1
|
Wu G, Zhu T, Ma C, Xu L, Qian Z, Kong G, Cui H, Zhang T, Wang J, Tang Y. Association of abnormal cortical inhibition and clinical outcomes in patients at clinical high risk for psychosis. Clin Neurophysiol 2025; 169:65-73. [PMID: 39626344 DOI: 10.1016/j.clinph.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/27/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
OBJECTIVE Cortical inhibition (CI) can be in-vivo measured using transcranial magnetic stimulation (TMS), and patients with schizophrenia had abnormal CI. However, whether the abnormal CI occur early in patients with clinical high risk for psychosis (CHR) or could predict their clinical outcomes remains less known. METHODS We measured short-interval cortical inhibition (SICI), cortical silent period (CSP), and intra-cortical facilitation (ICF) over the motor cortex and neurocognitive performances in 55 CHR, 35 first-episode schizophrenia (FES), and 35 healthy controls (HC). We divided CHR patients into CHR converters (CHR-C) and CHR non-converters (CHR-NC) according to their clinical outcomes within the two-year follow-up. RESULTS CSP was longer in CHR-C (P = 0.033) and FES (P = 0.047) than in HC, while CSP was comparable between CHR-NC and HC. In CHR, CSP was negatively related to their performances in symbol coding and maze tasks. There was no significant between-group difference for either SICI or ICF. CONCLUSIONS Our findings suggested GABAB-mediated CSP was prolonged in CHR, who later converted into schizophrenia, and was associated with poor neurocognitive functions. SIGNIFICANCE CSP is prolonged before the onset of psychosis, particularly in CHR-C patients, suggesting that CSP could be a potential biomarker for predicting transition to schizophrenia.
Collapse
Affiliation(s)
- Guanfu Wu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyuan Zhu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunyan Ma
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gai Kong
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiru Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China.
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Zhang QX, Wu SS, Wang PJ, Zhang R, Valenzuela RK, Shang SS, Wan T, Ma J. Schizophrenia-Like Deficits and Impaired Glutamate/Gamma-aminobutyric acid Homeostasis in Zfp804a Conditional Knockout Mice. Schizophr Bull 2024; 50:1411-1426. [PMID: 38988003 PMCID: PMC11548938 DOI: 10.1093/schbul/sbae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
BACKGROUND AND HYPOTHESIS Zinc finger protein 804A (ZNF804A) was the first genome-wide associated susceptibility gene for schizophrenia (SCZ) and played an essential role in the pathophysiology of SCZ by influencing neurodevelopment regulation, neurite outgrowth, synaptic plasticity, and RNA translational control; however, the exact molecular mechanism remains unclear. STUDY DESIGN A nervous-system-specific Zfp804a (ZNF804A murine gene) conditional knockout (cKO) mouse model was generated using clustered regularly interspaced short palindromic repeat/Cas9 technology and the Cre/loxP method. RESULTS Multiple and complex SCZ-like behaviors, such as anxiety, depression, and impaired cognition, were observed in Zfp804a cKO mice. Molecular biological methods and targeted metabolomics assay validated that Zfp804a cKO mice displayed altered SATB2 (a cortical superficial neuron marker) expression in the cortex; aberrant NeuN, cleaved caspase 3, and DLG4 (markers of mature neurons, apoptosis, and postsynapse, respectively) expressions in the hippocampus and a loss of glutamate (Glu)/γ-aminobutyric acid (GABA) homeostasis with abnormal GAD67 (Gad1) expression in the hippocampus. Clozapine partly ameliorated some SCZ-like behaviors, reversed the disequilibrium of the Glu/GABA ratio, and recovered the expression of GAD67 in cKO mice. CONCLUSIONS Zfp804a cKO mice reproducing SCZ-like pathological and behavioral phenotypes were successfully developed. A novel mechanism was determined in which Zfp804a caused Glu/GABA imbalance and reduced GAD67 expression, which was partly recovered by clozapine treatment. These findings underscore the role of altered gene expression in understanding the pathogenesis of SCZ and provide a reliable SCZ model for future therapeutic interventions and biomarker discovery.
Collapse
Affiliation(s)
- Qiao-xia Zhang
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Shan-shan Wu
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Peng-jie Wang
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Rui Zhang
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Department of Biochemistry and Molecular Biology, College of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, Guizhou, China
| | - Robert K Valenzuela
- JAX Center for Alzheimer’s and Dementia Research, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Shan-shan Shang
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Ting Wan
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jie Ma
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Okada M, Fukuyama K, Motomura E. Impacts of exposure to and subsequent discontinuation of clozapine on tripartite synaptic transmission. Br J Pharmacol 2024; 181:4571-4592. [PMID: 39091175 DOI: 10.1111/bph.16503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND AND PURPOSE Clozapine is an effective antipsychotic for treatment-resistant schizophrenia, but its discontinuation leads to discontinuation syndrome/catatonia complicated by benzodiazepine-resistance and rhabdomyolysis. EXPERIMENTAL APPROACH This study determined time-dependent effects of exposure and subsequent discontinuation of clozapine on expression of connexin43, 5-HT receptors, intracellular L-β-aminoisobutyrate (L-BAIBA) and 2nd-messengers and signalling of AMPK, PP2A and Akt in cultured astrocytes and rat frontal cortex. KEY RESULTS Intracellular L-BAIBA levels increased during clozapine exposure but immediately recovered after discontinuation. Both exposure to clozapine and L-BAIBA increased connexin43 and signalling of AMPK/Akt time-dependently, but reduced PP2A signalling, 5-HT receptor expression and IP3 level. These changes recovered within 2 weeks after discontinuation, while 5-HT receptors and IP3 transiently increased during the recovery process. L-BAIBA activated AMPK signalling, leading to attenuated PP2A signalling. Astroglial D-serine release was increased by clozapine exposure but continued to increase within 1 week after discontinuation via activation of IP3 receptor function. CONCLUSION AND IMPLICATIONS Clozapine discontinuation restored PP2A signalling due to decreased L-BAIBA, increased 5-HT receptor expression via probably enhanced 5-HT receptor recycling, but increased astroglial D-serine release persisted by transiently activated IP3 receptors via transiently increased IP3 level. Decreased L-BAIBA caused by clozapine discontinuation is, at least partially, involved in the transiently increased 5-HT receptor and astroglial D-serine release.
Collapse
Affiliation(s)
- Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Kouji Fukuyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Eishi Motomura
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Japan
| |
Collapse
|
4
|
Torres-Carmona E, Nakajima S, Iwata Y, Ueno F, Stefan C, Song J, Abdolizadeh A, Koizumi MT, Kambari Y, Amaev A, Agarwal SM, Mar W, de Luca V, Remington G, Gerretsen P, Graff-Guerrero A. Clozapine treatment and astrocyte activity in treatment resistant schizophrenia: A proton magnetic resonance spectroscopy study. Schizophr Res 2024; 270:152-161. [PMID: 38909486 DOI: 10.1016/j.schres.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 04/17/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
Clozapine is the only antipsychotic approved for treating treatment-resistant schizophrenia (TRS), characterized by persistent positive symptoms despite adequate antipsychotic treatment. Unfortunately, clozapine demonstrates clinical efficacy in only ~30-60 % of patients with TRS (clozapine-responders; ClzR+), while the remaining ~40-70 % are left with no pharmacological recourse for improvement (clozapine-resistant; ClzR-). Mechanism(s) underlying clozapine's superior efficacy remain unclear. However, in vitro evidence suggests clozapine may mitigate glutamatergic dysregulations observed in TRS, by modulating astrocyte activity in ClzR+, but not ClzR-. A factor that if proven correct, may help the assessment of treatment response and development of more effective antipsychotics. To explore the presence of clozapine-astrocyte interaction and clinical improvement, we used 3 T proton-magnetic resonance spectroscopy to quantify levels of myo-Inositol, surrogate biomarker of astrocyte activity, in regions related to schizophrenia neurobiology: Dorsal-anterior-cingulate-cortex (dACC), left-dorsolateral-prefrontal-cortex (left-DLPFC), and left-striatum (left-striatum) of 157 participants (ClzR- = 30; ClzR+ = 37; responders = 38; controls = 52). Clozapine treatment was assessed using clozapine to norclozapine plasma levels, 11-12 h after last clozapine dose. Measures for symptom severity (i.e., Positive and Negative Symptoms Scale) and cognition (i.e., Mini-Mental State Examination) were also recorded. Higher levels of myo-Inositol were observed in TRS groups versus responders and controls (dACC (p < 0.001); left-striatum (p = 0.036); left-DLPFC (p = 0.023)). In ClzR+, but not ClzR-, clozapine to norclozapine ratios were positively associated with myo-Inositol levels (dACC (p = 0.004); left-DLPFC (p < 0.001)), and lower positive symptom severity (p < 0.001). Our results support growing in vitro evidence of clozapine-astrocyte interaction in clozapine-responders. Further research may determine the viability of clozapine-astrocyte interactions as an early marker of clozapine response.
