are being developed. In addition, drugs are being screened to directly target specific mutations, and personalised medicine is possible. However, people with epilepsy do not yet benefit from these advances, and many types of epilepsies are medication-resistant, including Dravet syndrome. Thus, in the meantime, alternative and effective treatment options are needed. There is increasing evidence that metabolic deficits contribute to epileptic seizures and that such metabolic impairments may be amenable to treatment, with metabolic treatment options like the ketogenic diet being employed with some success. However, the brain metabolic alterations that occur in ion channel epilepsies are not well-understood, nor how these may differ from epilepsies that are of acquired and unknown origins. Here, we provide an overview of studies investigating metabolic alterations in epilepsies caused by mutations in the SCN1A and KCNA1 genes, which are currently the most studied ion channel epilepsies in animal models. The metabolic changes found in these models are likely to contribute to seizures. A metabolic basis of these ion channel epilepsies is supported by human and/or animal studies that show beneficial effects of the ketogenic diet, which may be mediated by the provision of auxiliary brain fuel in the form of ketone bodies. Other potentially more preferred dietary therapies including medium-chain triglycerides and triheptanoin have also been tested in a limited number of studies, but their efficacies remain to be clearly established. The extent to which brain metabolism is affected in people with Dravet syndrome, KCNA1 epilepsy and the models thereof still requires clarification. This requires more experiments that yield functional insight into metabolism.
Collapse
Affiliation(s)
- Elliott S. Neal
- School of Biomedical SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Weizhi Xu
- School of Biomedical SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Karin Borges
- School of Biomedical SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
3
|
Cui Y, Zhai Y, Yuan Y, Wang X, Xu Q, Wu X, Xu L, Ren T, Wang Q, Sun H. Inhibition of PTEN-induced kinase 1 autophosphorylation may assist in preventing epileptogenesis induced by pentylenetetrazol. Neurochem Int 2024; 172:105644. [PMID: 38029887 DOI: 10.1016/j.neuint.2023.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
PTEN-induced kinase 1 (PINK1) autophosphorylation-triggered mitophagy is the main mitophagic pathway in the nervous system. Moreover, multiple studies have confirmed that mitophagy is closely related to the occurrence and development of epilepsy. Therefore, we speculated that the PINK1 autophosphorylation may be involved in epileptogenesis by mediating mitophagic pathway. This study aimed to explore the contribution of activated PINK1 to epileptogenesis induced by pentylenetetrazol (PTZ) in Sprague‒Dawley rats. During PTZ-induced epileptogenesis, the levels of phosphorylated PINK1 were increased, accompanied by elevated mitophagy, mitochondria oxidative stress and neuronal damage. After microRNA intervention targeting translocase outer mitochondrial membrane 7 (TOM7) or overlapping with the m-AAA protease 1 homolog (OMA1), the levels of PINK1 phosphorylation, mitophagy, mitochondrial oxidative stress, neuronal injury were observed in the rats with induced epileptogenesis. Furthermore, inhibiting of the expression of TOM7, a positive regulator of PINK1 autophosphorylation, reversed the increase in PINK1 phosphorylation and alleviated mitophagy, neuronal injury, thereby preventing epileptogenesis. In contrast, reducing the levels of OMA1, a negative regulator of PINK1 autophosphorylation, led to increased phosphorylation of PINK1, accompanied by aggravated neuronal injury and ultimately, epileptogenesis. This study confirmed the contribution of activated PINK1 to PTZ-induced epileptogenesis and suggested that the inhibition of PINK1 autophosphorylation may assist in preventing epileptogenesis.
Collapse
Affiliation(s)
- Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yi Yuan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xiaoqian Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qianqian Xu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xiangdong Wu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Linlin Xu
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Tianpu Ren
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
4
|
Michetti C, Ferrante D, Parisi B, Ciano L, Prestigio C, Casagrande S, Martinoia S, Terranova F, Millo E, Valente P, Giovedi' S, Benfenati F, Baldelli P. Low glycemic index diet restrains epileptogenesis in a gender-specific fashion. Cell Mol Life Sci 2023; 80:356. [PMID: 37947886 PMCID: PMC10638170 DOI: 10.1007/s00018-023-04988-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023]
Abstract
Dietary restriction, such as low glycemic index diet (LGID), have been successfully used to treat drug-resistant epilepsy. However, if such diet could also counteract antiepileptogenesis is still unclear. Here, we investigated whether the administration of LGID during the latent pre-epileptic period, prevents or delays the appearance of the overt epileptic phenotype. To this aim, we used the Synapsin II knockout (SynIIKO) mouse, a model of temporal lobe epilepsy in which seizures manifest 2-3 months after birth, offering a temporal window in which LGID may affect epileptogenesis. Pregnant SynIIKO mice were fed with either LGID or standard diet during gestation and lactation. Both diets were maintained in weaned mice up to 5 months of age. LGID delayed the seizure onset and induced a reduction of seizures severity only in female SynIIKO mice. In parallel with the epileptic phenotype, high-density multielectrode array recordings revealed a reduction of frequency, amplitude, duration, velocity of propagation and spread of interictal events by LGID in the hippocampus of SynIIKO females, but not mutant males, confirming the gender-specific effect. ELISA-based analysis revealed that LGID increased cortico-hippocampal allopregnanolone (ALLO) levels only in females, while it was unable to affect ALLO plasma concentrations in either sex. The results indicate that the gender-specific interference of LGID with the epileptogenic process can be ascribed to a gender-specific increase in cortical ALLO, a neurosteroid known to strengthen GABAergic transmission. The study highlights the possibility of developing a personalized gender-based therapy for temporal lobe epilepsy.
Collapse
Affiliation(s)
- Caterina Michetti
- Department of Experimental Medicine, University of Genova, Genoa, Italy.
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy.
| | - Daniele Ferrante
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Barbara Parisi
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Lorenzo Ciano
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
| | - Cosimo Prestigio
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Silvia Casagrande
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Sergio Martinoia
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Genoa, Italy
| | - Fabio Terranova
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Pierluigi Valente
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Giovedi'
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, Genoa, Italy.
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
5
|
Liang Y, Zhao L, Dai C, Liu G, Zhong Y, Liu H, Mo L, Tan C, Liu X, Chen L. Epileptiform Discharges Reduce Neuronal ATP Production by Inhibiting F0F1-ATP Synthase Activity via A Zinc-α2-Glycoprotein-Dependent Mechanism. Mol Neurobiol 2023; 60:6627-6641. [PMID: 37468739 DOI: 10.1007/s12035-023-03508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Neuronal energy metabolism dysfunction, especially adenosine triphosphate (ATP) supply decrease, is observed in epilepsy and associated with epileptogenesis and prognosis. Zinc-α2-glycoprotein (ZAG) is known as an important modulator of energy metabolism and involved in neuronal glucose metabolism, fatty acid metabolism, and ketogenesis impairment in seizures, but its effect on neuronal ATP synthesis in seizures and the specific mechanism are unclear. In this study, we verified the localization of ZAG in primary cultured neuronal mitochondria by using double-labeling immunofluorescence, immune electron microscopy, and western blot. ZAG level in neuronal mitochondria was modulated by lentiviruses and detected by western blot. The F0F1-ATP synthase activity, ATP level, and acetyl-CoA level were measured. The binding between ZAG and F0F1-ATP synthase was determined by coimmunoprecipitation. We found that both ZAG and F0F1-ATP synthase existed in neuronal mitochondria, and there was mutual binding between them. Epileptiform discharge-induced decrease of mitochondrial ZAG level was reversed by ZAG overexpression. Epileptiform discharge or ZAG knockdown decreased F0F1-ATP synthase activity and ATP level in neurons, which were reversed by ZAG overexpression, while overexpression of ZAG along only increased F0F1-ATP synthase activity but not increased ATP level. Meanwhile, neither epileptiform discharges nor changes of ZAG level can alter the acetyl-CoA level. Moreover, epileptiform discharge did not alter F0F1-ATP synthase level. In conclusion, epileptiform discharge-induced ZAG decrease in neuronal mitochondria is correlated to F0F1-ATP synthase activity inhibition, which may possibly lead to ATP supply impairments. ZAG may be a potential therapeutic target for treating neuronal energy metabolism dysfunction in seizures with further researches.
