1
|
Papin M, Fontaine D, Goupille C, Figiel S, Domingo I, Pinault M, Guimaraes C, Guyon N, Cartron PF, Emond P, Lefevre A, Gueguinou M, Crottès D, Jaffrès PA, Ouldamer L, Maheo K, Fromont G, Potier-Cartereau M, Bougnoux P, Chantôme A, Vandier C. Endogenous ether lipids differentially promote tumor aggressiveness by regulating the SK3 channel. J Lipid Res 2024; 65:100544. [PMID: 38642894 PMCID: PMC11127165 DOI: 10.1016/j.jlr.2024.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/22/2024] Open
Abstract
SK3 channels are potassium channels found to promote tumor aggressiveness. We have previously demonstrated that SK3 is regulated by synthetic ether lipids, but the role of endogenous ether lipids is unknown. Here, we have studied the role of endogenous alkyl- and alkenyl-ether lipids on SK3 channels and on the biology of cancer cells. Experiments revealed that the suppression of alkylglycerone phosphate synthase or plasmanylethanolamine desaturase 1, which are key enzymes for alkyl- and alkenyl-ether-lipid synthesis, respectively, decreased SK3 expression by increasing micro RNA (miR)-499 and miR-208 expression, leading to a decrease in SK3-dependent calcium entry, cell migration, and matrix metalloproteinase 9-dependent cell adhesion and invasion. We identified several ether lipids that promoted SK3 expression and found a differential role of alkyl- and alkenyl-ether lipids on SK3 activity. The expressions of alkylglycerone phosphate synthase, SK3, and miR were associated in clinical samples emphasizing the clinical consistency of our observations. To our knowledge, this is the first report showing that ether lipids differentially control tumor aggressiveness by regulating an ion channel. This insight provides new possibilities for therapeutic interventions, offering clinicians an opportunity to manipulate ion channel dysfunction by adjusting the composition of ether lipids.
Collapse
Affiliation(s)
- Marion Papin
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Delphine Fontaine
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Caroline Goupille
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France; Department of Gynecology, CHRU Bretonneau, Tours, France
| | - Sandy Figiel
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Isabelle Domingo
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Michelle Pinault
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Cyrille Guimaraes
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Nina Guyon
- CRCINA-INSERM 1232, Equipe « Apoptose et Progression tumorale », Nantes, France
| | | | - Patrick Emond
- iBrain, UMR 1253, INSERM, Université de Tours, Tours, France; Nuclear medicine in vitro department, CHRU Bretonneau, Tours, France
| | - Antoine Lefevre
- iBrain, UMR 1253, INSERM, Université de Tours, Tours, France
| | - Maxime Gueguinou
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - David Crottès
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Paul-Alain Jaffrès
- Laboratoire Chimie Electrochimie Moléculaires et Chimie Analytique (CEMCA), UMR 6521, CNRS, University of Brest, Brest, France
| | - Lobna Ouldamer
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France; Department of Gynecology, CHRU Bretonneau, Tours, France
| | - Karine Maheo
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Gaëlle Fromont
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France; Department of Pathology, CHRU Bretonneau, Tours, France
| | - Marie Potier-Cartereau
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Philippe Bougnoux
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Aurélie Chantôme
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Christophe Vandier
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France.
| |
Collapse
|
2
|
Lin Z, Long F, Kang R, Klionsky DJ, Yang M, Tang D. The lipid basis of cell death and autophagy. Autophagy 2024; 20:469-488. [PMID: 37768124 PMCID: PMC10936693 DOI: 10.1080/15548627.2023.2259732] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
ABBREVIATIONS ACSL: acyl-CoA synthetase long chain family; DISC: death-inducing signaling complex; DAMPs: danger/damage-associated molecular patterns; Dtgn: dispersed trans-Golgi network; FAR1: fatty acyl-CoA reductase 1; GPX4: glutathione peroxidase 4; LPCAT3: lysophosphatidylcholine acyltransferase 3; LPS: lipopolysaccharide; MUFAs: monounsaturated fatty acids; MOMP: mitochondrial outer membrane permeabilization; MLKL, mixed lineage kinase domain like pseudokinase; oxPAPC: oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine; OxPCs: oxidized phosphatidylcholines; PUFAs: polyunsaturated fatty acids; POR: cytochrome p450 oxidoreductase; PUFAs: polyunsaturated fatty acids; RCD: regulated cell death; RIPK1: receptor interacting serine/threonine kinase 1; SPHK1: sphingosine kinase 1; SOAT1: sterol O-acyltransferase 1; SCP2: sterol carrier protein 2; SFAs: saturated fatty acids; SLC47A1: solute carrier family 47 member 1; SCD: stearoyl-CoA desaturase; VLCFA: very long chain fatty acids.
Collapse
Affiliation(s)
- Zhi Lin
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, Changsha, Hunan, China
| | - Fei Long
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Postdoctoral Research Station of Basic Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Minghua Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, Changsha, Hunan, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
3
|
Alonso-Pérez V, Hernández V, Calzado MA, Vicente-Blázquez A, Gajate C, Soler-Torronteras R, DeCicco-Skinner K, Sierra A, Mollinedo F. Suppression of metastatic organ colonization and antiangiogenic activity of the orally bioavailable lipid raft-targeted alkylphospholipid edelfosine. Biomed Pharmacother 2024; 171:116149. [PMID: 38266621 DOI: 10.1016/j.biopha.2024.116149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
Metastasis is the leading cause of cancer mortality. Metastatic cancer is notoriously difficult to treat, and it accounts for the majority of cancer-related deaths. The ether lipid edelfosine is the prototype of a family of synthetic antitumor compounds collectively known as alkylphospholipid analogs, and its antitumor activity involves lipid raft reorganization. In this study, we examined the effect of edelfosine on metastatic colonization and angiogenesis. Using non-invasive bioluminescence imaging and histological examination, we found that oral administration of edelfosine in nude mice significantly inhibited the lung and brain colonization of luciferase-expressing 435-Lung-eGFP-CMV/Luc metastatic cells, resulting in prolonged survival. In metastatic 435-Lung and MDA-MB-231 breast cancer cells, we found that edelfosine also inhibited cell adhesion to collagen-I and laminin-I substrates, cell migration in chemotaxis and wound-healing assays, as well as cancer cell invasion. In 435-Lung and other MDA-MB-435-derived sublines with different organotropism, edelfosine induced G2/M cell cycle accumulation and apoptosis in a concentration- and time-dependent manner. Edelfosine also inhibited in vitro angiogenesis in human and mouse endothelial cell tube formation assays. The antimetastatic properties were specific to cancer cells, as edelfosine had no effects on viability in non-cancerous cells. Edelfosine accumulated in membrane rafts and endoplasmic reticulum of cancer cells, and membrane raft-located CD44 was downregulated upon drug treatment. Taken together, this study highlights the potential of edelfosine as an attractive drug to prevent metastatic growth and organ colonization in cancer therapy. The raft-targeted drug edelfosine displays a potent activity against metastatic organ colonization and angiogenesis, two major hallmarks of tumor malignancy.
Collapse
Affiliation(s)
- Verónica Alonso-Pérez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Centro de Investigación del Cáncer (CIC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Vanessa Hernández
- Biological Clues of the Invasive and Metastatic Phenotype Group, Molecular Oncology Department, Bellvitge Biomedical Research Institute (IDIBELL), E-08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), E-14004 Córdoba, Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, E-14004 Córdoba, Spain; Hospital Universitario Reina Sofía, E-14004 Córdoba, Spain
| | - Alba Vicente-Blázquez
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, C/ Ramiro de Maeztu 9, E-28040 Madrid, Spain; Department of Biology, American University, Washington, DC 20016, USA
| | - Consuelo Gajate
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Centro de Investigación del Cáncer (CIC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, C/ Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Rafael Soler-Torronteras
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), E-14004 Córdoba, Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, E-14004 Córdoba, Spain; Hospital Universitario Reina Sofía, E-14004 Córdoba, Spain
| | | | - Angels Sierra
- Biological Clues of the Invasive and Metastatic Phenotype Group, Molecular Oncology Department, Bellvitge Biomedical Research Institute (IDIBELL), E-08907 L'Hospitalet de Llobregat, Barcelona, Spain; Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona-FCRB, E-08036 Barcelona, Spain; Department of Medicine and Life Sciences (MELIS), Faculty of Health and Live Sciences, Universitat Pompeu Fabra, E-08036 Barcelona, Spain
| | - Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Centro de Investigación del Cáncer (CIC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, C/ Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| |
Collapse
|
4
|
Wu H, Wu X, Zhao M, Yan J, Li C, Zhang Z, Tang S, Wang R, Fei W. Regulating Cholesterol in Tumorigenesis: A Novel Paradigm for Tumor Nanotherapeutics. Int J Nanomedicine 2024; 19:1055-1076. [PMID: 38322754 PMCID: PMC10844012 DOI: 10.2147/ijn.s439828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
During the past decade, "membrane lipid therapy", which involves the regulation of the structure and function of tumor cell plasma membranes, has emerged as a new strategy for cancer treatment. Cholesterol is an important component of the tumor plasma membrane and serves an essential role in tumor initiation and progression. This review elucidates the role of cholesterol in tumorigenesis (including tumor cell proliferation, invasion/metastasis, drug resistance, and immunosuppressive microenvironment) and elaborates on the potential therapeutic targets for tumor treatment by regulating cholesterol. More meaningfully, this review provides an overview of cholesterol-integrated membrane lipid nanotherapeutics for cancer therapy through cholesterol regulation. These strategies include cholesterol biosynthesis interference, cholesterol uptake disruption, cholesterol metabolism regulation, cholesterol depletion, and cholesterol-based combination treatments. In summary, this review demonstrates the tumor nanotherapeutics based on cholesterol regulation, which will provide a reference for the further development of "membrane lipid therapy" for tumors.
Collapse
Affiliation(s)
- Huifeng Wu
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Xiaodong Wu
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Mengdan Zhao
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Jingjing Yan
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Chaoqun Li
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Zhewei Zhang
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Sangsang Tang
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Rong Wang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Weidong Fei
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| |
Collapse
|
5
|
Dakir EH, Gajate C, Mollinedo F. Antitumor activity of alkylphospholipid edelfosine in prostate cancer models and endoplasmic reticulum targeting. Biomed Pharmacother 2023; 167:115436. [PMID: 37683591 DOI: 10.1016/j.biopha.2023.115436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Prostate cancer is the second most frequent cancer and the fifth leading cause of cancer death among men worldwide. While the five-year survival in local and regional prostate cancer is higher than 99%, it falls to about 28% in advanced metastatic prostate cancer. The ether lipid edelfosine is considered the prototype of a family of promising antitumor drugs collectively named as alkylphospholipid analogs. Here, we found that edelfosine was the most potent alkylphospholipid analog in inducing apoptosis in three different human prostate cancer cell lines (LNCaP, PC3, and DU145) with distinct androgen dependency, and differing in tumor suppressor phosphatase and tensin homolog (PTEN) and p53 status. Edelfosine accumulated in the endoplasmic reticulum of prostate cancer cells, leading to endoplasmic reticulum stress and cell death in the three prostate cancer cells. Inhibition of autophagy potentiated the pro-apoptotic activity of edelfosine in LNCaP and PC3 cells, where autophagy was induced as a survival response. Edelfosine induced a slight and transient inhibition of AKT in PTEN-negative LNCaP and PC3 cells, but not in PTEN-positive DU145 cells. Daily oral administration of edelfosine in murine prostate restricted AKT kinase transgenic mice, expressing active AKT in a prostate-specific manner, and in a DU145 xenograft mouse model resulted in significant tumor regression and apoptosis in tumor cells. Taken together, these results show a significant in vitro and in vivo antitumor activity of edelfosine against prostate cancer, and highlight the endoplasmic reticulum as a novel and promising therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- El-Habib Dakir
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Faculty of Biology, University of Latvia, Riga, Latvia.
| | - Consuelo Gajate
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas - Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| | - Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas - Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| |
Collapse
|
6
|
Gomes MAGB, Bauduin A, Le Roux C, Fouinneteau R, Berthe W, Berchel M, Couthon H, Jaffrès PA. Synthesis of ether lipids: natural compounds and analogues. Beilstein J Org Chem 2023; 19:1299-1369. [PMID: 37701305 PMCID: PMC10494250 DOI: 10.3762/bjoc.19.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023] Open
Abstract
Ether lipids are compounds present in many living organisms including humans that feature an ether bond linkage at the sn-1 position of the glycerol. This class of lipids features singular structural roles and biological functions. Alkyl ether lipids and alkenyl ether lipids (also identified as plasmalogens) correspond to the two sub-classes of naturally occurring ether lipids. In 1979 the discovery of the structure of the platelet-activating factor (PAF) that belongs to the alkyl ether class of lipids increased the interest in these bioactive lipids and further promoted the synthesis of non-natural ether lipids that was initiated in the late 60's with the development of edelfosine (an anticancer drug). More recently, ohmline, a glyco glycero ether lipid that modulates selectively SK3 ion channels and reduces in vivo the occurrence of bone metastases, and other glyco glycero ether also identified as GAEL (glycosylated antitumor ether lipids) that exhibit promising anticancer properties renew the interest in this class of compounds. Indeed, ether lipid represent a new and promising class of compounds featuring the capacity to modulate selectively the activity of some membrane proteins or, for other compounds, feature antiproliferative properties via an original mechanism of action. The increasing interest in studying ether lipids for fundamental and applied researches invited to review the methodologies developed to prepare ether lipids. In this review we focus on the synthetic method used for the preparation of alkyl ether lipids either naturally occurring ether lipids (e.g., PAF) or synthetic derivatives that were developed to study their biological properties. The synthesis of neutral or charged ether lipids are reported with the aim to assemble in this review the most frequently used methodologies to prepare this specific class of compounds.
