1
|
Huang Y, Hu B, Chen S, Jiang Z, Dai Z, Jiang Z, Liu C, Xu Y, Chen X, Jin W, Yu B, Zhang X. The role of serum chloride ion in the prognosis of COPD. Am J Med Sci 2024; 368:235-241. [PMID: 38777153 DOI: 10.1016/j.amjms.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/21/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND As exacerbations of chronic obstructive pulmonary disease (COPD) are one of the leading causes of hospitalization and are associated with significant mortality, it is particularly important to accurately assess the risk of exacerbations in COPD. Most of the current clinical biomarkers are related to inflammation and few consider how ion levels affect COPD. Chloride ion, the second most abundant serum electrolyte, has been shown to be associated with poor prognoses in several diseases, but their relationship with COPD remains unclear. METHODS In total, 105 patients with acute exacerbations of COPD were recruited. Data on clinical characteristics, lung function, blood count, blood biochemistry, relevant scales including the Clinical COPD Questionnaire (CCQ), BODE (BMI, airflow obstruction, dyspnea, exercise capacity) index and the St. George's Respiratory Questionnaire (SGRQ) were collected from all patients for statistical analysis. RESULT There were significant differences in lung function indicators and disease severity in the low chloride ion subgroup compared with the high chloride ion subgroup. On multiple logistic regression analysis, chloride ion was an independent factor affecting lung function in COPD patients (OR=0.808, 95% CI: 0.708 - 0.922, p=0.002). The sensitivity of chloride ion in predicting COPD severity was 78%, the specificity was 63%, and the area under the curve was 0.734 (p<0.001). Subgroup analysis showed that chloride ion was a stronger predictor in male and smoking patients. CONCLUSIONS Chloride ion was a novel prognostic biomarker for COPD, and low levels of chloride ion were independently associated with exacerbations in COPD patients.
Collapse
Affiliation(s)
- Yiben Huang
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Binbin Hu
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Siyao Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Zerui Jiang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Zicong Dai
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Zihan Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunyan Liu
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yage Xu
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xianjing Chen
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wanzhong Jin
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Beibei Yu
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaodiao Zhang
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Oit-Wiscombe I, Virág L, Kilk K, Soomets U, Altraja A. Pattern of Expression of Genes Involved in Systemic Inflammation and Glutathione Metabolism Reveals Exacerbation of COPD. Antioxidants (Basel) 2024; 13:953. [PMID: 39199199 PMCID: PMC11351727 DOI: 10.3390/antiox13080953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
To test the hypothesis that they serve as systemic biomarkers of chronic obstructive pulmonary disease (COPD), we profiled the mRNA expression of enzymes connected to systemic inflammation and GSH metabolism in peripheral blood mononuclear cells (PBMCs). These were taken from patients displaying acute exacerbation of COPD (AE-COPD) and stable COPD, and also from non-obstructive smokers and non-smokers. The expression of poly(ADP-ribose) polymerase-1 was increased, but that of histone deacetylase 2 was decreased in association with AE-COPD. The expression of modulatory subunit of glutamyl-cysteine ligase was higher and that of its catalytic subunit, together with the expression of dipeptidyl peptidase 4, was lower in COPD patients compared with non-obstructive smokers and non-smokers. Leukotriene A4 hydrolase saw increased expression in patients with COPD according to disease severity compared to non-obstructive individuals, whereas the expression of GSH peroxidase increased in non-obstructive smokers and COPD patients with the growing number of pack-years smoked. The results corroborate COPD and its acute exacerbation as a complex systemic disorder demonstrating distinct associations with the expression of enzymes linked to inflammation and the regulation of GSH metabolism.
Collapse
Affiliation(s)
- Ingrid Oit-Wiscombe
- Department of Pulmonology, University of Tartu, 50406 Tartu, Estonia
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.)
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- HUN-REN-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Hungary
| | - Kalle Kilk
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.)
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Ursel Soomets
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.)
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Alan Altraja
- Department of Pulmonology, University of Tartu, 50406 Tartu, Estonia
- Lung Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| |
Collapse
|
3
|
Chan SMH, Selemidis S, Vlahos R. The Double-Edged Sword of ROS in Muscle Wasting and COPD: Insights from Aging-Related Sarcopenia. Antioxidants (Basel) 2024; 13:882. [PMID: 39061950 PMCID: PMC11274264 DOI: 10.3390/antiox13070882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
An elevation in reactive oxygen species (ROS) is widely accepted to be a key mechanism that drives chronic obstructive pulmonary disease (COPD) and its major co-morbidity, skeletal muscle wasting. However, it will be perhaps a surprise to many that an elevation in ROS in skeletal muscle is also a critical process for normal skeletal muscle function and in the adaptations to physical exercise. The key message here is that ROS are not solely detrimental. This duality of ROS suggests that the mere use of a broad-acting antioxidant is destined to fail in alleviating skeletal muscle wasting in COPD because it will also be influencing critical physiological ROS-dependent processes. Here, we take a close look at this duality of ROS in skeletal muscle physiology and pathophysiology pertaining to COPD and will aim to gain critical insights from other skeletal muscle wasting conditions due to aging such as sarcopenia.
Collapse
Affiliation(s)
- S. M. H. Chan
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3001, Australia; (S.S.); (R.V.)
| | | | | |
Collapse
|
4
|
Li CL, Liu SF. Cellular and Molecular Biology of Mitochondria in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2024; 25:7780. [PMID: 39063022 PMCID: PMC11276859 DOI: 10.3390/ijms25147780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disorder characterized by enduring airflow limitation and chronic inflammation. Growing evidence highlights mitochondrial dysfunction as a critical factor in COPD development and progression. This review explores the cellular and molecular biology of mitochondria in COPD, focusing on structural and functional changes, including alterations in mitochondrial shape, behavior, and respiratory chain complexes. We discuss the impact on cellular signaling pathways, apoptosis, and cellular aging. Therapeutic strategies targeting mitochondrial dysfunction, such as antioxidants and mitochondrial biogenesis inducers, are examined for their potential to manage COPD. Additionally, we consider the role of mitochondrial biomarkers in diagnosis, evaluating disease progression, and monitoring treatment efficacy. Understanding the interplay between mitochondrial biology and COPD is crucial for developing targeted therapies to slow disease progression and improve patient outcomes. Despite advances, further research is needed to fully elucidate mitochondrial dysfunction mechanisms, discover new biomarkers, and develop targeted therapies, aiming for comprehensive disease management that preserves lung function and enhances the quality of life for COPD patients.
Collapse
Affiliation(s)
- Chin-Ling Li
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Shih-Feng Liu
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, #123, Ta-Pei Road, Niaosong District, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
5
|
Alateeq R, Akhtar A, De Luca SN, Chan SMH, Vlahos R. Apocynin Prevents Cigarette Smoke-Induced Anxiety-Like Behavior and Preserves Microglial Profiles in Male Mice. Antioxidants (Basel) 2024; 13:855. [PMID: 39061923 PMCID: PMC11274253 DOI: 10.3390/antiox13070855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death globally and is primarily caused by cigarette smoking (CS). Neurocognitive comorbidities such as anxiety and cognitive impairments are common among people with COPD. CS-induced lung inflammation and oxidative stress may "spill-over" into the systemic circulation, driving the onset of these comorbidities. We investigated whether a prophylactic treatment with the NADPH Oxidase 2 (NOX2) inhibitor, apocynin, could prevent CS-induced neurocognitive impairments. Adult male BALB/c mice were exposed to CS (9 cigarettes/day, 5 days/week) or room air (sham) for 8 weeks with co-administration of apocynin (5 mg/kg, intraperitoneal injection once daily) or vehicle (0.01% DMSO in saline). Following 7 weeks of CS exposure, mice underwent behavioral testing to assess recognition and spatial memory (novel object recognition and Y maze, respectively) and anxiety-like behaviors (open field and elevated plus maze). Mice were then euthanized, and blood, lungs, and brains were collected. Apocynin partially improved CS-induced lung neutrophilia and reversed systemic inflammation (C-reactive protein) and oxidative stress (malondialdehyde). Apocynin exerted an anxiolytic effect in CS-exposed mice, which was associated with restored microglial profiles within the amygdala and hippocampus. Thus, targeting oxidative stress using apocynin can alleviate anxiety-like behaviors and could represent a novel strategy for managing COPD-related anxiety disorders.
Collapse
Affiliation(s)
| | | | | | | | - Ross Vlahos
- Respiratory Research Group, Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC 3083, Australia; (R.A.); (A.A.); (S.N.D.L.)
| |
Collapse
|
6
|
Noh E, Jeong H, Cho IS, Chang MS, Yu I, Park S, Lee JH, Lee SJ, Lee WY, Yong SJ, Kim SH. Risk of Cardiovascular Events Associated with Chronic Obstructive Pulmonary Disease and/or Metabolic Syndrome: A Large-Scale Nationwide Population-Based Cohort Study. Int J Chron Obstruct Pulmon Dis 2024; 19:1447-1456. [PMID: 38948908 PMCID: PMC11214538 DOI: 10.2147/copd.s458779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD) and metabolic syndrome (MetS) are among the most prevalent conditions that might predispose individuals to life-threatening events. We aimed to examine their associations with cardiovascular (CV) events and mortality using a large-scale population dataset from the National Health Information Database in Korea. Patients and Methods This population-based cohort study enrolled adults aged ≥40 years who had undergone more than two health examinations between 2009 and 2011. They were divided into four groups based on the presence of COPD and MetS. Analysis of the outcomes and CV events or deaths was performed from 2014 to 2019. We compared CV event incidence and mortality rates using a multivariate Cox proportional hazards model and Kaplan-Meier curves. Results Totally, 5,101,810 individuals were included, among whom 3,738,458 (73.3%) had neither COPD nor MetS, 1,193,014 (23.4%) had only MetS, 125,976 (2.5%) had only COPD, and 44,362 (0.9%) had both. The risk of CV events was significantly higher in individuals with both COPD and MetS than in those with either COPD or MetS alone (HRs: 2.4 vs 1.6 and 1.8, respectively; all P <0.001). Similarly, among those with both COPD and MetS, all-cause and CV mortality risks were also elevated (HRs, 2.9 and 3.0, respectively) compared to the risks in those with either COPD (HRs, 2.6 and 2.1, respectively) or MetS (HRs, 1.7 and 2.1, respectively; all P <0.001). Conclusion The comorbidity of MetS in patients with COPD increases the incidence of CV events and all-cause and cardiovascular mortality rates.
