1
|
Yao L, Tao Q, Xian F, Chen Z, Huang L, Zhong N, Gao J. Development of pullulan/gellan gum films loaded with astaxanthin nanoemulsion for enhanced strawberry preservation. Food Res Int 2025; 201:115644. [PMID: 39849784 DOI: 10.1016/j.foodres.2024.115644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/05/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Innovative packaging materials are essential for preserving food, serving as a substitute for petroleum-based options. In this study, biofilms consisting of pullulan and gellan gum which incorporates astaxanthin nanoemulsion were prepared to extend the shelf-life of strawberries. Hydrophobic deep eutectic solvents (DES) were used as solvents to extract natural astaxanthin from Haematococcus pluvialis. Water-in-oil emulsions were prepared with the DES (containing Ast of 95 μg/mL), tween 20, and water (containing chitosan of 0.3 % and sodium tripolyphosphate of 0.1 %) at a mass ratio of 7:8:85. The average diameter of the astaxanthin nanoemulsion ranged from 167.70 to 351.03 nm, and showed exceptional stability with a retention rate of 95.37 % at 25 °C on the seventh day. Moreover, the nanoemulsion exhibited high antioxidant activity, with an IC50 value of 14.87 μg/mL and high antibacterial effect to E. coli and S. aureus. In the process of preparing the pullulan and gellan gum biofilms, this antioxidant effect and antibacterial effect are maximally preserved. Furthermore, following 20 days of storage with the biofilm, the strawberry experienced a weight loss of 12.48 %, a soluble solid content of 7.4 %, an ascorbic acid content of 0.75 %, and a titrable acidity of 36.45 mg/100 g. The shelf-life of the strawberry was significantly prolonged using the biofilms loaded with astaxanthin nanoemulsion to a minimum of 18 days, surpassing the 12-day shelf-life of those stored with neatfilm. Therefore, the astaxanthin nanoemulsion combined with pullulan and gellan gum biofilms offers an innovative alternative for active food packaging.
Collapse
Affiliation(s)
- Liuchun Yao
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| | - Qing Tao
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| | - Feng Xian
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| | - Zhipeng Chen
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| | - Liangliang Huang
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| | - Nanjing Zhong
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| | - Jing Gao
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, China.
| |
Collapse
|
2
|
Leal MRS, Lima LRA, Rodrigues NER, Soares PAG, Carneiro-da-Cunha MG, Albuquerque PBS. A review on the biological activities and the nutraceutical potential of chitooligosaccharides. Carbohydr Res 2025; 548:109336. [PMID: 39637700 DOI: 10.1016/j.carres.2024.109336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Chitooligosaccharides (CHOS) or chitosan oligosaccharides (COS) are oligomers mainly composed of d-glucosamine (GlcN) units and structured in a positively charged, basic, amino molecule obtained from the degradation of chitin/chitosan through physical, chemical, or enzymatic methods. CHOS display physicochemical properties attractive to applications from the food to the biomedical field, such as non-toxicity to humans, high water solubility, low viscosity, biocompatibility, and biodegradability. These properties also allow CHOS to exert important biological activities, for example, antioxidant, antimicrobial, anti-inflammatory, immunomodulatory, antitumor, and hypocholesterolemic ones, besides to exhibit applications in food systems, technological, and nutraceutical potential. Therefore, this study summarized the synthesis and chemical structure, biological functions, and mechanisms of action of CHOS; with this, we aimed to contribute to the knowledge about the application of CHOS from the food to the biomedical industries.
Collapse
Affiliation(s)
- Makyson R S Leal
- Programa de Pós-Graduação em Biologia Aplicada à Saúde (PPGBAS), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-900, Recife, PE, Brazil; Laboratório de Bioprospecção e Etnofarmacotoxicologia Aplicada (LABEA), Universidade de Pernambuco (UPE), Garanhuns, PE, Brazil
| | - Luiza R A Lima
- Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental, Universidade de Pernambuco (UPE), R. Capitão Pedro Rodrigues, 105, São José, CEP 55.295-110, Garanhuns, PE, Brazil
| | - Natalie E R Rodrigues
- Laboratório de Bioprospecção e Etnofarmacotoxicologia Aplicada (LABEA), Universidade de Pernambuco (UPE), Garanhuns, PE, Brazil
| | - Paulo A G Soares
- Programa de Pós-Graduação em Biologia Aplicada à Saúde (PPGBAS), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-900, Recife, PE, Brazil; Departamento de Bioquímica, Centro de Biociências, UFPE, Recife, PE, Brazil
| | - Maria G Carneiro-da-Cunha
- Programa de Pós-Graduação em Biologia Aplicada à Saúde (PPGBAS), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-900, Recife, PE, Brazil; Departamento de Bioquímica, Centro de Biociências, UFPE, Recife, PE, Brazil
| | - Priscilla B S Albuquerque
- Programa de Pós-Graduação em Biologia Aplicada à Saúde (PPGBAS), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-900, Recife, PE, Brazil; Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental, Universidade de Pernambuco (UPE), R. Capitão Pedro Rodrigues, 105, São José, CEP 55.295-110, Garanhuns, PE, Brazil; Laboratório de Bioprospecção e Etnofarmacotoxicologia Aplicada (LABEA), Universidade de Pernambuco (UPE), Garanhuns, PE, Brazil.