Collapse
Affiliation(s)
- Yi Liang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Lili Zhao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Chengcheng Dai
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Guohui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Yuke Zhong
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Hang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
6
|
Hemida M, Rosendahl S, Jokinen TS, Moore R, Vuori KA, Anturaniemi J, Hielm-Björkman A. Assessing the association between supplemented puppyhood dietary fat sources and owner-reported epilepsy in adulthood, among Finnish companion dogs. Front Vet Sci 2023; 10:1227437. [PMID: 37781290 PMCID: PMC10540444 DOI: 10.3389/fvets.2023.1227437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Epilepsy is a serious and common neurological condition in dogs, despite the wide number of antiepileptic drugs available, in approximately one third of the patients, epilepsy remains unsatisfactorily controlled. We aim to analyze whether feeding dietary fat sources during puppyhood was associated with canine epilepsy in adulthood. Methods A nested case-control study was compiled from the validated DogRisk food frequency questionnaire (DogRisk FFQ). DogRisk FFQ collected feeding, disease, and background data about the dog. The study sample consisted of 108 owner-reported epileptic cases and 397 non-epileptic controls. Each case was matched with up to four controls for the key confounding factors of sex, breed, and age. We analyzed associations between feeding as a puppy and owner-reported epilepsy as an adult dog using Cox regression. We tested 55 different food variables. Results We found that feeding fish fat from dietary sources at least once a week during puppyhood was inversely associated with epilepsy in later life in the unadjusted analysis [OR 0.46 (95% CI 0.25-0.83), p=0.01], while when adjusting for keeping conditions and dog characteristics the association was [OR 0.45 (95% CI 0.23-0.88), p=0.02]. When adjusted for keeping conditions, dog characteristics, and other feeding factors, the association was of similar magnitude but not significance [OR 0.56 (95% CI 0.27-1.15), p=0.12]. Discussion The study indicates possible protective associations of feeding the dog with dietary sources of fish fat against epilepsy, although the result could be confounded by other feeding factors. Findings are compatible with current knowledge regarding the role of omega-3 fatty acids and ketogenic diet, a low carbohydrate, high fat diet as supportive treatments of epilepsy. As our findings are based on observations, we suggest the possibility of causality but do not prove it. Dietary intervention studies should now be conducted to confirm our findings.
Collapse
Affiliation(s)
- Manal Hemida
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Sarah Rosendahl
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Tarja S. Jokinen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Robin Moore
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Kristiina A. Vuori
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Anturaniemi
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Anna Hielm-Björkman
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Alraddadi EA, Khojah AM, Alamri FF, Kecheck HK, Altaf WF, Khouqeer Y. Potential role of creatine as an anticonvulsant agent: evidence from preclinical studies. Front Neurosci 2023; 17:1201971. [PMID: 37456992 PMCID: PMC10339234 DOI: 10.3389/fnins.2023.1201971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Epilepsy is one of the most common neurological disorders affecting people of all ages representing a significant social and public health burden. Current therapeutic options for epilepsy are not effective in a significant proportion of patients suggesting a need for identifying novel targets for the development of more effective therapeutics. There is growing evidence from animal and human studies suggesting a role of impaired brain energy metabolism and mitochondrial dysfunction in the development of epilepsy. Candidate compounds with the potential to target brain energetics have promising future in the management of epilepsy and other related neurological disorders. Creatine is a naturally occurring organic compound that serves as an energy buffer and energy shuttle in tissues, such as brain and skeletal muscle, that exhibit dynamic energy requirements. In this review, applications of creatine supplements in neurological conditions in which mitochondrial dysfunction is a central component in its pathology will be discussed. Currently, limited evidence mainly from preclinical animal studies suggest anticonvulsant properties of creatine; however, the exact mechanism remain to be elucidated. Future work should involve larger clinical trials of creatine used as an add-on therapy, followed by large clinical trials of creatine as monotherapy.
Collapse
Affiliation(s)
- Eman A. Alraddadi
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Abdulrahman M. Khojah
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Faisal F. Alamri
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Husun K. Kecheck
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Wid F. Altaf
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Yousef Khouqeer
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Gross EC, Putananickal N, Orsini AL, Schoenen J, Fischer D, Soto-Mota A. Defining metabolic migraine with a distinct subgroup of patients with suboptimal inflammatory and metabolic markers. Sci Rep 2023; 13:3787. [PMID: 36882474 PMCID: PMC9992685 DOI: 10.1038/s41598-023-28499-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 01/19/2023] [Indexed: 03/09/2023] Open
Abstract
Emerging evidence suggest migraine is a response to cerebral energy deficiency or oxidative stress in the brain. Beta-hydroxybutyrate (BHB) is likely able to circumvent some of the meta-bolic abnormalities reported in migraine. Exogenous BHB was given to test this assumption and, in this post-hoc analysis, multiple metabolic biomarkers were identified to predict clinical improvements. A randomized clinical trial, involving 41 patients with episodic migraine. Each treatment period was 12 weeks long, followed by eight weeks of washout phase / second run-in phase before entering the corresponding second treatment period. The primary endpoint was the number of migraine days in the last 4 weeks of treatment adjusted for baseline. BHB re-sponders were identified (those with at least a 3-day reduction in migraine days over placebo) and its predictors were evaluated using Akaike's Information Criterion (AIC) stepwise boot-strapped analysis and logistic regression. Responder analysis showed that metabolic markers could identify a "metabolic migraine" subgroup, which responded to BHB with a 5.7 migraine days reduction compared to the placebo. This analysis provides further support for a "metabolic migraine" subtype. Additionally, these analyses identified low-cost and easily accessible biomarkers that could guide recruitment in future research on this subgroup of patients.This study is part of the trial registration: ClinicalTrials.gov: NCT03132233, registered on 27.04.2017, https://clinicaltrials.gov/ct2/show/NCT03132233.
Collapse
Affiliation(s)
- Elena C Gross
- Division of Pediatric Neurology, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.
| | - Niveditha Putananickal
- Division of Pediatric Neurology, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Anna-Lena Orsini
- Division of Pediatric Neurology, University Children's Hospital Basel (UKBB) & Neurology Department, University Hospital Basel (USB), University of Basel, Basel, Switzerland
| | - Jean Schoenen
- Headache Research Unit, Department of Neurology-Citadelle Hospital, University of Liège, Liège, Belgium
| | - Dirk Fischer
- Division of Pediatric Neurology, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Adrian Soto-Mota
- Metabolic Diseases Research Unit, National Institute of Medical Sciences and Nutrition Salvador Zubirán (INCMNSZ), Tlalpan, Mexico.,School of Medicine, Tecnologico de Monterrey, Mexico City, Mexico
| |
Collapse
|
9
|
Godoi AB, do Canto AM, Donatti A, Rosa DC, Bruno DCF, Alvim MK, Yasuda CL, Martins LG, Quintero M, Tasic L, Cendes F, Lopes-Cendes I. Circulating Metabolites as Biomarkers of Disease in Patients with Mesial Temporal Lobe Epilepsy. Metabolites 2022; 12:446. [PMID: 35629950 PMCID: PMC9148034 DOI: 10.3390/metabo12050446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
A major challenge in the clinical management of patients with mesial temporal lobe epilepsy (MTLE) is identifying those who do not respond to antiseizure medication (ASM), allowing for the timely pursuit of alternative treatments such as epilepsy surgery. Here, we investigated changes in plasma metabolites as biomarkers of disease in patients with MTLE. Furthermore, we used the metabolomics data to gain insights into the mechanisms underlying MTLE and response to ASM. We performed an untargeted metabolomic method using magnetic resonance spectroscopy and multi- and univariate statistical analyses to compare data obtained from plasma samples of 28 patients with MTLE compared to 28 controls. The patients were further divided according to response to ASM for a supplementary and preliminary comparison: 20 patients were refractory to treatment, and eight were responsive to ASM. We only included patients using carbamazepine in combination with clobazam. We analyzed the group of patients and controls and found that the profiles of glucose (p = 0.01), saturated lipids (p = 0.0002), isoleucine (p = 0.0001), β-hydroxybutyrate (p = 0.0003), and proline (p = 0.02) were different in patients compared to controls (p < 0.05). In addition, we found some suggestive metabolites (without enough predictability) by multivariate analysis (VIP scores > 2), such as lipoproteins, lactate, glucose, unsaturated lipids, isoleucine, and proline, that might be relevant to the process of pharmacoresistance in the comparison between patients with refractory and responsive MTLE. The identified metabolites for the comparison between MTLE patients and controls were linked to different biological pathways related to cell-energy metabolism and pathways related to inflammatory processes and the modulation of neurotransmitter release and activity in MTLE. In conclusion, in addition to insights into the mechanisms underlying MTLE, our results suggest that plasma metabolites may be used as disease biomarkers. These findings warrant further studies exploring the clinical use of metabolites to assist in decision-making when treating patients with MTLE.