Collapse
Affiliation(s)
- Enkyu Noh
- Yonsei University Wonju College of Medicine, Wonju, 26426, Korea
| | - Hyungmin Jeong
- Yonsei University Wonju College of Medicine, Wonju, 26426, Korea
| | - In-So Cho
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, 26426, Korea
| | - Min-Seok Chang
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, 26426, Korea
| | - Iseul Yu
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, 26426, Korea
| | - Sunmin Park
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, 26426, Korea
| | - Ji-Ho Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, 26426, Korea
| | - Seok Jeong Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, 26426, Korea
| | - Won-Yeon Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, 26426, Korea
| | - Suk Joong Yong
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, 26426, Korea
| | - Sang-Ha Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, 26426, Korea
| |
Collapse
|
7
|
Mou K, Chan SMH, Vlahos R. Musculoskeletal crosstalk in chronic obstructive pulmonary disease and comorbidities: Emerging roles and therapeutic potentials. Pharmacol Ther 2024; 257:108635. [PMID: 38508342 DOI: 10.1016/j.pharmthera.2024.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/13/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a multifaceted respiratory disorder characterized by progressive airflow limitation and systemic implications. It has become increasingly apparent that COPD exerts its influence far beyond the respiratory system, extending its impact to various organ systems. Among these, the musculoskeletal system emerges as a central player in both the pathogenesis and management of COPD and its associated comorbidities. Muscle dysfunction and osteoporosis are prevalent musculoskeletal disorders in COPD patients, leading to a substantial decline in exercise capacity and overall health. These manifestations are influenced by systemic inflammation, oxidative stress, and hormonal imbalances, all hallmarks of COPD. Recent research has uncovered an intricate interplay between COPD and musculoskeletal comorbidities, suggesting that muscle and bone tissues may cross-communicate through the release of signalling molecules, known as "myokines" and "osteokines". We explored this dynamic relationship, with a particular focus on the role of the immune system in mediating the cross-communication between muscle and bone in COPD. Moreover, we delved into existing and emerging therapeutic strategies for managing musculoskeletal disorders in COPD. It underscores the development of personalized treatment approaches that target both the respiratory and musculoskeletal aspects of COPD, offering the promise of improved well-being and quality of life for individuals grappling with this complex condition. This comprehensive review underscores the significance of recognizing the profound impact of COPD on the musculoskeletal system and its comorbidities. By unravelling the intricate connections between these systems and exploring innovative treatment avenues, we can aspire to enhance the overall care and outcomes for COPD patients, ultimately offering hope for improved health and well-being.
Collapse
Affiliation(s)
- Kevin Mou
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Stanley M H Chan
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ross Vlahos
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
De Luca SN, Vlahos R. Targeting accelerated pulmonary ageing to treat chronic obstructive pulmonary disease-induced neuropathological comorbidities. Br J Pharmacol 2024; 181:3-20. [PMID: 37828646 PMCID: PMC10952708 DOI: 10.1111/bph.16263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major incurable health burden, ranking as the third leading cause of death worldwide, mainly driven by cigarette smoking. COPD is characterised by persistent airway inflammation, lung function decline and premature ageing with the presence of pulmonary senescent cells. This review proposes that cellular senescence, a state of stable cell cycle arrest linked to ageing, induced by inflammation and oxidative stress in COPD, extends beyond the lungs and affects the systemic circulation. This pulmonary senescent profile will reach other organs via extracellular vesicles contributing to brain inflammation and damage, and increasing the risk of neurological comorbidities, such as stroke, cerebral small vessel disease and Alzheimer's disease. The review explores the role of cellular senescence in COPD-associated brain conditions and investigates the relationship between cellular senescence and circadian rhythm in COPD. Additionally, it discusses potential therapies, including senomorphic and senolytic treatments, as novel strategies to halt or improve the progression of COPD.
Collapse
Affiliation(s)
- Simone N. De Luca
- Centre for Respiratory Science and Health, School of Health & Biomedical SciencesRMIT UniversityMelbourneVictoriaAustralia
| | - Ross Vlahos
- Centre for Respiratory Science and Health, School of Health & Biomedical SciencesRMIT UniversityMelbourneVictoriaAustralia
| |
Collapse
|
9
|
Wu CY, Cilic A, Pak O, Dartsch RC, Wilhelm J, Wujak M, Lo K, Brosien M, Zhang R, Alkoudmani I, Witte B, Pedersen F, Watz H, Voswinckel R, Günther A, Ghofrani HA, Brandes RP, Schermuly RT, Grimminger F, Seeger W, Sommer N, Weissmann N, Hadzic S. CEACAM6 as a Novel Therapeutic Target to Boost HO-1-mediated Antioxidant Defense in COPD. Am J Respir Crit Care Med 2023; 207:1576-1590. [PMID: 37219322 DOI: 10.1164/rccm.202208-1603oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/23/2023] [Indexed: 05/24/2023] Open
Abstract
Rationale: Tobacco smoking and air pollution are primary causes of chronic obstructive pulmonary disease (COPD). However, only a minority of smokers develop COPD. The mechanisms underlying the defense against nitrosative/oxidative stress in nonsusceptible smokers to COPD remain largely unresolved. Objectives: To investigate the defense mechanisms against nitrosative/oxidative stress that possibly prevent COPD development or progression. Methods: Four cohorts were investigated: 1) sputum samples (healthy, n = 4; COPD, n = 37), 2) lung tissue samples (healthy, n = 13; smokers without COPD, n = 10; smoker+COPD, n = 17), 3) pulmonary lobectomy tissue samples (no/mild emphysema, n = 6), and 4) blood samples (healthy, n = 6; COPD, n = 18). We screened 3-nitrotyrosine (3-NT) levels, as indication of nitrosative/oxidative stress, in human samples. We established a novel in vitro model of a cigarette smoke extract (CSE)-resistant cell line and studied 3-NT formation, antioxidant capacity, and transcriptomic profiles. Results were validated in lung tissue, isolated primary cells, and an ex vivo model using adeno-associated virus-mediated gene transduction and human precision-cut lung slices. Measurements and Main Results: 3-NT levels correlate with COPD severity of patients. In CSE-resistant cells, nitrosative/oxidative stress upon CSE treatment was attenuated, paralleled by profound upregulation of heme oxygenase-1 (HO-1). We identified carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6) as a negative regulator of HO-1-mediated nitrosative/oxidative stress defense in human alveolar type 2 epithelial cells (hAEC2s). Consistently, inhibition of HO-1 activity in hAEC2s increased the susceptibility toward CSE-induced damage. Epithelium-specific CEACAM6 overexpression increased nitrosative/oxidative stress and cell death in human precision-cut lung slices on CSE treatment. Conclusions: CEACAM6 expression determines the hAEC2 sensitivity to nitrosative/oxidative stress triggering emphysema development/progression in susceptible smokers.
Collapse
Affiliation(s)
- Cheng-Yu Wu
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Anis Cilic
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Oleg Pak
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Ruth Charlotte Dartsch
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Jochen Wilhelm
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| | - Magdalena Wujak
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
- Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Kevin Lo
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Monika Brosien
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Ruoyu Zhang
- Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen, Germany
| | - Ibrahim Alkoudmani
- Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen, Germany
| | - Biruta Witte
- Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen, Germany
| | - Frauke Pedersen
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North, DZL, Grosshansdorf, Germany
| | - Henrik Watz
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North, DZL, Grosshansdorf, Germany
| | | | - Andreas Günther
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Hossein A Ghofrani
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany; and
| | - Ralph T Schermuly
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Friedrich Grimminger
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Stefan Hadzic
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
10
|
Nabeshima T, Tsukamoto M, Wang KY, Mano Y, Arakawa D, Kosugi K, Tajima T, Yamanaka Y, Suzuki H, Kawasaki M, Uchida S, Nakamura E, Azuma K, Sakai A. Delayed cortical bone healing due to impaired nuclear Nrf2 translocation in COPD mice. Bone 2023; 173:116804. [PMID: 37201674 DOI: 10.1016/j.bone.2023.116804] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
The effect of the pathogenesis of chronic obstructive pulmonary disease (COPD) on bone fracture healing is unknown. Oxidative stress has been implicated in the systemic complications of COPD, and decreased activity of Nrf2 signaling, a central component of the in vivo antioxidant mechanism, has been reported. We investigated the process of cortical bone repair in a mouse model of elastase-induced emphysema by creating a drill hole and focusing on Nrf2 and found that the amount of new bone in the drill hole was reduced and bone formation capacity was decreased in the model mice. Furthermore, nuclear Nrf2 expression in osteoblasts was reduced in model mice. Sulforaphane, an Nrf2 activator, improved delayed cortical bone healing in model mice. This study indicates that bone healing is delayed in COPD mice and that impaired nuclear translocation of Nrf2 is involved in delayed cortical bone healing, suggesting that Nrf2 may be a novel target for bone fracture treatment in COPD patients.
Collapse
Affiliation(s)
- Takayuki Nabeshima
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Manabu Tsukamoto
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan.
| | - Ke-Yong Wang
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yosuke Mano
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Daisuke Arakawa
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Kenji Kosugi
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Takafumi Tajima
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Hitoshi Suzuki
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Makoto Kawasaki
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Soshi Uchida
- Department of Orthopedic Surgery, Wakamatsu Hospital of University of Occupational and Environmental Health, 1-17-1, Hamacho, Wakamatsu-ku, Kitakyushu-shi 808-0024, Japan
| | - Eiichiro Nakamura
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 8078-555, Japan
| | - Akinori Sakai
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| |
Collapse
|
11
|
De Luca SN, Chan SMH, Dobric A, Wang H, Seow HJ, Brassington K, Mou K, Alateeq R, Akhtar A, Bozinovski S, Vlahos R. Cigarette smoke-induced pulmonary impairment is associated with social recognition memory impairments and alterations in microglial profiles within the suprachiasmatic nucleus of the hypothalamus. Brain Behav Immun 2023; 109:292-307. [PMID: 36775074 DOI: 10.1016/j.bbi.2023.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major, incurable respiratory condition that is primarily caused by cigarette smoking (CS). Neurocognitive disorders including cognitive dysfunction, anxiety and depression are highly prevalent in people with COPD. It is understood that increased lung inflammation and oxidative stress from CS exposure may 'spill over' into the systemic circulation to promote the onset of these extra-pulmonary comorbidities, and thus impacts the quality of life of people with COPD. The precise role of the 'spill-over' of inflammation and oxidative stress in the onset of COPD-related neurocognitive disorders are unclear. The present study investigated the impact of chronic CS exposure on anxiety-like behaviors and social recognition memory, with a particular focus on the role of the 'spill-over' of inflammation and oxidative stress from the lungs. Adult male BALB/c mice were exposed to either room air (sham) or CS (9 cigarettes per day, 5 days a week) for 24 weeks and were either daily co-administered with the NOX2 inhibitor, apocynin (5 mg/kg, in 0.01 % DMSO diluted in saline, i.p.) or vehicle (0.01 % DMSO in saline) one hour before the initial CS exposure of the day. After 23 weeks, mice underwent behavioral testing and physiological diurnal rhythms were assessed by monitoring diurnal regulation profiles. Lungs were collected and assessed for hallmark features of COPD. Consistent with its anti-inflammatory and oxidative stress properties, apocynin treatment partially lessened lung inflammation and lung function decline in CS mice. CS-exposed mice displayed marked anxiety-like behavior and impairments in social recognition memory compared to sham mice, which was prevented by apocynin treatment. Apocynin was unable to restore the decreased Bmal1-positive cells, key in cells in diurnal regulation, in the suprachiasmatic nucleus of the hypothalamus to that of sham levels. CS-exposed mice treated with apocynin was associated with a restoration of microglial area per cell and basal serum corticosterone. This data suggests that we were able to model the CS-induced social recognition memory impairments seen in humans with COPD. The preventative effects of apocynin on memory impairments may be via a microglial dependent mechanism.