Collapse
Affiliation(s)
- Edgardo Torres-Carmona
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Shinichiro Nakajima
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Neuropsychiatry, Keio University, Minato, Tokyo, Japan
| | - Yusuke Iwata
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Fumihiko Ueno
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Cristiana Stefan
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Jianmeng Song
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Ali Abdolizadeh
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | | | - Yasaman Kambari
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Aron Amaev
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sri Mahavir Agarwal
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
| | - Wanna Mar
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Vincenzo de Luca
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
| | - Gary Remington
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
| | - Philip Gerretsen
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada.
| |
Collapse
|
5
|
Agid O, Crespo-Facorro B, de Bartolomeis A, Fagiolini A, Howes OD, Seppälä N, Correll CU. Overcoming the barriers to identifying and managing treatment-resistant schizophrenia and to improving access to clozapine: A narrative review and recommendation for clinical practice. Eur Neuropsychopharmacol 2024; 84:35-47. [PMID: 38657339 DOI: 10.1016/j.euroneuro.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Clozapine is the only approved antipsychotic for treatment-resistant schizophrenia (TRS). Although a large body of evidence supports its efficacy and favorable risk-benefit ratio in individuals who have failed two or more antipsychotics, clozapine remains underused. However, variations in clozapine utilization across geographic and clinical settings suggest that it could be possible to improve its use. In this narrative review and expert opinion, we summarized information available in the literature on the mechanisms of action, effectiveness, and potential adverse events of clozapine. We identified barriers leading to discouragement in clozapine prescription internationally, and we proposed practical solutions to overcome each barrier. One of the main obstacles identified to the use of clozapine is the lack of appropriate training for physicians: we highlighted the need to develop specific professional programs to train clinicians, both practicing and in residency, on the relevance and efficacy of clozapine in TRS treatment, initiation, maintenance, and management of potential adverse events. This approach would facilitate physicians to identify eligible patients and offer clozapine as a treatment option in the early stage of the disease. We also noted that increasing awareness of the benefits of clozapine among healthcare professionals, people with TRS, and their caregivers can help promote the use of clozapine. Educational material, such as leaflets or videos, could be developed and distributed to achieve this goal. The information provided in this article may be useful to improve disease burden and support healthcare professionals, patients, and caregivers navigating the complex pathways to TRS management.
Collapse
Affiliation(s)
- Ofer Agid
- Centre for Addiction and Mental Health, University of Toronto, Canada
| | - Benedicto Crespo-Facorro
- Department of Psychiatry, School of Medicine, University Hospital Virgen del Rocío-IBiS-CSIC, Sevilla, Spain, Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Sevilla, Spain
| | - Andrea de Bartolomeis
- University of Naples Federico II, Department of Neuroscience, Reproductive Science, and Odontostomatology. Laboratory of Molecular and Translational Psychiatry. Unit of Treatment Resistant Psychosis, Naples, Italy; Staff Unesco Chair at University of Naples Federico II, Italy
| | | | - Oliver D Howes
- IoPPN, King's College London, De Crespigny Park, London, United Kingdom; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, United Kingdom
| | - Niko Seppälä
- Wellbeing Services in Satakunta, Department of Psychiatry, Pori, Finland and Medical Consultant, Viatris, Finland
| | - Christoph U Correll
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, New York, United States; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, New York, United States; Charité - Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Augustenburger Platz 1, Berlin 13353, Germany; German Center for Mental Health (DZPG), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Kogure M, Kanahara N, Miyazawa A, Shiko Y, Otsuka I, Matsuyama K, Takase M, Kimura M, Kimura H, Ota K, Idemoto K, Tamura M, Oda Y, Yoshida T, Okazaki S, Yamasaki F, Nakata Y, Watanabe Y, Niitsu T, Hishimoto A, Iyo M. Association of SLC6A3 variants with treatment-resistant schizophrenia: a genetic association study of dopamine-related genes in schizophrenia. Front Psychiatry 2024; 14:1334335. [PMID: 38476817 PMCID: PMC10929739 DOI: 10.3389/fpsyt.2023.1334335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/21/2023] [Indexed: 03/14/2024] Open
Abstract
Background Most genetic analyses that have attempted to identify a locus or loci that can distinguish patients with treatment-resistant schizophrenia (TRS) from those who respond to treatment (non-TRS) have failed. However, evidence from multiple studies suggests that patients with schizophrenia who respond well to antipsychotic medication have a higher dopamine (DA) state in brain synaptic clefts whereas patients with TRS do not show enhanced DA synthesis/release pathways. Patients and methods To examine the contribution (if any) of genetics to TRS, we conducted a genetic association analysis of DA-related genes in schizophrenia patients (TRS, n = 435; non-TRS, n = 539) and healthy controls (HC: n = 489). Results The distributions of the genotypes of rs3756450 and the 40-bp variable number tandem repeat on SLC6A3 differed between the TRS and non-TRS groups. Regarding rs3756450, the TRS group showed a significantly higher ratio of the A allele, whereas the non-TRS group predominantly had the G allele. The analysis of the combination of COMT and SLC6A3 yielded a significantly higher ratio of the putative low-DA type (i.e., high COMT activity + high SLC6A3 activity) in the TRS group compared to the two other groups. Patients with the low-DA type accounted for the minority of the non-TRS group and exhibited milder psychopathology. Conclusion The overall results suggest that (i) SLC6A3 could be involved in responsiveness to antipsychotic medication and (ii) genetic variants modulating brain DA levels may be related to the classification of TRS and non-TRS.
Collapse
Affiliation(s)
- Masanobu Kogure
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nobuhisa Kanahara
- Division of Medical Treatment and Rehabilitation, Center for Forensic Mental Health, Chiba University, Chiba, Japan
| | - Atsuhiro Miyazawa
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Doujin-kai Kisarazu Hospital, Kisarazu, Japan
| | - Yuki Shiko
- Biostatistics Section, Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koichi Matsuyama
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Douwa-kai Chiba Hospital, Funabashi, Japan
| | | | - Makoto Kimura
- Chiba Psychiatric Medical Center, Chiba, Japan
- Department of Psychiatry, Kameda Medical Center, Kamogawa, Japan
| | - Hiroshi Kimura
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Gakuji-kai Kimura Hospital, Chiba, Japan
- Department of Psychiatry, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Kiyomitsu Ota
- Doujin-kai Kisarazu Hospital, Kisarazu, Japan
- Choshi-kokoro Clinic, Choshi, Japan
| | - Keita Idemoto
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Doujin-kai Kisarazu Hospital, Kisarazu, Japan
| | - Masaki Tamura
- Doujin-kai Kisarazu Hospital, Kisarazu, Japan
- Department of Cognitive Behavioral Psychology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Fumiaki Yamasaki
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yusuke Nakata
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Tomihisa Niitsu
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
7
|
Hirjak D, Fricchione G, Wolf RC, Northoff G. Lorazepam in catatonia - Past, present and future of a clinical success story. Schizophr Res 2024; 263:27-34. [PMID: 36805317 DOI: 10.1016/j.schres.2023.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/20/2023]
Abstract
The effect of lorazepam in the treatment of catatonia is outstanding and almost immediate. Clinicians are familiar with its effects: mute patients can speak again, akinetic patients can move again and patients with negativism can eat and drink again within usually a short duration of about 10 min to 1-2 h. Fear is often gone after lorazepam administration. While not always effective, the introduction of lorazepam into clinical practice represented a breakthrough and was often life-saving for many patients suffering from catatonia. It is rare to observe such rapid therapeutic effects in other domains of psychiatry. In this narrative review we will briefly look at the past, present and future of lorazepam in the treatment of catatonia. It is gratifying to reflect on the fact that clinicians using the age-old medical practice of observation and empirical treatment succeeded in advancing the management of catatonia 40 years ago. The present evidence shows that the clinical effect of lorazepam in catatonia treatment is excellent and more or less immediate although it remains to be explicitly tested against other substances such as diazepam, zolpidem, clozapine, quetiapine, amantadine, memantine, valproate and dantrolene in randomized clinical trials. In addition, future studies need to answer the question how long lorazepam should be given to patients with catatonia, months or even years? This narrative review promotes the rapid use of lorazepam in the treatment of acute catatonic patients and stipulates further scientific examination of its often impressive clinical effects.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Gregory Fricchione
- Benson-Henry Institute for Mind Body Medicine, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
8
|
Fukuyama K, Motomura E, Okada M. A Novel Gliotransmitter, L-β-Aminoisobutyric Acid, Contributes to Pathophysiology of Clinical Efficacies and Adverse Reactions of Clozapine. Biomolecules 2023; 13:1288. [PMID: 37759688 PMCID: PMC10526296 DOI: 10.3390/biom13091288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Clozapine is listed as one of the most effective antipsychotics and has been approved for treating treatment-resistant schizophrenia (TRS); however, several type A and B adverse reactions, including weight gain, metabolic complications, cardiotoxicity, convulsions, and discontinuation syndromes, exist. The critical mechanisms of clinical efficacy for schizophrenia, TRS, and adverse reactions of clozapine have not been elucidated. Recently, the GABA isomer L-β-aminoisobutyric acid (L-BAIBA), a protective myokine in the peripheral organs, was identified as a candidate novel transmission modulator in the central nervous system (CNS). L-BAIBA activates adenosine monophosphate-activated protein kinase (AMPK) signalling in both the peripheral organs and CNS. Activated AMPK signalling in peripheral organs is an established major target for treating insulin-resistant diabetes, whereas activated AMPK signalling in the hypothalamus contributes to the pathophysiology of weight gain and metabolic disturbances. Clozapine increases L-BAIBA synthesis in the hypothalamus. In addition, the various functions of L-BAIBA in the CNS have recently been elucidated, including as an activator of GABA-B and group-III metabotropic glutamate (III-mGlu) receptors. Considering the expressions of GABA-B and III-mGlu receptors (localised in the presynaptic regions), the activation of GABA-B and III-mGlu receptors can explain the distinct therapeutic advantages of clozapine in schizophrenia or TRS associated with N-methyl-D-aspartate (NMDA) receptor disturbance compared with other atypical antipsychotics via the inhibition of the persistent tonic hyperactivation of thalamocortical glutamatergic transmission in the prefrontal cortex. L-BAIBA has also been identified as a gliotransmitter, and a detailed exploration of the function of L-BAIBA in tripartite synaptic transmission can further elucidate the pathophysiology of effectiveness for treating TRS and/or specific adverse reactions of clozapine.