Collapse
Affiliation(s)
| | - Alicia Bauduin
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Chloé Le Roux
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Romain Fouinneteau
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Wilfried Berthe
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Mathieu Berchel
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Hélène Couthon
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Paul-Alain Jaffrès
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| |
Collapse
|
7
|
Cedillo L, Ahsan FM, Li S, Stuhr NL, Zhou Y, Zhang Y, Adedoja A, Murphy LM, Yerevanian A, Emans S, Dao K, Li Z, Peterson ND, Watrous J, Jain M, Das S, Pukkila-Worley R, Curran SP, Soukas AA. Ether lipid biosynthesis promotes lifespan extension and enables diverse pro-longevity paradigms in Caenorhabditis elegans. eLife 2023; 12:e82210. [PMID: 37606250 PMCID: PMC10444025 DOI: 10.7554/elife.82210] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 07/13/2023] [Indexed: 08/23/2023] Open
Abstract
Biguanides, including the world's most prescribed drug for type 2 diabetes, metformin, not only lower blood sugar, but also promote longevity in preclinical models. Epidemiologic studies in humans parallel these findings, indicating favorable effects of metformin on longevity and on reducing the incidence and morbidity associated with aging-related diseases. Despite this promise, the full spectrum of molecular effectors responsible for these health benefits remains elusive. Through unbiased screening in Caenorhabditis elegans, we uncovered a role for genes necessary for ether lipid biosynthesis in the favorable effects of biguanides. We demonstrate that biguanides prompt lifespan extension by stimulating ether lipid biogenesis. Loss of the ether lipid biosynthetic machinery also mitigates lifespan extension attributable to dietary restriction, target of rapamycin (TOR) inhibition, and mitochondrial electron transport chain inhibition. A possible mechanistic explanation for this finding is that ether lipids are required for activation of longevity-promoting, metabolic stress defenses downstream of the conserved transcription factor skn-1/Nrf. In alignment with these findings, overexpression of a single, key, ether lipid biosynthetic enzyme, fard-1/FAR1, is sufficient to promote lifespan extension. These findings illuminate the ether lipid biosynthetic machinery as a novel therapeutic target to promote healthy aging.
Collapse
Affiliation(s)
- Lucydalila Cedillo
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
- Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical SchoolBostonUnited States
| | - Fasih M Ahsan
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
- Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical SchoolBostonUnited States
| | - Sainan Li
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
| | - Nicole L Stuhr
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
| | - Yifei Zhou
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
| | - Yuyao Zhang
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
| | - Adebanjo Adedoja
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
- Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical SchoolBostonUnited States
| | - Luke M Murphy
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
- Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical SchoolBostonUnited States
| | - Armen Yerevanian
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
| | - Sinclair Emans
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
| | - Khoi Dao
- Department of Medicine and Pharmacology, University of California San DiegoSan DiegoUnited States
| | - Zhaozhi Li
- Biomedical Informatics Core, Massachusetts General Hospital and Harvard Medical SchooCambridgeUnited States
| | - Nicholas D Peterson
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Jeramie Watrous
- Department of Medicine and Pharmacology, University of California San DiegoSan DiegoUnited States
| | - Mohit Jain
- Department of Medicine and Pharmacology, University of California San DiegoSan DiegoUnited States
| | - Sudeshna Das
- Biomedical Informatics Core, Massachusetts General Hospital and Harvard Medical SchooCambridgeUnited States
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
| | - Alexander A Soukas
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
| |
Collapse
|
8
|
Yasuda D, Hamano F, Masuda K, Dahlström M, Kobayashi D, Sato N, Hamakubo T, Shimizu T, Ishii S. Inverse agonism of lysophospholipids with cationic head groups at Gi-coupled receptor GPR82. Eur J Pharmacol 2023; 954:175893. [PMID: 37392830 DOI: 10.1016/j.ejphar.2023.175893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
GPR82 is an orphan G protein-coupled receptor (GPCR) that has been implicated in lipid storage in mouse adipocytes. However, the intracellular signaling as well as the specific ligands of GPR82 remain unknown. GPR82 is closely related to GPR34, a GPCR for the bioactive lipid molecule lysophosphatidylserine. In this study, we screened a lipid library using GPR82-transfected cells to search for ligands that act on GPR82. By measuring cyclic adenosine monophosphate levels, we found that GPR82 is an apparently constitutively active GPCR that leads to Gi protein activation. In addition, edelfosine (1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphocholine), an artificial lysophospholipid with a cationic head group that exerts antitumor activity, inhibited the Gi protein activation by GPR82. Two endogenous lysophospholipids with cationic head groups, lysophosphatidylcholine (1-oleoyl-sn-glycero-3-phosphocholine) and lysophosphatidylethanolamine (1-oleoyl-sn-glycero-3-phosphoethanolamine), also exhibited GPR82 inhibitory activity, albeit weaker than edelfosine. Förster resonance energy transfer imaging analysis consistently demonstrated that Gi protein-coupled GPR82 has an apparent constitutive activity that is edelfosine-sensitive. Consistent data were obtained from GPR82-mediated binding analysis of guanosine-5'-O-(3-thiotriphosphate) to cell membranes. Furthermore, in GPR82-transfected cells, edelfosine inhibited insulin-induced extracellular signal-regulated kinase activation, like compounds that function as inverse agonists at other GPCRs. Therefore, edelfosine is likely to act as an inverse agonist of GPR82. Finally, GPR82 expression inhibited adipocyte lipolysis, which was abrogated by edelfosine. Our findings suggested that the cationic lysophospholipids edelfosine, lysophosphatidylcholine and lysophosphatidylethanolamine are novel inverse agonists for Gi-coupled GPR82, which is apparently constitutively active, and has the potential to exert lipolytic effects through GPR82.
Collapse
Affiliation(s)
- Daisuke Yasuda
- Department of Immunology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Fumie Hamano
- Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Masuda
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | | | - Daiki Kobayashi
- Department of Immunology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Nana Sato
- Department of Immunology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Takao Shimizu
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan; Institute of Microbial Chemistry, Tokyo, Japan
| | - Satoshi Ishii
- Department of Immunology, Graduate School of Medicine, Akita University, Akita, Japan.
| |
Collapse
|
9
|
Pinchuk AN, Rampy MA, Longino MA, Durkee BY, Counsell RE, Weichert JP. Effect of Polar Head Group Modifications on the Tumor Retention of Phospholipid Ether Analogs: Role of the Quaternary Nitrogen. Pharmaceutics 2023; 15:pharmaceutics15010171. [PMID: 36678801 PMCID: PMC9865954 DOI: 10.3390/pharmaceutics15010171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
We have previously described the remarkable capacity of radioiodinated alkyl phospholipids to be sequestered and retained by a variety of tumors in vivo. We have already established the influence of certain structural parameters of iodinated alkyl phospholipids on tumor avidity, such as stereochemistry at the sn-2 carbon of alkylglycerol phosphocholines, meta-or para-position of iodine in the aromatic ring of phenylalkyl phosphocholines, and the length of the alkyl chain in alkyl phospholipids. In order to determine the additional structural requirements for tumor uptake and retention, three new radioiodinated alkylphospholipid analogs, 2-4, were synthesized as potential tumor imaging agents. Polar head groups were modified to determine structure-tumor avidity relationships. The trimethylammonio group in 1 was substituted with a hydrogen atom in 2, an ammonio group in 3 and a tertiary butyl group in 4. All analogs were separately labeled with iodine-125 or iodine-124 and administered to Walker 256 tumor-bearing rats or human PC-3 tumor-bearing SCID mice, respectively. Tumor uptake was assessed by gamma-camera scintigraphy (for [I-125]-labeled compounds) and high-resolution micro-PET scanning (for [I-124]-labeled compounds). It was found that structural modifications in the polar head group of alkyl phospholipids strongly influenced the tumor uptake and tissue distribution of these compounds in tumor-bearing animals. Phosphoethanolamine analog 3 (NM401) displayed a very slight accumulation in tumor as compared with phosphocholine analog 1 (NM346). Analogs 2 (NM400) and 4 (NM402) lacking the positively charged nitrogen atom failed to display any tumor uptake and localized primarily in the liver. This study provided important insights regarding structural requirements for tumor uptake and retention. Replacement of the quaternary nitrogen in the alkyl phospholipid head group with non-polar substituents resulted in loss of tumor avidity.
Collapse
Affiliation(s)
- Anatoly N. Pinchuk
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., WIMR, Madison, WI 53705, USA
- Correspondence:
| | - Mark A. Rampy
- Department of Pharmacology, The University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Marc A. Longino
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., WIMR, Madison, WI 53705, USA
| | - Ben Y. Durkee
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., WIMR, Madison, WI 53705, USA
| | - Raymond E. Counsell
- Department of Pharmacology, The University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jamey P. Weichert
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., WIMR, Madison, WI 53705, USA
| |
Collapse
|
10
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
11
|
Tiffner A, Hopl V, Derler I. CRAC and SK Channels: Their Molecular Mechanisms Associated with Cancer Cell Development. Cancers (Basel) 2022; 15:101. [PMID: 36612099 PMCID: PMC9817886 DOI: 10.3390/cancers15010101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer represents a major health burden worldwide. Several molecular targets have been discovered alongside treatments with positive clinical outcomes. However, the reoccurrence of cancer due to therapy resistance remains the primary cause of mortality. Endeavors in pinpointing new markers as molecular targets in cancer therapy are highly desired. The significance of the co-regulation of Ca2+-permeating and Ca2+-regulated ion channels in cancer cell development, proliferation, and migration make them promising molecular targets in cancer therapy. In particular, the co-regulation of the Orai1 and SK3 channels has been well-studied in breast and colon cancer cells, where it finally leads to an invasion-metastasis cascade. Nevertheless, many questions remain unanswered, such as which key molecular components determine and regulate their interplay. To provide a solid foundation for a better understanding of this ion channel co-regulation in cancer, we first shed light on the physiological role of Ca2+ and how this ion is linked to carcinogenesis. Then, we highlight the structure/function relationship of Orai1 and SK3, both individually and in concert, their role in the development of different types of cancer, and aspects that are not yet known in this context.
Collapse
Affiliation(s)
- Adéla Tiffner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | | | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| |
Collapse
|
12
|
Abuzaytoun R, Budge SM, Xia W, MacKinnon S. Unusual Ether Lipids and Branched Chain Fatty Acids in Sea Cucumber ( Cucumaria frondosa) Viscera and Their Seasonal Variation. Mar Drugs 2022; 20:435. [PMID: 35877727 PMCID: PMC9318488 DOI: 10.3390/md20070435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
The sea cucumber, Cucumaria frondosa, is harvested primarily for its muscular bands and body wall. Development of a nutraceutical product based on lipid recovered from its viscera would give commercial value to the entire organism; however, such development requires knowledge of the lipid and fatty acid (FA) profiles of the viscera. Here, we describe the lipid and FA composition of viscera recovered from C. frondosa harvested in coastal waters in the northwest Atlantic, taking into account variation due to harvest season. We found highest lipid content at ~29% in winter, with diacylglyceryl ethers (DAGE) comprising ~55% of the total lipid mass and triacylglycerols (TAG), phospholipids (PL) and monoacylglycerol ethers (MAGE) at 5-25% each. The branched chain FA, 12-methyltetradecanoic acid (12-MTA), represented 42% of total FA mass in DAGE. In summer, lipid content was lower at 24% and TAG was the dominate lipid, with proportions more than double that found in winter (45% vs. 20%); DAGE in summer dropped to ~30% of total lipids. In TAG, 12-MTA was much lower than found in DAGE in winter, at only 10% but eicosapentaenoic acid (EPA) content was ~20%, which brought the total EPA% to 28% of total FA-the highest among all three seasons. There was little effect of season on MAGE or PL proportions. These data can help harvesters maximize catch efforts in terms of lipid yield and profile.