Collapse
Affiliation(s)
- Simone N De Luca
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Stanley M H Chan
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Aleksandar Dobric
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Hao Wang
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Huei Jiunn Seow
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Kurt Brassington
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Kevin Mou
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Rana Alateeq
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Alina Akhtar
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Steven Bozinovski
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Ross Vlahos
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia.
| |
Collapse
|
12
|
Piscaer I, Janssen R, Franssen FME, Schurgers LJ, Wouters EFM. The Pleiotropic Role of Vitamin K in Multimorbidity of Chronic Obstructive Pulmonary Disease. J Clin Med 2023; 12:1261. [PMID: 36835797 PMCID: PMC9964521 DOI: 10.3390/jcm12041261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Although defined by the presence of airflow obstruction and respiratory symptoms, patients with chronic obstructive pulmonary disease (COPD) are characterized by multimorbidity. Numerous co-occurring conditions and systemic manifestations contribute to the clinical presentation and progression of COPD; however, underlying mechanisms for multimorbidity are currently not fully elucidated. Vitamin A and vitamin D have been related to COPD pathogenesis. Another fat-soluble vitamin, vitamin K, has been put forward to exert protective roles in COPD. Vitamin K is an unequivocal cofactor for the carboxylation of coagulation factors, but also for extra-hepatic proteins including the soft tissue calcification inhibitor matrix Gla-protein and the bone protein osteocalcin. Additionally, vitamin K has been shown to have anti-oxidant and anti-ferroptosis properties. In this review, we discuss the potential role of vitamin K in the systemic manifestations of COPD. We will elaborate on the effect of vitamin K on prevalent co-occurring chronic conditions in COPD including cardiovascular disorders, chronic kidney disease, osteoporosis, and sarcopenia. Finally, we link these conditions to COPD with vitamin K as a connecting factor and provide recommendations for future clinical studies.
Collapse
Affiliation(s)
- Ianthe Piscaer
- Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), 6200 MD Maastricht, The Netherlands
| | - Rob Janssen
- Department of Respiratory Medicine, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| | - Frits M. E. Franssen
- Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), 6200 MD Maastricht, The Netherlands
- Department of Research and Development, CIRO+, Centre of Expertise for Chronic Organ Failure, 6085 NM Horn, The Netherlands
| | - Leon J. Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200 MD Maastricht, The Netherlands
| | - Emiel F. M. Wouters
- Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), 6200 MD Maastricht, The Netherlands
- Department of Research and Development, CIRO+, Centre of Expertise for Chronic Organ Failure, 6085 NM Horn, The Netherlands
- Ludwig Boltzmann Institute for Lung Health, 1140 Vienna, Austria
| |
Collapse
|
13
|
Wang Y, Li P, Cao Y, Liu C, Wang J, Wu W. Skeletal Muscle Mitochondrial Dysfunction in Chronic Obstructive Pulmonary Disease: Underlying Mechanisms and Physical Therapy Perspectives. Aging Dis 2023; 14:33-45. [PMID: 36818563 PMCID: PMC9937710 DOI: 10.14336/ad.2022.0603] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle dysfunction (SMD) is a prevalent extrapulmonary complication and a significant independent prognostic factor in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial dysfunction is one of the core factors that damage structure and function in COPD skeletal muscle and is closely related to smoke exposure, hypoxia, and insufficient physical activity. The currently known phenotypes of mitochondrial dysfunction are reduced mitochondrial content and biogenesis, impaired activity of mitochondrial respiratory chain complexes, and increased mitochondrial reactive oxygen species production. Significant progress has been made in research on physical therapy (PT), which has broad prospects for treating the abovementioned potential mitochondrial-function changes in COPD skeletal muscle. In terms of specific types of PT, exercise therapy can directly act on mitochondria and improve COPD SMD by increasing mitochondrial density, regulating mitochondrial biogenesis, upregulating mitochondrial respiratory function, and reducing oxidative stress. However, improvements in mitochondrial-dysfunction phenotype in COPD skeletal muscle due to different exercise strategies are not entirely consistent. Therefore, based on the elucidation of this phenotype, in this study, we analyzed the effect of exercise on mitochondrial dysfunction in COPD skeletal muscle and the regulatory mechanism thereof. We also provided a theoretical basis for exercise programs to rehabilitate this condition.
Collapse
Affiliation(s)
- Yingqi Wang
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China.
| | - Peijun Li
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China.
| | - Yuanyuan Cao
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China.
| | - Chanjing Liu
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China.
| | - Jie Wang
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China.,Correspondence should be addressed to: Dr. Weibing Wu () and Dr. Jie Wang (), Shanghai University of Sport, Shanghai, China
| | - Weibing Wu
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China.,Correspondence should be addressed to: Dr. Weibing Wu () and Dr. Jie Wang (), Shanghai University of Sport, Shanghai, China
| |
Collapse
|
14
|
Qian Y, Yan L, Wei M, Song P, Wang L. Seeds of Ginkgo biloba L. inhibit oxidative stress and inflammation induced by cigarette smoke in COPD rats through the Nrf2 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115758. [PMID: 36167232 DOI: 10.1016/j.jep.2022.115758] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional medicine, seeds of Ginkgo biloba L. (Gbs) have been used to treat cough or asthma for a long time. It is commonly used in clinic for lung diseases. However, its mechanism of lung protection is not completely clear. AIMS OF THE STUDY This research was designed to explore the protective effects of Gbs on antioxidant and inflammation during the chronic obstructive pulmonary disease (COPD) pathological process provoked by cigarette smoking (CS) in rats. MATERIALS AND METHODS Six random groups including control group, CS model group, Gbs intervention groups (25 mg/kg, 50 mg/kg, and 100 mg/kg) and aminophylline group were composed of forty-eight rats. Smoking and intratracheal instillation of lipopolysaccharide (LPS) were used to establish the COPD rat model. Glutathione peroxidase (GSH-PX), malondialdehyde (MDA), superoxide dismutase (SOD), and enzyme-linked immunosorbent assay (ELISA) was used for quantifying the inflammatory factors such as IL-8, IL-6, IL-10, IL-17 and TNF-α. Western blotting were used for detecting the protein expressions of Nrf2, Keap1 and HO-1 in the lung tissues. RESULTS Gbs inhibits lung histological changes and decreased the inflammatory factors in both bronchoalveolar lavage fluid (BALF) and serum of CS-exposed rats, including IL-10, IL-17, IL-6, IL-8 and TNF-α. Gbs also inhibited the MDA level, increased SOD and GSH-PX activity in serum and changed expressions of Nrf2, Keap1 and HO-1 in the lung tissues. CONCLUSION Gbs inhibit oxidative stress and inflammation induced by cigarette smoke in COPD rats through the Nrf2 Pathway.
Collapse
Affiliation(s)
- Yiyun Qian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Liang Yan
- Nanjing Cavendish Bio-engineering Technology Co, Ltd, Nanjing, 210046, China.
| | - Min Wei
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Pingping Song
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Lihong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| |
Collapse
|
15
|
Srivastava A, Subhashini, Pandey V, Yadav V, Singh S, Srivastava R. Potential of hydroethanolic leaf extract of Ocimum sanctum in ameliorating redox status and lung injury in COPD: an in vivo and in silico study. Sci Rep 2023; 13:1131. [PMID: 36670131 PMCID: PMC9860039 DOI: 10.1038/s41598-023-27543-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
Oxidative stress and inflammation are hypothesised as the main contributor for Chronic Obstructive Pulmonary Disease (COPD). Cigarette smoke (CS), a major cause of COPD leads to inflammation resulting in recruitment of neutrophils and macrophages which are rich sources of oxidants. Activation of these cells produces excess oxidants and depletes antioxidants resulting in stress. Presently, effective drug for COPD is limited; therefore, novel compounds from natural sources, including plants are under exploration. The present study aims to investigate the protective effect of Ocimum sanctum leaf extract (OLE) in CS - induced model of COPD. Exposure to CS was performed thrice a week for 8 weeks and OLE (200 mg/kg and 400 mg/kg) was administered an hour before CS exposure. Control group (negative control) were exposed to ambient air while COPD group was exposed to CS (positive control). Administration of OLE doses reduced inflammation, decreased oxidant concentration and increased antioxidant concentration (p < 0.01). Molecular docking studies between the major phytocompounds of OLE (Eugenol, Cyclohexane and Caryophyllene) and antioxidant enzymes Superoxide dismutase (SOD), Catalase, Glutathione peroxidase (GPx), Glutathione reductase (GR) and Glutathione S Transferase (GST) showed strong binding interaction in terms of binding energy. In vivo and in silico findings for the first time indicates that OLE extract significantly alleviates oxidative stress by its potent free radical scavenging property and strong interaction with antioxidant enzymes. OLE extract may prove to be a therapeutic option for COPD prevention and treatment.
Collapse
Affiliation(s)
- Atul Srivastava
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Subhashini
- Neuroimmunobiology Lab, Department of Zoology, MahilaMahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Vinita Pandey
- Neuroimmunobiology Lab, Department of Zoology, MahilaMahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Vandana Yadav
- Neuroimmunobiology Lab, Department of Zoology, MahilaMahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Sangita Singh
- Neuroimmunobiology Lab, Department of Zoology, MahilaMahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Ragini Srivastava
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
16
|
Emma R, Caruso M, Campagna D, Pulvirenti R, Li Volti G. The Impact of Tobacco Cigarettes, Vaping Products and Tobacco Heating Products on Oxidative Stress. Antioxidants (Basel) 2022; 11:1829. [PMID: 36139904 PMCID: PMC9495690 DOI: 10.3390/antiox11091829] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Cells constantly produce oxidizing species because of their metabolic activity, which is counteracted by the continuous production of antioxidant species to maintain the homeostasis of the redox balance. A deviation from the metabolic steady state leads to a condition of oxidative stress. The source of oxidative species can be endogenous or exogenous. A major exogenous source of these species is tobacco smoking. Oxidative damage can be induced in cells by chemical species contained in smoke through the generation of pro-inflammatory compounds and the modulation of intracellular pro-inflammatory pathways, resulting in a pathological condition. Cessation of smoking reduces the morbidity and mortality associated with cigarette use. Next-generation products (NGPs), as alternatives to combustible cigarettes, such as electronic cigarettes (e-cig) and tobacco heating products (THPs), have been proposed as a harm reduction strategy to reduce the deleterious impacts of cigarette smoking. In this review, we examine the impact of tobacco smoke and MRPs on oxidative stress in different pathologies, including respiratory and cardiovascular diseases and tumors. The impact of tobacco cigarette smoke on oxidative stress signaling in human health is well established, whereas the safety profile of MRPs seems to be higher than tobacco cigarettes, but further, well-conceived, studies are needed to better understand the oxidative effects of these products with long-term exposure.