Collapse
Affiliation(s)
- Alexandre B. Godoi
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil; (A.B.G.); (A.M.d.C.); (A.D.); (D.C.R.); (D.C.F.B.)
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas 13083-888, Brazil; (M.K.A.); (C.L.Y.); (F.C.)
| | - Amanda M. do Canto
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil; (A.B.G.); (A.M.d.C.); (A.D.); (D.C.R.); (D.C.F.B.)
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas 13083-888, Brazil; (M.K.A.); (C.L.Y.); (F.C.)
| | - Amanda Donatti
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil; (A.B.G.); (A.M.d.C.); (A.D.); (D.C.R.); (D.C.F.B.)
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas 13083-888, Brazil; (M.K.A.); (C.L.Y.); (F.C.)
| | - Douglas C. Rosa
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil; (A.B.G.); (A.M.d.C.); (A.D.); (D.C.R.); (D.C.F.B.)
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas 13083-888, Brazil; (M.K.A.); (C.L.Y.); (F.C.)
| | - Danielle C. F. Bruno
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil; (A.B.G.); (A.M.d.C.); (A.D.); (D.C.R.); (D.C.F.B.)
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas 13083-888, Brazil; (M.K.A.); (C.L.Y.); (F.C.)
| | - Marina K. Alvim
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas 13083-888, Brazil; (M.K.A.); (C.L.Y.); (F.C.)
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil
| | - Clarissa L. Yasuda
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas 13083-888, Brazil; (M.K.A.); (C.L.Y.); (F.C.)
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil
| | - Lucas G. Martins
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083-888, Brazil; (L.G.M.); (M.Q.); (L.T.)
| | - Melissa Quintero
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083-888, Brazil; (L.G.M.); (M.Q.); (L.T.)
| | - Ljubica Tasic
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083-888, Brazil; (L.G.M.); (M.Q.); (L.T.)
| | - Fernando Cendes
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas 13083-888, Brazil; (M.K.A.); (C.L.Y.); (F.C.)
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil
| | - Iscia Lopes-Cendes
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil; (A.B.G.); (A.M.d.C.); (A.D.); (D.C.R.); (D.C.F.B.)
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas 13083-888, Brazil; (M.K.A.); (C.L.Y.); (F.C.)
| |
Collapse
|
10
|
Blázquez E, Hurtado-Carneiro V, LeBaut-Ayuso Y, Velázquez E, García-García L, Gómez-Oliver F, Ruiz-Albusac J, Ávila J, Pozo MÁ. Significance of Brain Glucose Hypometabolism, Altered Insulin Signal Transduction, and Insulin Resistance in Several Neurological Diseases. Front Endocrinol (Lausanne) 2022; 13:873301. [PMID: 35615716 PMCID: PMC9125423 DOI: 10.3389/fendo.2022.873301] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
Several neurological diseases share pathological alterations, even though they differ in their etiology. Neuroinflammation, altered brain glucose metabolism, oxidative stress, mitochondrial dysfunction and amyloidosis are biological events found in those neurological disorders. Altered insulin-mediated signaling and brain glucose hypometabolism are characteristic signs observed in the brains of patients with certain neurological diseases, but also others such as type 2 diabetes mellitus and vascular diseases. Thus, significant reductions in insulin receptor autophosphorylation and Akt kinase activity, and increased GSK-3 activity and insulin resistance, have been reported in these neurological diseases as contributing to the decline in cognitive function. Supporting this relationship is the fact that nasal and hippocampal insulin administration has been found to improve cognitive function. Additionally, brain glucose hypometabolism precedes the unmistakable clinical manifestations of some of these diseases by years, which may become a useful early biomarker. Deficiencies in the major pathways of oxidative energy metabolism have been reported in patients with several of these neurological diseases, which supports the hypothesis of their metabolic background. This review remarks on the significance of insulin and brain glucose metabolism alterations as keystone common pathogenic substrates for certain neurological diseases, highlighting new potential targets.
Collapse
Affiliation(s)
- Enrique Blázquez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
- *Correspondence: Enrique Blázquez,
| | | | - Yannick LeBaut-Ayuso
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Esther Velázquez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Luis García-García
- Pluridisciplinary Institute, Complutense University, IdISSC, Madrid, Spain
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - Francisca Gómez-Oliver
- Pluridisciplinary Institute, Complutense University, IdISSC, Madrid, Spain
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - Juan Miguel Ruiz-Albusac
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Jesús Ávila
- Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, Madrid, Spain
| | - Miguel Ángel Pozo
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
- Pluridisciplinary Institute, Complutense University, IdISSC, Madrid, Spain
| |
Collapse
|
11
|
Unifying mechanism behind the onset of acquired epilepsy. Trends Pharmacol Sci 2021; 43:87-96. [PMID: 34887128 DOI: 10.1016/j.tips.2021.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022]
Abstract
Acquired epilepsy (AE) can result from a number of brain insults and neurological diseases with wide etiological diversity sharing one common outcome of brain epileptiform activity. This implies that despite their disparity, all these initiating pathologies affect the same fundamental brain functions underlying network excitability. Identifying such mechanisms and their availability as therapeutic targets would help develop an effective strategy for epileptogenesis prevention. In this opinion article, we propose that the vicious cycle of NADPH oxidase (NOX)-mediated oxidative stress and glucose hypometabolism is the underlying cause of AE, as available data reveal a critical role for both pathologies in epileptogenesis and the process of seizure initiation. Altogether, here we present a novel view on the mechanisms behind the onset of AE and identify therapeutic targets for potential clinical applications.
Collapse
|
12
|
Laemmle A, Steck AL, Schaller A, Kurth S, Perret Hoigné E, Felser AD, Slavova N, Salvisberg C, Atencio M, Mochel F, Nuoffer JM, Gautschi M. Triheptanoin - Novel therapeutic approach for the ultra-rare disease mitochondrial malate dehydrogenase deficiency. Mol Genet Metab Rep 2021; 29:100814. [PMID: 34712577 PMCID: PMC8529553 DOI: 10.1016/j.ymgmr.2021.100814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial malate dehydrogenase (MDH2) deficiency (MDH2D) is an ultra-rare disease with only three patients described in literature to date. MDH2D leads to an interruption of the tricarboxylic acid (TCA) cycle and malate-aspartate shuttle (MAS) and results in severe early onset encephalopathy. Affected infants suffer from psychomotor delay, muscular hypotonia and frequent seizures. Laboratory findings are unspecific, including elevated lactate in blood and cerebrospinal fluid. Brain magnetic resonance imaging reveals delayed myelination and brain atrophy. Currently there is no curative therapy to treat this devastating disease. Here, we present a female patient diagnosed with MDH2D after a stroke-like episode at 18 months. Trio-whole exome sequencing revealed compound heterozygous missense variants in the MDH2 gene: c.398C>T, p.(Pro133Leu) and c.445delinsACA, p.(Pro149Hisfs*22). MDH2 activity assay and oxygraphic analysis in patient's fibroblasts confirmed the variants were pathogenic. At the age of 36 months, a drug trial with triheptanoin was initiated and well tolerated. The patient's neurologic and biochemical phenotype improved and she had no further metabolic decompensations during the treatment period suggesting a beneficial effect of triheptanoin on MDH2D. Further preclinical and clinical studies are required to evaluate triheptanoin treatment for MDH2D and other TCA cycle and MAS defects.