Collapse
Affiliation(s)
- Reem Abuzaytoun
- Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, NS B3M 2J6, Canada
| | - Suzanne M. Budge
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Wei Xia
- Mara Renewables Corporation, Dartmouth, NS B2Y 4T6, Canada;
| | - Shawna MacKinnon
- Agriculture and Agri-Food Canada, Kentville, NS B4N 1J5, Canada;
| |
Collapse
|
13
|
Clusters of apoptotic signaling molecule-enriched rafts, CASMERs: membrane platforms for protein assembly in Fas/CD95 signaling and targets in cancer therapy. Biochem Soc Trans 2022; 50:1105-1118. [PMID: 35587168 PMCID: PMC9246327 DOI: 10.1042/bst20211115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022]
Abstract
Mammalian cells show the ability to commit suicide through the activation of death receptors at the cell surface. Death receptors, among which Fas/CD95 is one of their most representative members, lack enzymatic activity, and depend on protein-protein interactions to signal apoptosis. Fas/CD95 death receptor-mediated apoptosis requires the formation of the so-called death-inducing signaling complex (DISC), bringing together Fas/CD95, Fas-associated death domain-containing protein and procaspase-8. In the last two decades, cholesterol-rich lipid raft platforms have emerged as scaffolds where Fas/CD95 can be recruited and clustered. The co-clustering of Fas/CD95 and rafts facilitates DISC formation, bringing procaspase-8 molecules to be bunched together in a limited membrane region, and leading to their autoproteolytic activation by oligomerization. Lipid raft platforms serve as a specific region for the clustering of Fas/CD95 and DISC, as well as for the recruitment of additional downstream signaling molecules, thus forming the so-called cluster of apoptotic signaling molecule-enriched rafts, or CASMER. These raft/CASMER structures float in the membrane like icebergs, in which the larger portion lies inside the cell and communicates with other subcellular structures to facilitate apoptotic signal transmission. This allows an efficient spatiotemporal compartmentalization of apoptosis signaling machinery during the triggering of cell death. This concept of proapoptotic raft platforms as a basic chemical-biological structure in the regulation of cell death has wide-ranging implications in human biology and disease, as well as in cancer therapy. Here, we discuss how these raft-centered proapoptotic hubs operate as a major linchpin for apoptosis signaling and as a promising target in cancer therapy.
Collapse
|
14
|
Varlamova EA, Isagulieva AK, Morozova NG, Shmendel EV, Maslov MA, Shtil AA. Non-Phosphorus Lipids As New Antitumor Drug Prototypes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021050356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Xi Y, Yani Z, Jing M, Yinhang W, Xiaohui H, Jing Z, Quan Q, Shuwen H. Mechanisms of induction of tumors by cholesterol and potential therapeutic prospects. Biomed Pharmacother 2021; 144:112277. [PMID: 34624674 DOI: 10.1016/j.biopha.2021.112277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggested that cholesterol is an important integrant of cell membranes, that plays a key role in tumor progression, immune dysregulation, and pathological changes in epigenetic mechanisms. Based on these theories, there is a growing interest on targeting cholesterol in the treatment of cancer. Here, we comprehensively reviewed the major function of cholesterol on oncogenicity, the therapeutic targets of cholesterol and its metabolites in cancer, and provide detailed insight into the essential roles of cholesterol in mediating immune and epigenetic mechanisms of the tumor microenvironment. It is also worth mentioning that the gut microbiome is an indispensable component of cancer mediation because of its role in cholesterol metabolism. Finally, we summarized recent studies on the potential targets of cholesterol and their metabolism, to provide more therapeutic interventions in oncology.
Collapse
Affiliation(s)
- Yang Xi
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang 313000, China.
| | - Zhou Yani
- Graduate School of Medical College of Zhejiang University, No. 268 Kaixuan Road, Jianggan District, Hangzhou, Zhejiang 310029, China.
| | - Mao Jing
- Graduate School of Medical College of Zhejiang University, No. 268 Kaixuan Road, Jianggan District, Hangzhou, Zhejiang 310029, China.
| | - Wu Yinhang
- Graduate School of Second Clinical Medicine Faculty, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, China.
| | - Hou Xiaohui
- Graduate School of Nursing, Huzhou University, No. 1 Bachelor Road, Wuxing District, Huzhou, Zhejiang 313000, China.
| | - Zhuang Jing
- Department of Nursing, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang 313000, China.
| | - Qi Quan
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang 313000, China.
| | - Han Shuwen
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang 313000, China.
| |
Collapse
|
16
|
Evaluation of release and pharmacokinetics of hexadecylphosphocholine (miltefosine) in phosphatidyldiglycerol-based thermosensitive liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183698. [PMID: 34283999 DOI: 10.1016/j.bbamem.2021.183698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022]
Abstract
Hexadecylphosphocholine (HePC, Miltefosine) is a drug from the class of alkylphosphocholines with an antineoplastic and antiprotozoal activity. We previously reported that HePC uptake from thermosensitive liposomes (TSL) containing 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol (DPPG2) into cancer cells is accelerated at mild hyperthermia (HT) resulting in increased cytotoxicity. In this study, we compared HePC release of different TSL formulations in serum. HePC showed rapid but incomplete release below the transition temperature (Tm) of investigated TSL formulations in serum. Short heating (5 min) to 42 °C increased HePC release from DPPG2-TSL (Tm = 41 °C) by a factor of two in comparison to body temperature (37 °C). Bovine serum albumin (BSA) induced HePC release from DPPG2-TSL comparable to serum. Furthermore, multilamellar vesicles (MLV) were capable to extract HePC from DPPG2-TSL in a concentration- and temperature-dependent manner. Repetitive exposure of DPPG2-TSL to MLV at 37 °C led to a fast initial release of HePC which slowed down after subsequent extraction cycles finally reaching approx. 50% HePC release. A pharmacokinetic study in rats revealed a biphasic pattern with an immediate clearance of approx. 50% HePC whereas the remaining 50% HePC showed a prolonged circulation time. We speculate that HePC located in the external leaflet of DPPG2-TSL is rapidly released upon contact with suitable biological acceptors. As demonstrated by MLV transfer experiments, asymmetric incorporation of HePC into the internal leaflet of DPPG2-TSL might improve HePC retention in presence of complex biological media and still give rise to HT-induced HePC release.
Collapse
|
17
|
Mollinedo F, Gajate C. Mitochondrial Targeting Involving Cholesterol-Rich Lipid Rafts in the Mechanism of Action of the Antitumor Ether Lipid and Alkylphospholipid Analog Edelfosine. Pharmaceutics 2021; 13:763. [PMID: 34065546 PMCID: PMC8161315 DOI: 10.3390/pharmaceutics13050763] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/25/2022] Open
Abstract
The ether lipid edelfosine induces apoptosis selectively in tumor cells and is the prototypic molecule of a family of synthetic antitumor compounds collectively known as alkylphospholipid analogs. Cumulative evidence shows that edelfosine interacts with cholesterol-rich lipid rafts, endoplasmic reticulum (ER) and mitochondria. Edelfosine induces apoptosis in a number of hematological cancer cells by recruiting death receptors and downstream apoptotic signaling into lipid rafts, whereas it promotes apoptosis in solid tumor cells through an ER stress response. Edelfosine-induced apoptosis, mediated by lipid rafts and/or ER, requires the involvement of a mitochondrial-dependent step to eventually elicit cell death, leading to the loss of mitochondrial membrane potential, cytochrome c release and the triggering of cell death. The overexpression of Bcl-2 or Bcl-xL blocks edelfosine-induced apoptosis. Edelfosine induces the redistribution of lipid rafts from the plasma membrane to the mitochondria. The pro-apoptotic action of edelfosine on cancer cells is associated with the recruitment of F1FO-ATP synthase into cholesterol-rich lipid rafts. Specific inhibition of the FO sector of the F1FO-ATP synthase, which contains the membrane-embedded c-subunit ring that constitutes the mitochondrial permeability transcription pore, hinders edelfosine-induced cell death. Taking together, the evidence shown here suggests that the ether lipid edelfosine could modulate cell death in cancer cells by direct interaction with mitochondria, and the reorganization of raft-located mitochondrial proteins that critically modulate cell death or survival. Here, we summarize and discuss the involvement of mitochondria in the antitumor action of the ether lipid edelfosine, pointing out the mitochondrial targeting of this drug as a major therapeutic approach, which can be extrapolated to other alkylphospholipid analogs. We also discuss the involvement of cholesterol transport and cholesterol-rich lipid rafts in the interactions between the organelles as well as in the role of mitochondria in the regulation of apoptosis in cancer cells and cancer therapy.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, C/Ramiro de Maeztu 9, E-28040 Madrid, Spain;
| | | |
Collapse
|
18
|
Setayesh-Mehr Z, Poorsargol M. Toxic proteins application in cancer therapy. Mol Biol Rep 2021; 48:3827-3840. [PMID: 33895972 DOI: 10.1007/s11033-021-06363-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022]
Abstract
Ribosome inactivating proteins (RIPs) as family of anti-cancer drugs recently received much attention due to their interesting anti-cancer mechanism. In spite of small drugs, RIPs use the large-size effect (LSE) to prevent the efflux process governed by drug resistance transporters (DRTs) which prevents inside of the cells against drug transfection. There are many clinical translation obstacles that severely restrict their applications especially their delivery approach to the tumor cells. As the main goal of this review, we will focus on trichosanthin (TCS) and gelonin (Gel) and other types, especially scorpion venom-derived RIPs to clarify that they are struggling with what types of bio-barriers and these challenges could be solved in cancer therapy science. Then, we will try to highlight recent state-of-the-arts in delivery of RIPs for cancer therapy.
Collapse
Affiliation(s)
- Zahra Setayesh-Mehr
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran.
| | - Mahdiye Poorsargol
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol, Iran
| |
Collapse
|
19
|
Sevrain CM, Fontaine D, Bauduin A, Guéguinou M, Zhang BL, Chantôme A, Mahéo K, Pasqualin C, Maupoil V, Couthon H, Vandier C, Jaffrès PA. Thio-ether functionalized glycolipid amphiphilic compounds reveal a potent activator of SK3 channel with vasorelaxation effect. Org Biomol Chem 2021; 19:2753-2766. [PMID: 33687423 DOI: 10.1039/d1ob00021g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The modulation of SK3 ion channels can be efficiently and selectively achieved by using the amphiphilic compound Ohmline (a glyco-glycero-ether-lipid). We report herein a series of Ohmline analogues featuring the replacement of one ether function by a thioether function located at the same position or shifted close to its initial position. The variation of the lipid chain length and the preparation of two analogues featuring either one sulfoxide or one sulfone moiety complete this series. Patch clamp measurements indicate that the presence of the thioether function (compounds 7 and 17a) produces strong activators of SK3 channels, whereas the introduction of a sulfoxide or a sulfone function at the same place produces amphiphiles devoid of an effect on SK3 channels. Compounds 7 and 17a are the first amphiphilic compounds featuring strong activation of SK3 channels (close to 200% activation). The cytosolic calcium concentration determined from fluorescence at 3 different times for compound 7b (13 min, 1 h, 24 h) revealed that the effect is different suggesting that the compound could be metabolized over time. This compound could be used as a strong SK3 activator for a short time. The capacity of 7b to activate SK3 was then used to induce vasorelaxation via an endothelium-derived hyperpolarization (EDH) pathway. For the first time, we report that an amphiphilic compound can affect the endothelium dependent vasorelaxation.
Collapse
Affiliation(s)
- Charlotte M Sevrain
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, Brest, F-29238 Brest, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bioactive Ether Lipids: Primordial Modulators of Cellular Signaling. Metabolites 2021; 11:metabo11010041. [PMID: 33430006 PMCID: PMC7827237 DOI: 10.3390/metabo11010041] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 12/14/2022] Open
Abstract
The primacy of lipids as essential components of cellular membranes is conserved across taxonomic domains. In addition to this crucial role as a semi-permeable barrier, lipids are also increasingly recognized as important signaling molecules with diverse functional mechanisms ranging from cell surface receptor binding to the intracellular regulation of enzymatic cascades. In this review, we focus on ether lipids, an ancient family of lipids having ether-linked structures that chemically differ from their more prevalent acyl relatives. In particular, we examine ether lipid biosynthesis in the peroxisome of mammalian cells, the roles of selected glycerolipids and glycerophospholipids in signal transduction in both prokaryotes and eukaryotes, and finally, the potential therapeutic contributions of synthetic ether lipids to the treatment of cancer.
Collapse
|
21
|
Gajate C, Mollinedo F. Lipid Raft Isolation by Sucrose Gradient Centrifugation and Visualization of Raft-Located Proteins by Fluorescence Microscopy: The Use of Combined Techniques to Assess Fas/CD95 Location in Rafts During Apoptosis Triggering. Methods Mol Biol 2021; 2187:147-186. [PMID: 32770506 DOI: 10.1007/978-1-0716-0814-2_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Lipid rafts are heterogeneous membrane domains enriched in cholesterol, sphingolipids, and gangliosides that serve as sorting platforms to compartmentalize and modulate signaling pathways. Death receptors and downstream signaling molecules have been reported to be recruited into these raft domains during the triggering of apoptosis. Here, we provide two protocols that support the presence of Fas/CD95 in lipid rafts during apoptosis, involving lipid raft isolation and confocal microscopy techniques. A detailed protocol is provided for the isolation of lipid rafts, by taking advantage of their resistance to Triton X-100 solubilization at 4 °C, followed by subsequent sucrose gradient centrifugation and analysis of the protein composition of the different gradient fractions by Western blotting. In addition, we also provide a detailed protocol for the visualization of the coclustering of Fas/CD95 death receptor and lipid rafts, as assessed by using anti-Fas/CD95 antibodies and fluorescent dye-conjugated cholera toxin B subunit that binds to ganglioside GM1, a main component of lipid rafts, by immunofluorescence and confocal microscopy. These protocols can be extended to any protein of interest to be analyzed for its association to lipid rafts.