Collapse
Affiliation(s)
- Rosalia Emma
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| | - Davide Campagna
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
| | - Roberta Pulvirenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| |
Collapse
|
17
|
Zhao G, Li X, Lei S, Zhao H, Zhang H, Li J. Prevalence of lung cancer in chronic obstructive pulmonary disease: A systematic review and meta-analysis. Front Oncol 2022; 12:947981. [PMID: 36185264 PMCID: PMC9523743 DOI: 10.3389/fonc.2022.947981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
Background There is growing evidence that chronic obstructive pulmonary disease (COPD) can increase the risk of lung cancer, which poses a serious threat to treatment and management. Therefore, we performed a meta-analysis of lung cancer prevalence in patients with COPD with the aim of providing better prevention and management strategies. Methods We systematically searched PubMed, EMBASE, Web of Science, and Cochrane Library databases from their inception to 20 March 2022 to collect studies on the prevalence of lung cancer in patients with COPD. We evaluated the methodological quality of the included studies using the tool for assessing the risk of bias in prevalence studies. Meta-analysis was used to determine the prevalence and risk factors for lung cancer in COPD. Subgroup and sensitivity analyses were conducted to explore the data heterogeneity. Funnel plots combined with Egger’s test were used to detect the publication biases. Results Thirty-one studies, covering 829,490 individuals, were included to investigate the prevalence of lung cancer in patients with COPD. Pooled analysis demonstrated that the prevalence of lung cancer in patients with COPD was 5.08% (95% confidence interval [CI]: 4.17–6.00%). Subgroup analysis showed that the prevalence was 5.09% (95% CI: 3.48–6.70%) in male and 2.52% (95% CI: 1.57–4.05%) in female. The prevalence of lung cancer in patients with COPD who were current and former smokers was as high as 8.98% (95% CI: 4.61–13.35%) and 3.42% (95% CI: 1.51–5.32%); the incidence rates in patients with moderate and severe COPD were 6.67% (95% CI: 3.20–10.14%) and 5.57% (95% CI: 1.89–16.39%), respectively, which were higher than the 3.89% (95% CI: 2.14–7.06%) estimated in patients with mild COPD. Among the types of lung cancer, adenocarcinoma and squamous cell carcinoma were the most common, with incidence rates of 1.59% (95% CI: 0.23–2.94%) and 1.35% (95% CI: 0.57–3.23%), respectively. There were also differences in regional distribution, with the highest prevalence in the Western Pacific region at 7.78% (95% CI: 5.06–10.5%), followed by the Americas at 3.25% (95% CI: 0.88–5.61%) and Europe at 3.21% (95% CI: 2.36–4.06%). Conclusions This meta-analysis shows that patients with COPD have a higher risk of developing lung cancer than those without COPD. More attention should be given to this result in order to reduce the risk of lung cancer in these patients with appropriate management and prevention. Systematic review registration International prospective register of systematic reviews, identifier CRD42022331872.
Collapse
Affiliation(s)
- Guixiang Zhao
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xuanlin Li
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
| | - Siyuan Lei
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hulei Zhao
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hailong Zhang
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiansheng Li
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Jiansheng Li,
| |
Collapse
|
18
|
Ma K, Huang F, Qiao R, Miao L. Pathogenesis of sarcopenia in chronic obstructive pulmonary disease. Front Physiol 2022; 13:850964. [PMID: 35928562 PMCID: PMC9343800 DOI: 10.3389/fphys.2022.850964] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common pulmonary disease characterized by persistent respiratory symptoms and airflow obstruction. In addition to lung diseases, chronic obstructive pulmonary disease (COPD) is often associated with other organ diseases, and sarcopenia is one of the common diseases. In recent years, multiple factors have been proposed to influence muscle dysfunction in COPD patients, including systemic and local inflammation, oxidative stress, hypoxia, hypercapnia, protein synthesis, catabolic imbalance, nutritional changes, disuse, ageing, and the use of medications such as steroids. These factors alone or in combination can lead to a reduction in muscle mass and cross-sectional area, deterioration of muscle bioenergy metabolism, defects in muscle repair and regeneration mechanisms, apoptosis and other anatomical and/or functional pathological changes, resulting in a decrease in the muscle’s ability to work. This article reviews the research progress of possible pathogenesis of sarcopenia in COPD.
Collapse
|
19
|
Zuo J, Zhang Z, Luo M, Zhou L, Nice EC, Zhang W, Wang C, Huang C. Redox signaling at the crossroads of human health and disease. MedComm (Beijing) 2022; 3:e127. [PMID: 35386842 PMCID: PMC8971743 DOI: 10.1002/mco2.127] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Redox biology is at the core of life sciences, accompanied by the close correlation of redox processes with biological activities. Redox homeostasis is a prerequisite for human health, in which the physiological levels of nonradical reactive oxygen species (ROS) function as the primary second messengers to modulate physiological redox signaling by orchestrating multiple redox sensors. However, excessive ROS accumulation, termed oxidative stress (OS), leads to biomolecule damage and subsequent occurrence of various diseases such as type 2 diabetes, atherosclerosis, and cancer. Herein, starting with the evolution of redox biology, we reveal the roles of ROS as multifaceted physiological modulators to mediate redox signaling and sustain redox homeostasis. In addition, we also emphasize the detailed OS mechanisms involved in the initiation and development of several important diseases. ROS as a double-edged sword in disease progression suggest two different therapeutic strategies to treat redox-relevant diseases, in which targeting ROS sources and redox-related effectors to manipulate redox homeostasis will largely promote precision medicine. Therefore, a comprehensive understanding of the redox signaling networks under physiological and pathological conditions will facilitate the development of redox medicine and benefit patients with redox-relevant diseases.
Collapse
Affiliation(s)
- Jing Zuo
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Wei Zhang
- West China Biomedical Big Data CenterWest China HospitalSichuan UniversityChengduP. R. China
- Mental Health Center and Psychiatric LaboratoryThe State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduP. R. China
| | - Chuang Wang
- Department of PharmacologyProvincial Key Laboratory of Pathophysiology, Ningbo University School of MedicineNingboZhejiangP. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
- Department of PharmacologyProvincial Key Laboratory of Pathophysiology, Ningbo University School of MedicineNingboZhejiangP. R. China
| |
Collapse
|
20
|
Brassington K, Chan S, De Luca S, Dobric A, Almerdasi S, Mou K, Seow H, Oseghale O, Bozinovski S, Selemidis S, Vlahos R. Ebselen abolishes vascular dysfunction in influenza A virus-induced exacerbations of cigarette smoke-induced lung inflammation in mice. Clin Sci (Lond) 2022; 136:537-555. [PMID: 35343564 PMCID: PMC9069468 DOI: 10.1042/cs20211090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
People with chronic obstructive pulmonary disease (COPD) are susceptible to respiratory infections which exacerbate pulmonary and/or cardiovascular complications, increasing their likelihood of death. The mechanisms driving these complications remain unknown but increased oxidative stress has been implicated. Here we investigated whether influenza A virus (IAV) infection, following chronic cigarette smoke (CS) exposure, worsens vascular function and if so, whether the antioxidant ebselen alleviates this vascular dysfunction. Male BALB/c mice were exposed to either room air or CS for 8 weeks followed by inoculation with IAV (Mem71, 1 × 104.5 pfu). Mice were treated with ebselen (10 mg/kg) or vehicle (5% w/v CM-cellulose in water) daily. Mice were culled 3- and 10-days post-infection, and their lungs lavaged to assess inflammation. The thoracic aorta was excised to investigate endothelial and smooth muscle dilator responses, expression of key vasodilatory and oxidative stress modulators, infiltrating immune cells and vascular remodelling. CS increased lung inflammation and caused significant vascular endothelial dysfunction, which was worsened by IAV infection. CS-driven increases in vascular oxidative stress, aortic wall remodelling and suppression of endothelial nitric oxide synthase (eNOS) were not affected by IAV infection. CS and IAV infection significantly enhanced T cell recruitment into the aortic wall. Ebselen abolished the exaggerated lung inflammation, vascular dysfunction and increased T cell infiltration in CS and IAV-infected mice. Our findings showed that ebselen treatment abolished vascular dysfunction in IAV-induced exacerbations of CS-induced lung inflammation indicating it may have potential for the treatment of cardiovascular comorbidities seen in acute exacerbations of COPD (AECOPD).
Collapse
Affiliation(s)
- Kurt Brassington
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Stanley M.H. Chan
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Simone N. De Luca
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Aleksandar Dobric
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Suleman A. Almerdasi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Kevin Mou
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Huei Jiunn Seow
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Osezua Oseghale
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| |
Collapse
|
21
|
Ghobadi H, Abdollahi N, Madani H, Aslani MR. Effect of Crocin From Saffron ( Crocus sativus L.) Supplementation on Oxidant/Antioxidant Markers, Exercise Capacity, and Pulmonary Function Tests in COPD Patients: A Randomized, Double-Blind, Placebo-Controlled Trial. Front Pharmacol 2022; 13:884710. [PMID: 35517806 PMCID: PMC9065288 DOI: 10.3389/fphar.2022.884710] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) is a progressive and chronic respiratory disorder characterized by reversible airflow limitation and lung parenchyma destruction. The main feature of COPD is inflammation and disturbance of the oxidant/antioxidant balance in the airways. The therapeutic use of herbal supplements with antioxidant and anti-inflammatory properties seems to be very useful in the medical management of patients with COPD. Method: COPD patients were divided into placebo and intervention groups (each group n = 23) in a clinical trial study. The intervention group received crocin supplementation (30 mg/day for 12 weeks), and the control group received a placebo. Pre- and after the intervention, pulmonary function tests (PFTs), exercise capacity (using a 6-min walking distance test (6MWD)), and serum levels of total oxidant status (TOS), total antioxidant capacity (TAOC), and NF-kB were assessed using the ELISA test. Results: Intervention with crocin for 12 weeks in COPD patients decreased serum levels of TOS and NF-κB as well as increased TAOC. In addition, the results of the 6MWD test reveal an improvement in patients' exercise capacity. Conclusion: Crocin supplementation appears to effectively establish oxidant/antioxidant balance and improve inflammatory conditions in patients with COPD.
Collapse
Affiliation(s)
- Hassan Ghobadi
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Internal Medicine, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nasim Abdollahi
- Department of Internal Medicine, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hanieh Madani
- Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Reza Aslani
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Chronic obstructive pulmonary disease and atherosclerosis: common mechanisms and novel therapeutics. Clin Sci (Lond) 2022; 136:405-423. [PMID: 35319068 PMCID: PMC8968302 DOI: 10.1042/cs20210835] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 12/17/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and atherosclerosis are chronic irreversible diseases, that share a number of common causative factors including cigarette smoking. Atherosclerosis drastically impairs blood flow and oxygen availability to tissues, leading to life-threatening outcomes including myocardial infarction (MI) and stroke. Patients with COPD are most likely to die as a result of a cardiovascular event, with 30% of all COPD-related deaths being attributed to cardiovascular disease (CVD). Both atherosclerosis and COPD involve significant local (i.e. lung, vasculature) and systemic inflammation and oxidative stress, of which current pharmacological treatments have limited efficacy, hence the urgency for the development of novel life-saving therapeutics. Currently these diseases must be treated individually, with no therapies available that can effectively reduce the likelihood of comorbid CVD other than cessation of cigarette smoking. In this review, the important mechanisms that drive atherosclerosis and CVD in people with COPD are explained and we propose that modulation of both the oxidative stress and the inflammatory burden will provide a novel therapeutic strategy to treat both the pulmonary and systemic manifestations related to these diseases.