Collapse
Affiliation(s)
- Alexander Laemmle
- Institute of Clinical Chemistry, Inselspital, University Hospital Bern, Bern, Switzerland
- Department of Pediatrics, Inselspital, University Hospital Bern, Bern, Switzerland
- Corresponding author at: University Institute of Clinical Chemistry and Department of Pediatrics, Kinderklinik H524, Freiburgstrasse 15, 3010 Bern, Switzerland.
| | - Andrea Lisa Steck
- Department of Pediatrics, Inselspital, University Hospital Bern, Bern, Switzerland
| | - André Schaller
- Department of Human Genetics, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Sandra Kurth
- Institute of Clinical Chemistry, Inselspital, University Hospital Bern, Bern, Switzerland
| | | | - Andrea Deborah Felser
- Institute of Clinical Chemistry, Inselspital, University Hospital Bern, Bern, Switzerland
- Department of Pediatrics, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Nedelina Slavova
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Claudia Salvisberg
- Department of Pediatrics, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Mariana Atencio
- Paris Brain Institute (ICM), Sorbonne University UMR S 1127, Inserm U1127, CNRS UMR 7225, Paris, France
| | - Fanny Mochel
- Paris Brain Institute (ICM), Sorbonne University UMR S 1127, Inserm U1127, CNRS UMR 7225, Paris, France
- AP-HP, Pitié-Salpêtrière University Hospital, Department of Genetics and Reference Center for Neurometabolic Diseases, Paris, France
| | - Jean-Marc Nuoffer
- Institute of Clinical Chemistry, Inselspital, University Hospital Bern, Bern, Switzerland
- Department of Pediatrics, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Matthias Gautschi
- Institute of Clinical Chemistry, Inselspital, University Hospital Bern, Bern, Switzerland
- Department of Pediatrics, Inselspital, University Hospital Bern, Bern, Switzerland
| |
Collapse
|
13
|
Putananickal N, Gross EC, Orsini AL, Schmidt S, Hafner P, Gocheva V, Nagy S, Henzi BC, Rubino D, Vogt DR, Cichon S, Sandor P, Fischer D. Efficacy and safety of exogenous beta-hydroxybutyrate for preventive treatment in episodic migraine: A single-centred, randomised, placebo-controlled, double-blind crossover trial. Cephalalgia 2021; 42:302-311. [PMID: 34541914 DOI: 10.1177/03331024211043792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Several studies propose that brain energy deficit might be partially involved in the pathophysiology of migraine. Previously, studies demonstrated that ketogenic diet causes a substantial reduction in migraine frequency. Since the ketogenic diet is restricting and its adherence is difficult, we proposed to supplement ketone bodies exogenously to provide a prophylactic effect in migraineurs. AIM To evaluate the prophylactic effect of exogenous DL-beta-hydroxybutyrate supplementation in episodic migraineurs. METHODS A double-blind, placebo-controlled, randomised crossover trial was conducted, involving 41 patients with episodic migraine. Patients were randomised 1:1 into placebo or beta-hydroxybutyrate group before entering the first treatment period. Each treatment period was 12 weeks long, followed by four weeks of washout phase and four weeks of run-in phase before entering into the corresponding second treatment period. The primary endpoint was the number of migraine days in the last four weeks of treatment, adjusted for baseline. RESULTS We observed no clinically significant amelioration of migraine frequency or intensity under DL-beta-hydroxybutyrate treatment as compared to placebo regarding number of migraine days (mean difference [95% CI]: -1.1[-5.07, 2.85]), migraine intensity (0-10 VAS: 1.5[-0.8, 3.7]). CONCLUSION The selected dose of supplemented exogenous DL-beta-hydroxybutyrate did not demonstrate efficacy in episodic migraineurs.ClinicalTrials.gov Identifier: NCT03132233.
Collapse
Affiliation(s)
- Niveditha Putananickal
- Division of Neuropaediatrics, University of Basel Children's Hospital, University of Basel, Switzerland
| | - Elena C Gross
- Division of Neuropaediatrics, University of Basel Children's Hospital, University of Basel, Switzerland
| | - Anna-Lena Orsini
- Department of Neurology, University of Basel Hospital, University of Basel, Switzerland
| | - Simone Schmidt
- Division of Neuropaediatrics, University of Basel Children's Hospital, University of Basel, Switzerland
| | - Patricia Hafner
- Division of Neuropaediatrics, University of Basel Children's Hospital, University of Basel, Switzerland
| | - Vanya Gocheva
- Division of Neuropaediatrics, University of Basel Children's Hospital, University of Basel, Switzerland
| | - Sara Nagy
- Department of Neurology, University of Basel Hospital, University of Basel, Switzerland
| | - Bettina C Henzi
- Division of Neuropaediatrics, University of Basel Children's Hospital, University of Basel, Switzerland
| | - Daniela Rubino
- Division of Neuropaediatrics, University of Basel Children's Hospital, University of Basel, Switzerland
| | - Deborah R Vogt
- Department of Clinical research, Clinical Trial Unit, University of Basel Hospital, University of Basel, Switzerland
| | - Sven Cichon
- Institute of Medical Genetics and Pathology, University of Basel Hospital, University of Basel, Switzerland.,Department of Biomedicine, 27209University of Basel, University of Basel, Switzerland
| | | | - Dirk Fischer
- Division of Neuropaediatrics, University of Basel Children's Hospital, University of Basel, Switzerland
| |
Collapse
|
14
|
Miljanovic N, van Dijk RM, Buchecker V, Potschka H. Metabolomic signature of the Dravet syndrome: A genetic mouse model study. Epilepsia 2021; 62:2000-2014. [PMID: 34223647 DOI: 10.1111/epi.16976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Alterations in metabolic homeostasis can contribute to neuronal hyperexcitability and seizure susceptibility. Although the pivotal role of impaired bioenergetics is obvious in metabolic epilepsies, there is a gap of knowledge regarding secondary changes in metabolite patterns as a result of genetic Scn1a deficiency and ketogenic diet in the Dravet syndrome. METHODS A comprehensive untargeted metabolomics analysis, along with assessment of epileptiform activity and behavioral tests, was completed in a Dravet mouse model. Data sets were compared between animals on a control and a ketogenic diet, and metabolic alterations associated with Dravet mice phenotype and ketogenic diet were identified. RESULTS Hippocampal metabolomic data revealed complex alterations in energy metabolism with an effect of the genotype on concentrations of glucose and several glycolysis and tricarboxylic acid (TCA) cycle intermediates. Although low glucose, lactate, malate, and citrate concentrations became evident, the increase of several intermediates suggested a genotype-associated activation of catabolic processes with enhanced glycogenolysis and glycolysis. Moreover, we observed an impact on the glutamate/γ-aminobutyric acid (GABA)-glutamine cycle with reduced levels of all components along with a shift toward an increased GABA-to-glutamate ratio. Further alterations comprised a reduction in hippocampal levels of noradrenaline, corticosterone, and of two bile acids. SIGNIFICANCE Considering that energy depletion can predominantly compromise the function of GABAergic interneurons, the changes in energy metabolism may contribute to seizure susceptibility and ictogenesis. They may also explain the therapeutic potential of the ketogenic diet, which aims to shift energy metabolism toward a more fat-based energy supply. Conversely, the increased GABA-to-glutamate ratio might serve as an endogenous compensatory mechanism, which can be further supported by GABAergic drugs, representing the mainstay of therapeutic management of Dravet syndrome. In view of a possible neuroprotective function of bile acids, it might be of interest to explore a possible therapeutic potential of bile acid-mediated therapies, already in discussion for neurodegenerative disorders.