Collapse
Affiliation(s)
- Consuelo Gajate
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Faustino Mollinedo
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
22
|
Tiffner A, Derler I. Molecular Choreography and Structure of Ca 2+ Release-Activated Ca 2+ (CRAC) and K Ca2+ Channels and Their Relevance in Disease with Special Focus on Cancer. MEMBRANES 2020; 10:E425. [PMID: 33333945 PMCID: PMC7765462 DOI: 10.3390/membranes10120425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Ca2+ ions play a variety of roles in the human body as well as within a single cell. Cellular Ca2+ signal transduction processes are governed by Ca2+ sensing and Ca2+ transporting proteins. In this review, we discuss the Ca2+ and the Ca2+-sensing ion channels with particular focus on the structure-function relationship of the Ca2+ release-activated Ca2+ (CRAC) ion channel, the Ca2+-activated K+ (KCa2+) ion channels, and their modulation via other cellular components. Moreover, we highlight their roles in healthy signaling processes as well as in disease with a special focus on cancer. As KCa2+ channels are activated via elevations of intracellular Ca2+ levels, we summarize the current knowledge on the action mechanisms of the interplay of CRAC and KCa2+ ion channels and their role in cancer cell development.
Collapse
Affiliation(s)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
23
|
Gaillard B, Remy JS, Pons F, Lebeau L. Dual Gene Delivery Reagents From Antiproliferative Alkylphospholipids for Combined Antitumor Therapy. Front Chem 2020; 8:581260. [PMID: 33134279 PMCID: PMC7566913 DOI: 10.3389/fchem.2020.581260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Abstract
Alkylphospholipids (APLs) have elicited great interest as antitumor agents due to their unique mode of action on cell membranes. However, their clinical applications have been limited so far by high hemolytic activity. Recently, cationic prodrugs of erufosine, a most promising APL, have been shown to mediate efficient intracellular gene delivery, while preserving the antiproliferative properties of the parent APL. Here, cationic prodrugs of the two APLs that are currently used in the clinic, miltefosine, and perifosine, are investigated and compared to the erufosine prodrugs. Their synthesis, stability, gene delivery and self-assembly properties, and hemolytic activity are discussed in detail. Finally, the potential of the pro-miltefosine and pro-perifosine compounds ME12 and PE12 in combined antitumor therapy is demonstrated using pUNO1-hTRAIL, a plasmid DNA encoding TRAIL, a member of the TNF superfamily. With these pro-APL compounds, we provide a proof of concept for a new promising strategy for cancer therapy combining gene therapy and APL-based chemotherapy.
Collapse
Affiliation(s)
- Boris Gaillard
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Jean-Serge Remy
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Françoise Pons
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Luc Lebeau
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| |
Collapse
|
24
|
Dorninger F, Forss-Petter S, Wimmer I, Berger J. Plasmalogens, platelet-activating factor and beyond - Ether lipids in signaling and neurodegeneration. Neurobiol Dis 2020; 145:105061. [PMID: 32861763 PMCID: PMC7116601 DOI: 10.1016/j.nbd.2020.105061] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022] Open
Abstract
Glycerol-based ether lipids including ether phospholipids form a specialized branch of lipids that in mammals require peroxisomes for their biosynthesis. They are major components of biological membranes and one particular subgroup, the plasmalogens, is widely regarded as a cellular antioxidant. Their vast potential to influence signal transduction pathways is less well known. Here, we summarize the literature showing associations with essential signaling cascades for a wide variety of ether lipids, including platelet-activating factor, alkylglycerols, ether-linked lysophosphatidic acid and plasmalogen-derived polyunsaturated fatty acids. The available experimental evidence demonstrates links to several common players like protein kinase C, peroxisome proliferator-activated receptors or mitogen-activated protein kinases. Furthermore, ether lipid levels have repeatedly been connected to some of the most abundant neurological diseases, particularly Alzheimer's disease and more recently also neurodevelopmental disorders like autism. Thus, we critically discuss the potential role of these compounds in the etiology and pathophysiology of these diseases with an emphasis on signaling processes. Finally, we review the emerging interest in plasmalogens as treatment target in neurological diseases, assessing available data and highlighting future perspectives. Although many aspects of ether lipid involvement in cellular signaling identified in vitro still have to be confirmed in vivo, the compiled data show many intriguing properties and contributions of these lipids to health and disease that will trigger further research.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria.
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria.
| |
Collapse
|
25
|
Development of pyrene-based fluorescent ether lipid as inhibitor of SK3 ion channels. Eur J Med Chem 2020; 209:112894. [PMID: 33049604 DOI: 10.1016/j.ejmech.2020.112894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/04/2020] [Accepted: 09/24/2020] [Indexed: 01/11/2023]
Abstract
We report the synthesis of three bioactive pyrene-based fluorescent analogues of Ohmline which is the most efficient and selective inhibitor of SK3 ion channel. The interaction of these Ohmline-pyrene (OP1-3) with liposomes of different composition reveals that only OP2 and OP3 are readily integrated into liposomes. Fluorescence measurements indicate that, depending on their concentration, OP2 and OP3 exist either as monomer or as a mixture of monomer and excimers within the liposome bilayer. Among the three Ohmline Pyrene compounds (OP1-3) only OP2 is able to reduce SK3 currents and is the first efficient fluorescent modulator of SK3 channel as revealed by patch clamp measurements (- 71.3 ± 13.3% at 10 μM) and by its inhibition of SK3-dependent cancer cell migration at (-32.5% ± 4.8% at 1 μM). We also report the first fluorescence study on living breast cancer cells (MDA-MB-231) showing that OP2 is rapidly integrated in bio-membranes followed by cell internalization.
Collapse
|
26
|
Chen L, Zhang W, He L, Jin L, Qian L, Zhu Y. Effect of alkylglycerone phosphate synthase on the expression levels of lncRNAs in glioma cells and its functional prediction. Oncol Lett 2020; 20:66. [PMID: 32863899 PMCID: PMC7436103 DOI: 10.3892/ol.2020.11927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/18/2020] [Indexed: 01/01/2023] Open
Abstract
Alkylglycerone phosphate synthase (AGPS) is a key enzyme for ether ester synthesis and acts as an oncogene in malignant tumors. The present study aimed to investigate the effect of AGPS silencing on the expression levels of long non-coding RNAs (lncRNAs) and the co-expression with mRNAs in glioma U251 cells using microarray analysis. Furthermore, the underlying biological functions of crucial lncRNAs identified were investigated. It was discovered that in vitro U251 cell proliferation was suppressed following the genetic silencing of AGPS. Differentially expressed lncRNAs and mRNAs in U251 cells were sequenced following AGPS silencing. The results from the Gene Ontology analysis identified that the co-expressed mRNAs were mainly involved in biological processes, such as 'cellular response to hypoxia', 'extracellular matrix organization' and 'PERK-mediated unfolded protein response'. In addition, Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment analysis revealed that the co-expressed mRNAs were the most enriched in the 'AGE/RAGE signaling pathway in diabetic conditions'. Additionally, the PI3K/Akt and epidermal growth factor receptor signaling pathways serve important roles in tumor processes, for example carcinogenesis and angiogenesis. Furthermore, it was identified that the lncRNA AK093732 served a vital role in the regulatory network and the core pathway in this network regulated by this lncRNA was discovered to be the 'Cytokine-cytokine receptor interaction'. In conclusion, the findings of the present study suggested that AGPS may affect cell proliferation and the degree of malignancy. In addition, the identified lncRNAs and their co-expressed mRNAs screened using microarrays may have significant biological effects in the occurrence, development and metastasis of glioma, and thus may be novel markers of glioma.
Collapse
Affiliation(s)
- Lei Chen
- Department of Otolaryngology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Weijian Zhang
- Postgraduate School of Tianjin Medical University, Tianjin 300070, P.R. China
| | - Lihua He
- Postgraduate School of Tianjin Medical University, Tianjin 300070, P.R. China
- Department of Clinical Laboratory, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056002, P.R. China
| | - Li Jin
- Integrated Chinese and Western Medicine School of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Liyu Qian
- Department of Tumor Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Yu Zhu
- Department of Clinical Laboratory, Tianjin Haihe Hospital, Tianjin 300350, P.R. China
| |
Collapse
|
27
|
Mayorga-Flores M, Chantôme A, Melchor-Meneses CM, Domingo I, Titaux-Delgado GA, Galindo-Murillo R, Vandier C, del Río-Portilla F. Novel Blocker of Onco SK3 Channels Derived from Scorpion Toxin Tamapin and Active against Migration of Cancer Cells. ACS Med Chem Lett 2020; 11:1627-1633. [PMID: 32832033 DOI: 10.1021/acsmedchemlett.0c00300] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/10/2020] [Indexed: 11/28/2022] Open
Abstract
Peptide-based therapy against cancer is a field of great interest for biomedical developments. Since it was shown that SK3 channels promote cancer cell migration and metastatic development, we started using these channels as targets for the development of antimetastatic drugs. Particularly, tamapin (a peptide found in the venom of the scorpion Mesobuthus tamulus) is the most specific toxin against the SK2 channel currently known. Considering this fact, we designed diverse tamapin mutants based on three different hypotheses to discover a new potent molecule to block SK3 channels. We performed in vitro studies to evaluate this new toxin derivative inhibitor of cancer cell migration. Our results can be used to generate a new tamapin-based therapy against cancer cells that express SK3 channels.
Collapse
Affiliation(s)
- Marlen Mayorga-Flores
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Aurélie Chantôme
- N2C UMR 1069, University of Tours, INSERM, Faculté de Pharmacie, Calciscreen Platform, 37032 Tours, France
| | - Carolina Monserrath Melchor-Meneses
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Isabelle Domingo
- N2C UMR 1069, University of Tours, INSERM, Calciscreen Platform, 37032 Tours, France
| | - Gustavo Alfredo Titaux-Delgado
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Rodrigo Galindo-Murillo
- Department of Medicinal Chemistry, L. S. Skaggs Pharmacy Institute, University of Utah, Salt Lake City, Utah 84112, United States
| | - Christophe Vandier
- N2C UMR 1069, University of Tours, INSERM, Calciscreen Platform, 37032 Tours, France
| | - Federico del Río-Portilla
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| |
Collapse
|
28
|
Plasma Lipid Profile Reveals Plasmalogens as Potential Biomarkers for Colon Cancer Screening. Metabolites 2020; 10:metabo10060262. [PMID: 32630389 PMCID: PMC7345851 DOI: 10.3390/metabo10060262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022] Open
Abstract
In this era of precision medicine, there is an increasingly urgent need for highly sensitive tests for detecting tumors such as colon cancer (CC), a silent disease where the first symptoms may take 10–15 years to appear. Mass spectrometry-based lipidomics is an emerging tool for such clinical diagnosis. We used ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry operating in high energy collision spectral acquisition mode (MSE) mode (UPLC-QTOF-MSE) and gas chromatography (GC) to investigate differences between the plasmatic lipidic composition of CC patients and control (CTR) subjects. Key enzymes in lipidic metabolism were investigated using immuno-based detection assays. Our partial least squares discriminant analysis (PLS-DA) resulted in a suitable discrimination between CTR and CC plasma samples. Forty-two statistically significant discriminating lipids were putatively identified. Ether lipids showed a prominent presence and accordingly, a decrease in glyceronephosphate O-acyltransferase (GNPAT) enzyme activity was found. A receiver operating characteristic (ROC) curve built for three plasmalogens of phosphatidylserine (PS), named PS(P-36:1), PS(P-38:3) and PS(P-40:5), presented an area under the curve (AUC) of 0.998, and sensitivity and specificity of 100 and 85.7% respectively. These results show significant differences in CC patients’ plasma lipid composition that may be useful in discriminating them from CTR individuals with a special role for plasmalogens.
Collapse
|
29
|
Tzoneva R, Stoyanova T, Petrich A, Popova D, Uzunova V, Momchilova A, Chiantia S. Effect of Erufosine on Membrane Lipid Order in Breast Cancer Cell Models. Biomolecules 2020; 10:E802. [PMID: 32455962 PMCID: PMC7277205 DOI: 10.3390/biom10050802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Alkylphospholipids are a novel class of antineoplastic drugs showing remarkable therapeutic potential. Among them, erufosine (EPC3) is a promising drug for the treatment of several types of tumors. While EPC3 is supposed to exert its function by interacting with lipid membranes, the exact molecular mechanisms involved are not known yet. In this work, we applied a combination of several fluorescence microscopy and analytical chemistry approaches (i.e., scanning fluorescence correlation spectroscopy, line-scan fluorescence correlation spectroscopy, generalized polarization imaging, as well as thin layer and gas chromatography) to quantify the effect of EPC3 in biophysical models of the plasma membrane, as well as in cancer cell lines. Our results indicate that EPC3 affects lipid-lipid interactions in cellular membranes by decreasing lipid packing and increasing membrane disorder and fluidity. As a consequence of these alterations in the lateral organization of lipid bilayers, the diffusive dynamics of membrane proteins are also significantly increased. Taken together, these findings suggest that the mechanism of action of EPC3 could be linked to its effects on fundamental biophysical properties of lipid membranes, as well as on lipid metabolism in cancer cells.