Collapse
Affiliation(s)
| | | | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.F.); (E.M.)
| |
Collapse
|
9
|
Fukuyama K, Motomura E, Okada M. Enhanced L-β-Aminoisobutyric Acid Is Involved in the Pathophysiology of Effectiveness for Treatment-Resistant Schizophrenia and Adverse Reactions of Clozapine. Biomolecules 2023; 13:biom13050862. [PMID: 37238731 DOI: 10.3390/biom13050862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Clozapine is an effective antipsychotic for the treatment of antipsychotic-resistant schizophrenia; however, specific types of A/B adverse effects and clozapine-discontinuation syndromes are also well known. To date, both the critical mechanisms of clinical actions (effective for antipsychotic-resistant schizophrenia) and the adverse effects of clozapine remain to be elucidated. Recently, we demonstrated that clozapine increased the synthesis of L-β-aminoisobutyric acid (L-BAIBA) in the hypothalamus. L-BAIBA is an activator of the adenosine monophosphate-activated protein kinase (AMPK), glycine receptor, GABAA receptor, and GABAB receptor (GABAB-R). These targets of L-BAIBA overlap as potential targets other than the monoamine receptors of clozapine. However, the direct binding of clozapine to these aminoacidic transmitter/modulator receptors remains to be clarified. Therefore, to explore the contribution of increased L-BAIBA on the clinical action of clozapine, this study determined the effects of clozapine and L-BAIBA on tripartite synaptic transmission, including GABAB-R and the group-III metabotropic glutamate receptor (III-mGluR) using cultured astrocytes, as well as on the thalamocortical hyper-glutamatergic transmission induced by impaired glutamate/NMDA receptors using microdialysis. Clozapine increased astroglial L-BAIBA synthesis in time/concentration-dependent manners. Increased L-BAIBA synthesis was observed until 3 days after clozapine discontinuation. Clozapine did not directly bind III-mGluR or GABAB-R, whereas L-BAIBA activated these receptors in the astrocytes. Local administration of MK801 into the reticular thalamic nucleus (RTN) increased L-glutamate release in the medial frontal cortex (mPFC) (MK801-evoked L-glutamate release). Local administration of L-BAIBA into the mPFC suppressed MK801-evoked L-glutamate release. These actions of L-BAIBA were inhibited by antagonists of III-mGluR and GABAB-R, similar to clozapine. These in vitro and in vivo analyses suggest that increased frontal L-BAIBA signaling likely plays an important role in the pharmacological actions of clozapine, such as improving the effectiveness of treating treatment-resistant schizophrenia and several clozapine discontinuation syndromes via the activation of III-mGluR and GABAB-R in the mPFC.
Collapse
Affiliation(s)
- Kouji Fukuyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Eishi Motomura
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan
| |
Collapse
|
10
|
Gaebler AJ, Haen E, Omar NB, Endres K, Hiemke C, Schoretsanitis G, Paulzen M. Lower sertraline plasma concentration in patients co-medicated with clozapine-Implications for pharmacological augmentation strategies in schizophrenia. Pharmacol Res Perspect 2023; 11:e01065. [PMID: 36825450 PMCID: PMC9950877 DOI: 10.1002/prp2.1065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
Augmentation of antipsychotic treatment with antidepressants represents a common and beneficial treatment strategy in patients suffering from schizophrenia. Combining clozapine and the selective serotonin reuptake inhibitor (SSRI) sertraline represents a clinically important strategy in patients with therapy-resistant schizophrenia, but there is limited knowledge about mutual pharmacokinetic interactions. In the present study, we assessed the impact of clozapine on sertraline plasma concentrations. Based on a therapeutic drug monitoring (TDM) database, sertraline plasma concentrations were compared between two groups: patients receiving a combined treatment with sertraline and clozapine (N = 15) and a matched control group receiving sertraline but no clozapine (N = 17). Group differences with respect to raw and dose-adjusted concentrations were assessed using nonparametric tests. Comedication with clozapine was associated with 67% lower median sertraline plasma concentrations (16 vs. 48 ng/mL; p = .022) and 28% lower median dose-adjusted plasma concentrations (C/D; 0.21 vs. 0.29 (ng/mL)/(mg/day); p = .049) as compared to the control group. Scatter plots revealed a complex relationship between the dosage of clozapine and dose-adjusted sertraline concentrations composed of an initial decrease at clozapine doses below 300 mg, an increase between 300 and 600 mg and a final decrease at 800 mg which was best modeled by a third order polynomial term. Cotreatment with clozapine may lead to reduced sertraline plasma concentrations which may be explained by clozapine-induced gastrointestinal hypo-mobility already present at low doses and cytochrome P450 3A4 inducing properties at high clozapine doses. For this drug combination, clinicians should consider TDM to confirm therapeutically effective plasma concentrations of sertraline.
Collapse
Affiliation(s)
- Arnim Johannes Gaebler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Aachen, Germany.,JARA - Translational Brain Medicine, Aachen, Germany.,Institute of Physiology, Medical Faculty, Aachen, Germany
| | - Ekkehard Haen
- Clinical Pharmacology Institute AGATE gGmbH, Pentling, Germany.,Department of Psychiatry and Psychotherapy, Clinical Pharmacology, University of Regensburg, Regensburg, Germany.,Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany
| | - Nagia Ben Omar
- Department of Psychiatry and Psychotherapy, Clinical Pharmacology, University of Regensburg, Regensburg, Germany.,Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany
| | | | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy and Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of Mainz, Mainz, Germany
| | - Georgios Schoretsanitis
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, New York, New York, USA.,University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Michael Paulzen
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Aachen, Germany.,JARA - Translational Brain Medicine, Aachen, Germany.,Alexianer Hospital Aachen, Aachen, Germany
| |
Collapse
|
11
|
Fukuyama K, Motomura E, Okada M. A Candidate Gliotransmitter, L-β-Aminoisobutyrate, Contributes to Weight Gain and Metabolic Complication Induced by Atypical Antipsychotics. Nutrients 2023; 15:nu15071621. [PMID: 37049464 PMCID: PMC10097171 DOI: 10.3390/nu15071621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Lurasidone and quetiapine are effective atypical mood-stabilizing antipsychotics, but lurasidone and quetiapine are listed as lower-risk and high-risk for weight gain/metabolic complications, respectively. The pathophysiology of the discrepancy of metabolic adverse reactions between these antipsychotics remains to be clarified. The GABA isomer, β-aminoisobutyric acid (BAIBA) enantiomer, was recently re-discovered as myokine via an AMP-activated protein kinase activator (AMPK) enhancer and inhibitory gliotransmitter. Notably, activation of AMPK in peripheral organs improves, but in the hypothalamus, it aggravates metabolic disturbances. Therefore, we determined effects of chronic administration of lurasidone and quetiapine on intracellular and extracellular levels of the BAIBA enantiomer. L-BAIBA is a major BAIBA enantiomer in the hypothalamus and astrocytes, whereas L-BAIBA only accounted for about 5% of total plasma BAIBA enantiomers. Chronic lurasidone administration did not affect body weight but decreased the L-BAIBA level in hypothalamus and cultured astrocytes, whereas chronic quetiapine administration increased body weight and the L-BAIBA level in hypothalamus and astrocytes. Contrary, neither lurasidone nor quetiapine affected total plasma levels of the BAIBA enantiomer since D-BAIBA levels were not affected by these antipsychotics. These results suggest that activation of intracellular L-BAIBA signaling is, at least partially, involved in the pathophysiology of metabolic adverse reaction of quetiapine. Furthermore, this study also demonstrated that lurasidone and quetiapine suppressed and enhanced astroglial L-BAIBA release induced by ripple-burst stimulation (which physiologically contributes to cognitive memory integration during sleep), respectively. Therefore, L-BAIBA probably contributes to the pathophysiology of not only metabolic adverse reactions, but also a part of clinical action of lurasidone or quetiapine.
Collapse
|
12
|
Masumo Y, Kanahara N, Kogure M, Yamasaki F, Nakata Y, Iyo M. Dopamine supersensitivity psychosis and delay of clozapine treatment in patients with treatment-resistant schizophrenia. Int Clin Psychopharmacol 2023; 38:102-109. [PMID: 36719338 DOI: 10.1097/yic.0000000000000442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Both the underutilization of clozapine and treatment resistance of patients to clozapine are serious problems worldwide. Identifying clinical markers predicting response to clozapine would help clinicians more effectively utilize clozapine treatment. The present study retrospectively assessed dopamine supersensitivity psychosis (DSP) in addition to other measures such as age at disease onset and delay of clozapine introduction for a total of 47 treatment-resistant schizophrenia (TRS) patients. The response to clozapine was judged with CGI-C at 1 and 2 years from clozapine introduction. Results revealed that the DSP group tended to have a longer delay between designation of TRS and introduction of clozapine and continued to have slightly more severe psychopathology after treatment with clozapine, showing only slight improvement. The logistic regression analysis showed that the age at disease onset was the only significant indicator, predicting responsiveness to clozapine: patients with an onset age <20 years had a significantly better response to clozapine than patients with an onset age ≥20 years. The present study suggests that DSP might be related to a longer delay in clozapine introduction and the persistence of refractory symptoms despite clozapine treatment, whereas early age of disease onset might be related to a better response to clozapine.