| |
Collapse
|
3
|
Tonphu K, Mueangaun S, Lerkdumnernkit N, Sengking J, Tocharus J, Benjakul S, Mittal A, Tocharus C. Chitooligosaccharide-epigallocatechin gallate conjugate ameliorates lipid accumulation and promotes browning of white adipose tissue in high fat diet fed rats. Chem Biol Interact 2025; 406:111316. [PMID: 39577827 DOI: 10.1016/j.cbi.2024.111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
The prevalence of obesity has increased progressively worldwide. Obesity is characterized by excessive accumulation of fat in adipose tissues, leading to metabolic impairment. The anti-obese effects of chitooligosaccharide (COS) and epigallocatechin-3-gallate (EGCG) have been extensively clarified. This study aimed to investigate the effects and potential mechanisms of the COS-EGCG conjugate (CE) on anti-obesity, specifically by alleviating lipid accumulation and promoting the browning of white adipose tissue (WAT) in obese rats. Obesity as a consequence of a high-fat diet (HFD) was induced in male Wistar rats. The HFD was given for 16 weeks and the rats were then randomly subdivided into five groups namely: vehicle (control group), HFD plus CE at 150 mg/kg/day, HFD plus CE at 600 mg/kg/day, HFD plus COS at 600 mg/kg/day, and HFD plus atorvastatin at 10 mg/kg/day for 4 weeks. CE could reduce body weight, improve serum lipid profiles, and promote lipid metabolism via activation of AMP-activated protein kinase (AMPK) in WAT and enhance the processes of WAT browning by activating sirtuin 1 (Sirt 1), peroxisome proliferator-activated receptor-gamma coactivator (PGC1-α), and uncoupling the protein 1 (UCP1) signaling pathway. CE reduced obesity and promoted WAT browning in HFD-fed rats. Therefore, CE might be a new therapy for metabolic syndrome and obesity.
Collapse
Affiliation(s)
- Kanokrada Tonphu
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sirikul Mueangaun
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Natcha Lerkdumnernkit
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jirakhamon Sengking
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
4
|
Alnagar AN, Motawea A, Zaghloul RA, Eldesoqui M, Abu Hashim II. A Novel Facile and Efficient Prophylaxis Avenue of Chitosan Oligosaccharide/PLGA Based Polydatin Loaded Nanoparticles Against Bleomycin-Induced Lung Inflammation in Experimental Rat Model. AAPS PharmSciTech 2025; 26:35. [PMID: 39820828 DOI: 10.1208/s12249-024-03022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/05/2024] [Indexed: 01/19/2025] Open
Abstract
Lung inflammation is a hallmark of several respiratory diseases. Despite the great effectiveness of the synthetic antiinflammatory agents, they cause potential side effects. Polydatin (PD), a natural phytomedicine, has antioxidant and antiinflammatory effects. Its clinical applications are hindered due to poor aqueous solubility, low bioavailability, and rapid metabolism by first-pass effect. Herein, we report the development of a novel chitosan oligosaccharide-coated PD-loaded Poly dl-lactide-co-glycolide nanoparticles (COS-coated PD/PLGA NPs) against a bleomycin-induced pulmonary inflammation in a rat model. The NPs exhibited a small particle size of 188.57 ± 5.68 nm and a high zeta potential of + 18.13 ± 2.75 mV with spherical architecture and sustained release pattern of PD. In vivo studies in bleomycin-induced lung inflammation in a rat model revealed the superior prophylactic activity of COS-coated PD/PLGA NPs over the free drug (PD) as demonstrated by histopathological and immunohistochemical analyses, alongside biochemical assays evaluating oxidative stress biomarkers and inflammatory cytokine levels. Overall, the optimized COS-coated PD/PLGA NPs formulation offers a promising prophylactic platform against many respiratory diseases.
Collapse
Affiliation(s)
- Ahmed Nashaat Alnagar
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Dakahlia, Egypt
| | - Amira Motawea
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Dakahlia, Egypt.
| | - Randa A Zaghloul
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Dakahlia, Egypt
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, 13713, DiriyahRiyadh, Saudi Arabia
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Irhan Ibrahim Abu Hashim
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Dakahlia, Egypt
| |
Collapse
|
5
|
Lin Z, Zhou Y, Chen R, Tao Q, Lu Q, Xu Q, Yu H, Jiang P, Zhao Z. Protective Effects of Chitosan Oligosaccharide Against Lipopolysaccharide-Induced Inflammatory Response and Oxidative Stress in Bovine Mammary Epithelial Cells. Mar Drugs 2025; 23:31. [PMID: 39852532 PMCID: PMC11767086 DOI: 10.3390/md23010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/25/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Chitosan oligosaccharide (COS) is receiving increasing attention as a feed additive in animal production. COS has a variety of biological functions, including anti-inflammatory and antioxidant activities. Mastitis is a major disease in dairy cows that has a significant impact on animal welfare and production. Hence, this research aimed to investigate the mechanism of COS on the lipopolysaccharide (LPS)-stimulated inflammatory response and oxidative stress in bovine mammary epithelial cells (BMECs). In this study, the results demonstrated that COS protected BMECs from the inflammatory response induced by LPS by restraining the excessive production of toll-like receptor 4 (TLR4), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β). COS treatment also suppressed excessive reactive oxygen species (ROS) production and restored antioxidant enzyme activity under LPS-induced oxidative stress conditions. Furthermore, the results also demonstrated that COS promote nuclear factor erythroid 2-related factor 2 (Nrf2) expression and inhibit TLR4 levels and p65 and IκBα phosphorylation in BMECs exposed to LPS. In summary, the results demonstrate that the protective mechanism of COS on the LPS-induced inflammatory response and oxidative stress depend on the TLR4/nuclear factor-κB (NF-κB) and Nrf2 signaling pathways, indicating that COS could serve as natural protective agents for alleviating BMECs in mastitis.