Collapse
Affiliation(s)
- Nina Miljanovic
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.,Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Roelof Maarten van Dijk
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Verena Buchecker
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| |
Collapse
|
15
|
Zhang M, Cui Y, Zhu W, Yu J, Cheng Y, Wu X, Zhang J, Xin W, Yu Y, Sun H. Attenuation of the mutual elevation of iron accumulation and oxidative stress may contribute to the neuroprotective and anti-seizure effects of xenon in neonatal hypoxia-induced seizures. Free Radic Biol Med 2020; 161:212-223. [PMID: 33075502 DOI: 10.1016/j.freeradbiomed.2020.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022]
Abstract
Previous studies have suggested that xenon inhalation has neuroprotective and antiepileptic effects; however, the underlying mechanisms involved remain unclear. This study aimed to investigate the possible xenon inhalation mechanisms involved in the neuroprotection and antiepileptic effects. A neonatal hypoxic C57BL/6J mouse model was used for the experiments. Immediately after hypoxia treatment, the treatment group inhaled a xenon mixture (70% xenon/21% oxygen/9% nitrogen) for 60 min, while the hypoxia group inhaled a non-xenon mixture (21% oxygen/79% nitrogen) for 60 min. Seizure activity was recorded at designated time points using electroencephalography. Oxidative stress levels, iron levels, neuronal injury, and learning and memory functions were also studied. The results showed that hypoxia increased the levels of iron, oxidative stress, mitophagy, and neurodegeneration, which were accompanied by seizures and learning and memory disorders. In addition, our results confirmed that xenon treatment significantly attenuated the hypoxia-induced seizures and cognitive defects in neonatal C57 mice. Moreover, the increased levels of iron, oxidative stress, mitophagy, and neuronal injury were reduced in xenon-treated mice. This study confirms the significant protective effects of a xenon mixture on hypoxia-induced damage in neonatal mice. Furthermore, our results suggest that reducing oxidative stress levels and iron accumulation may be the underlying mechanisms of xenon activity. Studying the protective mechanisms of xenon will advance its applications in potential therapeutic strategies.
Collapse
Affiliation(s)
- Mengdi Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wei Zhu
- Institute of Radiation Medicine, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250062, China
| | - Jie Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xiangdong Wu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Jinjin Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wenyu Xin
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yan Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
16
|
Zhu W, Zhu J, Zhao S, Li J, Hou D, Zhang Y, Sun H. Xenon Exerts Neuroprotective Effects on Kainic Acid-Induced Acute Generalized Seizures in Rats via Increased Autophagy. Front Cell Neurosci 2020; 14:582872. [PMID: 33132850 PMCID: PMC7573545 DOI: 10.3389/fncel.2020.582872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/03/2020] [Indexed: 12/04/2022] Open
Abstract
Xenon has been shown to have neuroprotective effects and is clinically used as a favorable safe inhalation anesthetic. We previously confirmed the neuroprotective effects of xenon treatment in epileptic animals. However, the mechanism underlying these protective effects remains unclear. We aimed to assess the effects of xenon inhalation on autophagy in neuronal injury induced by acute generalized seizures. Kainic acid (KA) was injected into the lateral ventricle of male Sprague–Dawley rats to induce acute generalized seizures. Next, the rats were treated via inhalation of a 70% xenon/21% oxygen/9% nitrogen mixture for 60 min immediately after KA administration. The control group was treated via inhalation of a 79% nitrogen/21% oxygen mixture. Subsequently, two inhibitors (3-methyladenine or bafilomycin A1) or an autophagy inducer (rapamycin) were administered, respectively, before KA and xenon administration to determine the role of autophagy in the protective effects of xenon. The levels of apoptosis, neuronal injury, and autophagy were determined in all the rats. Xenon inhalation significantly attenuated the severity of the seizure-induced neuronal injury. Increased autophagy accompanied this inhibitive effect. Autophagy inhibition eliminated these xenon neuroprotective effects. A simulation of autophagy using rapamycin recapitulated xenon’s protective effects on KA-induced acute generalized seizures in the rats. These findings confirmed that xenon exerts strong neuroprotective effects in KA-induced acute generalized seizures. Further, they indicate that increased autophagy may underlie the protective effects of xenon. Therefore, xenon and autophagy inducers may be useful clinical options for their neuroprotective effects in epileptic seizures.
Collapse
Affiliation(s)
- Wei Zhu
- Institute of Radiation Medicine, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | - Jianguo Zhu
- Institute of Radiation Medicine, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | | | - Jieqing Li
- Institute of Radiation Medicine, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | - Dianjun Hou
- Institute of Radiation Medicine, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | - Yurong Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
17
|
Zhang Y, Zhang M, Zhu W, Yu J, Wang Q, Zhang J, Cui Y, Pan X, Gao X, Sun H. Succinate accumulation induces mitochondrial reactive oxygen species generation and promotes status epilepticus in the kainic acid rat model. Redox Biol 2019; 28:101365. [PMID: 31707354 PMCID: PMC6854095 DOI: 10.1016/j.redox.2019.101365] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/15/2019] [Accepted: 10/28/2019] [Indexed: 11/29/2022] Open
Abstract
Though succinate accumulation is associated with reactive oxygen species (ROS) production and neuronal injury, which play critical roles in epilepsy, it is unclear whether succinate accumulation contributes to the onset of epilepsy or seizures. We sought to investigate changes in succinate, oxidative stress, and mito-SOX levels, as well as mitophagy and neuronal change, in different status epilepticus (SE) rat models. Our results demonstrate that KA-induced SE was accompanied by increased levels of succinate, oxidative stress, and mito-SOX, as well as mitophagy and neuronal degeneration. The similarly increased levels of succinate, oxidative stress, and mito-SOX were also found in pilocarpine-induced SE. Moreover, the reduction of succinate accumulation by the inhibition of succinate dehydrogenase (SDH), malate/aspartate shuttle (MAS), or purine nucleotide cycle (PNC) served to reduce succinate, oxidative stress, and mito-SOX levels, thereby preventing oxidative stress-related neuronal damage and lessening seizure severity. Interestingly, simulating succinate accumulation with succinic acid dimethyl ester may induce succinate accumulation and increased oxidative stress and mito-SOX levels, as well as behavior and seizures in electroencephalograms similar to those observed in rats exposed to KA. Our results indicate that succinate accumulation may contribute to the increased oxidative stress/mitochondrial ROS levels, neuronal degeneration, and SE induced by KA administration. Furthermore, we found that succinate accumulation was mainly due to the inverse catalysis of SDH from fumarate, which was supplemented by the MAS and PNC pathways. These results reveal new insights into the mechanisms underlying SE and that reducing succinate accumulation may be a clinically useful therapeutic target in SE. KA- or pilocarpine-induced SE was accompanied by succinate accumulation. Succinate accumulation caused elevated ROS/mito-ROS levels and neuronal injury. Inverse catalysis of SDH from fumarate mainly caused succinate accumulation. Inhibiting succinate accumulation relieved oxidative stress level, neuronal injury, and seizure. Simulating succinate accumulation induced elevated oxidative stress level and seizure.
Collapse
Affiliation(s)
- Yurong Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Mengdi Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wei Zhu
- Institute of Radiation Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Jie Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Jinjin Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xiaohong Pan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xue Gao
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
18
|
Rho JM, Shao LR, Stafstrom CE. 2-Deoxyglucose and Beta-Hydroxybutyrate: Metabolic Agents for Seizure Control. Front Cell Neurosci 2019; 13:172. [PMID: 31114484 PMCID: PMC6503754 DOI: 10.3389/fncel.2019.00172] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 04/11/2019] [Indexed: 01/12/2023] Open
Abstract
Current anti-seizure drugs (ASDs) are believed to reduce neuronal excitability through modulation of ion channels and transporters that regulate excitability at the synaptic level. While most patients with epilepsy respond to ASDs, many remain refractory to medical treatment but respond favorably to a high-fat, low-carbohydrate metabolism-based therapy known as the ketogenic diet (KD). The clinical effectiveness of the KD has increasingly underscored the thesis that metabolic factors also play a crucial role in the dampening neuronal hyperexcitability that is a hallmark feature of epilepsy. This notion is further amplified by the clinical utility of other related metabolism-based diets such as the modified Atkins diet and the low-glycemic index treatment (LGIT). Traditional high-fat diets are characterized by enhanced fatty acid oxidation (which produces ketone bodies such as beta-hydroxybutyrate) and a reduction in glycolytic flux, whereas the LGIT is predicated mainly on the latter observation of reduced blood glucose levels. As dietary implementation is not without challenges regarding clinical administration and patient compliance, there is an inherent desire and need to determine whether specific metabolic substrates and/or enzymes might afford similar clinical benefits, hence validating the concept of a “diet in a pill.” Here, we discuss the evidence for one glycolytic inhibitor, 2-deoxyglucose (2DG) and one metabolic substrate, β-hydroxybutyrate (BHB) exerting direct effects on neuronal excitability, highlight their mechanistic differences, and provide the strengthening scientific rationale for their individual or possibly combined use in the clinical arena of seizure management.