Collapse
Affiliation(s)
- Yuto Masumo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba
- Department of Psychiatry, Naoki-kai Isogaya Hospital, Ichihara
| | - Nobuhisa Kanahara
- Division of Medical Treatment and Rehabilitation, Center for Forensic Mental Health, Chiba University, Chiba
- Shirayuri-kai Ichihara Tsuruoka Hospital, Ichihara, Japan
| | - Masanobu Kogure
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba
| | - Fumiaki Yamasaki
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba
| | - Yusuke Nakata
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba
| |
Collapse
|
13
|
Opposing effects of clozapine and brexpiprazole on β-aminoisobutyric acid: Pathophysiology of antipsychotics-induced weight gain. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:8. [PMID: 36750570 PMCID: PMC9905547 DOI: 10.1038/s41537-023-00336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/26/2023] [Indexed: 02/09/2023]
Abstract
Clozapine is one of the most effective antipsychotics and has the highest risk of weight gain and metabolic complications; however, the detailed pathophysiology of its clinical action and adverse reactions remains to be clarified. Therefore, the present study determined the chronic effects of clozapine (high risk of weight gain) and brexpiprazole (relatively low risk of weight gain) on intracellular and extracellular levels of β-aminoisobutyric acid (BAIBA) enantiomers, which are endogenous activators of AMP-activated protein kinase (AMPK). L-BAIBA is the dominant BAIBA enantiomer in the rat hypothalamus and cultured astrocytes, whereas L-BAIBA accounts for only approximately 5% of the total plasma BAIBA enantiomers. L-BAIBA displayed GABAB receptor agonistic action in the extracellular space and was released through activated astroglial hemichannels, whereas in the intracellular space, L-BAIBA activated AMPK signalling. Chronic administration of the effective doses of clozapine increased intracellular and extracellular levels of L-BAIBA in the hypothalamus and cultured astrocytes, whereas that of brexpiprazole decreased them. These results suggest that enhancing hypothalamic AMPK signalling by increasing intracellular L-BAIBA levels is, at least partially, involved in the pathophysiology of clozapine-induced weight gain and metabolic complications.
Collapse
|
14
|
Ito Y, Murata M, Taku O, Fukuyama K, Motomura E, Dohi K, Okada M. Developed catatonia with rhabdomyolysis and exacerbated cardiac failure upon switching from clozapine to olanzapine owing to cardiomyopathy during clozapine medication - A case report. Asian J Psychiatr 2023; 80:103376. [PMID: 36493522 DOI: 10.1016/j.ajp.2022.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Yuki Ito
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; Department of Psychiatry, National Hospital Organization Sakakibara Hospital, 777 Sakakibara, Tsu, Mie 514-1292, Japan.
| | - Masahiko Murata
- Department of Psychiatry, National Hospital Organization Sakakibara Hospital, 777 Sakakibara, Tsu, Mie 514-1292, Japan.
| | - Omori Taku
- Department of Cardiology and Nephrology, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan.
| | - Kouji Fukuyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan.
| | - Eishi Motomura
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan.
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan.
| | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan.
| |
Collapse
|
15
|
de Bartolomeis A, Vellucci L, Barone A, Manchia M, De Luca V, Iasevoli F, Correll CU. Clozapine's multiple cellular mechanisms: What do we know after more than fifty years? A systematic review and critical assessment of translational mechanisms relevant for innovative strategies in treatment-resistant schizophrenia. Pharmacol Ther 2022; 236:108236. [PMID: 35764175 DOI: 10.1016/j.pharmthera.2022.108236] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022]
Abstract
Almost fifty years after its first introduction into clinical care, clozapine remains the only evidence-based pharmacological option for treatment-resistant schizophrenia (TRS), which affects approximately 30% of patients with schizophrenia. Despite the long-time experience with clozapine, the specific mechanism of action (MOA) responsible for its superior efficacy among antipsychotics is still elusive, both at the receptor and intracellular signaling level. This systematic review is aimed at critically assessing the role and specific relevance of clozapine's multimodal actions, dissecting those mechanisms that under a translational perspective could shed light on molecular targets worth to be considered for further innovative antipsychotic development. In vivo and in vitro preclinical findings, supported by innovative techniques and methods, together with pharmacogenomic and in vivo functional studies, point to multiple and possibly overlapping MOAs. To better explore this crucial issue, the specific affinity for 5-HT2R, D1R, α2c, and muscarinic receptors, the relatively low occupancy at dopamine D2R, the interaction with receptor dimers, as well as the potential confounder effects resulting in biased ligand action, and lastly, the role of the moiety responsible for lipophilic and alkaline features of clozapine are highlighted. Finally, the role of transcription and protein changes at the synaptic level, and the possibility that clozapine can directly impact synaptic architecture are addressed. Although clozapine's exact MOAs that contribute to its unique efficacy and some of its severe adverse effects have not been fully understood, relevant information can be gleaned from recent mechanistic understandings that may help design much needed additional therapeutic strategies for TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy.
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Christoph U Correll
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; Charité Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Berlin, Germany
| |
Collapse
|
16
|
Miyazawa A, Kanahara N, Shiko Y, Ozawa Y, Kawasaki Y, Komatsu H, Masumo Y, Nakata Y, Iyo M. The cortical silent period in schizophrenia: A systematic review and meta-analysis focusing on disease stage and antipsychotic medication. J Psychopharmacol 2022; 36:479-488. [PMID: 35475374 DOI: 10.1177/02698811221078751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Although numerous studies reported some changes of cortical silent period (CSP), an indicator of gamma-aminobutyric acid (GABA) function in central nervous system, in schizophrenia patients, it has been unknown how the disease stage and antipsychotic medication affect CSP values. METHODS The present study conducted a systematic review of previous literature comparing CSP between schizophrenia patients and healthy subjects, and then performed meta-analysis on the effects of (1) the disease stage and (2) antipsychotics on CSP. RESULTS (1) In the comparison of the disease stage comprising a total of 17 reports, there was no significant difference in CSP between patients under drug-naïve first-episode psychoses and healthy controls, or between patients with antipsychotic medication and healthy controls. (2) In the comparison of the antipsychotic class, patients treated with clozapine were longer in CSP compared to healthy controls. Patients treated with olanzapine/quetiapine or with other type of antipsychotics were not different from healthy controls. Regarding other type of antipsychotics, the iteration analysis after leaving out one literature showed that patients were shorter in CSP than healthy controls. CONCLUSION The results showed that clozapine seems to surely prolong CSP, indicating the enhancement of GABA transmission via GABAB receptors, suggesting the possible relationship between the CSP prolongation by clozapine and its high efficacy in psychopathology. The finding of shorter CSP in patients with other type of antipsychotics was distinct from clozapine/olanzapine/quetiapine, but was difficult to interpret since this group included a variety of transcranial magnetic stimulation (TMS) methodologies and patients' background.
Collapse
Affiliation(s)
- Atsuhiro Miyazawa
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nobuhisa Kanahara
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan.,Division of Medical Treatment and Rehabilitation, Center for Forensic Mental Health, Chiba University, Chiba, Japan
| | - Yuki Shiko
- Biostatistics Section, Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Yoshihito Ozawa
- Biostatistics Section, Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Yohei Kawasaki
- Biostatistics Section, Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Hiroshi Komatsu
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yuto Masumo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yusuke Nakata
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
17
|
Abnormal RasGRP1 Expression in the Post-Mortem Brain and Blood Serum of Schizophrenia Patients. Biomolecules 2022; 12:biom12020328. [PMID: 35204828 PMCID: PMC8869509 DOI: 10.3390/biom12020328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Schizophrenia (SCZ) is a polygenic severe mental illness. Genome-wide association studies (GWAS) have detected genomic variants associated with this psychiatric disorder and pathway analyses have indicated immune system and dopamine signaling as core components of risk in dorsolateral-prefrontal cortex (DLPFC) and hippocampus, but the mechanistic links remain unknown. The RasGRP1 gene, encoding for a guanine nucleotide exchange factor, is implicated in dopamine signaling and immune response. RasGRP1 has been identified as a candidate risk gene for SCZ and autoimmune disease, therefore representing a possible point of convergence between mechanisms involving the nervous and the immune system. Here, we investigated RasGRP1 mRNA and protein expression in post-mortem DLPFC and hippocampus of SCZ patients and healthy controls, along with RasGRP1 protein content in the serum of an independent cohort of SCZ patients and control subjects. Differences in RasGRP1 expression between SCZ patients and controls were detected both in DLPFC and peripheral blood of samples analyzed. Our results indicate RasGRP1 may mediate risk for SCZ by involving DLPFC and peripheral blood, thus encouraging further studies to explore its possible role as a biomarker of the disease and/or a target for new medication.