Collapse
Affiliation(s)
- Ziwei Lin
- The Key Laboratory of Animal Genetic Resource and Breeding Innovation, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.); (Y.Z.); (R.C.); (Q.T.); (Q.L.); (Q.X.); (H.Y.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Yanlong Zhou
- The Key Laboratory of Animal Genetic Resource and Breeding Innovation, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.); (Y.Z.); (R.C.); (Q.T.); (Q.L.); (Q.X.); (H.Y.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Ruiwen Chen
- The Key Laboratory of Animal Genetic Resource and Breeding Innovation, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.); (Y.Z.); (R.C.); (Q.T.); (Q.L.); (Q.X.); (H.Y.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Qiuyan Tao
- The Key Laboratory of Animal Genetic Resource and Breeding Innovation, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.); (Y.Z.); (R.C.); (Q.T.); (Q.L.); (Q.X.); (H.Y.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Qiwen Lu
- The Key Laboratory of Animal Genetic Resource and Breeding Innovation, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.); (Y.Z.); (R.C.); (Q.T.); (Q.L.); (Q.X.); (H.Y.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Qianchao Xu
- The Key Laboratory of Animal Genetic Resource and Breeding Innovation, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.); (Y.Z.); (R.C.); (Q.T.); (Q.L.); (Q.X.); (H.Y.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Haibin Yu
- The Key Laboratory of Animal Genetic Resource and Breeding Innovation, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.); (Y.Z.); (R.C.); (Q.T.); (Q.L.); (Q.X.); (H.Y.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Ping Jiang
- The Key Laboratory of Animal Genetic Resource and Breeding Innovation, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.); (Y.Z.); (R.C.); (Q.T.); (Q.L.); (Q.X.); (H.Y.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Zhihui Zhao
- The Key Laboratory of Animal Genetic Resource and Breeding Innovation, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.); (Y.Z.); (R.C.); (Q.T.); (Q.L.); (Q.X.); (H.Y.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| |
Collapse
|
6
|
D'Alessandro M, Schouten MA, Gottardi D, Cortesi S, Romani S, Patrignani F. Technological and microbiological characterization of an industrial soft-sliced bread enriched with chitosan and its prebiotic activity. Curr Res Food Sci 2024; 9:100935. [PMID: 39697467 PMCID: PMC11652935 DOI: 10.1016/j.crfs.2024.100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/01/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
Several studies have described the effects of chitosan as an ingredient in bread, particularly from a technological and functional point of view. However, these studies mainly focus on breads produced at lab scale with a short shelf life, which may not reflect the changes occurring in industrial production. Our study investigated the potential of using chitosan at an industrial scale to produce soft white bread, evaluating its impact on the final product's shelf life and providing deeper insights into the practical possibilities and limitations of its scalability. In particular, the rheological properties of the dough and the overall qualitative characteristics of the breads were evaluated when chitosan was used at 0.75 and 1.5%. The use of chitosan in bread dough increased its viscoelasticity, firmness and extensibility, making the dough more elastic but harder to mold and process industrially (extension resistance: 41.70 for 1.5% chitosan vs 22.55 for the control). Chitosan breads exhibited higher pH, aw (1.5%: 0.955 vs control: 0.934), firmness and a larger pore size, with a lower cut height and a more pronounced colour due to increased Maillard reactions. Microbiologically, the chitosan breads were within acceptable limits (<4 and 3 log CFU/g for aerobic mesophilic bacteria and yeasts, respectively) but showed no effect on spoilage microbiota. However, the addition of chitosan increased the prebiotic activity of the bread, as assessed by its ability to promote the growth of selected probiotics in simulated intestinal fluid, which has the potential to positively impact consumers' gut health.