Collapse
Affiliation(s)
- Rumiana Tzoneva
- Bulgarian Academy of Sciences, Institute of Biophysics and Biomedical Engineering, 1113 Sofia, Bulgaria; (R.T.); (T.S.); (D.P.); (V.U.); (A.M.)
| | - Tihomira Stoyanova
- Bulgarian Academy of Sciences, Institute of Biophysics and Biomedical Engineering, 1113 Sofia, Bulgaria; (R.T.); (T.S.); (D.P.); (V.U.); (A.M.)
| | - Annett Petrich
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Street 24-25, 14476 Potsdam, Germany;
| | - Desislava Popova
- Bulgarian Academy of Sciences, Institute of Biophysics and Biomedical Engineering, 1113 Sofia, Bulgaria; (R.T.); (T.S.); (D.P.); (V.U.); (A.M.)
| | - Veselina Uzunova
- Bulgarian Academy of Sciences, Institute of Biophysics and Biomedical Engineering, 1113 Sofia, Bulgaria; (R.T.); (T.S.); (D.P.); (V.U.); (A.M.)
| | - Albena Momchilova
- Bulgarian Academy of Sciences, Institute of Biophysics and Biomedical Engineering, 1113 Sofia, Bulgaria; (R.T.); (T.S.); (D.P.); (V.U.); (A.M.)
| | - Salvatore Chiantia
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Street 24-25, 14476 Potsdam, Germany;
| |
Collapse
|
30
|
Mollinedo F, Gajate C. Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and therapy: Thematic Review Series: Biology of Lipid Rafts. J Lipid Res 2020; 61:611-635. [PMID: 33715811 PMCID: PMC7193951 DOI: 10.1194/jlr.tr119000439] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Cholesterol/sphingolipid-rich membrane domains, known as lipid rafts or membrane rafts, play a critical role in the compartmentalization of signaling pathways. Physical segregation of proteins in lipid rafts may modulate the accessibility of proteins to regulatory or effector molecules. Thus, lipid rafts serve as sorting platforms and hubs for signal transduction proteins. Cancer cells contain higher levels of intracellular cholesterol and lipid rafts than their normal non-tumorigenic counterparts. Many signal transduction processes involved in cancer development (insulin-like growth factor system and phosphatidylinositol 3-kinase-AKT) and metastasis [cluster of differentiation (CD)44] are dependent on or modulated by lipid rafts. Additional proteins playing an important role in several malignant cancers (e.g., transmembrane glycoprotein mucin 1) are also being detected in association with lipid rafts, suggesting a major role of lipid rafts in tumor progression. Conversely, lipid rafts also serve as scaffolds for the recruitment and clustering of Fas/CD95 death receptors and downstream signaling molecules leading to cell death-promoting raft platforms. The partition of death receptors and downstream signaling molecules in aggregated lipid rafts has led to the formation of the so-called cluster of apoptotic signaling molecule-enriched rafts, or CASMER, which leads to apoptosis amplification and can be pharmacologically modulated. These death-promoting rafts can be viewed as a linchpin from which apoptotic signals are launched. In this review, we discuss the involvement of lipid rafts in major signaling processes in cancer cells, including cell survival, cell death, and metastasis, and we consider the potential of lipid raft modulation as a promising target in cancer therapy.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas (CSIC), E-28040 Madrid, Spain. mailto:
| | - Consuelo Gajate
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas (CSIC), E-28040 Madrid, Spain
| |
Collapse
|
31
|
Kouba S, Braire J, Félix R, Chantôme A, Jaffrès PA, Lebreton J, Dubreuil D, Pipelier M, Zhang X, Trebak M, Vandier C, Mathé-Allainmat M, Potier-Cartereau M. Lipidic synthetic alkaloids as SK3 channel modulators. Synthesis and biological evaluation of 2-substituted tetrahydropyridine derivatives with potential anti-metastatic activity. Eur J Med Chem 2020; 186:111854. [PMID: 31753515 DOI: 10.1016/j.ejmech.2019.111854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/04/2019] [Indexed: 11/18/2022]
Abstract
Small Conductance Calcium (Ca2+)-activated potassium (K+) channels (SKCa) are now proved to be involved in many cancer cell behaviors such as proliferation or migration. The SK3 channel isoform was particularly described in breast cancer where it can be associated with the Orai1 Ca2+ channel to form a complex that regulates the Ca2+ homeostasis during tumor development and acts as a potent mediator of bone metastases development in vivo. Until now, very few specific blockers of Orai1 and/or SK3 have been developed as potential anti-metastatic compounds. In this study, we illustrated the synthesis of new families of lipophilic pyridine and tetrahydropyridine derivatives designed as potential modulators of SK3 channel. The toxicity of the newly synthesized compounds and their migration effects were evaluated on the breast cancer cell line MDA-MB-435s. Two molecules (7a and 10c) demonstrated a significant decrease in the SK3 channel-dependent migration as well as the SK3/Orai1-related Ca2+ entry. Current measurements showed that these compounds are more likely SK3-selective. Taken all together these results suggest that such molecules could be considered as promising anti-metastatic drugs in breast cancer.
Collapse
Affiliation(s)
- Sana Kouba
- University of Tours, Inserm U1069 Nutrition, Croissance et Cancer (N2C), Faculty of Medicine, 10 Boulevard Tonnellé, 37032, Tours Cedex, France
| | - Julien Braire
- University of Nantes, CNRS, Faculty of Sciences, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, 2, Rue de La Houssinière, 44322, Nantes Cedex 3, France
| | - Romain Félix
- University of Tours, Inserm U1069 Nutrition, Croissance et Cancer (N2C), Faculty of Medicine, 10 Boulevard Tonnellé, 37032, Tours Cedex, France
| | - Aurélie Chantôme
- University of Tours, Inserm U1069 Nutrition, Croissance et Cancer (N2C), Faculty of Medicine, 10 Boulevard Tonnellé, 37032, Tours Cedex, France
| | - Paul-Alain Jaffrès
- University of Brest, CNRS, CEMCA, UMR 6521, 6 Avenue Victor Le Gorgeu, 29238, Brest, France
| | - Jacques Lebreton
- University of Nantes, CNRS, Faculty of Sciences, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, 2, Rue de La Houssinière, 44322, Nantes Cedex 3, France
| | - Didier Dubreuil
- University of Nantes, CNRS, Faculty of Sciences, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, 2, Rue de La Houssinière, 44322, Nantes Cedex 3, France
| | - Muriel Pipelier
- University of Nantes, CNRS, Faculty of Sciences, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, 2, Rue de La Houssinière, 44322, Nantes Cedex 3, France
| | - Xuexin Zhang
- Pennylvania State University College of Medicine, Department of Cellular and Molecular Physiology, 700 HMC Crescent Road, Hershey, PA, 17033, USA
| | - Mohamed Trebak
- Pennylvania State University College of Medicine, Department of Cellular and Molecular Physiology, 700 HMC Crescent Road, Hershey, PA, 17033, USA
| | - Christophe Vandier
- University of Tours, Inserm U1069 Nutrition, Croissance et Cancer (N2C), Faculty of Medicine, 10 Boulevard Tonnellé, 37032, Tours Cedex, France
| | - Monique Mathé-Allainmat
- University of Nantes, CNRS, Faculty of Sciences, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, 2, Rue de La Houssinière, 44322, Nantes Cedex 3, France.
| | - Marie Potier-Cartereau
- University of Tours, Inserm U1069 Nutrition, Croissance et Cancer (N2C), Faculty of Medicine, 10 Boulevard Tonnellé, 37032, Tours Cedex, France.
| |
Collapse
|
32
|
Zaremberg V, Ganesan S, Mahadeo M. Lipids and Membrane Microdomains: The Glycerolipid and Alkylphosphocholine Class of Cancer Chemotherapeutic Drugs. Handb Exp Pharmacol 2020; 259:261-288. [PMID: 31302758 DOI: 10.1007/164_2019_222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Synthetic antitumor lipids are metabolically stable lysophosphatidylcholine derivatives, encompassing a class of non-mutagenic drugs that selectively target cancerous cells. In this chapter we review the literature as relates to the clinical efficacy of these antitumor lipid drugs and how our understanding of their mode of action has evolved alongside key advances in our knowledge of membrane structure, organization, and function. First, the history of the development of this class of drugs is described, providing a summary of clinical outcomes of key members including edelfosine, miltefosine, perifosine, erufosine, and erucylphosphocholine. A detailed description of the biophysical properties of these drugs and specific drug-lipid interactions which may contribute to the selectivity of the antitumor lipids for cancer cells follows. An updated model on the mode of action of these lipid drugs as membrane disorganizing agents is presented. Membrane domain organization as opposed to targeting specific proteins on membranes is discussed. By altering membranes, these antitumor lipids inhibit many survival pathways while activating pro-apoptotic signals leading to cell demise.
Collapse
|
33
|
Rao BD, Chakraborty H, Chaudhuri A, Chattopadhyay A. Differential sensitivity of pHLIP to ester and ether lipids. Chem Phys Lipids 2019; 226:104849. [PMID: 31836521 DOI: 10.1016/j.chemphyslip.2019.104849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
pH (low) insertion peptide (pHLIP) is a polypeptide from the third transmembrane helix of bacteriorhodopsin. The pH-dependent membrane insertion of pHLIP has been conveniently exploited for translocation of cargo molecules and as a novel imaging agent in cancer biology due to low extracellular pH in cancer tissues. Although the application of pHLIP for imaging tumor and targeted drug delivery is well studied, literature on pHLIP-membrane interaction is relatively less studied. Keeping this in mind, we explored the differential interaction of pHLIP with ester and ether lipid membranes utilizing fluorescence and CD spectroscopy. We report, for the first time, higher binding affinity of pHLIP toward ether lipid relative to ester lipid membranes. There results gain relevance since Halobacterium halobium (source of bacteriorhodopsin) is enriched with ether lipids. In addition, we monitored the difference in microenvironment around pHLIP tryptophans utilizing red edge excitation shift and observed increased motional restriction of water molecules in the interfacial region in ether lipid membranes. These changes were accompanied with increase in helicity of pHLIP in ether lipid relative to ester lipid membranes. Our results assume further relevance since ether lipids are upregulated in cancer cells and have emerged as potential biomarkers of various diseases including cancer.
Collapse
Affiliation(s)
- Bhagyashree D Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India; CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| | - Hirak Chakraborty
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India; School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India
| | - Arunima Chaudhuri
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India.
| |
Collapse
|
34
|
Gaillard B, Seguin C, Remy JS, Pons F, Lebeau L. Erufosine (ErPC3) Cationic Prodrugs as Dual Gene Delivery Reagents for Combined Antitumor Therapy. Chemistry 2019; 25:15662-15679. [PMID: 31549752 DOI: 10.1002/chem.201903976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/23/2019] [Indexed: 12/14/2022]
Abstract
Sixteen cationic prodrugs of the antitumor alkylphospholipid (APL) erufosine were rationally synthesized to provide original gene delivery reagents with improved cytotoxicity profile. The DNA complexation properties of these cationic lipids were determined and associated transfection rates were measured. Furthermore, the self-assembly properties of the pro-erufosine compounds were investigated and their critical aggregation concentration was determined. Their hydrolytic stability under pH conditions mimicking the extracellular environment and the late endosome milieu was measured. Hemolytic activity and cytotoxicity of the compounds were investigated. The results obtained in various cell lines demonstrate that the prodrugs of erufosine display antineoplastic activity similar to that of the parent antitumor drug but are not associated with hemolytic toxicity, which is a dose-limiting side effect of APLs and a major obstacle to their use in anticancer therapeutic regimen. Furthermore, by using lipoplexes prepared from a prodrug of erufosine and a plasmid DNA encoding a pro-apoptotic protein (TRAIL), evidence was provided for selective cytotoxicity towards tumor cells while nontumor cells were resistant. This study demonstrates that the combination approach involving well tolerated erufosine cationic prodrugs and cancer gene therapy holds significant promise in tumor therapy.