Collapse
|
18
|
Li Y, Ma C, Li S, Wang J, Li W, Yang Y, Li X, Liu J, Yang J, Liu Y, Li K, Li J, Huang D, Chen R, Lv L, Xiao X, Li M, Luo X. Regulatory Variant rs2535629 in ITIH3 Intron Confers Schizophrenia Risk By Regulating CTCF Binding and SFMBT1 Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104786. [PMID: 34978167 PMCID: PMC8867204 DOI: 10.1002/advs.202104786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Genome-wide association studies have identified 3p21.1 as a robust risk locus for schizophrenia. However, the underlying molecular mechanisms remain elusive. Here a functional regulatory variant (rs2535629) is identified that disrupts CTCF binding at 3p21.1. It is confirmed that rs2535629 is also significantly associated with schizophrenia in Chinese population and the regulatory effect of rs2535629 is validated. Expression quantitative trait loci analysis indicates that rs2535629 is associated with the expression of three distal genes (GLT8D1, SFMBT1, and NEK4) in the human brain, and CRISPR-Cas9-mediated genome editing confirmed the regulatory effect of rs2535629 on GLT8D1, SFMBT1, and NEK4. Interestingly, differential expression analysis of GLT8D1, SFMBT1, and NEK4 suggested that rs2535629 may confer schizophrenia risk by regulating SFMBT1 expression. It is further demonstrated that Sfmbt1 regulates neurodevelopment and dendritic spine density, two key pathological characteristics of schizophrenia. Transcriptome analysis also support the potential role of Sfmbt1 in schizophrenia pathogenesis. The study identifies rs2535629 as a plausibly causal regulatory variant at the 3p21.1 risk locus and demonstrates the regulatory mechanism and biological effect of this functional variant, indicating that this functional variant confers schizophrenia risk by altering CTCF binding and regulating expression of SFMBT1, a distal gene which plays important roles in neurodevelopment and synaptic morphogenesis.
Collapse
Affiliation(s)
- Yifan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Changguo Ma
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research CenterKunming UniversityKunmingYunnan650214China
| | - Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Junyang Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Wenqiang Li
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenan453002China
- Henan Key Lab of Biological PsychiatryInternational Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangHenan453002China
| | - Yongfeng Yang
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenan453002China
- Henan Key Lab of Biological PsychiatryInternational Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangHenan453002China
| | - Xiaoyan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of EducationInstitutes of Physical Science and Information TechnologyAnhui UniversityHefeiAnhui230601China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
| | - Jinfeng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Yixing Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Kaiqin Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Jiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Di Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
| | - Rui Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Luxian Lv
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenan453002China
- Henan Key Lab of Biological PsychiatryInternational Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangHenan453002China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
| | - Xiong‐Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingYunnan650204China
- KIZ‐CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
| |
Collapse
|
19
|
A preliminary genetic association study of GAD1 and GABAB receptor genes in patients with treatment-resistant schizophrenia. Mol Biol Rep 2021; 49:2015-2024. [PMID: 34845648 DOI: 10.1007/s11033-021-07019-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND GABAergic system dysfunction has been implicated in the etiology of schizophrenia and of cognitive impairments in particular. Patients with treatment-resistant schizophrenia (TRS) generally suffer from profound cognitive impairments in addition to severe positive symptoms, suggesting that GABA system dysfunction could be involved more closely in patients with TRS. METHODS AND RESULTS In the present study, exome sequencing was conducted on fourteen TRS patients, whereby four SNPs were identified on GAD1, GABBR1 and GABBR2 genes. An association study for five SNPs including these 4 SNPs and rs3749034 on GAD1 as then performed among 357 patients with TRS, 682 non-TRS patients and 508 healthy controls (HC). The results revealed no significant differences in allelic and/or genetic distributions for any of the five SNPs. However, several subanalyses in comparisons between schizophrenia and HC groups, as well as between the three groups, showed nominal-level significance for rs3749034 on GAD1 and rs10985765/rs3750344 on GABBR2. In particular, in comparisons of female subjects, rigorous analysis for rs3749034 showed a statistical difference between the schizophrenia and HC groups and between the TRS and HC groups. CONCLUSIONS Several positive results in subanalyses suggested that genetic vulnerability in the GABA system to schizophrenia or TRS could be affected by sex or sampling area, and overall, that rs3749034 on GAD1 and rs10985765 on GABBR2 could be related to TRS. In the present study, only a few SNPs were examined; it is possible that other important genetic variants in other regions of GABA-related genes were not captured in this preliminary study.
Collapse
|
20
|
Kogure M, Kanahara N, Miyazawa A, Oishi K, Nakata Y, Oda Y, Iyo M. Interacting Roles of COMT and GAD1 Genes in Patients with Treatment-Resistant Schizophrenia: a Genetic Association Study of Schizophrenia Patients and Healthy Controls. J Mol Neurosci 2021; 71:2575-2582. [PMID: 34125398 DOI: 10.1007/s12031-021-01866-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022]
Abstract
The projection from dopaminergic neurons to gamma-aminobutyric acid (GABA) interneurons in the prefrontal cortex is involved in the etiology of schizophrenia. The impact of interacting effects between dopamine signals and the expression of GABA on the clinical phenotypes of schizophrenia has not been studied. Since these interactions could be closely involved in prefrontal cortex functions, patients with specific alleles of these relevant molecules (which lead to lower or vulnerable genetic functions) may develop treatment-refractory symptoms. We conducted a genetic association study focusing on COMT and GAD1 genes for a treatment-resistant schizophrenia (TRS) group (n=171), a non-TRS group (n=592), and healthy controls (HC: n=447), and we examined allelic combinations specific to TRS. The results revealed that the percentage of subjects with Met allele of rs4680 on the COMT gene and C/C homozygote of rs3470934 on the GAD1 gene was significantly higher in the TRS group than the other two groups. There was no significant difference between the non-TRS group and HC groups. Considering the direction of functions of these single-nucleotide polymorphisms revealed by previous studies, we speculate that subjects with the Met/CC allelic combination could have a higher dopamine level and a lower expression of GABA in the prefrontal cortex. Our results suggest that an interaction between the dopaminergic signal and GABA signal intensities could differ between TRS patients and patients with other types of schizophrenia and healthy subjects.
Collapse
Affiliation(s)
- Masanobu Kogure
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nobuhisa Kanahara
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan.
- Division of Medical Treatment and Rehabilitation, Center for Forensic Mental Health, Chiba University, Chiba, Japan.
| | - Atsuhiro Miyazawa
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Doujin-kai Kisarazu Hospital, Chiba, Japan
| | - Kengo Oishi
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Cyclic Innovation, Japan Agency for Medical Research Development, Tokyo, Japan
| | - Yusuke Nakata
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
21
|
Nakata Y, Kanahara N, Kimura A, Niitsu T, Komatsu H, Oda Y, Nakamura M, Ishikawa M, Hasegawa T, Kamata Y, Yamauchi A, Inazumi K, Kimura H, Shiko Y, Kawasaki Y, Iyo M. Oxytocin system dysfunction in patients with treatment-resistant schizophrenia: Alterations of blood oxytocin levels and effect of a genetic variant of OXTR. J Psychiatr Res 2021; 138:219-227. [PMID: 33866050 DOI: 10.1016/j.jpsychires.2021.03.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/13/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Treatment-resistant schizophrenia (TRS) has a quite complex pathophysiology that includes not only severe positive symptoms but also other symptom domains. Much attention has been devoted to the overlapping psychological and biological profiles of schizophrenia and autistic spectrum disorder (ASD). We compared TRS patients (n = 30) with schizophrenia patients in remission (RemSZ, n = 28) and ASD patients (n = 28), focusing on general cognitive and social cognitive impairment and oxytocin system dysfunction. Our analyses revealed that there was no difference in oxytocin concentration among the three groups. The TRS patients' oxytocin blood concentrations were positively correlated with their processing speed and theory-of-mind scores, whereas the RemSZ and ASD groups had no significant relation with any measures. Rs53576, a single nucleotide polymorphism on the oxytocin receptor gene, affected social cognition abilities in the schizophrenia group. Although the overall findings are preliminary, they indicate that oxytocin system dysfunction could be involved in the serious cognitive deficits in TRS patients. Further, these results suggest that patients with TRS might have early neurodevelopmental abnormalities based on their shared biological features with ASD patients.