Collapse
Affiliation(s)
- Margherita D'Alessandro
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI-Agro), University of Bologna, Via Quinto Bucci 336, 47521, Cesena, Italy
| | - Maria Alessia Schouten
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521, Cesena, Italy
| | - Davide Gottardi
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI-Agro), University of Bologna, Via Quinto Bucci 336, 47521, Cesena, Italy
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521, Cesena, Italy
| | - Sara Cortesi
- Orva Spa, Via M. Tarroni 15, 48012, Bagnacavallo, RA, Italy
| | - Santina Romani
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI-Agro), University of Bologna, Via Quinto Bucci 336, 47521, Cesena, Italy
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521, Cesena, Italy
| | - Francesca Patrignani
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI-Agro), University of Bologna, Via Quinto Bucci 336, 47521, Cesena, Italy
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521, Cesena, Italy
| |
Collapse
|
7
|
Safi SZ, Fazil S, Saeed L, Shah H, Arshad M, Alobaid HM, Rehman F, Sharif F, Selvaraj C, Orakzai AH, Tariq M, Samrot AV, Qadeer A, Ali A, Batumalaie K, Subramaniyan V, Khan SA, Ismail ISB. Chitosan- and heparin-based advanced hydrogels: their chemistry, structure and biomedical applications. CHEMICAL PAPERS 2024. [DOI: 10.1007/s11696-024-03785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/21/2024] [Indexed: 11/22/2024]
|
8
|
Tang Y, Duan Z, Chen J, Zhang S. Isolation of a novel Bacillus strain with industrial potential of producing alkaline chitosanase. Int J Biol Macromol 2024; 281:135725. [PMID: 39414528 DOI: 10.1016/j.ijbiomac.2024.135725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/01/2024] [Accepted: 09/14/2024] [Indexed: 10/18/2024]
Abstract
A novel Bacillus strain, designated as HZ20-1, was discovered. This strain can produce naturally alkaline chitosanase without induction. Genomic analysis revealed that this chitosanase belongs to glycoside hydrolase family 8. When colloidal chitosan is used as a substrate, the maximum enzyme activity of 2.39 ± 0.03 U/mL is observed at a pH range of 8.5-9. This alkaline enzyme holds advantages over common acidic enzymes in various fields such as medicine, the environment, and daily chemical products, and thus has great market value. Moreover, as the chitosanase is a constitutive enzyme, there is no need for substrate induction. This can simplify fermentation equipment and reduce production cost. Additionally, in a preliminary study, we found that this strain can also degrade chitin and chitosan derivatives. After analysis, it was discovered that it has genes in glycoside hydrolase families 18 and 23. By controlling the enzymatic hydrolysis time, it is possible to produce products with different molecular weights, including N-acetylglucosamine, glucosamine, chito-oligosaccharides, and chitin oligosaccharides. Consequently, Bacillus sp. HZ20-1 is considered to have great potential for future industrial production of enzymes and oligosaccharides.
Collapse
Affiliation(s)
- Yuxin Tang
- Department of Biological Engineering, Shanghai Institute of Technology, Fengxian District, Shanghai, PR China
| | - Zhuliang Duan
- Department of Biological Engineering, Shanghai Institute of Technology, Fengxian District, Shanghai, PR China
| | - Julong Chen
- College of Biological Science and Medical Engineering, Donghua University, Songjiang District, Shanghai, PR China
| | - Shuo Zhang
- Department of Biological Engineering, Shanghai Institute of Technology, Fengxian District, Shanghai, PR China.
| |
Collapse
|
9
|
Liu Y, Wu J, Liu R, Li F, Xuan L, Wang Q, Li D, Chen X, Sun H, Li X, Jin C, Huang D, Li L, Tang G, Liu B. Vibrio cholerae virulence is blocked by chitosan oligosaccharide-mediated inhibition of ChsR activity. Nat Microbiol 2024; 9:2909-2922. [PMID: 39414933 DOI: 10.1038/s41564-024-01823-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/04/2024] [Indexed: 10/18/2024]
Abstract
Vibrio cholerae causes cholera, an important cause of death worldwide. A fuller understanding of how virulence is regulated offers the potential for developing virulence inhibitors, regarded as efficient therapeutic alternatives for cholera treatment. Here we show using competitive infections of wild-type and mutant bacteria that the regulator of chitosan utilization, ChsR, increases V. cholerae virulence in vivo. Mechanistically, RNA sequencing, chromatin immunoprecipitation with sequencing and molecular biology approaches revealed that ChsR directly upregulated the expression of the virulence regulator, TcpP, which promoted expression of the cholera toxin and the toxin co-regulated pilus, in response to low O2 levels in the small intestine. We also found that chitosan degradation products inhibit the ChsR-tcpP promoter interaction. Consistently, administration of chitosan oligosaccharide, particularly when delivered via sodium alginate microsphere carriers, reduced V. cholerae intestinal colonization and disease severity in mice by blocking the chsR-mediated pathway. These data reveal the potential of chitosan oligosaccharide as supplemental therapy for cholera treatment and prevention.
Collapse
Affiliation(s)
- Yutao Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Jialin Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ruiying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Fan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Leyan Xuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Qian Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Dan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - XinTong Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Hao Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Xiaoya Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Chen Jin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Di Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Linxing Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China.
| | - Bin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China.
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, People's Republic of China.
- Nankai International Advanced Research Institute, Shenzhen, People's Republic of China.
| |
Collapse
|
10
|
Han J, Ullah M, Andoh V, Khan MN, Feng Y, Guo Z, Chen H. Engineering Bacterial Chitinases for Industrial Application: From Protein Engineering to Bacterial Strains Mutation! A Comprehensive Review of Physical, Molecular, and Computational Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23082-23096. [PMID: 39388625 DOI: 10.1021/acs.jafc.4c06856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Bacterial chitinases are integral in breaking down chitin, the natural polymer in crustacean and insect exoskeletons. Their increasing utilization across various sectors such as agriculture, waste management, biotechnology, food processing, and pharmaceutical industries highlights their significance as biocatalysts. The current review investigates various scientific strategies to maximize the efficiency and production of bacterial chitinases for industrial use. Our goal is to optimize the heterologous production process using physical, molecular, and computational tools. Physical methods focus on isolating, purifying, and characterizing chitinases from various sources to ensure optimal conditions for maximum enzyme activity. Molecular techniques involve gene cloning, site-directed mutation, and CRISPR-Cas9 gene editing as an approach for creating chitinases with improved catalytic activity, substrate specificity, and stability. Computational approaches use molecular modeling, docking, and simulation techniques to accurately predict enzyme-substrate interactions and enhance chitinase variants' design. Integrating multidisciplinary strategies enables the development of highly efficient chitinases tailored for specific industrial applications. This review summarizes current knowledge and advances in chitinase engineering to serve as an indispensable guideline for researchers and industrialists seeking to optimize chitinase production for various uses.