Collapse
|
23
|
De Luca SN, Brassington K, Chan SMH, Dobric A, Mou K, Seow HJ, Vlahos R. Ebselen prevents cigarette smoke-induced cognitive dysfunction in mice by preserving hippocampal synaptophysin expression. J Neuroinflammation 2022; 19:72. [PMID: 35351173 PMCID: PMC8966248 DOI: 10.1186/s12974-022-02432-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/13/2022] [Indexed: 11/26/2022] Open
Abstract
Background Cigarette smoking (CS) is the leading cause of chronic obstructive pulmonary disease (COPD). The “spill-over” of pulmonary inflammation into the systemic circulation may damage the brain, leading to cognitive dysfunction. Cessation of CS can improve pulmonary and neurocognitive outcomes, however, its benefit on the neuroinflammatory profile remains uncertain. Here, we investigate how CS exposure impairs neurocognition and whether this can be reversed with CS cessation or an antioxidant treatment. Methods Male BALB/c mice were exposed to CS (9 cigarettes/day for 8 weeks) followed by 4 weeks of CS cessation. Another cohort of CS-exposed mice were co-administrated with a glutathione peroxidase mimetic, ebselen (10 mg/kg) or vehicle (5% CM-cellulose). We assessed pulmonary inflammation, spatial and working memory, and the hippocampal microglial, oxidative and synaptic profiles. Results CS exposure increased lung inflammation which was reduced following CS cessation. CS caused spatial and working memory impairments which were attributed to hippocampal microglial activation and suppression of synaptophysin. CS cessation did not improve memory deficits or alter microglial activation. Ebselen completely prevented the CS-induced working and spatial memory impairments, which was associated with restored synaptophysin expression without altering microglial activation. Conclusion We were able to model the CS-induced memory impairment and microglial activation seen in human COPD. The preventative effects of ebselen on memory impairment is likely to be dependent on a preserved synaptogenic profile. Cessation alone also appears to be insufficient in correcting the memory impairment, suggesting the importance of incorporating antioxidant therapy to help maximising the benefit of cessation.
Collapse
|
24
|
Mou K, Chan SMH, Brassington K, Dobric A, De Luca SN, Seow HJ, Selemidis S, Bozinovski S, Vlahos R. Influenza A Virus-Driven Airway Inflammation may be Dissociated From Limb Muscle Atrophy in Cigarette Smoke-Exposed Mice. Front Pharmacol 2022; 13:859146. [PMID: 35370652 PMCID: PMC8971713 DOI: 10.3389/fphar.2022.859146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022] Open
Abstract
Limb muscle dysfunction is a hallmark of Chronic Obstructive Pulmonary Disease (COPD) which is further worsened following a viral-induced acute exacerbation of COPD (AECOPD). An amplified airway inflammation underlies the aggravated respiratory symptoms seen during AECOPD, however, its contributory role to limb muscle dysfunction is unclear. The present study examined the impact of influenza A virus (IAV)-induced exacerbation on hind limb muscle parameters. Airway inflammation was established in male BALB/c mice by exposure to cigarette smoke (CS) for 8 weeks. Exacerbation was then induced via inoculation with IAV, and various lung and muscle parameters were assessed on day 3 (peak of airway inflammation) and day 10 (resolution phase) post-infection. IAV infection exacerbated CS-induced airway inflammation as evidenced by further increases in immune cell counts within bronchoalveolar lavage fluid. Despite no significant impact on muscle mass, IAV exacerbation worsened the force-generating capacity of the tibialis anterior (TA) muscle. Protein oxidation and myogenic disruption was observed in the TA following CS exposure, however, IAV exacerbation did not augment these detrimental processes. To further explore the contributory role of airway inflammation on myogenic signaling, cultured myotubes were exposed to conditioned medium (CM) derived from bronchial epithelial cells stimulated with polyinosinic:polycytidylic acid and cigarette smoke extract (CSE). Despite an amplified inflammatory response in the lung epithelial cells, the CM derived from these cells did not potentiate myogenic disruption in the C2C12 myotubes. In conclusion, our data suggest that certain parameters of limb muscle dysfunction seen during viral-induced AECOPD may be independent of airway inflammation.
Collapse
|
25
|
XU L, SONG Q, OUYANG Z, ZHENG M, ZHANG X, ZHANG C. Efficacy of silymarin in treatment of COPD via P47phox signaling pathway. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.52821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Lin XU
- Guizhou University, China; Guizhou Provincial People’s Hospital, China
| | - Qingying SONG
- Guizhou College of Traditional Chinese Medicine, China
| | | | | | - Xiangyan ZHANG
- Guizhou University, China; Guizhou Provincial People’s Hospital, China
| | - Cheng ZHANG
- Guizhou University, China; Guizhou Provincial People’s Hospital, China
| |
Collapse
|
26
|
Le S, Fu X, Pang M, Zhou Y, Yin G, Zhang J, Fan D. The Antioxidative Role of Chaperone-Mediated Autophagy as a Downstream Regulator of Oxidative Stress in Human Diseases. Technol Cancer Res Treat 2022; 21:15330338221114178. [PMID: 36131551 PMCID: PMC9500268 DOI: 10.1177/15330338221114178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) plays an important role in regulating a variety of cellular functions by selectively degrading damaged or functional proteins in the cytoplasm. One of the cellular processes in which CMA participates is the oxidative stress response. Oxidative stress regulates CMA activity, while CMA protects cells from oxidative damage by degrading oxidized proteins and preventing the accumulation of excessive reactive oxygen species (ROS). Changes in CMA activity have been found in many human diseases, and oxidative stress is also involved. Therefore, understanding the interaction mechanism of ROS and CMA will provide new targets for disease treatment. In this review, we discuss the role of CMA in combatting oxidative stress during the development of different conditions, such as aging, neurodegeneration, liver diseases, infections, pulmonary disorders, and cancers.
Collapse
Affiliation(s)
- Shuangshuang Le
- Guangxi Key Laboratory of Bio-Targeting Theranostics, National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, 74626Guangxi Medical University, Nanning, China.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, 12644Air Force Military Medical University, Xi'an, China
| | - Xin Fu
- Guangxi Key Laboratory of Bio-Targeting Theranostics, National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, 74626Guangxi Medical University, Nanning, China.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, 12644Air Force Military Medical University, Xi'an, China
| | - Maogui Pang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, 12644Air Force Military Medical University, Xi'an, China
| | - Yao Zhou
- Guangxi Key Laboratory of Bio-Targeting Theranostics, National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, 74626Guangxi Medical University, Nanning, China.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, 12644Air Force Military Medical University, Xi'an, China
| | - Guoqing Yin
- Department of Oncology, 572481Xianyang Hospital of Yan'an University, Xianyang, China
| | - Jie Zhang
- Department of Oncology, 572481Xianyang Hospital of Yan'an University, Xianyang, China
| | - Daiming Fan
- Guangxi Key Laboratory of Bio-Targeting Theranostics, National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, 74626Guangxi Medical University, Nanning, China.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, 12644Air Force Military Medical University, Xi'an, China
| |
Collapse
|
27
|
Dobric A, De Luca SN, Spencer SJ, Bozinovski S, Saling MM, McDonald CF, Vlahos R. Novel pharmacological strategies to treat cognitive dysfunction in chronic obstructive pulmonary disease. Pharmacol Ther 2021; 233:108017. [PMID: 34626675 DOI: 10.1016/j.pharmthera.2021.108017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/19/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major incurable global health burden and currently the 3rd largest cause of death in the world, with approximately 3.23 million deaths per year. Globally, the financial burden of COPD is approximately €82 billion per year and causes substantial morbidity and mortality. Importantly, much of the disease burden and health care utilisation in COPD is associated with the management of its comorbidities and viral and bacterial-induced acute exacerbations (AECOPD). Recent clinical studies have shown that cognitive dysfunction is present in up to 60% of people with COPD, with impairments in executive function, memory, and attention, impacting on important outcomes such as quality of life, hospitalisation and survival. The high prevalence of cognitive dysfunction in COPD may also help explain the insufficient adherence to therapeutic plans and strategies, thus worsening disease progression in people with COPD. However, the mechanisms underlying the impaired neuropathology and cognition in COPD remain largely unknown. In this review, we propose that the observed pulmonary oxidative burden and inflammatory response of people with COPD 'spills over' into the systemic circulation, resulting in damage to the brain and leading to cognitive dysfunction. As such, drugs targeting the lungs and comorbidities concurrently represent an exciting and unique therapeutic opportunity to treat COPD and cognitive impairments, which may lead to the production of novel targets to prevent and reverse the debilitating and life-threatening effects of cognitive dysfunction in COPD.
Collapse
Affiliation(s)
- Aleksandar Dobric
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Simone N De Luca
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Sarah J Spencer
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia; ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, VIC, Australia
| | - Steven Bozinovski
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Michael M Saling
- Clinical Neuropsychology, The University of Melbourne and Austin Health, VIC, Australia
| | - Christine F McDonald
- Institute for Breathing and Sleep, Austin Health, Melbourne, VIC, Australia; Department of Respiratory & Sleep Medicine, The University of Melbourne and Austin Health, Melbourne, VIC, Australia
| | - Ross Vlahos
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
28
|
Rodrigues SDO, da Cunha CMC, Soares GMV, Silva PL, Silva AR, Gonçalves-de-Albuquerque CF. Mechanisms, Pathophysiology and Currently Proposed Treatments of Chronic Obstructive Pulmonary Disease. Pharmaceuticals (Basel) 2021; 14:979. [PMID: 34681202 PMCID: PMC8539950 DOI: 10.3390/ph14100979] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/13/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading global causes of morbidity and mortality. A hallmark of COPD is progressive airflow obstruction primarily caused by cigarette smoke (CS). CS exposure causes an imbalance favoring pro- over antioxidants (oxidative stress), leading to transcription factor activation and increased expression of inflammatory mediators and proteases. Different cell types, including macrophages, epithelial cells, neutrophils, and T lymphocytes, contribute to COPD pathophysiology. Alteration in cell functions results in the generation of an oxidative and inflammatory microenvironment, which contributes to disease progression. Current treatments include inhaled corticosteroids and bronchodilator therapy. However, these therapies do not effectively halt disease progression. Due to the complexity of its pathophysiology, and the risk of exacerbating symptoms with existing therapies, other specific and effective treatment options are required. Therapies directly or indirectly targeting the oxidative imbalance may be promising alternatives. This review briefly discusses COPD pathophysiology, and provides an update on the development and clinical testing of novel COPD treatments.
Collapse
Affiliation(s)
- Sarah de Oliveira Rodrigues
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
| | - Carolina Medina Coeli da Cunha
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
| | - Giovanna Martins Valladão Soares
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
| | - Pedro Leme Silva
- Laboratório de Investigação Pulmonar, Carlos Chagas Filho, Instituto de Biofísica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20210-010, Brazil
| |
Collapse
|
29
|
Fouda S, Khan A, Chan S, Mahzari A, Zhou X, Qin C, Vlahos R, Ye JM. Exposure to cigarette smoke precipitates simple hepatosteatosis to NASH in high-fat diet fed mice by inducing oxidative stress. Clin Sci (Lond) 2021; 135:2103-2119. [PMID: 34427662 PMCID: PMC8436265 DOI: 10.1042/cs20210628] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022]
Abstract
Consumption of diet rich in fat and cigarette smoking (CS) are independent risk factors of non-alcoholic steatohepatitis (NASH), and they often occur together in some populations. The present study investigated the mechanisms of high-fat diet (HFD) and CS, individually and in combination, on the pathogenesis of NASH in mice. C57BL/6 male mice were subjected to either a low-fat chow (CH) or HFD with or without mainstream CS-exposure (4 cigarettes/day, 5 days/ week for 14 weeks). HFD alone caused hepatosteatosis (2.5-fold increase in TG content) and a significant increase in 3-nitrotyrisine (by ∼40-fold) but without an indication of liver injury, inflammation or fibrosis. CS alone in CH-fed mice increased in Tnfα expression and macrophage infiltration by 2-fold and relatively less increase in 3-nitrotyrosine (18-fold). Combination of HFD and CS precipitated hepatosteatosis to NASH reflected by exacerbated makers of liver inflammation and fibrosis which were associated with much severe liver oxidative stress (90-fold increase in 3-nitrotyrisine along with 6-fold increase in carbonylated proteins and 56% increase in lipid oxidations). Further studies were performed to administer the antioxidant tempol to CS exposed HFD mice and the results showed that the inhibition of liver oxidative stress prevented inflammatory and fibrotic changes in liver despite persisting hepatosteatosis. Our findings suggest that oxidative stress is a key mechanism underlying CS-promoted progression of simple hepatosteatosis to NASH. Targeting hepatic oxidative stress may be a viable strategy in halting the progression of metabolic associated fatty liver disease.