Collapse
Affiliation(s)
- Yusuke Nakata
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nobuhisa Kanahara
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan; Division of Medical Treatment and Rehabilitation, Center for Forensic Mental Health, Chiba University, Chiba, Japan.
| | - Atsushi Kimura
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomihisa Niitsu
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hideki Komatsu
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Miwako Nakamura
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masatomo Ishikawa
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tadashi Hasegawa
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan; Palliative Care Center, Chiba University Hospital, Chiba, Japan
| | - Yu Kamata
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Atsushi Yamauchi
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan; Department of Psychiatry, Chiba Rosai Hospital, Ichihara, Japan
| | - Kazuhiko Inazumi
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroshi Kimura
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan; Department of Psychiatry, Gakuji-kai Kimura Hospital, Chiba, Japan
| | - Yuki Shiko
- Biostatistics Section, Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Yohei Kawasaki
- Biostatistics Section, Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
22
|
Libowitz MR, Nurmi EL. The Burden of Antipsychotic-Induced Weight Gain and Metabolic Syndrome in Children. Front Psychiatry 2021; 12:623681. [PMID: 33776816 PMCID: PMC7994286 DOI: 10.3389/fpsyt.2021.623681] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Antipsychotic medications are critical to child and adolescent psychiatry, from the stabilization of psychotic disorders like schizophrenia, bipolar disorder, and psychotic depression to behavioral treatment of autism spectrum disorder, tic disorders, and pediatric aggression. While effective, these medications carry serious risk of adverse events-most commonly, weight gain and cardiometabolic abnormalities. Negative metabolic consequences affect up to 60% of patients and present a major obstacle to long-term treatment. Since antipsychotics are often chronically prescribed beginning in childhood, cardiometabolic risk accumulates. An increased susceptibility to antipsychotic-induced weight gain (AIWG) has been repeatedly documented in children, particularly rapid weight gain. Associated cardiometabolic abnormalities include central obesity, insulin resistance, dyslipidemia, and systemic inflammation. Lifestyle interventions and medications such as metformin have been proposed to reduce risk but remain limited in efficacy. Furthermore, antipsychotic medications touted to be weight-neutral in adults can cause substantial weight gain in children. A better understanding of the biological underpinnings of AIWG could inform targeted and potentially more fruitful treatments; however, little is known about the underlying mechanism. As yet, modest genetic studies have nominated a few risk genes that explain only a small percentage of the risk. Recent investigations have begun to explore novel potential mechanisms of AIWG, including a role for gut microbiota and microbial metabolites. This article reviews the problem of AIWG and AP metabolic side effects in pediatric populations, proposed mechanisms underlying this serious side effect, and strategies to mitigate adverse impact. We suggest future directions for research efforts that may advance the field and lead to improved clinical interventions.
Collapse
Affiliation(s)
| | - Erika L. Nurmi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
23
|
Kimura H, Kanahara N, Iyo M. Rationale and neurobiological effects of treatment with antipsychotics in patients with chronic schizophrenia considering dopamine supersensitivity. Behav Brain Res 2021; 403:113126. [PMID: 33460681 DOI: 10.1016/j.bbr.2021.113126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
The long-term treatment of patients with schizophrenia often involves the management of relapses for most patients and the development of treatment resistance in some patients. To stabilize the clinical course and allow as many patients as possible to recover, clinicians need to recognize dopamine supersensitivity, which can be provoked by administration of high dosages of antipsychotics, and deal with it properly. However, no treatment guidelines have addressed this issue. The present review summarized the characteristics of long-acting injectable antipsychotics, dopamine partial agonists, and clozapine in relation to dopamine supersensitivity from the viewpoints of receptor profiles and pharmacokinetics. The potential merits and limitations of these medicines are discussed, as well as the risks of treating patients with established dopamine supersensitivity with these classes of drugs. Finally, the review discussed the biological influence of antipsychotic treatment on the human brain based on findings regarding the relationship between the hippocampus and antipsychotics.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Department of Psychiatry, School of Medicine, International University of Health and Welfare, Chiba, Japan; Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan; Department of Psychiatry, Gakuji-kai Kimura Hospital, Chiba, Japan.
| | - Nobuhisa Kanahara
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan; Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
24
|
Nakata Y, Kanahara N, Kimura A, Niitsu T, Komatsu H, Oda Y, Ishikawa M, Hasegawa T, Kamata Y, Yamauchi A, Inazumi K, Kimura H, Iyo M. Autistic traits and cognitive profiles of treatment-resistant schizophrenia. Schizophr Res Cogn 2020; 22:100186. [PMID: 32760657 PMCID: PMC7390750 DOI: 10.1016/j.scog.2020.100186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/27/2022]
Abstract
The complex pathophysiology of treatment-resistant schizophrenia (TRS) includes severe positive symptoms but also other symptom domains. The overlapping psychological profiles of schizophrenia and autistic spectrum disorder (ASD) are not established. We compared TRS patients (n = 30) with schizophrenia patients in remission (RemSZ, n = 28) and ASD patients (n = 28), focusing on both neurodevelopmental aspects and general and social cognitive impairments. The TRS group performed the worst on general neurocognition (measured by the MATRICS Consensus Cognitive Battery) and social cognition (measured by the theory of mind and emotional expression). The RemSZ group performed the best among the three groups. Regarding autistic traits, all measurements by the Autism-Spectrum Quotient/Autism Screening Questionnaire/Pervasive Developmental Disorder Assessment Rating Scale showed that (1) the ASD patients had the highest autistic traits (2) the TRS patients' scores were less severe than the ASD group's, but (3) the overall trends placed the TRS group between the ASD and the RemSZ group. These findings indicate that TRS patients and remitted patients could have distinctive neurodevelopmental and cognitive profiles. Further, the degrees of social cognitive dysfunction and autistic traits in TRS patients could be close to those of ASD patients, suggesting similarities between TRS and ASD.
Collapse
Affiliation(s)
- Yusuke Nakata
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nobuhisa Kanahara
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Medical Treatment and Rehabilitation, Center for Forensic Mental Health, Chiba University, Chiba, Japan
- Corresponding author at: Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chuou-ku, Chiba-shi, Chiba 260-8670, Japan.
| | - Atsushi Kimura
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomihisa Niitsu
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hideki Komatsu
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masatomo Ishikawa
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tadashi Hasegawa
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Palliative Care Center, Chiba University Hospital, Chiba, Japan
| | - Yu Kamata
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Atsushi Yamauchi
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Psychiatry, Chiba Rosai Hospital, Ichihara, Japan
| | - Kazuhiko Inazumi
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroshi Kimura
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Psychiatry, Gakuji-kai Kimura Hospital, Chiba, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
25
|
Okada M, Fukuyama K, Shiroyama T, Murata M. A Working Hypothesis Regarding Identical Pathomechanisms between Clinical Efficacy and Adverse Reaction of Clozapine via the Activation of Connexin43. Int J Mol Sci 2020; 21:ijms21197019. [PMID: 32987640 PMCID: PMC7583770 DOI: 10.3390/ijms21197019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/04/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Clozapine (CLZ) is an approved antipsychotic agent for the medication of treatment-resistant schizophrenia but is also well known as one of the most toxic antipsychotics. Recently, the World Health Organization’s (WHO) global database (VigiBase) reported the relative lethality of severe adverse reactions of CLZ. Agranulocytosis is the most famous adverse CLZ reaction but is of lesser lethality compared with the other adverse drug reactions of CLZ. Unexpectedly, VigiBase indicated that the prevalence and relative lethality of pneumonia, cardiotoxicity, and seizures associated with CLZ were more serious than that of agranulocytosis. Therefore, haematological monitoring in CLZ patients monitoring system provided success in the prevention of lethal adverse events from CLZ-induced agranulocytosis. Hereafter, psychiatrists must amend the CLZ patients monitoring system to protect patients with treatment-resistant schizophrenia from severe adverse CLZ reactions, such as pneumonia, cardiotoxicity, and seizures, according to the clinical evidence and pathophysiology. In this review, we discuss the mechanisms of clinical efficacy and the adverse reactions of CLZ based on the accumulating pharmacodynamic findings of CLZ, including tripartite synaptic transmission, and we propose suggestions for amending the monitoring and medication of adverse CLZ reactions associated with pneumonia, cardiotoxicity, and seizures.
Collapse
Affiliation(s)
- Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.F.); (T.S.)
- Correspondence: ; Tel.: +81-59-231-5018
| | - Kouji Fukuyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.F.); (T.S.)
| | - Takashi Shiroyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.F.); (T.S.)
| | - Masahiko Murata
- National Hospital Organization Sakakibara Hospital, 777 Sakakibara, Tsu, Mie 514-1292, Japan;
| |
Collapse
|
26
|
Juza R, Vlcek P, Mezeiova E, Musilek K, Soukup O, Korabecny J. Recent advances with 5-HT 3 modulators for neuropsychiatric and gastrointestinal disorders. Med Res Rev 2020; 40:1593-1678. [PMID: 32115745 DOI: 10.1002/med.21666] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/10/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
Abstract
Serotonin (5-hydroxytryptophan [5-HT]) is a biologically active amine expressed in platelets, in gastrointestinal (GI) cells and, to a lesser extent, in the central nervous system (CNS). This biogenic compound acts through the activation of seven 5-HT receptors (5-HT1-7 Rs). The 5-HT3 R is a ligand-gated ion channel belonging to the Cys-loop receptor family. There is a wide variety of 5-HT3 R modulators, but only receptor antagonists (known as setrons) have been used clinically for chemotherapy-induced nausea and vomiting and irritable bowel syndrome treatment. However, since the discovery of the setrons in the mid-1980s, a large number of studies have been published exploring new potential applications due their potency in the CNS and mild side effects. The results of these studies have revealed new potential applications, including the treatment of neuropsychiatric disorders such as schizophrenia, depression, anxiety, and drug abuse. In this review, we provide information related to therapeutic potential of 5-HT3 R antagonists on GI and neuropsychiatric disorders. The major attention is paid to the structure, function, and pharmacology of novel 5-HT3 R modulators developed over the past 10 years.
Collapse
Affiliation(s)
- Radomir Juza
- National Institute of Mental Health, Klecany, Czech Republic
- Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Premysl Vlcek
- National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- National Institute of Mental Health, Klecany, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
27
|
Binding of clozapine to the GABA B receptor: clinical and structural insights. Mol Psychiatry 2020; 25:1910-1919. [PMID: 32203158 DOI: 10.1038/s41380-020-0709-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 12/30/2022]
Abstract
Clozapine is the gold-standard agent for treatment resistant schizophrenia but its mechanism of action remains unclear. There is emerging evidence of the potential role of the GABAB receptor in the pathogenesis of schizophrenia. It has been hypothesised that clozapine can mediate its actions via the GABAB receptor. Baclofen is currently recognised as the prototype GABAB receptor agonist. There are some potential clinical similarities between clozapine and baclofen. Indeed, baclofen has been previously proposed for use as an antipsychotic agent. Our analysis of the X-ray crystal structure of GABAB receptor along with molecular docking calculations, suggests that clozapine could directly bind to the GABAB receptor similar to that of baclofen. This finding could lead to a better understanding of the pharmacological uniqueness of clozapine, potential development of a biomarker for treatment resistant schizophrenia and the development of more targeted treatments leading to personalisation of treatment.