Collapse
Affiliation(s)
- Boris Gaillard
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin-BP 60024, 67401, Illkirch, France
| | - Cendrine Seguin
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin-BP 60024, 67401, Illkirch, France
| | - Jean-Serge Remy
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin-BP 60024, 67401, Illkirch, France
| | - Françoise Pons
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin-BP 60024, 67401, Illkirch, France
| | - Luc Lebeau
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin-BP 60024, 67401, Illkirch, France
| |
Collapse
|
35
|
Kaleağasıoğlu F, Zaharieva MM, Konstantinov SM, Berger MR. Alkylphospholipids are Signal Transduction Modulators with Potential for Anticancer Therapy. Anticancer Agents Med Chem 2019; 19:66-91. [PMID: 30318001 DOI: 10.2174/1871520618666181012093056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alkylphospholipids (APLs) are synthetically derived from cell membrane components, which they target and thus modify cellular signalling and cause diverse effects. This study reviews the mechanism of action of anticancer, antiprotozoal, antibacterial and antiviral activities of ALPs, as well as their clinical use. METHODS A literature search was used as the basis of this review. RESULTS ALPs target lipid rafts and alter phospholipase D and C signalling cascades, which in turn will modulate the PI3K/Akt/mTOR and RAS/RAF/MEK/ERK pathways. By feedback coupling, the SAPK/JNK signalling chain is also affected. These changes lead to a G2/M phase cell cycle arrest and subsequently induce programmed cell death. The available knowledge on inhibition of AKT phosphorylation, mTOR phosphorylation and Raf down-regulation renders ALPs as attractive candidates for modern medical treatment, which is based on individualized diagnosis and therapy. Corresponding to their unusual profile of activities, their side effects result from cholinomimetic activity mainly and focus on the gastrointestinal tract. These aspects together with their bone marrow sparing features render APCs well suited for modern combination therapy. Although the clinical success has been limited in cancer diseases so far, the use of miltefosine against leishmaniosis is leading the way to better understanding their optimized use. CONCLUSION Recent synthetic programs generate congeners with the increased therapeutic ratio, liposomal formulations, as well as diapeutic (or theranostic) derivatives with optimized properties. It is anticipated that these innovative modifications will pave the way for the further successful development of ALPs.
Collapse
Affiliation(s)
- Ferda Kaleağasıoğlu
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pharmacology, Faculty of Medicine, Near East University, Mersin 10, Turkey
| | - Maya M Zaharieva
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Infectious Microbiology, The "Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Spiro M Konstantinov
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University Sofia, Sofia, Bulgaria
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
36
|
Aron M, Vince O, Gray M, Mannaris C, Stride E. Investigating the Role of Lipid Transfer in Microbubble-Mediated Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13205-13215. [PMID: 31517490 DOI: 10.1021/acs.langmuir.9b02404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sonoporation, the permeabilization of cell membranes following exposure to microbubbles and ultrasound, has considerable potential for therapeutic delivery. To date, engineering of microbubbles for these applications has focused primarily upon optimizing microbubble size and stability, or attachment of targeting species and/or drug molecules. In this work, it is demonstrated that the microbubble coating can also be tailored to directly influence cell permeabilization. Specifically, lipid exchange mechanisms between phospholipid microbubbles and cells can be exploited to significantly increase sonoporation efficiency in vitro. A theoretical analysis of the energy required for pore formation was carried out. From this, it was hypothesized that sonoporation could be promoted by the transfer of lipid molecules with appropriate carbon chain length and/or shape (cylindrical or conical). Spectral imaging with a hydration-sensitive membrane probe (C-Laurdan) was used to measure changes in the membrane lipid order of A-549 cancer cells following exposure to suspensions of different phospholipids. Two candidate lipids were identified, a short-chain-length phospholipid (1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC)) and a medium-chain-length lysolipid (1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (16:0 lyso-PC)). Microbubbles were prepared with matched concentrations, size distributions, and acoustic responses. Confocal microscopy was used to measure cell uptake of a model drug (propidium iodide) with and without ultrasound exposure (1 MHz, 250 kPa peak negative pressure, 1 kHz pulse repetition frequency, 10% duty cycle, 15 s exposure). Despite significantly decreasing the cell membrane lipid order, DLPC did not increase sonoporation. Microbubbles containing 16:0 lyso-PC, however, produced a ∼5-fold increase in sonoporation compared to control microbubbles. Importantly, the lyso-PC molecules were incorporated into the microbubble coating and did not affect cell permeability prior to ultrasound exposure. These findings indicate that microbubbles can be engineered to exploit lipid exchange between microbubble shells and cell membranes to enhance drug delivery, a new optimization route that may lead to enhanced therapeutic efficacy of ultrasound-mediated treatments.
Collapse
Affiliation(s)
- Miles Aron
- Institute of Biomedical Engineering , University of Oxford , Old Road Campus Research Building , Oxford OX3 7DQ , U.K
| | - Oliver Vince
- Institute of Biomedical Engineering , University of Oxford , Old Road Campus Research Building , Oxford OX3 7DQ , U.K
| | - Michael Gray
- Institute of Biomedical Engineering , University of Oxford , Old Road Campus Research Building , Oxford OX3 7DQ , U.K
| | - Christophoros Mannaris
- Institute of Biomedical Engineering , University of Oxford , Old Road Campus Research Building , Oxford OX3 7DQ , U.K
| | - Eleanor Stride
- Institute of Biomedical Engineering , University of Oxford , Old Road Campus Research Building , Oxford OX3 7DQ , U.K
| |
Collapse
|
37
|
Peterson E, Shippee E, Brinton MA, Kaur P. Biochemical characterization of the mouse ABCF3 protein, a partner of the flavivirus-resistance protein OAS1B. J Biol Chem 2019; 294:14937-14952. [PMID: 31413116 DOI: 10.1074/jbc.ra119.008477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/12/2019] [Indexed: 11/06/2022] Open
Abstract
Mammalian ATP-binding cassette (ABC) subfamily F member 3 (ABCF3) is a class 2 ABC protein that has previously been identified as a partner of the mouse flavivirus resistance protein 2',5'-oligoadenylate synthetase 1B (OAS1B). The functions and natural substrates of ABCF3 are not known. In this study, analysis of purified ABCF3 showed that it is an active ATPase, and binding analyses with a fluorescent ATP analog suggested unequal contributions by the two nucleotide-binding domains. We further showed that ABCF3 activity is increased by lipids, including sphingosine, sphingomyelin, platelet-activating factor, and lysophosphatidylcholine. However, cholesterol inhibited ABCF3 activity, whereas alkyl ether lipids either inhibited or resulted in a biphasic response, suggesting small changes in lipid structure differentially affect ABCF3 activity. Point mutations in the two nucleotide-binding domains of ABCF3 affected sphingosine-stimulated ATPase activity differently, further supporting different roles for the two catalytic pockets. We propose a model in which pocket 1 is the site of basal catalysis, whereas pocket 2 engages in ligand-stimulated ATP hydrolysis. Co-localization of the ABCF3-OAS1B complex to the virus-remodeled endoplasmic reticulum membrane has been shown before. We also noted that co-expression of ABCF3 and OAS1B in bacteria alleviated growth inhibition caused by expression of OAS1B alone, and ABCF3 significantly enhanced OAS1B levels, indirectly showing interaction between these two proteins in bacterial cells. As viral RNA synthesis requires large amounts of ATP, we conclude that lipid-stimulated ATP hydrolysis may contribute to the reduction in viral RNA production characteristic of the flavivirus resistance phenotype.
Collapse
Affiliation(s)
| | - Emma Shippee
- Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Margo A Brinton
- Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Parjit Kaur
- Department of Biology, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
38
|
Bouraoui A, Ghanem R, Berchel M, Vié V, Le Guen Y, Paboeuf G, Deschamps L, Le Gall T, Montier T, Jaffrès PA. Bis-Thioether-Containing Lipid Chains in Cationic Amphiphiles: Physicochemical Properties and Applications in Gene Delivery. Chemphyschem 2019; 20:2187-2194. [PMID: 31393059 DOI: 10.1002/cphc.201900626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/18/2019] [Indexed: 11/08/2022]
Abstract
Cationic amphiphiles featuring two thioether functions in each lipid chain of bicatenar cationic amphiphiles are reported here for the first time. The physicochemical properties and transfection abilities of these new amphiphiles were compared with those of already reported analogues featuring either (i) saturated, (ii) unsaturated or (iii) mono-thioether containing lipid chains. The homogeneity of the series of new compounds allowed to clearly underscore the effect of bis-thioether containing lipid chains. This study shows that besides previous strategies based on unsaturation or ramification, the incorporation of two thioether functions per lipid chain constitutes an original complementary alternative to tune the supramolecular properties of amphiphilic compounds. The potential of this strategy was evaluated in the context of gene delivery and report that two cationic amphiphiles (i. e. 4 a and 4 b) can be proposed as new efficient transfection reagents.
Collapse
Affiliation(s)
- Amal Bouraoui
- Univ Brest, CNRS, CEMCA, UMR CNRS 6521, 6 Avenue Victor Le Gorgeu, F-29238, Brest, France
| | - Rosy Ghanem
- Univ Brest, INSERM UMR 1078, IBSAM, UFR Médecine et Sciences de la Santé, CHRU Brest, 22 avenue Camille Desmoulins, F-29238, Brest, France
| | - Mathieu Berchel
- Univ Brest, CNRS, CEMCA, UMR CNRS 6521, 6 Avenue Victor Le Gorgeu, F-29238, Brest, France
| | - Véronique Vié
- Univ Rennes, CNRS, IPR - UMR 6251, ScanMAT - UMS 2001, F-35000, Rennes, France
| | - Yann Le Guen
- Univ Brest, INSERM UMR 1078, IBSAM, UFR Médecine et Sciences de la Santé, CHRU Brest, 22 avenue Camille Desmoulins, F-29238, Brest, France
| | - Gilles Paboeuf
- Univ Rennes, CNRS, IPR - UMR 6251, ScanMAT - UMS 2001, F-35000, Rennes, France
| | - Laure Deschamps
- Univ Brest, CNRS, CEMCA, UMR CNRS 6521, 6 Avenue Victor Le Gorgeu, F-29238, Brest, France
| | - Tony Le Gall
- Univ Brest, INSERM UMR 1078, IBSAM, UFR Médecine et Sciences de la Santé, CHRU Brest, 22 avenue Camille Desmoulins, F-29238, Brest, France
| | - Tristan Montier
- Univ Brest, INSERM UMR 1078, IBSAM, UFR Médecine et Sciences de la Santé, CHRU Brest, 22 avenue Camille Desmoulins, F-29238, Brest, France
| | - Paul-Alain Jaffrès
- Univ Brest, CNRS, CEMCA, UMR CNRS 6521, 6 Avenue Victor Le Gorgeu, F-29238, Brest, France
| |
Collapse
|
39
|
Zhou Z, Luo B, Liu X, Chen M, Lan W, Iovanna JL, Peng L, Xia Y. Flavonoid-alkylphospholipid conjugates elicit dual inhibition of cancer cell growth and lipid accumulation. Chem Commun (Camb) 2019; 55:8919-8922. [PMID: 31270526 DOI: 10.1039/c9cc04084f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer development is often associated with lipid metabolic reprogramming, including aberrant lipid accumulation. We create novel paradigms endowed with dual functions of anticancer activity and inhibition of lipid accumulation by conjugating the natural product quercetin and synthetic alkylphospholipid drugs, and harnessing the biomedical effects of both. These conjugates offer fresh perspectives in the search for anticancer candidates.
Collapse
Affiliation(s)
- Zhengwei Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, China.
| | - Biyao Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, China.
| | - Xi Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, China.
| | - Mimi Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, China.
| | - Wenjun Lan
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Equipe Labellisé par La Ligue, France. and Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille 13288, France
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille 13288, France
| | - Ling Peng
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Equipe Labellisé par La Ligue, France.
| | - Yi Xia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, China.
| |
Collapse
|
40
|
Kouba S, Ouldamer L, Garcia C, Fontaine D, Chantome A, Vandier C, Goupille C, Potier-Cartereau M. Lipid metabolism and Calcium signaling in epithelial ovarian cancer. Cell Calcium 2019; 81:38-50. [PMID: 31200184 DOI: 10.1016/j.ceca.2019.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023]
Abstract
Epithelial Ovarian cancer (EOC) is the deadliest gynecologic malignancy and represents the fifth leading cause of all cancer-related deaths in women. The majority of patients are diagnosed at an advanced stage of the disease that has spread beyond the ovaries to the peritoneum or to distant organs (stage FIGO III-IV) with a 5-year overall survival of about 29%. Consequently, it is necessary to understand the pathogenesis of this disease. Among the factors that contribute to cancer development, lipids and ion channels have been described to be associated to cancerous diseases particularly in breast, colorectal and prostate cancers. Here, we reviewed the literature data to determine how lipids or lipid metabolites may influence EOC risk or progression. We also highlighted the role and the expression of the calcium (Ca2+) and calcium-activated potassium (KCa) channels in EOC and how lipids might regulate them. Although lipids and some subclasses of nutritional lipids may be associated to EOC risk, lipid metabolism of LPA (lysophosphatidic acid) and AA (arachidonic acid) emerges as an important signaling network in EOC. Clinical data showed that they are found at high concentrations in EOC patients and in vitro and in vivo studies referred to them as triggers of the Ca2+entry in the cancer cells inducing their proliferation, migration or drug resistance. The cross-talk between lipid mediators and Ca2+ and/or KCa channels needs to be elucidated in EOC in order to facilitate the understanding of its outcomes and potentially suggest novel therapeutic strategies including treatment and prevention.