Collapse
Affiliation(s)
- Sherouk Fouda
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Anwar Khan
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Stanley M.H. Chan
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ali Mahzari
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha 65527, Saudi Arabia
| | - Xiu Zhou
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Cheng Xue Qin
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, VIC, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ji-Ming Ye
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Redox Regulation in Aging Lungs and Therapeutic Implications of Antioxidants in COPD. Antioxidants (Basel) 2021; 10:antiox10091429. [PMID: 34573061 PMCID: PMC8470212 DOI: 10.3390/antiox10091429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 12/23/2022] Open
Abstract
Mammals, including humans, are aerobic organisms with a mature respiratory system to intake oxygen as a vital source of cellular energy. Despite the essentiality of reactive oxygen species (ROS) as byproducts of aerobic metabolism for cellular homeostasis, excessive ROS contribute to the development of a wide spectrum of pathological conditions, including chronic lung diseases such as COPD. In particular, epithelial cells in the respiratory system are directly exposed to and challenged by exogenous ROS, including ozone and cigarette smoke, which results in detrimental oxidative stress in the lungs. In addition, the dysfunction of redox regulation due to cellular aging accelerates COPD pathogenesis, such as inflammation, protease anti-protease imbalance and cellular apoptosis. Therefore, various drugs targeting oxidative stress-associated pathways, such as thioredoxin and N-acetylcysteine, have been developed for COPD treatment to precisely regulate the redox system. In this review, we present the current understanding of the roles of redox regulation in the respiratory system and COPD pathogenesis. We address the insufficiency of current COPD treatment as antioxidants and discuss future directions in COPD therapeutics targeting oxidative stress while avoiding side effects such as tumorigenesis.
Collapse
|
31
|
Chan SMH, Bernardo I, Mastronardo C, Mou K, De Luca SN, Seow HJ, Dobric A, Brassington K, Selemidis S, Bozinovski S, Vlahos R. Apocynin prevents cigarette smoking-induced loss of skeletal muscle mass and function in mice by preserving proteostatic signalling. Br J Pharmacol 2021; 178:3049-3066. [PMID: 33817783 PMCID: PMC8362135 DOI: 10.1111/bph.15482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/08/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Background and Purpose Skeletal muscle dysfunction is a major comorbidity of chronic obstructive pulmonary disease (COPD). This type of muscle dysfunction may be a direct consequence of oxidative insults evoked by cigarette smoke (CS) exposure. The present study examined the effects of a potent Nox inhibitor and reactive oxygen species (ROS) scavenger, apocynin, on CS‐induced muscle dysfunction. Experimental Approach Male BALB/c mice were exposed to either room air (sham) or CS generated from nine cigarettes per day, 5 days a week for 8 weeks, with or without the coadministration of apocynin (5 mg·kg−1, i.p.). C2C12 myotubes exposed to either hydrogen peroxide (H2O2) or water‐soluble cigarette smoke extract (CSE) with or without apocynin (500 nM) were used as an experimental model in vitro. Key Results Eight weeks of CS exposure caused muscle dysfunction in mice, reflected by 10% loss of muscle mass and 54% loss of strength of tibialis anterior which were prevented by apocynin administration. In C2C12 myotubes, direct exposure to H2O2 or CSE caused myofibre wasting, accompanied by ~50% loss of muscle‐derived insulin‐like growth factor (IGF)‐1 and two‐fold induction of Cybb, independent of cellular inflammation. Expression of myostatin and MAFbx, negative regulators of muscle mass, were up‐regulated under H2O2 but not CSE conditions. Apocynin treatment abolished CSE‐induced Cybb expression, preserving muscle‐derived IGF‐1 expression and signalling pathway downstream of mammalian target of rapamycin (mTOR), thereby preventing myofibre wasting. Conclusion and Implications Targeted pharmacological inhibition of Nox‐derived ROS may alleviate the lung and systemic manifestations in smokers with COPD.
Collapse
Affiliation(s)
- Stanley M H Chan
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Ivan Bernardo
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Chanelle Mastronardo
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Kevin Mou
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Simone N De Luca
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Huei Jiunn Seow
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Aleksandar Dobric
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Kurt Brassington
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
32
|
Truong L, Zheng YM, Kandhi S, Wang YX. Overview on Interactive Role of Inflammation, Reactive Oxygen Species, and Calcium Signaling in Asthma, COPD, and Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:147-164. [PMID: 34019268 DOI: 10.1007/978-3-030-68748-9_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Inflammatory signaling is a major component in the development and progression of many lung diseases, including asthma, chronic obstructive pulmonary disorder (COPD), and pulmonary hypertension (PH). This chapter will provide a brief overview of asthma, COPD, and PH and how inflammation plays a vital role in these diseases. Specifically, we will discuss the role of reactive oxygen species (ROS) and Ca2+ signaling in inflammatory cellular responses and how these interactive signaling pathways mediate the development of asthma, COPD, and PH. We will also deliberate the key cellular responses of pulmonary arterial (PA) smooth muscle cells (SMCs) and airway SMCs (ASMCs) in these devastating lung diseases. The analysis of the importance of inflammation will shed light on the key questions remaining in this field and highlight molecular targets that are worth exploring. The crucial findings will not only demonstrate the novel roles of essential signaling molecules such as Rieske iron-sulfur protein and ryanodine receptor in the development and progress of asthma, COPD, and PH but also offer advanced insight for creating more effective and new therapeutic targets for these devastating inflammatory lung diseases.
Collapse
Affiliation(s)
- Lillian Truong
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Sharath Kandhi
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
33
|
Papathanassiou E, Papaioannou AI, Papanikolaou I, Antonakis E, Makou I, Hillas G, Mizi E, Bakakos P, Apollonatou V, Verykokou G, Roussakis N, Tsilogianni Z, Papiris S, Loukides S. Glycated Hemoglobin (HbA1c) as a Predictor of Outcomes during Acute Exacerbations of Chronic Obstructive Pulmonary Disease. COPD 2021; 18:219-225. [PMID: 33759663 DOI: 10.1080/15412555.2021.1902491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Systemic inflammation may be the common denominator between COPD and type 2 diabetes and may explain the correlation in both diseases' development and progress. The aim of this prospective observational study is to examine the prognostic value of glycated hemoglobin levels (HbA1c) and HbA1c-adjusted glycemic variables (glycemic gap, stress hyperglycemia ratio και modified stress hyperglycemia ratio) in an acute exacerbation of COPD (AECOPD) as well as in COPD disease's morbidity and mortality during the following year. We evaluated patients hospitalized only for COPD exacerbations. Levels of HbA1c and HbA1c-adjusted glycemic variables were recorded upon admission. The study outcomes included duration of hospital stay, need for mechanical ventilation and exacerbation outcome. All subjects were followed up for one year. A total of 156 patients were included in the study (74.4% men, age [mean ± SD] 72 ± 7 years). Patients (21.8%) had type 2 diabetes and 67.9% of patients were receiving ICS treatment. The median value of HbA1c was 5.9 (IQR: 5.4, 6.5). Necessity for mechanical ventilation was significantly higher for patients with lower values of HbA1c [median: 5.3 (IQR 5.02, 6.3) vs. 5.9 (IQR 5.5, 6.5), p = .038]. However, duration of hospitalization, death during hospitalization as well as the number of new exacerbation events, time to next exacerbation and mortality during the following year did not differ significantly. Moreover, none of the HbA1c-adjusted glycemic variables examined, demonstrated any statistical significance. In conclusion neither the preceding nor the present glycemic state exhibit a predictive value regarding short- or long-term outcomes of an AECOPD.
Collapse
Affiliation(s)
- Evgenia Papathanassiou
- Second Respiratory Medicine Department, University of Athens, "Attikon" University Hospital, Athens, Greece
| | - Andriana I Papaioannou
- Second Respiratory Medicine Department, University of Athens, "Attikon" University Hospital, Athens, Greece
| | | | | | - Ioanna Makou
- Respiratory Medicine Department, Corfu General Hospital, Corfu, Greece
| | - Georgios Hillas
- Department of Critical Care and Pulmonary Services, University of Athens, Evangelismos Hospital, Athens, Greece
| | - Eleutheria Mizi
- Department of Critical Care and Pulmonary Services, University of Athens, Evangelismos Hospital, Athens, Greece
| | - Petros Bakakos
- First Respiratory Medicine Department, University of Athens, "Sotiria" Chest Hospital, Athens, Greece
| | - Vasiliki Apollonatou
- Second Respiratory Medicine Department, University of Athens, "Attikon" University Hospital, Athens, Greece
| | - Galateia Verykokou
- Second Respiratory Medicine Department, University of Athens, "Attikon" University Hospital, Athens, Greece
| | - Nikolaos Roussakis
- Second Respiratory Medicine Department, University of Athens, "Attikon" University Hospital, Athens, Greece
| | - Zoe Tsilogianni
- Second Respiratory Medicine Department, University of Athens, "Attikon" University Hospital, Athens, Greece
| | - Spyros Papiris
- Second Respiratory Medicine Department, University of Athens, "Attikon" University Hospital, Athens, Greece
| | - Stelios Loukides
- Second Respiratory Medicine Department, University of Athens, "Attikon" University Hospital, Athens, Greece
| |
Collapse
|
34
|
Groff P, Petrelli G, Giorgini P, Pilotti R, Parato VM, Fabbri A. Clinical heterogeneity of a population of patients admitted to the Emergency Department with a diagnosis of COPD-exacerbation: Relevance of cardiovascular comorbidities. EMERGENCY CARE JOURNAL 2021. [DOI: 10.4081/ecj.2021.9502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
FEV1-based Chronic Obstructive Pulmonary Disease (COPD) severity does not account for the complexity of the disease. Recent studies point to the high frequency of comorbidities responsible for unfavorable outcomes. There is a lack of data on this concerning the patient evaluated in the emergency setting. Aim of the study was to prospectively evaluate patients admitted to the ED for “exacerbated COPD” to describe their clinical heterogeneity and the influence that it may have on outcomes: death, length of hospitalization, exacerbation recurrence. The following data were recorded: history, symptoms, blood gas analysis, laboratory and radiological findings and comorbidities. Each patient underwent electrocardiography, echocardiography and spirometry. In order to identify a correlation between these variables and the selected outcomes, a multivariate linear logistic regression analysis was carried out. This study was conducted on 41 eligible patients consecutively admitted to the emergency room for exacerbated COPD. A consistent proportion showed ECG, Echocardiographic and laboratory abnormalities. At spirometry a FEV1 <30% of predicted was detected in 37% of patients. Cardiovascular comorbidities came out to be very frequent (hypertension, heart failure and coronary artery disease in particular). The history of heart failure was related to the risk of re-hospitalization within three months, while pneumonia, a low pH and a low FEV1 predicted a hospital stay >7 days. Our study shows that the term “exacerbated COPD” underscores a heterogeneous population, with a high prevalence of cardiovascular comorbidities, which significantly influence outcomes. Multicenter studies are needed to better investigate the clinical relevance of these findings.