Collapse
Affiliation(s)
- Jianda Han
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Mati Ullah
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Vivian Andoh
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Muhammad Nadeem Khan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, P. R. China
| | - Yong Feng
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Zhongjian Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| |
Collapse
|
11
|
Li N, Lu Y, Sheng X, Cao Y, Liu W, Zhou Z, Jiang L. Recent Progress in Enzymatic Preparation of Chitooligosaccharides with a Single Degree of Polymerization and Their Potential Applications in the Food Sector. Appl Biochem Biotechnol 2024; 196:6802-6816. [PMID: 38411934 DOI: 10.1007/s12010-024-04876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
Chitosan oligosaccharides (COS), derived from chitin, have garnered considerable attention owing to their diverse biological activities and potential applications. Previous investigations into the bioactivity of COS often encountered challenges, primarily stemming from the use of COS mixtures, making it difficult to discern specific effects linked to distinct degrees of polymerization (DP). Recent progress underscores the significant variation in the biological activities of COS corresponding to different DPs, prompting dedicated research towards synthesizing COS with well-defined polymerization. Among the available methods, enzymatic preparation stands out as a viable and environmentally friendly approach for COS synthesis. This article provides a comprehensive overview of emerging strategies for the enzymatic preparation of single COS, encompassing protein engineering, enzymatic membrane bioreactors, and transglycosylation reactions. Furthermore, the bioactivities of single COS, including anti-tumor, antioxidant, antibacterial, anti-inflammatory, and plant defense inducer properties, exhibit close associations with DP values. The potential applications of single COS, such as in functional food, food preservation, and crop planting, are also elucidated.
Collapse
Affiliation(s)
- Na Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Yuting Lu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xian Sheng
- Yixing Hospital of Traditional Chinese Medicine, Yixing, 214299, Jiangsu, China
| | - Yi Cao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Wei Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
| | - Zhi Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| |
Collapse
|
12
|
Zhao W, Jia Y, Li R, Li J, Zou X, Dong X. Effects of dietary Chitosan oligosaccharides supplementation on Th17/Treg balance and gut microbiota of early weaned pigeon squabs. Poult Sci 2024; 103:104088. [PMID: 39067116 PMCID: PMC11338107 DOI: 10.1016/j.psj.2024.104088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/19/2024] [Accepted: 07/06/2024] [Indexed: 07/30/2024] Open
Abstract
Our previous study found that early weaning is associated with decreased growth performance, intestinal barrier impairment, and an imbalance in Th17/Treg in pigeon squabs. Chitosan oligosaccharides (COS) has been substantiated to regulate gut microbiota and restore Th17/Treg equilibrium in mammals, thereby ameliorating growth performance. However, the potential effects of COS in altricial birds remain unclear. Three hundred healthy 7-day-old American king pigeon squabs were selected with similar body weights and randomly divided into 5 groups. The 5 treatment groups were as follows: the control group (CON), fed with artificial pigeon milk; 4 supplementation groups, fed with artificial pigeon milk +100 (COS1), 150 (COS2), 200 (COS3), and 250 (COS4) mg/kg COS, respectively. Results showed that dietary supplementation of COS significantly enhanced the growth performance of weaned squabs. Compared to the CON group, the COS groups exhibited increased villus length and villus area in the jejunum and ileum, accompanied by improvements in morphological structure and mucosal permeability. COS was found to reduce the levels of Th17-associated cytokines and increase the levels of Treg-associated cytokines. COS downregulated the expression of retinoic acid receptor-related orphan receptor C (RORC), a key transcription factor of Th17 cells, while upregulated the expression of Forkhead box protein P3 (FOXP3), a key transcription factor of Treg cells. Dietary COS supplementation increased gut bacterial diversity, altered the relative abundance of several bacteria taxa and enhanced the concentration of short-chain fatty acids (SCFA). Correlation analysis demonstrated a close association between gut microbiota, SCFAs, and indicators related to the Th17/Treg balance. Moreover, we found that SCFAs correlated more strongly with Th17/Treg-related indexes than gut microbiota. These results demonstrated that COS could relieve early weaning stress in pigeon squabs and the optimal dosage of dietary COS supplementation was suggested to be 200 mg/kg. In addition, COS had a protective effect on maintaining intestinal immune balance by modulating microbiota and Th17/Treg related signaling pathways, in which SCFAs might play a crucial role as messengers.