Collapse
Affiliation(s)
- Sana Kouba
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Lobna Ouldamer
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Université de Tours, INSERM, N2C UMR 1069, CHRU de Tours, Service de gynécologie et d'obstétrique, Tours, France
| | - Céline Garcia
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Delphine Fontaine
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Aurélie Chantome
- Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France; Université de Tours, INSERM, N2C UMR 1069, Faculté de Pharmacie, Tours, France
| | - Christophe Vandier
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Caroline Goupille
- Réseau CASTOR du Cancéropôle Grand Ouest, France; Université de Tours, INSERM, N2C UMR 1069, CHRU de Tours, Faculté de Médecine, Tours, France
| | - Marie Potier-Cartereau
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France.
| |
Collapse
|
41
|
Margaritova Zaharieva M, Dimitrov Kroumov A, Dimitrova L, Tsvetkova I, Trochopoulos A, Mihaylov Konstantinov S, Reinhold Berger M, Momchilova M, Yoncheva K, Miladinov Najdenski H. Micellar curcumin improves the antibacterial activity of the alkylphosphocholines erufosine and miltefosine against pathogenic Staphyloccocus aureus strains. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1533792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Maya Margaritova Zaharieva
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Alexander Dimitrov Kroumov
- Department of Applied Microbiology, The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Lyudmila Dimitrova
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iva Tsvetkova
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Antonios Trochopoulos
- Department of Pharmacology Pharmacotherapy and Toxicology Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Spiro Mihaylov Konstantinov
- Department of Pharmacology Pharmacotherapy and Toxicology Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | | | - Milena Momchilova
- Department of Pharmaceutical Technology and Biopharmaceutics Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Krassimira Yoncheva
- Department of Pharmaceutical Technology and Biopharmaceutics Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Hristo Miladinov Najdenski
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
42
|
Mohamed A, Robinson H, Erramouspe PJ, Hill MM. Advances and challenges in understanding the role of the lipid raft proteome in human health. Expert Rev Proteomics 2018; 15:1053-1063. [PMID: 30403891 DOI: 10.1080/14789450.2018.1544895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Phase separation as a biophysical principle drives the formation of liquid-ordered 'lipid raft' membrane microdomains in cellular membranes, including organelles. Given the critical role of cellular membranes in both compartmentalization and signaling, clarifying the roles of membrane microdomains and their mutual regulation of/by membrane proteins is important in understanding the fundamentals of biology, and has implications for health. Areas covered: This article will consider the evidence for lateral membrane phase separation in model membranes and organellar membranes, critically evaluate the current methods for lipid raft proteomics and discuss the biomedical implications of lipid rafts. Expert commentary: Lipid raft homeostasis is perturbed in numerous chronic conditions; hence, understanding the precise roles and regulation of the lipid raft proteome is important for health and medicine. The current technical challenges in performing lipid raft proteomics can be overcome through well-controlled experimental design and careful interpretation. Together with technical developments in mass spectrometry and microscopy, our understanding of lipid raft biology and function will improve through recognition of the similarity between organelle and plasma membrane lipid rafts and considered integration of published lipid raft proteomics data.
Collapse
Affiliation(s)
- Ahmed Mohamed
- a Precision & Systems Biomedicine Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Harley Robinson
- a Precision & Systems Biomedicine Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia.,b Faculty of Medicine , The University of Queensland , Brisbane , Australia
| | - Pablo Joaquin Erramouspe
- c Department of Emergency Medicine , University of California, Davis Medical Center , Sacramento , CA , USA
| | - Michelle M Hill
- a Precision & Systems Biomedicine Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia.,d The University of Queensland Diamantina Institute, Faculty of Medicine , Translational Research Institute, The University of Queensland , Brisbane , Australia
| |
Collapse
|
43
|
Rua C, Guéguinou M, Soubai I, Viel E, Potier-Cartereau M, Chantome A, Barbe C, Bougnoux P, Barin-Le Guellec C, Vandier C. SK3 Gene Polymorphism Is Associated with Taxane Neurotoxicity and Cell Calcium Homeostasis. Clin Cancer Res 2018; 24:5313-5320. [PMID: 30037821 DOI: 10.1158/1078-0432.ccr-18-0870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/13/2018] [Accepted: 07/17/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Taxane-induced peripheral neuropathy is a common side effect induced by anticancer agents, and no drug capable of preventing its occurrence or ameliorating its long-term course has been identified. The physiology of taxane neuropathy is not clear, and diverse mechanisms have been suggested, with ion channels regulating Ca2+ homeostasis appearing good candidates. The calcium-activated potassium channel SK3 is encoded by the KCNN3 gene, which is characterized by a length polymorphism due to variable number of CAG repeats.Experimental Design: To study the influence of the polymorphism of CAG motif repeat of KCNN3 on the development of taxane-induced neuropathy, we evaluated 176 patients treated with taxanes for breast cancer. In parallel, we measured Ca2+ entry using Fura2-AM dye in HEK cells expressing short versus long CAG alleles of KCNN3 Results: In the current study, we report that in the presence of docetaxel, Ca2+ entry was significantly increased in cells expressing short versus long CAG alleles of SK3 and that a SK3-lipid blocker inhibits this effect. We found that patients carrying a short KCNN3 allele exhibited significantly increased incidence of taxane neuropathy compared with those carrying longer alleles.Conclusions: The clinical implication of these findings is that KCNN3 polymorphism may increase patient susceptibility to taxane neurotoxicity and that the use of SK3 blockers during taxanes' administration may represent an interesting approach for the prevention of this neurotoxicity. Clin Cancer Res; 24(21); 5313-20. ©2018 AACR.
Collapse
Affiliation(s)
- Carina Rua
- Université de Tours, Inserm, N2C UMR1069, Tours, France.,CHRU Bretonneau, Tours, France.,Ion channels and Cancer Network of Canceropole Grand Ouest (IC-CGO), Nantes, France
| | - Maxime Guéguinou
- Université de Tours, Inserm, N2C UMR1069, Tours, France.,Ion channels and Cancer Network of Canceropole Grand Ouest (IC-CGO), Nantes, France
| | - Imane Soubai
- CHRU Bretonneau, Tours, France.,Université de Tours, Faculté de Pharmacie, Tours, France
| | | | - Marie Potier-Cartereau
- Université de Tours, Inserm, N2C UMR1069, Tours, France.,Ion channels and Cancer Network of Canceropole Grand Ouest (IC-CGO), Nantes, France.,Université de Tours, Faculté de Sciences et Techniques, Tours, France
| | - Aurélie Chantome
- Université de Tours, Inserm, N2C UMR1069, Tours, France.,Ion channels and Cancer Network of Canceropole Grand Ouest (IC-CGO), Nantes, France
| | | | - Philippe Bougnoux
- Université de Tours, Inserm, N2C UMR1069, Tours, France.,CHRU Bretonneau, Tours, France.,Ion channels and Cancer Network of Canceropole Grand Ouest (IC-CGO), Nantes, France.,Université de Tours, Faculté de Médecine, Tours, France
| | - Chantal Barin-Le Guellec
- Université de Tours, Faculté de Médecine, Tours, France.,Université de Limoges, Inserm, UMR1248, Limoges, France
| | - Christophe Vandier
- Université de Tours, Inserm, N2C UMR1069, Tours, France. .,Ion channels and Cancer Network of Canceropole Grand Ouest (IC-CGO), Nantes, France.,Université de Tours, Faculté de Sciences et Techniques, Tours, France
| |
Collapse
|
44
|
Inositol-C2-PAF acts as a biological response modifier and antagonizes cancer-relevant processes in mammary carcinoma cells. Cell Oncol (Dordr) 2018; 41:505-516. [PMID: 30047091 DOI: 10.1007/s13402-018-0387-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2018] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Previous studies have identified alkyl-phospholipids as promising compounds for cancer therapy by targeting constituents of the cell membrane and different signaling pathways. We previously showed that the alkylphospholipid Inositol-C2-PAF inhibits the proliferation and migration of immortalized keratinocytes and the squamous carcinoma-derived cell line SCC-25. Here, we investigated the effect of this compound on growth and motility as well as its mode of action in mammary carcinoma-derived cell lines. METHODS Using BrdU incorporation and haptotactic cell migration assays, we assessed the effects of Inositol-C2-PAF on MCF-7 and MBA-MB-231 cell proliferation and migration. The phosphorylation status of signaling molecules was investigated by Western blotting as well as indirect immunofluorescence analysis and capillary isoelectric focusing. RESULTS We found that Inositol-C2-PAF inhibited the growth as well as the migration in MCF-7 and MBA-MB-231 cells. Furthermore, we found that this compound inhibited phosphorylation of the protein kinase Akt at serine residue 473, but had no impact on phosphorylation at threonine 308. Phosphorylation of other kinases, such as Erk1/2, FAK and Src, which are targeted by Inositol-C2-PAF in other cells, remained unaffected by the compound in the mammary carcinoma-derived cell lines tested. In MCF-7 cells, we found that IGF-1-induced growth, as well as phosphorylation of AktS473, mTOR and the tumor suppressor pRB, was inhibited in the presence of Inositol-C2-PAF. Moreover, we found that in these cells IGF-1 had no impact on migration and did not seem to be linked to full Akt activity. Therefore, MCF-7 cell migration appears to be inhibited by Ino-C2-PAF in an Akt-independent manner. CONCLUSION The antagonistic effects of Inositol-C2-PAF on cell migration and proliferation are indicative for its potential for breast cancer therapy, alone or in combination with other cytostatic drugs.
Collapse
|
45
|
Ausili A, Martínez-Valera P, Torrecillas A, Gómez-Murcia V, de Godos AM, Corbalán-García S, Teruel JA, Gómez Fernández JC. Anticancer Agent Edelfosine Exhibits a High Affinity for Cholesterol and Disorganizes Liquid-Ordered Membrane Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8333-8346. [PMID: 29924618 DOI: 10.1021/acs.langmuir.8b01539] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Edelfosine is an anticancer drug with an asymmetric structure because, being a derivative of glycerol, it possesses two hydrophobic substituents of very different lengths. We showed that edelfosine destabilizes liquid-ordered membranes formed by either 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine, sphingomyelin (SM), and cholesterol (1:1:1 molar ratio) or SM and cholesterol (2:1 molar ratio). This was observed by differential scanning calorimetry in which phase transition arises from either of these membrane systems after the addition of edelfosine. The alteration in the liquid-ordered domains was characterized by using a small-angle X-ray diffraction that revealed the formation of gel phases as a consequence of the addition of edelfosine at low temperatures and by a wide-angle X-ray diffraction that confirmed changes in the membranes, indicating the formation of these gel phases. The increase in phase transition derived by the edelfosine addition was further confirmed by Fourier-transform infrared spectroscopy. The effect of edelfosine was compared with that of structurally analogue lipids: platelet-activating factor and 1-palmitoyl-2-acetyl- sn-glycero-3-phosphocholine, which also have the capacity of destabilizing liquid-ordered domains, although they are less potent than edelfosine for this activity, and lysophosphatidylcholine, which lacks this capacity. It was concluded that edelfosine may be associated with cholesterol favorably competing with sphingomyelin, and that this sets sphingomyelin free to undergo a phase transition. Finally, the experimental observations can be described by molecular dynamics calculations in terms of intermolecular interaction energies in phospholipid-cholesterol membranes. Higher interaction energies between asymmetric phospholipids and cholesterol than between sphingomyelin and cholesterol were obtained. These results are interesting because they biophysically characterize one of the main molecular mechanisms to trigger apoptosis of the cancer cells.
Collapse
Affiliation(s)
- Alessio Ausili
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Pablo Martínez-Valera
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Alejandro Torrecillas
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Victoria Gómez-Murcia
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Ana M de Godos
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Senena Corbalán-García
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - José A Teruel
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Juan C Gómez Fernández
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| |
Collapse
|
46
|
Pinault M, Guimaraes C, Couthon H, Thibonnet J, Fontaine D, Chantôme A, Chevalier S, Besson P, Jaffrès PA, Vandier C. Synthesis of Alkyl-Glycerolipids Standards for Gas Chromatography Analysis: Application for Chimera and Shark Liver Oils. Mar Drugs 2018; 16:E101. [PMID: 29570630 PMCID: PMC5923388 DOI: 10.3390/md16040101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 02/05/2023] Open
Abstract
Natural O-alkyl-glycerolipids, also known as alkyl-ether-lipids (AEL), feature a long fatty alkyl chain linked to the glycerol unit by an ether bond. AEL are ubiquitously found in different tissues but, are abundant in shark liver oil, breast milk, red blood cells, blood plasma, and bone marrow. Only a few AEL are commercially available, while many others with saturated or mono-unsaturated alkyl chains of variable length are not available. These compounds are, however, necessary as standards for analytical methods. Here, we investigated different reported procedures and we adapted some of them to prepare a series of 1-O-alkyl-glycerols featuring mainly saturated alkyl chains of various lengths (14:0, 16:0, 17:0, 19:0, 20:0, 22:0) and two monounsaturated chains (16:1, 18:1). All of these standards were fully characterized by NMR and GC-MS. Finally, we used these standards to identify the AEL subtypes in shark and chimera liver oils. The distribution of the identified AEL were: 14:0 (20-24%), 16:0 (42-54%) and 18:1 (6-16%) and, to a lesser extent, (0.2-2%) for each of the following: 16:1, 17:0, 18:0, and 20:0. These standards open the possibilities to identify AEL subtypes in tumours and compare their composition to those of non-tumour tissues.