Collapse
|
35
|
Antunes MA, Lopes-Pacheco M, Rocco PRM. Oxidative Stress-Derived Mitochondrial Dysfunction in Chronic Obstructive Pulmonary Disease: A Concise Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6644002. [PMID: 37448755 PMCID: PMC10337713 DOI: 10.1155/2021/6644002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/27/2021] [Accepted: 02/26/2021] [Indexed: 08/02/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive and disabling disorder marked by airflow limitation and extensive destruction of lung parenchyma. Cigarette smoke is the major risk factor for COPD development and has been associated with increased oxidant burden on multiple cell types in the lungs. Elevated levels of reactive oxygen species (ROS) may significantly affect expression of biological molecules, signaling pathways, and function of antioxidant defenses. Although inflammatory cells, such as neutrophils and macrophages, contribute to the release of large quantities of ROS, mitochondrial dysfunction plays a critical role in ROS production due to oxidative phosphorylation. Although mitochondria are dynamic organelles, excess oxidative stress is able to alter mitochondrial function, morphology, and RNA and protein content. Indeed, mitochondria may change their shape by undergoing fusion (regulated by mitofusin 1, mitofusin 2, and optic atrophy 1 proteins) and fission (regulated by dynamin-related protein 1), which are essential processes to maintain a healthy and functional mitochondrial network. Cigarette smoke can induce mitochondrial hyperfusion, thus reducing mitochondrial quality control and cellular stress resistance. Furthermore, diminished levels of enzymes involved in the mitophagy process, such as Parkin (a ubiquitin ligase E3) and the PTEN-induced putative kinase 1 (PINK1), are commonly observed in COPD and correlate directly with faulty removal of dysfunctional mitochondria and consequent cell senescence in this disorder. In this review, we highlight the main mechanisms for the regulation of mitochondrial quality and how they are affected by oxidative stress during COPD development and progression.
Collapse
Affiliation(s)
- Mariana A. Antunes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Zhang L, Liu L, Xiao A, Huang S, Li D. Screening and analysis of xanthine oxidase inhibitors in jute leaves and their protective effects against hydrogen peroxide-induced oxidative stress in cells. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AbstractJute (Corchorus capsularis L.) is an annual herb of the bast fiber plant and has great potentials in food and medicinal usages because of its various bioactivities. In this study, ultrafiltration coupled with high-performance liquid chromatography-mass spectrometry was established for screening xanthine oxidase inhibitors from the jute leaves extract. Under the optimum screening conditions, three inhibitors were successfully screened and identified as chlorogenic acid, echinacoside, and isorhamnetin-rutinoside with UV and MS data. The fluorescent quenching analysis showed that three inhibitors quenched the fluorescence intensities of enzyme with different binding capacities. For further exploring the bioactivity of three inhibitors, the protective effects on hydrogen peroxide-induced oxidative stress was investigated using human normal liver cell (LO2), human gastric mucosal epithelial cell (GES-1), and human umbilical vein endothelial cell (HUVEC). As a result, they exhibited protective effects on three injured cells in dose-dependent manners without cytotoxicity. To evaluate the difference among different jute species obtained in our laboratories, the amounts of three compounds in ten samples were assessed and analyzed. The results showed that it could be divided into three groups. The jute leaves showed nutrient and medical potentials and deserved further research on pharmaceutical and biochemical utilization in future.
Collapse
Affiliation(s)
- Lang Zhang
- Characteristic Fruit and Vegetable Research Office, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, People's Republic of China
| | - Liangliang Liu
- Characteristic Fruit and Vegetable Research Office, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, People's Republic of China
| | - Aiping Xiao
- Characteristic Fruit and Vegetable Research Office, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, People's Republic of China
| | - Siqi Huang
- Characteristic Fruit and Vegetable Research Office, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, People's Republic of China
| | - Defang Li
- Characteristic Fruit and Vegetable Research Office, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, People's Republic of China
| |
Collapse
|
37
|
Zhang XY, Jia YP, Zhao Q, Wang WY, Zhang Z, Li W, Sun LC. Ameliorative effect of acetylshikonin on cigarette smoke-induced lung inflammation in mice. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:1078-1094. [PMID: 31805776 DOI: 10.1080/10286020.2019.1694512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Cigarette smoke exposure is the major cause of chronic obstructive pulmonary disease (COPD). Acetylshikonin was the active principle component of Purple Gromwell that show anti-oxidative and anti-inflammatory effect. However, no data are available to elucidate the protective effect of acetylshikonin on COPD. Acetylshikonin could attenuate smoke-induced lung pathological changes, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and monocyte chemoattractant protein 1 (MCP-1) productions, and tissue damages caused by oxidative stress. Furthermore, acetylshikonin was found to enhance the expression of Nrf2 and Nur77-mediated COX-2 in vivo and in vitro.
Collapse
Affiliation(s)
- Xiao-Yan Zhang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- National Clinical Research Center for Respiratory Diseases, Beijing 100029, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Yu-Ping Jia
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- National Clinical Research Center for Respiratory Diseases, Beijing 100029, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Qing Zhao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- National Clinical Research Center for Respiratory Diseases, Beijing 100029, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Wen-Ya Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- National Clinical Research Center for Respiratory Diseases, Beijing 100029, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Zhi Zhang
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wen Li
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China
| | - Li-Chao Sun
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
38
|
Ornatowski W, Lu Q, Yegambaram M, Garcia AE, Zemskov EA, Maltepe E, Fineman JR, Wang T, Black SM. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol 2020; 36:101679. [PMID: 32818797 PMCID: PMC7451718 DOI: 10.1016/j.redox.2020.101679] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
The autophagic pathway involves the encapsulation of substrates in double-membraned vesicles, which are subsequently delivered to the lysosome for enzymatic degradation and recycling of metabolic precursors. Autophagy is a major cellular defense against oxidative stress, or related conditions that cause accumulation of damaged proteins or organelles. Selective forms of autophagy can maintain organelle populations or remove aggregated proteins. Dysregulation of redox homeostasis under pathological conditions results in excessive generation of reactive oxygen species (ROS), leading to oxidative stress and the associated oxidative damage of cellular components. Accumulating evidence indicates that autophagy is necessary to maintain redox homeostasis. ROS activates autophagy, which facilitates cellular adaptation and diminishes oxidative damage by degrading and recycling intracellular damaged macromolecules and dysfunctional organelles. The cellular responses triggered by oxidative stress include the altered regulation of signaling pathways that culminate in the regulation of autophagy. Current research suggests a central role for autophagy as a mammalian oxidative stress response and its interrelationship to other stress defense systems. Altered autophagy phenotypes have been observed in lung diseases such as chronic obstructive lung disease, acute lung injury, cystic fibrosis, idiopathic pulmonary fibrosis, and pulmonary arterial hypertension, and asthma. Understanding the mechanisms by which ROS regulate autophagy will provide novel therapeutic targets for lung diseases. This review highlights our current understanding on the interplay between ROS and autophagy in the development of pulmonary disease.
Collapse
Affiliation(s)
- Wojciech Ornatowski
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Qing Lu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | | | - Alejandro E Garcia
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Evgeny A Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Emin Maltepe
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, AZ, USA
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
39
|
Su J, Li J, Lu Y, Li N, Li P, Wang Z, Wu W, Liu X. The rat model of COPD skeletal muscle dysfunction induced by progressive cigarette smoke exposure: a pilot study. BMC Pulm Med 2020; 20:74. [PMID: 32293377 PMCID: PMC7092612 DOI: 10.1186/s12890-020-1109-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) skeletal muscle dysfunction is a prevalent malady that significantly affects patients’ prognosis and quality of life. Although the study of this disease has attracted considerable attention, a definite animal model is yet to be established. This study investigates whether smoke exposure could lead to the development of a COPD skeletal muscle dysfunction model in rats. Methods Sprague Dawley rats were randomly divided into model (MG, n = 8) and control groups (CG, n = 6). The MG was exposed to cigarette smoke for 16 weeks while the CG was not. The body weight and forelimb grip strength of rats were monitored monthly. The pulmonary function and the strength of tibialis anterior muscle were assessed in vitro and compared after establishing the model. The histological changes in lung and gastrocnemius muscles were observed. The expressions of interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α were detected by ELISA, while the expressions of Atrogin-1 and MuRF1 in the gastrocnemius muscle were determined by Western blotting. Results Smoke exposure slowly increases the body weight and forelimb grip strength of MG rats, compared to CG rats. However, it significantly decreases the pulmonary ventilation function and the skeletal muscle contractility of the MG in vitro. Histologically, the lung tissues of MG show typical pathological manifestations of emphysema, while the skeletal muscles present muscular atrophy. The expressions of IL-6, IL-8, and TNF-α in MG rats are significantly higher than those measured in CG rats. Increased levels of Atrogin-1 and MuRF1 were also detected in the gastrocnemius muscle tissue of MG. Conclusion Progressive smoking exposure decreases the contractile function of skeletal muscles, leading to muscular atrophy. It also increases the expressions of inflammatory and muscle protein degradation factors in COPD rats. This indicates that smoke exposure could be used to establish a COPD skeletal muscle dysfunction model in rats.
Collapse
Affiliation(s)
- Jianqing Su
- Department of Sports Medicine, Shanghai University of Sport, Shanghai, 200438, China
| | - Jian Li
- Department of Sports Medicine, Shanghai University of Sport, Shanghai, 200438, China
| | - Yufan Lu
- Department of Sports Medicine, Shanghai University of Sport, Shanghai, 200438, China
| | - Ning Li
- Department of Sports Medicine, Shanghai University of Sport, Shanghai, 200438, China
| | - Peijun Li
- Department of Sports Medicine, Shanghai University of Sport, Shanghai, 200438, China
| | - Zhengrong Wang
- Department of Sports Medicine, Shanghai University of Sport, Shanghai, 200438, China
| | - Weibing Wu
- Department of Sports Medicine, Shanghai University of Sport, Shanghai, 200438, China.
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
40
|
Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: an update. Inflammopharmacology 2020; 28:795-817. [PMID: 32189104 DOI: 10.1007/s10787-020-00698-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
|
41
|
Xia S, Zhou C, Kalionis B, Shuang X, Ge H, Gao W. Combined Antioxidant, Anti-inflammaging and Mesenchymal Stem Cell Treatment: A Possible Therapeutic Direction in Elderly Patients with Chronic Obstructive Pulmonary Disease. Aging Dis 2020; 11:129-140. [PMID: 32010487 PMCID: PMC6961773 DOI: 10.14336/ad.2019.0508] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a worldwide health problem associated with high morbidity and mortality, especially in elderly patients. Aging functions include mitochondrial dysfunction, cell-to-cell information exchange, protein homeostasis and extracellular matrix dysregulation, which are closely related to chronic inflammatory response and oxidation-antioxidant imbalance in the pathogenesis of COPD. COPD displays distinct inflammaging features, including increased cellular senescence and oxidative stress, stem cell exhaustion, alterations in the extracellular matrix, reduced levels of endogenous anti-inflammaging molecules, and reduced autophagy. Given that COPD and inflammaging share similar general features, it is very important to identify the specific mechanisms of inflammaging, which involve oxidative stress, inflammation and lung mesenchymal stem cell function in the development of COPD, especially in elderly COPD patients. In this review, we highlight the studies relevant to COPD progression, and focus on mechanisms associated with inflammaging.