Collapse
Affiliation(s)
- Jong M Rho
- Section of Pediatric Neurology, Department of Pediatrics, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Li-Rong Shao
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
19
|
Gross EC, Klement RJ, Schoenen J, D'Agostino DP, Fischer D. Potential Protective Mechanisms of Ketone Bodies in Migraine Prevention. Nutrients 2019; 11:E811. [PMID: 30974836 PMCID: PMC6520671 DOI: 10.3390/nu11040811] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022] Open
Abstract
An increasing amount of evidence suggests that migraines are a response to a cerebral energy deficiency or oxidative stress levels that exceed antioxidant capacity. The ketogenic diet (KD), a diet mimicking fasting that leads to the elevation of ketone bodies (KBs), is a therapeutic intervention targeting cerebral metabolism that has recently shown great promise in the prevention of migraines. KBs are an alternative fuel source for the brain, and are thus likely able to circumvent some of the abnormalities in glucose metabolism and transport found in migraines. Recent research has shown that KBs-D-β-hydroxybutyrate in particular-are more than metabolites. As signalling molecules, they have the potential to positively influence other pathways commonly believed to be part of migraine pathophysiology, namely: mitochondrial functioning, oxidative stress, cerebral excitability, inflammation and the gut microbiome. This review will describe the mechanisms by which the presence of KBs, D-BHB in particular, could influence those migraine pathophysiological mechanisms. To this end, common abnormalities in migraines are summarised with a particular focus on clinical data, including phenotypic, biochemical, genetic and therapeutic studies. Experimental animal data will be discussed to elaborate on the potential therapeutic mechanisms of elevated KBs in migraine pathophysiology, with a particular focus on the actions of D-BHB. In complex diseases such as migraines, a therapy that can target multiple possible pathogenic pathways seems advantageous. Further research is needed to establish whether the absence/restriction of dietary carbohydrates, the presence of KBs, or both, are of primary importance for the migraine protective effects of the KD.
Collapse
Affiliation(s)
- Elena C Gross
- Division of Paediatric Neurology, University Children's Hospital Basel (UKBB), University of Basel, 4056 Basel, Switzerland.
| | - Rainer J Klement
- Department of Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422 Schweinfurt, Germany.
| | - Jean Schoenen
- Headache Research Unit, University of Liège, Dept of Neurology-Citadelle Hospital, 4000 Liège, Belgium.
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, Metabolic Medicine Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA.
| | - Dirk Fischer
- Division of Paediatric Neurology, University Children's Hospital Basel (UKBB), University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
20
|
Gross E, Putananickal N, Orsini AL, Schmidt S, Vogt DR, Cichon S, Sandor P, Fischer D. Efficacy and safety of exogenous ketone bodies for preventive treatment of migraine: A study protocol for a single-centred, randomised, placebo-controlled, double-blind crossover trial. Trials 2019; 20:61. [PMID: 30654835 PMCID: PMC6337840 DOI: 10.1186/s13063-018-3120-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/09/2018] [Indexed: 01/22/2023] Open
Abstract
Background Currently available prophylactic migraine treatment options are limited and are associated with many, often intolerable, side-effects. Various lines of research suggest that abnormalities in energy metabolism are likely to be part of migraine pathophysiology. Previously, a ketogenic diet (KD) has been reported to lead to a drastic reduction in migraine frequency. An alternative method to a strict KD is inducing a mild nutritional ketosis (0.4–2 mmol/l) with exogenous ketogenic substances. The aim of this randomised, placebo-controlled, double-blind, crossover, single-centre trial is to demonstrate safety and superiority of beta-hydroxybutyrate (βHB) in mineral salt form over placebo in migraine prevention. Methods/design Forty-five episodic migraineurs (5–14 migraine days/months), with or without aura, aged between 18 and 65 years, will be recruited at headache clinics in Switzerland, Germany and Austria and via Internet announcements. After a 4-week baseline period, patients will be randomly allocated to one of the two trial arms and receive either the βHB mineral salt or placebo for 12 weeks. This will be followed by a 4-week wash-out period, a subsequent second baseline period and, finally, another 12-week intervention with the alternative treatment. Co-medication with triptans (10 days per months) or analgesics (14 days per months) is permitted. The primary outcome is the mean change from baseline in the number of migraine days (meeting International Classification of Headache Disorders version 3 criteria) during the last 4 weeks of intervention compared to placebo. Secondary endpoints include mean changes in headache days of any severity, acute migraine medication use, migraine intensity and migraine and headache-related disability. Exploratory outcomes are (in addition to routine laboratory analysis) genetic profiling and expression analysis, oxidative and nitrosative stress, as well as serum cytokine analysis, and blood βHB and glucose analysis (pharmacokinetics). Discussion A crossover design was chosen as it greatly improves statistical power and participation rates, without increasing costs. To our knowledge this is the first RCT using βHB salts worldwide. If proven effective and safe, βHB might not only offer a new prophylactic treatment option for migraine patients, but might additionally pave the way for clinical trials assessing its use in related diseases. Trial registration ClinicalTrials.gov, NCT03132233. Registered on 27 April 2017. Electronic supplementary material The online version of this article (10.1186/s13063-018-3120-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Gross
- Division of Neuropaediatrics, University of Basel Children's Hospital, University of Basel, Spitalstrasse 33, Postfach, 4056, Basel, Switzerland
| | - Niveditha Putananickal
- Division of Neuropaediatrics, University of Basel Children's Hospital, University of Basel, Spitalstrasse 33, Postfach, 4056, Basel, Switzerland.
| | - Anna-Lena Orsini
- Division of Neuropaediatrics, University of Basel Children's Hospital, University of Basel, Spitalstrasse 33, Postfach, 4056, Basel, Switzerland
| | - Simone Schmidt
- Division of Neuropaediatrics, University of Basel Children's Hospital, University of Basel, Spitalstrasse 33, Postfach, 4056, Basel, Switzerland
| | - Deborah R Vogt
- Department of Clinical Research, Clinical Trial Unit, University of Basel Hospital, University of Basel, Basel, Switzerland
| | - Sven Cichon
- Department of Medical Genetics, University of Basel Hospital, University of Basel, Basel, Switzerland
| | | | - Dirk Fischer
- Division of Neuropaediatrics, University of Basel Children's Hospital, University of Basel, Spitalstrasse 33, Postfach, 4056, Basel, Switzerland
| |
Collapse
|
21
|
Shao LR, Rho JM, Stafstrom CE. Glycolytic inhibition: A novel approach toward controlling neuronal excitability and seizures. Epilepsia Open 2018; 3:191-197. [PMID: 30564778 PMCID: PMC6293058 DOI: 10.1002/epi4.12251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2018] [Indexed: 12/31/2022] Open
Abstract
Conventional antiseizure medications reduce neuronal excitability through effects on ion channels or synaptic function. In recent years, it has become clear that metabolic factors also play a crucial role in the modulation of neuronal excitability. Indeed, metabolic regulation of neuronal excitability is pivotal in seizure pathogenesis and control. The clinical effectiveness of a variety of metabolism‐based diets, especially for children with medication‐refractory epilepsy, underscores the applicability of metabolic approaches to the control of seizures and epilepsy. Such diets include the ketogenic diet, the modified Atkins diet, and the low‐glycemic index treatment (among others). A promising avenue to alter cellular metabolism, and hence excitability, is by partial inhibition of glycolysis, which has been shown to reduce seizure susceptibility in a variety of animal models as well as in cellular systems in vitro. One such glycolytic inhibitor, 2‐deoxy‐d‐glucose (2DG), increases seizure threshold in vivo and reduces interictal and ictal epileptiform discharges in hippocampal slices. Here, we review the role of glucose metabolism and glycolysis on neuronal excitability, with specific reference to 2DG, and discuss the potential use of 2DG and similar agents in the clinical arena for seizure management.