Collapse
Affiliation(s)
| | | | - Hélène Couthon
- CEMCA, CNRS UMR6521, Université de Brest, IBSAM, 6 Av V. Le Gorgeu, 29238 Brest, France.
| | - Jérôme Thibonnet
- Equipe SIMBA, Synthèse et Isolement de Molécules BioActives, EA 7502, Université de Tours, 37000 Tours, France.
- Faculté de Sciences et Techniques, Université de Tours, 37000 Tours, France.
| | | | - Aurélie Chantôme
- Inserm, UMR1069, Université de Tours, 37000 Tours, France.
- Faculté de Pharmacie, Université de Tours, 37000 Tours, France.
| | - Stephan Chevalier
- Inserm, UMR1069, Université de Tours, 37000 Tours, France.
- Faculté de Pharmacie, Université de Tours, 37000 Tours, France.
| | - Pierre Besson
- Inserm, UMR1069, Université de Tours, 37000 Tours, France.
- Faculté de Pharmacie, Université de Tours, 37000 Tours, France.
| | - Paul-Alain Jaffrès
- CEMCA, CNRS UMR6521, Université de Brest, IBSAM, 6 Av V. Le Gorgeu, 29238 Brest, France.
| | - Christophe Vandier
- Inserm, UMR1069, Université de Tours, 37000 Tours, France.
- Faculté de Sciences et Techniques, Université de Tours, 37000 Tours, France.
| |
Collapse
|
47
|
Alcalde-Estévez E, Arroba AI, Sánchez-Fernández EM, Mellet CO, García Fernández JM, Masgrau L, Valverde ÁM. The sp 2-iminosugar glycolipid 1-dodecylsulfonyl-5N,6O-oxomethylidenenojirimycin (DSO 2-ONJ) as selective anti-inflammatory agent by modulation of hemeoxygenase-1 in Bv.2 microglial cells and retinal explants. Food Chem Toxicol 2017; 111:454-466. [PMID: 29191728 DOI: 10.1016/j.fct.2017.11.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/17/2022]
Abstract
Neuroinflammation is an early event during diabetic retinopathy (DR) that impacts the dynamics of microglia polarization. Gliosis is a hallmark of DR and we have reported the beneficial effects of 1R-DSO-ONJ, a member of the sp2-iminosugar glycolipid (sp2-IGL) family, in targeting microglia and reducing gliosis in diabetic db/db mice. Herein, we analyzed the effect of DSO2-ONJ, another family compound incorporating a sulfone group that better mimics the phosphate group of phosphatidylinositol ether lipid analogues (PIAs), in Bv.2 microglial cells treated with bacterial lipopolysaccaride (LPS) and in retinal explants from db/db mice. In addition to decreasing iNOS and inflammasome activation, the anti-inflammatory effect of DSO2-ONJ was mediated by direct p38α MAPK activation. Computational docking experiments demonstrated that DSO2-ONJ binds to p38α MAPK at the same site where PIAs and the alkyl phospholipid perifosine activators do, suggesting similar mechanism of action. Moreover, treatment of microglial cells with DSO2-ONJ increased both heme-oxygenase (HO)-1 and Il10 expression regardless the presence of LPS. In retinal explants from db/db mice, DSO2-ONJ also induced HO-1 and reduced gliosis. Since IL-10-mediated induction of HO-1 expression is mediated by p38α MAPK activation, our results suggest that this molecular mechanism is involved in the anti-inflammatory effects of DSO2-ONJ in microglia.
Collapse
Affiliation(s)
- Elena Alcalde-Estévez
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm) (CSIC/UAM), C/ Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, 28029 Madrid, Spain.
| | - Ana I Arroba
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm) (CSIC/UAM), C/ Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, 28029 Madrid, Spain.
| | | | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain.
| | - Jose M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Laura Masgrau
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm) (CSIC/UAM), C/ Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, 28029 Madrid, Spain.
| |
Collapse
|
48
|
Herrera F, Sevrain CM, Jaffrès PA, Couthon H, Grélard A, Dufourc EJ, Chantôme A, Potier-Cartereau M, Vandier C, Bouchet AM. Singular Interaction between an Antimetastatic Agent and the Lipid Bilayer: The Ohmline Case. ACS OMEGA 2017; 2:6361-6370. [PMID: 30023517 PMCID: PMC6045331 DOI: 10.1021/acsomega.7b00936] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/08/2017] [Indexed: 06/08/2023]
Abstract
SK3 channels are abnormaly expressed in metastatic cells, and Ohmline (OHM), an ether lipid, has been shown to reduce the activity of SK3 channels and the migration capacity of cancer cells. OHM incorporation into the plasma membrane is proposed to dissociate the protein complex formed between SK3 and Orai1, a potassium and a calcium channel, respectively, and would lead to a modification in the lipid environment of both the proteins. Here, we report the synthesis of deuterated OHM that affords the determination, through solid-state NMR, of its entire partitioning into membranes mimicking the SK3 environment. Use of deuterated lipids affords the demonstration of an OHM-induced membrane disordering, which is dose-dependent and increases with increasing amounts of cholesterol (CHOL). Molecular dynamics simulations comfort the disordering action and show that OHM interacts with the carbonyl and phosphate groups of stearoylphosphatidylcholine and sphingomyelin and to a minor extent with CHOL. OHM is thus proposed to remove the CHOL OH moieties away from their main binding sites, forcing a new rearrangement with other lipid groups. Such an interaction takes its origin at the lipid-water interface, but it propagates toward the entire lipid molecules and leads to a cooperative destabilization of the lipid acyl chains, that is, membrane disordering. The consequences of this reorganization of the lipid phases are discussed in the context of the OHM-induced inhibition of SK3 channels.
Collapse
Affiliation(s)
- Fernando
E. Herrera
- Physics
Department, Universidad Nacional del Litoral,
Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Charlotte M. Sevrain
- Université
de Brest, CEMCA, UMR CNRS 6521, IBSAM, 6, Avenue Victor le Gorgeu, 29238 Brest, France
- Network
and Cancer-Canceropole Grand Ouest, (IC-CGO), Maison de la Recherche
en Santé, 63 Quai
Magellan, 44000 Nantes, France
| | - Paul-Alain Jaffrès
- Université
de Brest, CEMCA, UMR CNRS 6521, IBSAM, 6, Avenue Victor le Gorgeu, 29238 Brest, France
- Network
and Cancer-Canceropole Grand Ouest, (IC-CGO), Maison de la Recherche
en Santé, 63 Quai
Magellan, 44000 Nantes, France
| | - Hélène Couthon
- Université
de Brest, CEMCA, UMR CNRS 6521, IBSAM, 6, Avenue Victor le Gorgeu, 29238 Brest, France
- Network
and Cancer-Canceropole Grand Ouest, (IC-CGO), Maison de la Recherche
en Santé, 63 Quai
Magellan, 44000 Nantes, France
| | - Axelle Grélard
- Université
Bordeaux, Institute of Chemistry & Biology of Membranes &
Nanoobjects, UMR5248 CNRS, Allée de Geoffroy St Hilaire Bât B14 Pessac, 33600 Bordeaux, France
| | - Erick J. Dufourc
- Université
Bordeaux, Institute of Chemistry & Biology of Membranes &
Nanoobjects, UMR5248 CNRS, Allée de Geoffroy St Hilaire Bât B14 Pessac, 33600 Bordeaux, France
| | - Aurélie Chantôme
- Network
and Cancer-Canceropole Grand Ouest, (IC-CGO), Maison de la Recherche
en Santé, 63 Quai
Magellan, 44000 Nantes, France
- Université
François Rabelais de Tours, Nutrition, Croissance et Cancer, Inserm UMR1069, 10 Boulevard Tonnellé Bât. Dutrochet, 2ème étage, 37032 Tours, France
| | - Marie Potier-Cartereau
- Network
and Cancer-Canceropole Grand Ouest, (IC-CGO), Maison de la Recherche
en Santé, 63 Quai
Magellan, 44000 Nantes, France
- Université
François Rabelais de Tours, Nutrition, Croissance et Cancer, Inserm UMR1069, 10 Boulevard Tonnellé Bât. Dutrochet, 2ème étage, 37032 Tours, France
| | - Christophe Vandier
- Network
and Cancer-Canceropole Grand Ouest, (IC-CGO), Maison de la Recherche
en Santé, 63 Quai
Magellan, 44000 Nantes, France
- Université
François Rabelais de Tours, Nutrition, Croissance et Cancer, Inserm UMR1069, 10 Boulevard Tonnellé Bât. Dutrochet, 2ème étage, 37032 Tours, France
| | - Ana M. Bouchet
- Network
and Cancer-Canceropole Grand Ouest, (IC-CGO), Maison de la Recherche
en Santé, 63 Quai
Magellan, 44000 Nantes, France
- Université
François Rabelais de Tours, Nutrition, Croissance et Cancer, Inserm UMR1069, 10 Boulevard Tonnellé Bât. Dutrochet, 2ème étage, 37032 Tours, France
| |
Collapse
|
49
|
Tambellini NP, Zaremberg V, Krishnaiah S, Turner RJ, Weljie AM. Primary Metabolism and Medium-Chain Fatty Acid Alterations Precede Long-Chain Fatty Acid Changes Impacting Neutral Lipid Metabolism in Response to an Anticancer Lysophosphatidylcholine Analogue in Yeast. J Proteome Res 2017; 16:3741-3752. [PMID: 28849941 DOI: 10.1021/acs.jproteome.7b00430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nonmetabolizable lysophosphatidylcholine (LysoPC) analogue edelfosine is the prototype of a class of compounds being investigated for their potential as selective chemotherapeutic agents. Edelfosine targets membranes, disturbing cellular homeostasis. Is not clear at this point how membrane alterations are communicated between intracellular compartments leading to growth inhibition and eventual cell death. In the present study, a combined metabolomics/lipidomics approach for the unbiased identification of metabolic pathways altered in yeast treated with sublethal concentrations of the LysoPC analogue was employed. Mass spectrometry of polar metabolites, fatty acids, and lipidomic profiling was used to study the effects of edelfosine on yeast metabolism. Amino acid and sugar metabolism, the Krebs cycle, and fatty acid profiles were most disrupted, with polar metabolites and short-medium chain fatty acid changes preceding long and very long-chain fatty acid variations. Initial increases in metabolites such as trehalose, proline, and γ-amino butyric acid with a concomitant decrease in metabolites of the Krebs cycle, citrate and fumarate, are interpreted as a cellular attempt to offset oxidative stress in response to mitochondrial dysfunction induced by the treatment. Notably, alanine, inositol, and myristoleic acid showed a steady increase during the period analyzed (2, 4, and 6 h after treatment). Of importance was the finding that edelfosine induced significant alterations in neutral glycerolipid metabolism resulting in a significant increase in the signaling lipid diacylglycerol.
Collapse
Affiliation(s)
- Nicolas P Tambellini
- Department of Biological Sciences, University of Calgary , Calgary, Alberta T2N 1N4, Canada.,Metabolomics Research Centre, University of Calgary , Calgary, Alberta T2N 1N4, Canada
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary , Calgary, Alberta T2N 1N4, Canada
| | - Saikumari Krishnaiah
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania 19104-5158, United States of America
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary , Calgary, Alberta T2N 1N4, Canada
| | - Aalim M Weljie
- Department of Biological Sciences, University of Calgary , Calgary, Alberta T2N 1N4, Canada.,Metabolomics Research Centre, University of Calgary , Calgary, Alberta T2N 1N4, Canada.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania 19104-5158, United States of America
| |
Collapse
|
50
|
Pandey K, Kereilwe O, Kadokawa H. Heifers express G-protein coupled receptor 153 in anterior pituitary gonadotrophs in stage-dependent manner. Anim Sci J 2017; 89:60-71. [PMID: 28960688 DOI: 10.1111/asj.12920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/03/2017] [Indexed: 12/26/2022]
Abstract
We recently found that orphan G-protein-coupled receptor (GPR)153 is expressed in the anterior pituitary (AP) of heifers, leading us to speculate that GPR153 colocalizes with gonadotropin-releasing hormone receptor (GnRHR) in the plasma membrane of gonadotrophs and is expressed at specific times of the reproductive cycle. To test this hypothesis, we examined the coexpression of GnRHR, GPR153, and either luteinizing hormone or follicle-stimulating hormone in AP tissue and cultured AP cells by immunofluorescence microscopy. GPR153 was detected in the gonadotrophs, and was colocalized with GnRHR in the plasma membrane. GPR153 was also detected in the cytoplasm of cultured gonadotrophs. Real-time PCR and western blot analyses found that expression was lower (P < 0.05) in AP tissues during early luteal phase as compared to pre-ovulation or late luteal phases. The 5'-flanking region of the GPR153 gene contained a consensus response element sequence for estrogen, but not for progesterone. These data suggest that some, but not all GPR153 colocalizes with GnRHR in the plasma membrane of gonadotrophs, and its expression changes stage-dependently in the bovine AP.
Collapse
Affiliation(s)
- Kiran Pandey
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Onalenna Kereilwe
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hiroya Kadokawa
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|