Collapse
|
28
|
Supp AD, Avila S, Mastella GA, Damásio L, de Oliveira IH, Godoi AK, Michels A, Schuck PF, Zugno AI. Ascorbic acid supplementation attenuates schizophrenia-like symptoms in an animal model induced by ketamine. Int J Dev Neurosci 2020; 81:26-36. [PMID: 32780510 DOI: 10.1002/jdn.10058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
Schizophrenia is a chronic neuropsychiatric disorder with a poorly understood pathophysiology. The theories about the disorder are mainly about dysregulation in one or more systems of neurotransmitters, and the progression triggers the presence of inflammatory markers indicates the possibility that the disorder is initially an inflammatory disease. The objective was to evaluate the ascorbic acid supplementation in an animal model of schizophrenia, on behavioral parameters, and cytokines involved in inflammation IL-1β, IL-10. Wistar rats with 60 days of age were used which were supplemented with ascorbic acid at 0.1, 1, and 10 mg/kg or saline for 14 days via orogastric gavage. Subsequently, four groups were given ketamine (25 mg/kg) and four groups received intraperitoneal saline from the 9th-15th day of the experiment. After 30 min of the last administration of ketamine/saline, and behavioral test, rats were killed by guillotine decapitation and the brain structures were carefully dissected for biochemical analysis. Results showed that ascorbic acid supplementation prevented motor sensory loss but nor alter other parameters evaluated. We concluded that ascorbic acid may be used as a therapeutic adjuvant in schizophrenia and may help to improve the schizophrenic patient's life quality.
Collapse
Affiliation(s)
- Angelo D Supp
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Silvio Avila
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gustavo A Mastella
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Louyse Damásio
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Isabela H de Oliveira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Amanda K Godoi
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Alander Michels
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Patricia F Schuck
- School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandra I Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| |
Collapse
|
29
|
Boazak M, Cotes RO, Potvin H, Decker AM, Schwartz AC. Catatonia Due to Clozapine Withdrawal: A Case Report and Literature Review. PSYCHOSOMATICS 2019; 60:421-427. [DOI: 10.1016/j.psym.2018.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/01/2023]
|
30
|
Lander M, Bastiampillai T, Sareen J. Review of withdrawal catatonia: what does this reveal about clozapine? Transl Psychiatry 2018; 8:139. [PMID: 30065280 PMCID: PMC6068101 DOI: 10.1038/s41398-018-0192-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/05/2018] [Accepted: 05/11/2018] [Indexed: 12/23/2022] Open
Abstract
Withdrawal symptoms are common upon discontinuation of psychiatric medications. Catatonia, a neuropsychiatric condition proposed to be associated with gamma-aminobutyric acid (GABA) hypoactivity due to its robust response to benzodiazepines, has been described as a withdrawal syndrome in case reports but is not a well-recognized phenomenon. The authors undertook a review of withdrawal catatonia with an aim to understand its presentation as well as the medications and psychoactive substances it is associated with. The review identified 55 cases of withdrawal catatonia, the majority of which occurred upon discontinuation of benzodiazepines (24 cases) and discontinuation of clozapine (20 cases). No other antipsychotic medications were identified as having been associated with the onset of a catatonic episode within 2 weeks following their discontinuation. Increasing GABA activity and resultant GABA receptor adaptations with prolonged use is postulated as a shared pharmacological mechanism between clozapine and benzodiazepines that underlie their association with withdrawal catatonia. The existing evidence for clozapine's activity on the GABA system is reviewed. The clinical presentations of benzodiazepine withdrawal catatonia and clozapine withdrawal catatonia appear to differ and reasons for this are explored. One reason is that benzodiazepines act directly on GABAA receptors as allosteric agonists, while clozapine has more complex and indirect interactions, primarily through effects on receptors located on GABA interneurons. Another possible reason for the difference in clinical presentation is that clozapine withdrawal catatonia may also involve receptor adaptations in non-GABA receptors such as dopamine and acetylcholine. The findings from our review have implications for the treatment of withdrawal catatonia, and treatment recommendations are provided. Further research understanding the uniqueness of clozapine withdrawal catatonia among antipsychotic medication may give some insight as to clozapine's differential mechanism of action.
Collapse
Affiliation(s)
- Matthew Lander
- Department of Psychiatry, University of Manitoba, Winnipeg, Canada.
| | - Tarun Bastiampillai
- Discipline of Psychiatry, School of Medicine, Flinders University, Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jitender Sareen
- Departments of Psychiatry, Psychology, and Community Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
31
|
Plevin D, Mohan T, Bastiampillai T. The role of the GABAergic system in catatonia-Insights from clozapine and benzodiazepines. Asian J Psychiatr 2018; 32:145-146. [PMID: 29272785 DOI: 10.1016/j.ajp.2017.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 11/29/2022]
Affiliation(s)
- David Plevin
- Flinders Medical Centre, Bedford Park, SA 5042, Australia.
| | - Titus Mohan
- Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Tarun Bastiampillai
- South Australian Health and Medical Research Institute (SAHMRI) - Mind and Brain, Adelaide, Australia
| |
Collapse
|
32
|
Kesby JP, Eyles DW, McGrath JJ, Scott JG. Dopamine, psychosis and schizophrenia: the widening gap between basic and clinical neuroscience. Transl Psychiatry 2018; 8:30. [PMID: 29382821 PMCID: PMC5802623 DOI: 10.1038/s41398-017-0071-9] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/10/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
The stagnation in drug development for schizophrenia highlights the need for better translation between basic and clinical research. Understanding the neurobiology of schizophrenia presents substantial challenges but a key feature continues to be the involvement of subcortical dopaminergic dysfunction in those with psychotic symptoms. Our contemporary knowledge regarding dopamine dysfunction has clarified where and when dopaminergic alterations may present in schizophrenia. For example, clinical studies have shown patients with schizophrenia show increased presynaptic dopamine function in the associative striatum, rather than the limbic striatum as previously presumed. Furthermore, subjects deemed at high risk of developing schizophrenia show similar presynaptic dopamine abnormalities in the associative striatum. Thus, our view of subcortical dopamine function in schizophrenia continues to evolve as we accommodate this newly acquired information. However, basic research in animal models has been slow to incorporate these clinical findings. For example, psychostimulant-induced locomotion, the commonly utilised phenotype for positive symptoms in rodents, is heavily associated with dopaminergic activation in the limbic striatum. This anatomical misalignment has brought into question how we assess positive symptoms in animal models and represents an opportunity for improved translation between basic and clinical research. The current review focuses on the role of subcortical dopamine dysfunction in psychosis and schizophrenia. We present and discuss alternative phenotypes that may provide a more translational approach to assess the neurobiology of positive symptoms in schizophrenia. Incorporation of recent clinical findings is essential if we are to develop meaningful translational animal models.
Collapse
Affiliation(s)
- JP Kesby
- 0000 0000 9320 7537grid.1003.2Queensland Brain Institute, The University of Queensland, St. Lucia, QLD Australia ,0000 0000 9320 7537grid.1003.2Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD Australia
| | - DW Eyles
- 0000 0000 9320 7537grid.1003.2Queensland Brain Institute, The University of Queensland, St. Lucia, QLD Australia ,0000 0004 0606 3563grid.417162.7Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD Australia
| | - JJ McGrath
- 0000 0000 9320 7537grid.1003.2Queensland Brain Institute, The University of Queensland, St. Lucia, QLD Australia ,0000 0004 0606 3563grid.417162.7Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD Australia ,0000 0001 1956 2722grid.7048.bNational Centre for Register-based Research, Aarhus University, Aarhus C, Denmark
| | - JG Scott
- 0000 0000 9320 7537grid.1003.2Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD Australia ,0000 0004 0606 3563grid.417162.7Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD Australia ,0000 0001 0688 4634grid.416100.2Metro North Mental Health, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| |
Collapse
|
33
|
Siafis S, Tzachanis D, Samara M, Papazisis G. Antipsychotic Drugs: From Receptor-binding Profiles to Metabolic Side Effects. Curr Neuropharmacol 2018; 16:1210-1223. [PMID: 28676017 PMCID: PMC6187748 DOI: 10.2174/1570159x15666170630163616] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/25/2017] [Accepted: 06/21/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Antipsychotic-induced metabolic side effects are major concerns in psychopharmacology and clinical psychiatry. Their pathogenetic mechanisms are still not elucidated. METHODS Herein, we review the impact of neurotransmitters on metabolic regulation, providing insights into antipsychotic-induced metabolic side effects. RESULTS Antipsychotic drugs seem to interfere with feeding behaviors and energy balance, processes that control metabolic regulation. Reward and energy balance centers in central nervous system constitute the central level of metabolic regulation. The peripheral level consists of skeletal muscles, the liver, the pancreas, the adipose tissue and neuroendocrine connections. Neurotransmitter receptors have crucial roles in metabolic regulation and they are also targets of antipsychotic drugs. Interaction of antipsychotics with neurotransmitters could have both protective and harmful effects on metabolism. CONCLUSION Emerging evidence suggests that antipsychotics have different liabilities to induce obesity, diabetes and dyslipidemia. However this diversity cannot be explained merely by drugs'pharmacodynamic profiles, highlighting the need for further research.