Collapse
Affiliation(s)
- Li-Rong Shao
- Division of Pediatric Neurology Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland U.S.A
| | - Jong M Rho
- Departments of Pediatrics, Clinical Neurosciences, Physiology and Pharmacology Alberta Children's Hospital Research Institute Hotchkiss Brain Institute Cumming School of Medicine University of Calgary Calgary Alberta Canada
| | - Carl E Stafstrom
- Division of Pediatric Neurology Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland U.S.A
| |
Collapse
|
22
|
Malkov A, Ivanov AI, Buldakova S, Waseem T, Popova I, Zilberter M, Zilberter Y. Seizure-induced reduction in glucose utilization promotes brain hypometabolism during epileptogenesis. Neurobiol Dis 2018; 116:28-38. [DOI: 10.1016/j.nbd.2018.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
|
23
|
Vargas-Sánchez K, Mogilevskaya M, Rodríguez-Pérez J, Rubiano MG, Javela JJ, González-Reyes RE. Astroglial role in the pathophysiology of status epilepticus: an overview. Oncotarget 2018; 9:26954-26976. [PMID: 29928494 PMCID: PMC6003549 DOI: 10.18632/oncotarget.25485] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/09/2018] [Indexed: 12/11/2022] Open
Abstract
Status epilepticus is a medical emergency with elevated morbidity and mortality rates, and represents a leading cause of epilepsy-related deaths. Though status epilepticus can occur at any age, it manifests more likely in children and elderly people. Despite the common prevalence of epileptic disorders, a complete explanation for the mechanisms leading to development of self-limited or long lasting seizures (as in status epilepticus) are still lacking. Apart from neurons, research evidence suggests the involvement of immune and glial cells in epileptogenesis. Among glial cells, astrocytes represent an ideal target for the study of the pathophysiology of status epilepticus, due to their key role in homeostatic balance of the central nervous system. During status epilepticus, astroglial cells are activated by the presence of cytokines, damage associated molecular patterns and reactive oxygen species. The persistent activation of astrocytes leads to a decrease in glutamate clearance with a corresponding accumulation in the synaptic extracellular space, increasing the chance of neuronal excitotoxicity. Moreover, major alterations in astrocytic gap junction coupling, inflammation and receptor expression, facilitate the generation of seizures. Astrocytes are also involved in dysregulation of inhibitory transmission in the central nervous system and directly participate in ionic homeostatic alterations during status epilepticus. In the present review, we focus on the functional and structural changes in astrocytic activity that participate in the development and maintenance of status epilepticus, with special attention on concurrent inflammatory alterations. We also include potential astrocytic treatment targets for status epilepticus.
Collapse
Affiliation(s)
- Karina Vargas-Sánchez
- Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | | | - John Rodríguez-Pérez
- Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - María G Rubiano
- Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - José J Javela
- Grupo de Clínica y Salud Mental, Programa de Psicología, Universidad Católica de Pereira, Pereira, Colombia
| | - Rodrigo E González-Reyes
- Universidad del Rosario, Escuela de Medicina y Ciencias de la Salud, GI en Neurociencias-NeURos, Bogotá, Colombia
| |
Collapse
|
24
|
Individualizing Treatment Approaches for Epileptic Patients with Glucose Transporter Type1 (GLUT-1) Deficiency. Int J Mol Sci 2018; 19:ijms19010122. [PMID: 29303961 PMCID: PMC5796071 DOI: 10.3390/ijms19010122] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/27/2017] [Accepted: 12/30/2017] [Indexed: 12/16/2022] Open
Abstract
Monogenic and polygenic mutations are important contributors in patients suffering from epilepsy, including metabolic epilepsies which are inborn errors of metabolism with a good respond to specific dietetic treatments. Heterozygous variation in solute carrier family 2, facilitated glucose transporter member 1 (SLC2A1) and mutations of the GLUT1/SLC2A2 gene results in the failure of glucose transport, which is related with a glucose type-1 transporter (GLUT1) deficiency syndrome (GLUT1DS). GLUT1 deficiency syndrome is a treatable disorder of glucose transport into the brain caused by a variety of mutations in the SLC2A1 gene which are the cause of different neurological disorders also with different types of epilepsy and related clinical phenotypes. Since patients continue to experience seizures due to a pharmacoresistance, an early clinical diagnosis associated with specific genetic testing in SLC2A1 pathogenic variants in clinical phenotypes could predict pure drug response and might improve safety and efficacy of treatment with the initiation of an alternative energy source including ketogenic or analog diets in such patients providing individualized strategy approaches.
Collapse
|
25
|
Murgia F, Muroni A, Puligheddu M, Polizzi L, Barberini L, Orofino G, Solla P, Poddighe S, Del Carratore F, Griffin JL, Atzori L, Marrosu F. Metabolomics As a Tool for the Characterization of Drug-Resistant Epilepsy. Front Neurol 2017; 8:459. [PMID: 28928712 PMCID: PMC5591409 DOI: 10.3389/fneur.2017.00459] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022] Open
Abstract
Purpose Drug resistance is a critical issue in the treatment of epilepsy, contributing to clinical emergencies and increasing both serious social and economic burdens on the health system. The wide variety of potential drug combinations followed by often failed consecutive attempts to match drugs to an individual patient may mean that this treatment stage may last for years with suboptimal benefit to the patient. Given these challenges, it is valuable to explore the availability of new methodologies able to shorten the period of determining a rationale pharmacologic treatment. Metabolomics could provide such a tool to investigate possible markers of drug resistance in subjects with epilepsy. Methods Blood samples were collected from (1) controls (C) (n = 35), (2) patients with epilepsy “responder” (R) (n = 18), and (3) patients with epilepsy “non-responder” (NR) (n = 17) to the drug therapy. The samples were analyzed using nuclear magnetic resonance spectroscopy, followed by multivariate statistical analysis. Key findings A different metabolic profile based on metabolomics analysis of the serum was observed between C and patients with epilepsy and also between R and NR patients. It was possible to identify the discriminant metabolites for the three classes under investigation. Serum from patients with epilepsy were characterized by increased levels of 3-OH-butyrate, 2-OH-valerate, 2-OH-butyrate, acetoacetate, acetone, acetate, choline, alanine, glutamate, scyllo-inositol (C < R < NR), and decreased concentration of glucose, lactate, and citrate compared to C (C > R > NR). Significance In conclusion, metabolomics may represent an important tool for discovery of differences between subjects affected by epilepsy responding or resistant to therapies and for the study of its pathophysiology, optimizing the therapeutic resources and the quality of life of patients.
Collapse
Affiliation(s)
- Federica Murgia
- Department of Biomedical Science, University of Cagliari, Cagliari, Italy
| | - Antonella Muroni
- Azienda Ospedaliera Universitaria (A.O.U) of Cagliari, Cagliari, Italy
| | - Monica Puligheddu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Lorenzo Polizzi
- Azienda Ospedaliera Universitaria (A.O.U) of Cagliari, Cagliari, Italy
| | - Luigi Barberini
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Gianni Orofino
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Paolo Solla
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Simone Poddighe
- Department of Biomedical Science, University of Cagliari, Cagliari, Italy.,Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Francesco Del Carratore
- Department of Biomedical Science, University of Cagliari, Cagliari, Italy.,Faculty of Life Sciences, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Luigi Atzori
- Department of Biomedical Science, University of Cagliari, Cagliari, Italy
| | - Francesco Marrosu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
26
|
Keck M, Fournier A, Gualtieri F, Walker A, von Rüden EL, Russmann V, Deeg CA, Hauck SM, Krause R, Potschka H. A systems level analysis of epileptogenesis-associated proteome alterations. Neurobiol Dis 2017; 105:164-178. [PMID: 28576708 DOI: 10.1016/j.nbd.2017.05.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 05/22/2017] [Accepted: 05/29/2017] [Indexed: 12/18/2022] Open
Abstract
Despite intense research efforts, the knowledge about the mechanisms of epileptogenesis and epilepsy is still considered incomplete and limited. However, an in-depth understanding of molecular pathophysiological processes is crucial for the rational selection of innovative biomarkers and target candidates. Here, we subjected proteomic data from different phases of a chronic rat epileptogenesis model to a comprehensive systems level analysis. Weighted Gene Co-expression Network analysis identified several modules of interconnected protein groups reflecting distinct molecular aspects of epileptogenesis in the hippocampus and the parahippocampal cortex. Characterization of these modules did not only further validate the data but also revealed regulation of molecular processes not described previously in the context of epilepsy development. The data sets also provide valuable information about temporal patterns, which should be taken into account for development of preventive strategies in particular when it comes to multi-targeting network pharmacology approaches. In addition, principal component analysis suggests candidate biomarkers, which might inform the design of novel molecular imaging approaches aiming to predict epileptogenesis during different phases or confirm epilepsy manifestation. Further studies are necessary to distinguish between molecular alterations, which correlate with epileptogenesis versus those reflecting a mere consequence of the status epilepticus.