Collapse
Affiliation(s)
- Shijin Xia
- 1Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, China
| | - Changxi Zhou
- 2Department of Respiratory Medicine, The Second Medical Center of PLA General Hospital, Beijing, China
| | - Bill Kalionis
- 3Department of Maternal-Fetal Medicine Pregnancy Research Centre and University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Xiaoping Shuang
- 4Department of Cardiovascular Diseases, Xiangyang Hospital of Traditional Chinese Medicine, Xiangyang, Hubei, China
| | - Haiyan Ge
- 5Department of Pulmonary Diseases, Huadong Hospital, Fudan University, Shanghai, China
| | - Wen Gao
- 6Department of Thoracic Surgery, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Al-Azzawi MA. Pathological association between oxidative stress and chronic obstructive pulmonary disease. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Kubo H, Asai K, Kojima K, Sugitani A, Kyomoto Y, Okamoto A, Yamada K, Ijiri N, Watanabe T, Hirata K, Kawaguchi T. Astaxanthin Suppresses Cigarette Smoke-Induced Emphysema through Nrf2 Activation in Mice. Mar Drugs 2019; 17:md17120673. [PMID: 31795292 PMCID: PMC6950584 DOI: 10.3390/md17120673] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). The activation of nuclear factor erythroid 2-related factor 2 (Nrf2) is a key cellular defense mechanism against oxidative stress. Recent studies have shown that astaxanthin protects against oxidative stress via Nrf2. In this study, we investigated the emphysema suppression effect of astaxanthin via Nrf2 in mice. Mice were divided into four groups: control, smoking, astaxanthin, and astaxanthin + smoking. The mice in the smoking and astaxanthin + smoking groups were exposed to cigarette smoke for 12 weeks, and the mice in the astaxanthin and astaxanthin + smoking groups were fed a diet containing astaxanthin. Significantly increased expression levels of Nrf2 and its target gene, heme oxygenase-1 (HO-1), were found in the lung homogenates of astaxanthin-fed mice. The number of inflammatory cells in the bronchoalveolar lavage fluid (BALF) was significantly decreased, and emphysema was significantly suppressed. In conclusion, astaxanthin protects against oxidative stress via Nrf2 and ameliorates cigarette smoke-induced emphysema. Therapy with astaxanthin directed toward activating the Nrf2 pathway has the potential to be a novel preventive and therapeutic strategy for COPD.
Collapse
|
44
|
Abstract
Numerous studies over the years have shown that oxidative stress plays a major role in the development of the disease. Oxidative stress involvement in COPD opens up the possibility of using antioxidant therapies in the treatment of the disease. However, so far, these therapies have shown no clinical benefit indicating that more basic research efforts are needed to understand the underlying mechanisms by which oxidative stress leads to the development of COPD.
Collapse
|
45
|
Losartan does not inhibit cigarette smoke-induced lung inflammation in mice. Sci Rep 2019; 9:15053. [PMID: 31636311 PMCID: PMC6803700 DOI: 10.1038/s41598-019-51504-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/02/2019] [Indexed: 12/23/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a progressive lung disease largely caused by cigarette smoking (CS) and is characterized by lung inflammation and airflow limitation that is not fully reversible. Approximately 50% of people with COPD die of a cardiovascular comorbidity and current pharmacological strategies provide little benefit. Therefore, drugs that target the lung and the cardiovascular system concurrently may be an advantageous therapeutic strategy. The aim of this study was to see whether losartan, an angiotensin-II AT1a receptor antagonist widely used to treat hypertension associated with cardiovascular disease, protects against CS-induced lung inflammation in mice. Male BALB/c mice were exposed to CS for 8 weeks and treated with either losartan (30 mg/kg) or vehicle daily. Mice were euthanized and bronchoalveolar lavage fluid (BALF) inflammation, and whole lung cytokine, chemokine and protease mRNA expression assessed. CS caused significant increases in BALF total cells, macrophages, neutrophils and whole lung IL-6, TNF-α, CXCL-1, IL-17A and MMP12 mRNA expression compared to sham-exposed mice. However, losartan only reduced CS-induced increases in IL-6 mRNA expression. Angiotensin-II receptor expression was reduced in lung tissue from CS-exposed mice. In conclusion, losartan did not inhibit CS-induced BALF cellularity despite reducing whole lung IL-6 mRNA and Ang-II receptor expression.
Collapse
|
46
|
Kim YH, Kang MK, Lee EJ, Kim DY, Oh H, Kim SI, Oh SY, Kim KH, Park SJ, Choi YJ, Kang YH. Dried Yeast Extracts Curtails Pulmonary Oxidative Stress, Inflammation and Tissue Destruction in a Model of Experimental Emphysema. Antioxidants (Basel) 2019; 8:antiox8090349. [PMID: 31480536 PMCID: PMC6769699 DOI: 10.3390/antiox8090349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
Pulmonary emphysema is characterized by a loss of alveolar integrity due to prolonged cigarette smoking and inhaled irritants. Dried yeast extracts (YE) are employed as food additives, savory flavorings, or creation of umami taste sensations. Despite being rich in nutrition, their application as nutraceuticals and functional foods is not investigated much and little is known about the inhibition of pulmonary emphysema. This study examined whether YE ameliorated pulmonary emphysema in mice is evoked by cigarette smoke (CS) and ovalbumin (OVA). Mice were orally administrated with 25–100 mg/kg YE for 8 weeks. Alveolar epithelial A549 cells exposed to lipopolysaccharide or CS extracts (CSE) were supplemented with 10–100 µg/mL YE. Oral YE administration reduced bronchoalveolar lavage fluid leukocytosis in CS-/OVA-exposed mice. YE reduced induction of inflammatory mediators and MMP-12, and diminished reactive oxygen species production and emphysematous alterations in CS-challenged airways. The YE treatment blunted bax/bcl-2 ratio and activation of p53 and caspases in CS-exposed lungs. Apoptotic death was dampened in CSE-loaded YE-supplemented A549 cells. YE curtailed tissue levels of MMP-12 in inflammatory OVA-exposed lungs. YE abrogated the secretion of TNF-α and MCP-1 through blocking NF-κB signaling in endotoxin-loaded A549 cells. Thus, the antioxidant YE may therapeutically ameliorate oxidative stress and inflammatory tissue destruction in emphysematous diseases.
Collapse
Affiliation(s)
- Yun-Ho Kim
- Department of Food and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Min-Kyung Kang
- Department of Food and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Eun-Jung Lee
- Department of Food and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Dong Yeon Kim
- Department of Food and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Hyeongjoo Oh
- Department of Food and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Soo-Il Kim
- Department of Food and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Su Yeon Oh
- Department of Food and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | | | | | - Yean-Jung Choi
- Department of Bio-Food Science & Technology, Far East University, Eumseong 27601, Korea
| | - Young-Hee Kang
- Department of Food and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea.
| |
Collapse
|
47
|
Geltser BI, Kotelnikov VN, Zayats YV. [The behavioral status of rats with experimental comorbidity of chronic obstructive pulmonarydisease and acute cerebral ischemia]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:54-59. [PMID: 31464290 DOI: 10.17116/jnevro201911907154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To compare behavioral patterns of rats with experimental chronic obstructive pulmonary disease (ECOPD), acute cerebral ischemia (ACI) and a combination of these pathologies. MATERIAL AND METHODS The study included 70 male Wistar rats (weight 250-300 g) divided into 5 groups. ECOPD was modeled by a combination of inducers (purified papain and bacterial lipopolysaccharide), and ACI by a single-stage bilateral occlusion of common carotid arteries. The neurological status was assessed with NSS, and the behavioral status was assessed using the battery of tests including 'open field', 'radial eight-arm labyrinth', 'O-shaped elevated labyrinth'. RESULTS AND CONCLUSION With the combination of ECOPD and ACI, a minimal (20%) survival rate of animals and the maximum severity of neurological and behavioral disorders, were recorded. The latter were characterized by a sharp restriction of locomotor and research activity, spatial memory, high anxiety and increasing autonomic imbalance. Survival rate of rats with isolated ACI was 35%, and disturbances of their neurological and behavioral status were moderately expressed. In rats with isolated ECOPD, the neurological deficit was mild. Behavioral disorders were manifested by a moderate limitation of locomotor function, a slight increase in anxiety with preserved research activity and spatial memory. The results of the study indicate the relevance of the respiratory and cerebrovascular comorbidity model for assessing changes in physiological functions and their subsequent correction.
Collapse
Affiliation(s)
- B I Geltser
- Far-Eastern Federal University, Vladivostok, Russia
| | | | - Yu V Zayats
- Far-Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
48
|
Abstract
Introduction: Neutrophils are the most abundant inflammatory cells in the lungs of patients with chronic lung diseases, especially COPD, yet despite this, patients often experience repeated chest infections. Neutrophil function may be altered in disease, but the reasons are unclear. In chronic disease, sequential pro-inflammatory and pro-repair responses appear distorted. As understanding of neutrophil heterogeneity has expanded, it is suggested that different neutrophil phenotypes may impact on health and disease. Areas covered: In this review, the definition of cellular phenotype, the implication of neutrophil surface markers and functions in chronic lung disease and the complex influences of external, local and genetic factors on these changes are discussed. Literature was accessed up to the 19 July 2019 using: PubMed, US National Library of Medicine National Institutes of Health and the National Centre for Biotechnology Information. Expert opinion: As more is learned about neutrophils, the further we step from the classical view of neutrophils being unrefined killing machines to highly complex and finely tuned cells. Future therapeutics may aim to normalize neutrophil function, but to achieve this, knowledge of phenotypes in humans and how these relate to observed pathology and disease processes is required.
Collapse
Affiliation(s)
- Michael J Hughes
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Robert Stockley
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| |
Collapse
|
49
|
Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities. Drugs 2019; 78:1717-1740. [PMID: 30392114 DOI: 10.1007/s40265-018-1001-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship.
Collapse
|
50
|
New therapeutic targets for the prevention of infectious acute exacerbations of COPD: role of epithelial adhesion molecules and inflammatory pathways. Clin Sci (Lond) 2019; 133:1663-1703. [PMID: 31346069 DOI: 10.1042/cs20181009] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022]
Abstract
Chronic respiratory diseases are among the leading causes of mortality worldwide, with the major contributor, chronic obstructive pulmonary disease (COPD) accounting for approximately 3 million deaths annually. Frequent acute exacerbations (AEs) of COPD (AECOPD) drive clinical and functional decline in COPD and are associated with accelerated loss of lung function, increased mortality, decreased health-related quality of life and significant economic costs. Infections with a small subgroup of pathogens precipitate the majority of AEs and consequently constitute a significant comorbidity in COPD. However, current pharmacological interventions are ineffective in preventing infectious exacerbations and their treatment is compromised by the rapid development of antibiotic resistance. Thus, alternative preventative therapies need to be considered. Pathogen adherence to the pulmonary epithelium through host receptors is the prerequisite step for invasion and subsequent infection of surrounding structures. Thus, disruption of bacterial-host cell interactions with receptor antagonists or modulation of the ensuing inflammatory profile present attractive avenues for therapeutic development. This review explores key mediators of pathogen-host interactions that may offer new therapeutic targets with the potential to prevent viral/bacterial-mediated AECOPD. There are several conceptual and methodological hurdles hampering the development of new therapies that require further research and resolution.
Collapse
|