Collapse
Affiliation(s)
| | | | | | - Georgios Papazisis
- Address correspondence to this author at the Department of Clinical
Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece; Tel/Fax: +30 2310 999323; E-mail:
| |
Collapse
|
34
|
Ingole A, Bastiampillai T, Tibrewal P. Clozapine withdrawal catatonia, psychosis and associated neuroleptic malignant syndrome. Asian J Psychiatr 2017; 30:96-97. [PMID: 28846884 DOI: 10.1016/j.ajp.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/05/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Amita Ingole
- Eastern Community Mental Health Team, Tranmere, SA, Australia.
| | - Tarun Bastiampillai
- Flinders University - Discipline of Psychiatry Research Fellow - SAHMRI Mind and Brain, Bedford Park, South Australia, Australia
| | - Prashant Tibrewal
- Cramond Clinic, Queen Elizabeth Hospital, Woodville, SA, Australia; Discipline of Psychiatry, University of Adelaide-Central Adelaide Local Health Network, Australia
| |
Collapse
|
35
|
Abdul Wahab NA, Zakaria MN, Abdul Rahman AH, Sidek D, Wahab S. Listening to Sentences in Noise: Revealing Binaural Hearing Challenges in Patients with Schizophrenia. Psychiatry Investig 2017; 14:786-794. [PMID: 29209382 PMCID: PMC5714720 DOI: 10.4306/pi.2017.14.6.786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/23/2016] [Accepted: 03/19/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE The present, case-control, study investigates binaural hearing performance in schizophrenia patients towards sentences presented in quiet and noise. METHODS Participants were twenty-one healthy controls and sixteen schizophrenia patients with normal peripheral auditory functions. The binaural hearing was examined in four listening conditions by using the Malay version of hearing in noise test. The syntactically and semantically correct sentences were presented via headphones to the randomly selected subjects. In each condition, the adaptively obtained reception thresholds for speech (RTS) were used to determine RTS noise composite and spatial release from masking. RESULTS Schizophrenia patients demonstrated significantly higher mean RTS value relative to healthy controls (p=0.018). The large effect size found in three listening conditions, i.e., in quiet (d=1.07), noise right (d=0.88) and noise composite (d=0.90) indicates statistically significant difference between the groups. However, noise front and noise left conditions show medium (d=0.61) and small (d=0.50) effect size respectively. No statistical difference between groups was noted in regards to spatial release from masking on right (p=0.305) and left (p=0.970) ear. CONCLUSION The present findings suggest an abnormal unilateral auditory processing in central auditory pathway in schizophrenia patients. Future studies to explore the role of binaural and spatial auditory processing were recommended.
Collapse
Affiliation(s)
- Noor Alaudin Abdul Wahab
- Audiology Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Audiology Programme, School of Rehabilitation Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd. Normani Zakaria
- Audiology Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Abdul Hamid Abdul Rahman
- Department of Psychiatry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Dinsuhaimi Sidek
- Department of Otorhinolaryngology, School of Medicine, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Suzaily Wahab
- Department of Psychiatry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Affiliation(s)
- Karim Tabbane
- From the Faculty of Medicine, Razi Hospital, La Manouba, Tunisia (Tabbane, Halayem); and the Department of Psychiatry, McGill University, Montreal, Que., Canada (Joober)
| | - Soumeyya Halayem
- From the Faculty of Medicine, Razi Hospital, La Manouba, Tunisia (Tabbane, Halayem); and the Department of Psychiatry, McGill University, Montreal, Que., Canada (Joober)
| | - Ridha Joober
- From the Faculty of Medicine, Razi Hospital, La Manouba, Tunisia (Tabbane, Halayem); and the Department of Psychiatry, McGill University, Montreal, Que., Canada (Joober)
| |
Collapse
|
37
|
Wu ZM, Ding Y, Jia HX, Li L. Different effects of isolation-rearing and neonatal MK-801 treatment on attentional modulations of prepulse inhibition of startle in rats. Psychopharmacology (Berl) 2016; 233:3089-102. [PMID: 27370017 DOI: 10.1007/s00213-016-4351-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/02/2016] [Indexed: 01/04/2023]
Abstract
RATIONAL Prepulse inhibition (PPI) is suppression of the startle reflex by a weaker sensory stimulus (prepulse) preceding the startling stimulus. In people with schizophrenia, impairment of attentional modulation of PPI, but not impairment of baseline PPI, is correlated with symptom severity. In rats, both fear conditioning of prepulse and perceptually spatial separation between the conditioned prepulse and a noise masker enhance PPI (the paradigms of attentional modulation of PPI). OBJECTIVES As a neurodevelopmental model of schizophrenia, isolation rearing impairs both baseline PPI and attentional modulations of PPI in rats. This study examined in Sprague-Dawley male rats whether neonatally blocking N-methyl-D-aspartate (NMDA) receptors specifically affects attentional modulations of PPI during adulthood. RESULTS Both socially reared rats with neonatal exposure to the NMDA receptor antagonist MK-801 and isolation-reared rats exhibited augmented startle responses, but only isolation rearing impaired baseline PPI. Fear conditioning of the prepulse enhanced PPI in socially reared rats, but MK-801-treated rats lost the prepulse feature specificity. Perceptually spatial separation between the conditioned prepulse and a noise masker further enhanced PPI only in normally reared rats. Clozapine administration during adulthood generally weakened startle, enhanced baseline PPI in neonatally interrupted rats, and restored the fear conditioning-induced PPI enhancement in isolation-reared rats with a loss of the prepulse feature specificity. Clozapine administration also abolished both the perceptual separation-induced PPI enhancement in normally reared rats and the fear conditioning-induced PPI enhancement in MK-801-treated rats. CONCLUSIONS Isolation rearing impairs both baseline PPI and attentional modulations of PPI, but neonatally disrupting NMDA receptor-mediated transmissions specifically impair attentional modulations of PPI. Clozapine has limited alleviating effects.
Collapse
Affiliation(s)
- Zhe-Meng Wu
- Department of Psychology and Beijing Key Laboratory of Behavior and Mental Health, Speech and Hearing Research Center, Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, 100080, China
| | - Yu Ding
- Department of Psychology and Beijing Key Laboratory of Behavior and Mental Health, Speech and Hearing Research Center, Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, 100080, China
| | - Hong-Xiao Jia
- Beijing Key Laboratory for Mental Disorders, Center of Schizophrenia,Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China. .,Beijing Institute for Brain Disorders, Beijing, China.
| | - Liang Li
- Department of Psychology and Beijing Key Laboratory of Behavior and Mental Health, Speech and Hearing Research Center, Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, 100080, China. .,Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
38
|
Abdul Wahab NA, Wahab S, Abdul Rahman AH, Sidek D, Zakaria MN. The Hyperactivity of Efferent Auditory System in Patients with Schizophrenia: A Transient Evoked Otoacoustic Emissions Study. Psychiatry Investig 2016; 13:82-8. [PMID: 26766950 PMCID: PMC4701690 DOI: 10.4306/pi.2016.13.1.82] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/18/2015] [Accepted: 05/30/2015] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Electrophysiological studies, which are mostly focused on afferent pathway, have proven that auditory processing deficits exist in patients with schizophrenia. Nevertheless, reports on the suppressive effect of efferent auditory pathway on cochlear outer hair cells among schizophrenia patients are limited. The present, case-control, study examined the contralateral suppression of transient evoked otoacoustic emissions (TEOAEs) in patients with schizophrenia. METHODS Participants were twenty-three healthy controls and sixteen schizophrenia patients with normal hearing, middle ear and cochlear outer hair cells function. Absolute non-linear and linear TEOAEs were measured in both ears by delivering clicks stimuli at 80 dB SPL and 60 dB SPL respectively. Subsequently, contralateral suppression was determined by subtracting the absolute TEOAEs response obtained at 60 dBpe SPL during the absence and presence of contralateral white noise delivered at 65 dB HL. No attention tasks were conducted during measurements. RESULTS We found no significant difference in absolute TEOAEs responses at 80 dB SPL, in either diagnosis or ear groups (p>0.05). However, the overall contralateral suppression was significantly larger in schizophrenia patients (p<0.05). Specifically, patients with schizophrenia demonstrated significantly increased right ear contralateral suppression compared to healthy control (p<0.05). CONCLUSION The present findings suggest increased inhibitory effect of efferent auditory pathway especially on the right cochlear outer hair cells. Further studies to investigate increased suppressive effects are crucial to expand the current understanding of auditory hallucination mechanisms in schizophrenia patients.
Collapse
Affiliation(s)
- Noor Alaudin Abdul Wahab
- Audiology Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Audiology Programme, School of Rehabilitation Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Wilayah Persekutuan, Malaysia
| | - Suzaily Wahab
- Department of Psychiatry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Wilayah Persekutuan, Malaysia
| | - Abdul Hamid Abdul Rahman
- Department of Psychiatry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Wilayah Persekutuan, Malaysia
| | - Dinsuhaimi Sidek
- Department of Otorhinolaryngology, School of Medicine, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Mohd. Normani Zakaria
- Audiology Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|