Collapse
Affiliation(s)
- Wenyan Zhao
- Key Laboratory for Molecular Animal Nutrition (Zhejiang University) of the Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Yubiao Jia
- Key Laboratory for Molecular Animal Nutrition (Zhejiang University) of the Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Ru Li
- Key Laboratory for Molecular Animal Nutrition (Zhejiang University) of the Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Jiankui Li
- Key Laboratory for Molecular Animal Nutrition (Zhejiang University) of the Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Xiaoting Zou
- Key Laboratory for Molecular Animal Nutrition (Zhejiang University) of the Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Xinyang Dong
- Key Laboratory for Molecular Animal Nutrition (Zhejiang University) of the Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, China.
| |
Collapse
|
13
|
Kurchenko V, Halavach T, Yantsevich A, Shramko M, Alieva L, Evdokimov I, Lodygin A, Tikhonov V, Nagdalian A, Ali Zainy FM, AL-Farga A, ALFaris NA, Shariati MA. Chitosan and its derivatives regulate lactic acid synthesis during milk fermentation. Front Nutr 2024; 11:1441355. [PMID: 39351492 PMCID: PMC11439701 DOI: 10.3389/fnut.2024.1441355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction The influence of chitosan's physicochemical characteristics on the functionality of lactic acid bacteria and the production of lactic acid remains very obscure and contradictory to date. While some studies have shown a stimulatory effect of oligochitosans on the growth of Lactobacillus spp, other studies declare a bactericidal effect of chitosan. The lack and contradiction of knowledge prompted us to study the effect of chitosan on the growth and productivity of L. bulgaricus in the presence of chitosan and its derivatives. Methods We used high molecular weight chitosan (350 kDa) and oligochitosans (25.4 and 45.3 kDa). The experiment was carried out with commercial strain of L. bulgaricus and the low fat skim cow milk powder reconstituted with sterile distilled water. After fermentation, dynamic viscosity, titratable acidity, pH, content of lactic acid, colony forming units, chitosan and oligochitosans radii were measured in the samples. Fermented dairy products were also examined using sodium dodecyl sulfate electrophoretic analysis, gas chromatography-mass spectrometry and light microscopy. Results and discussion The results of the study showed that when L. bulgaricus was cultured in the presence of 25.4 kDa oligochitosans at concentrations of 0.0025%, 0.005%, 0.0075% and 0.01%, the average rate of LA synthesis over 24 hours was 11.0 × 10-3 mol/L/h, 8.7 × 10-3 mol/L/h, 6.8 × 10-3 mol/L/h, 5.8 × 10-3 mol/L/h, respectively. The 45.3 kDa oligochitosans had a similar effect, while the average rate of lactic acid synthesis in the control sample was only 3.5 × 10-3 mol/L/h. Notably, 350 kDa chitosan did not affect the rate of lactic acid synthesis compared with the control sample. Interestingly, interaction of chitosan with L. bulgaricus led to a slowdown in the synthesis of propanol, an increase in the content of unsaturated and saturated fatty acids, and a change in the composition and content of other secondary metabolites. The quantity of L. bulgaricus in a sample with 0.01% chitosan exceeded their content in the control sample by more than 1,700 times. At the same chitosan concentration, the fermentation process was slowed down, increasing the shelf life of the fermented milk product from 5 to 17 days while maintaining a high content of L. bulgaricus (6.34 × 106 CFU/g).
Collapse
Affiliation(s)
- Vladimir Kurchenko
- Department of Biology, Belarusian State University, Minsk, Belarus
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, Stavropol, Russia
| | | | - Alexey Yantsevich
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Mariya Shramko
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, Stavropol, Russia
| | - Lyudmila Alieva
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, Stavropol, Russia
| | - Ivan Evdokimov
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, Stavropol, Russia
| | - Alexey Lodygin
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, Stavropol, Russia
| | - Vladimir Tikhonov
- Laboratory of Heterochain Polymers, A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, Russia
| | - Andrey Nagdalian
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, Stavropol, Russia
| | - Faten M. Ali Zainy
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Ammar AL-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Nora Abdullah ALFaris
- Department of Physical Sports Sciences, College of Sports Sciences and Physical Activity, Education, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohammad Ali Shariati
- Scientific Department, Semey Branch of the Kazakh Research Institute of Processing and Food Industry, Almaty, Kazakhstan
| |
Collapse
|
14
|
de la Rosa O, Aguayo-Acosta A, Valenzuela-Amaro HM, Meléndez-Sánchez ER, Sosa-Hernández JE, Parra-Saldívar R. Development of biomaterial composite hydrogel as a passive sampler with potential application in wastewater-based surveillance. Heliyon 2024; 10:e37014. [PMID: 39296035 PMCID: PMC11407980 DOI: 10.1016/j.heliyon.2024.e37014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/08/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
Nowadays, the need to track fast-spreading infectious diseases has raised due to the recent COVID-19 disease pandemic. As a response, Wastewater-based Surveillance (WBS) has emerged as an early detection and disease tracking method for large populations that enables a comprehensive overview of public health allowing for a faster response from public health sector to prevent large outbreaks. The process to achieve WBS requires a highly intensive sampling strategy with either expensive equipment or trained personnel to continuously sample. The sampling problem can be addressed by passive sampler development. Chitosan-based hydrogels are recognized for their capability to sample and remove various contaminants from wastewater, including metals, dyes, pharmaceuticals, among others. However, chitosan-based hydrogels unique characteristics, can be exploited to develop passive samplers of genetic material that can be a very valuable tool for WBS. This study aimed to develop a novel chitosan hydrogel formulation with enhanced characteristics suitable for use as a passive sampler of genetic material and its application to detect disease-causing pathogens present in wastewater. The study evaluates the effect of the concentration of different components on the formulation of a Chitosan composite hydrogel (Chitosan, Glutaraldehyde, Microcrystalline cellulose (MCC), and Polyethylene glycol (PEG)) on the hydrogel properties using a Box Hunter & Hunter experimental matrix. Hydrogels' weight, thickness, swelling ratio, microscopic morphology (SEM), FTIR assay, and zeta potential were characterized. The resulting hydrogel formulations were shown to be highly porous, positively charged (Zeta potential up to 35.80 ± 1.44 mV at pH 3) and with high water swelling capacity (up to 703.89 ± 15.00 %). Based on the results, a formulation from experimental design was selected and then evaluated its capacity to adsorb genetic material from a control spiked water with Influenza A virus synthetic vector. The adsorption capacity of the selected formulation was 4157.04 ± 64.74 Gene Copies/mL of Influenza A virus synthetic vector. The developed hydrogel showed potential to be used as passive sampler for pathogen detection in wastewater. However, deeper research can be conducted to improve adsorption, desorption and extraction techniques of genetic material from chitosan-hydrogel matrices.