Collapse
Affiliation(s)
- Michael Keck
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University (LMU), 80539 Munich, Germany
| | - Anna Fournier
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg
| | - Fabio Gualtieri
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University (LMU), 80539 Munich, Germany
| | - Andreas Walker
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University (LMU), 80539 Munich, Germany
| | - Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University (LMU), 80539 Munich, Germany
| | - Vera Russmann
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University (LMU), 80539 Munich, Germany
| | - Cornelia A Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), 80539 Munich, Germany; Experimental Ophthalmology, Philipps University of Marburg, 35037 Marburg, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Roland Krause
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg.
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University (LMU), 80539 Munich, Germany.
| |
Collapse
|
27
|
Zilberter Y, Zilberter M. The vicious circle of hypometabolism in neurodegenerative diseases: Ways and mechanisms of metabolic correction. J Neurosci Res 2017; 95:2217-2235. [PMID: 28463438 DOI: 10.1002/jnr.24064] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 12/13/2022]
Abstract
Hypometabolism, characterized by decreased brain glucose consumption, is a common feature of many neurodegenerative diseases. Initial hypometabolic brain state, created by characteristic risk factors, may predispose the brain to acquired epilepsy and sporadic Alzheimer's and Parkinson's diseases, which are the focus of this review. Analysis of available data suggests that deficient glucose metabolism is likely a primary initiating factor for these diseases, and that resulting neuronal dysfunction further promotes the metabolic imbalance, establishing an effective positive feedback loop and a downward spiral of disease progression. Therefore, metabolic correction leading to the normalization of abnormalities in glucose metabolism may be an efficient tool to treat the neurological disorders by counteracting their primary pathological mechanisms. Published and preliminary experimental results on this approach for treating Alzheimer's disease and epilepsy models support the efficacy of metabolic correction, confirming the highly promising nature of the strategy. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuri Zilberter
- Aix-Marseille Université, INSERM UMR1106, Institut de Neurosciences des Systèmes, Marseille, France
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, California, 94158, USA
| |
Collapse
|
28
|
Zarnowska I, Luszczki JJ, Zarnowski T, Wlaz P, Czuczwar SJ, Gasior M. Proconvulsant effects of the ketogenic diet in electroshock-induced seizures in mice. Metab Brain Dis 2017; 32:351-358. [PMID: 27644408 PMCID: PMC5346421 DOI: 10.1007/s11011-016-9900-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/19/2016] [Indexed: 11/03/2022]
Abstract
Among non-pharmacological treatments, the ketogenic diet (KD) has the strongest demonstrated evidence of clinical success in drug resistant epilepsy. In an attempt to model the anticonvulsant effects of the KD pre-clinically, the present study assessed the effects of the KD against electroshock-induced convulsions in mice. After confirming that exposure to the KD for 2 weeks resulted in stable ketosis and hypoglycemia, mice were exposed to electroshocks of various intensities to establish general seizure susceptibility. When compared to mice fed the standard rodent chow diet (SRCD), we found that mice fed the KD were more sensitive to electroconvulsions as reflected by a significant decrease in seizure threshold (3.86 mA in mice on the KD vs 7.29 mA in mice on the SRCD; P < 0.05) in the maximal electroshock seizure threshold (MEST) test. To examine if this increased seizure sensitivity to electroconvulsions produced by the KD would affect anticonvulsant effects of antiepileptic drugs (AEDs), anticonvulsant potencies of carbamazepine (CBZ), phenobarbital (PB), phenytoin (PHT), and valproate (VPA) against maximal electroshock (MES)-induced convulsions were compared in mice fed the KD and SRCD. We found that potencies of all AEDs studied were decreased in mice fed the KD in comparison to those on the SRCD, with decreases in the anticonvulsant potencies ranging from 1.4 fold (PB) to 1.7 fold (PHT). Finally, the lack of differences in brain exposures of the AEDs studied in mice fed the KD and SRCD ruled out a pharmacokinetic nature of the observed findings. Taken together, exposure to the KD in the present study had an overall pro-convulsant effect. Since electroconvulsions require large metabolic reserves to support their rapid spread throughout the brain and consequent generalized tonic-clonic convulsions, this effect may be explained by a high energy state produced by the KD in regards to increased energy storage and utilization.
Collapse
Affiliation(s)
- Iwona Zarnowska
- Department of Pathophysiology, Medical University, Jaczewskiego 8, 20-090, Lublin, Poland.
| | - Jarogniew J Luszczki
- Department of Pathophysiology, Medical University, Jaczewskiego 8, 20-090, Lublin, Poland
- Department of Physiopathology, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950, Lublin, Poland
| | - Tomasz Zarnowski
- Chair of Ophthalmology, Medical University, Chmielna 1, 20-079, Lublin, Poland
| | - Piotr Wlaz
- Department of Animal Physiology, Institute of Biology and Biochemisry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Stanislaw J Czuczwar
- Department of Pathophysiology, Medical University, Jaczewskiego 8, 20-090, Lublin, Poland
- Department of Physiopathology, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950, Lublin, Poland
| | - Maciej Gasior
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Samokhina E, Popova I, Malkov A, Ivanov AI, Papadia D, Osypov A, Molchanov M, Paskevich S, Fisahn A, Zilberter M, Zilberter Y. Chronic inhibition of brain glycolysis initiates epileptogenesis. J Neurosci Res 2017; 95:2195-2206. [PMID: 28150440 DOI: 10.1002/jnr.24019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 12/30/2022]
Abstract
Metabolic abnormalities found in epileptogenic tissue provide considerable evidence of brain hypometabolism, while major risk factors for acquired epilepsy all share brain hypometabolism as one common outcome, suggesting that a breakdown of brain energy homeostasis may actually precede epileptogenesis. However, a causal link between deficient brain energy metabolism and epilepsy initiation has not been yet established. To address this issue we developed an in vivo model of chronic energy hypometabolism by daily intracerebroventricular (i.c.v.) injection of the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DG) and also investigated acute effects of 2-DG on the cellular level. In hippocampal slices, acute glycolysis inhibition by 2-DG (by about 35%) led to contrasting effects on the network: a downregulation of excitatory synaptic transmission together with a depolarization of neuronal resting potential and a decreased drive of inhibitory transmission. Therefore, the potential acute effect of 2-DG on network excitability depends on the balance between these opposing pre- and postsynaptic changes. In vivo, we found that chronic 2-DG i.c.v. application (estimated transient inhibition of brain glycolysis under 14%) for a period of 4 weeks induced epileptiform activity in initially healthy male rats. Our results suggest that chronic inhibition of brain energy metabolism, characteristics of the well-established risk factors of acquired epilepsy, and specifically a reduction in glucose utilization (typically observed in epileptic patients) can initiate epileptogenesis. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Evgeniya Samokhina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Irina Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
- Aix Marseille Université, Inserm, INS UMR_S 1106, 13005, Marseille, France
| | - Anton Malkov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
- Aix Marseille Université, Inserm, INS UMR_S 1106, 13005, Marseille, France
| | - Anton I Ivanov
- Aix Marseille Université, Inserm, INS UMR_S 1106, 13005, Marseille, France
| | - Daniela Papadia
- Neuronal Oscillations Lab, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Osypov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Maxim Molchanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Svetlana Paskevich
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - André Fisahn
- Neuronal Oscillations Lab, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Misha Zilberter
- Neuronal Oscillations Lab, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Yuri Zilberter
- Aix Marseille Université, Inserm, INS UMR_S 1106, 13005, Marseille, France
| |
Collapse
|