Collapse
Affiliation(s)
- Orlando de la Rosa
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Alberto Aguayo-Acosta
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Hiram Martín Valenzuela-Amaro
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Edgar Ricardo Meléndez-Sánchez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| |
Collapse
|
15
|
Deng Z, Liu H, Chen G, Deng H, Dong X, Wang L, Tao F, Dai F, Cheng Y. Coaxial nanofibrous aerogel featuring porous network-structured channels for ovarian cancer treatment by sustained release of chitosan oligosaccharide. Int J Biol Macromol 2024; 276:133824. [PMID: 39002906 DOI: 10.1016/j.ijbiomac.2024.133824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Ovarian cancer, the deadliest gynecological malignancy, primarily treated with chemotherapy. However, systemic chemotherapy often leads to severe toxic side effects and chemoresistance. Drug-loaded aerogels have emerged as a promising method for drug delivery, as they can improve drug solubility and bioavailability, control drug release, and reduce drug distribution in non-targeted tissues, thereby minimizing side effects. In this research, chitosan oligosaccharide (COS)-loaded nanofibers composite chitosan (CS) aerogels (COS-NFs/CS) with a porous network structure were created using nanofiber recombination and freeze-drying techniques. The core layer of the aerogel has a COS loading rate of 60 %, enabling the COS-NFs/CS aerogel to significantly inhibit the migration and proliferation of ovarian cancer cells (resulting in a decrease in the survival rate of ovarian cancer cells to 33.70 % after 48 h). The coaxial fiber's unique shell-core structure and the aerogel's porous network structure enable the COS-NFs/CS aerogels to release COS steadily and slowly over 30 days, effectively reducing the initial burst release of COS. Additionally, the COS-NFs/CS aerogels exhibit good biocompatibility, degradability (only retaining 18.52 % of their weight after 6 weeks of implantation), and promote angiogenesis, thus promoting wound healing post-oophorectomy. In conclusion, COS-NFs/CS aerogels show great potential for application in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Gantao Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Xiangyang Dong
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Linlin Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
16
|
Wang Z, Pang S, Liu X, Dong Z, Tian Y, Ashrafizadeh M, Rabiee N, Ertas YN, Mao Y. Chitosan- and hyaluronic acid-based nanoarchitectures in phototherapy: Combination cancer chemotherapy, immunotherapy and gene therapy. Int J Biol Macromol 2024; 273:132579. [PMID: 38795895 DOI: 10.1016/j.ijbiomac.2024.132579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Cancer phototherapy has been introduced as a new potential modality for tumor suppression. However, the efficacy of phototherapy has been limited due to a lack of targeted delivery of photosensitizers. Therefore, the application of biocompatible and multifunctional nanoparticles in phototherapy is appreciated. Chitosan (CS) as a cationic polymer and hyaluronic acid (HA) as a CD44-targeting agent are two widely utilized polymers in nanoparticle synthesis and functionalization. The current review focuses on the application of HA and CS nanostructures in cancer phototherapy. These nanocarriers can be used in phototherapy to induce hyperthermia and singlet oxygen generation for tumor ablation. CS and HA can be used for the synthesis of nanostructures, or they can functionalize other kinds of nanostructures used for phototherapy, such as gold nanorods. The HA and CS nanostructures can combine chemotherapy or immunotherapy with phototherapy to augment tumor suppression. Moreover, the CS nanostructures can be functionalized with HA for specific cancer phototherapy. The CS and HA nanostructures promote the cellular uptake of genes and photosensitizers to facilitate gene therapy and phototherapy. Such nanostructures specifically stimulate phototherapy at the tumor site, with particle toxic impacts on normal cells. Moreover, CS and HA nanostructures demonstrate high biocompatibility for further clinical applications.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng 252000, Shandong, PR China
| | - Shuo Pang
- Department of Urinary Surgery, Jinan Third People's Hospital, Jinan, Shandong 250101, PR China
| | - Xiaoli Liu
- Department of Dermatology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zi Dong
- Department of Gastroenterology, Lincang People's Hospital, Lincang, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, United States
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077 India
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Türkiye; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Türkiye; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Türkiye.
| | - Ying Mao
- Department of Oncology, Suining Central Hospital, Suining City, Sichuan, China.
| |
Collapse
|
17
|
Zhao X, Yang C, Liu W, Lu K, Yin H. Inhibition of insulin fibrillation by carboxyphenylboronic acid-modified chitosan oligosaccharide based on electrostatic interactions and hydrophobic interactions. Biophys Chem 2024; 310:107236. [PMID: 38615538 DOI: 10.1016/j.bpc.2024.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/25/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
A novel inhibitor, carboxyphenylboronic acid-modified chitosan oligosaccharide (COS-CPBA), was developed by coupling carboxyphenylboronic acid (CPBA) with chitosan oligosaccharide (COS) to inhibit insulin fibrillation. Extensive biophysical assays indicated that COS-CPBA could decelerate insulin aggregation, hinder the conformational transition from α-helix to β-sheet structure, change the morphology of insulin aggregates and alter fibrillation pathway. A mechanism for the inhibition of insulin fibrillation by COS-CPBA was proposed. It considers that insulin molecules bind to COS-CPBA via hydrophobic interactions, while the positively charged groups in COS-CPBA exert electrostatic repulsion on the bound insulin molecules. These two opposite forces cause the insulin molecules to display extended conformations and hinder the conformational transition of insulin from α-helix to β-sheet structure necessary for fibrillation, thus decelerating aggregation and altering the fibrillation pathway of insulin. The studies provide novel ideas for the development of more effective inhibitors of amyloid fibrillation.
Collapse
Affiliation(s)
- Xiangyuan Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Chunyan Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300401, China.
| | - Wei Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300401, China
| | - Ke Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Hao Yin
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
18
|
Antoniou V, Mourelatou EA, Galatou E, Avgoustakis K, Hatziantoniou S. Gene Therapy with Chitosan Nanoparticles: Modern Formulation Strategies for Enhancing Cancer Cell Transfection. Pharmaceutics 2024; 16:868. [PMID: 39065565 PMCID: PMC11280172 DOI: 10.3390/pharmaceutics16070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Gene therapy involves the introduction of exogenous genetic material into host tissues to modify gene expression or cellular properties for therapeutic purposes. Initially developed to address genetic disorders, gene therapy has expanded to encompass a wide range of conditions, notably cancer. Effective delivery of nucleic acids into target cells relies on carriers, with non-viral systems gaining prominence due to their enhanced safety profile compared to viral vectors. Chitosan, a biopolymer, is frequently utilized to fabricate nanoparticles for various biomedical applications, particularly nucleic acid delivery, with recent emphasis on targeting cancer cells. Chitosan's positively charged amino groups enable the formation of stable nanocomplexes with nucleic acids and facilitate interaction with cell membranes, thereby promoting cellular uptake. Despite these advantages, chitosan-based nanoparticles face challenges such as poor solubility at physiological pH, non-specificity for cancer cells, and inefficient endosomal escape, limiting their transfection efficiency. To address these limitations, researchers have focused on enhancing the functionality of chitosan nanoparticles. Strategies include improving stability, enhancing targeting specificity, increasing cellular uptake efficiency, and promoting endosomal escape. This review critically evaluates recent formulation approaches within these categories, aiming to provide insights into advancing chitosan-based gene delivery systems for improved efficacy, particularly in cancer therapy.
Collapse
Affiliation(s)
- Varvara Antoniou
- Pharmacy Program, Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (V.A.); (E.G.)
| | - Elena A. Mourelatou
- Pharmacy Program, Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (V.A.); (E.G.)
- Bioactive Molecules Research Center, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
| | - Eleftheria Galatou
- Pharmacy Program, Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (V.A.); (E.G.)
- Bioactive Molecules Research Center, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
| | - Konstantinos Avgoustakis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26 504 Rion, Greece; (K.A.); (S.H.)
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26 504 Rion, Greece; (K.A.); (S.H.)
| |
Collapse
|
19
|
Chang W, Chen L, Chen K. The bioengineering application of hyaluronic acid in tissue regeneration and repair. Int J Biol Macromol 2024; 270:132454. [PMID: 38763255 DOI: 10.1016/j.ijbiomac.2024.132454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
The multifaceted role of hyaluronic acid (HA) across diverse biomedical disciplines underscores its versatility in tissue regeneration and repair. HA hydrogels employ different crosslinking including chemical (chitosan, collagen), photo- initiation (riboflavin, LAP), enzymatic (HRP/H2O2), and physical interactions (hydrogen bonds, metal coordination). In biophysics and biochemistry, HA's signaling pathways, primarily through CD44 and RHAMM receptors, modulate cell behavior (cell migration; internalization of HA), inflammation, and wound healing. Particularly, smaller HA fragments stimulate inflammatory responses through toll-like receptors, impacting macrophages and cytokine expression. HA's implications in oncology highlight its involvement in tumor progression, metastasis, and treatment. Elevated HA in tumor stroma impacts apoptosis resistance and promotes tumor growth, presenting potential therapeutic targets to halt tumor progression. In orthopedics, HA's presence in synovial fluid aids in osteoarthritis management, as its supplementation alleviates pain, enhances synovial fluid's viscoelastic properties, and promotes cartilage integrity. In ophthalmology, HA's application in dry eye syndrome addresses symptoms by moisturizing the eyes, replenishing tear film deficiencies, and facilitating wound healing. Intravitreal injections and hydrogel-based systems offer versatile approaches for drug delivery and vitreous humor replacement. For skin regeneration and wound healing, HA hydrogel dressings exhibit exceptional properties by promoting moist wound healing and facilitating tissue repair. Integration of advanced regenerative tools like stem cells and solubilized amnion membranes into HA-based systems accelerates wound closure and tissue recovery. Overall, HA's unique properties and interactions render it a promising candidate across diverse biomedical domains, showcasing immense potentials in tissue regeneration and therapeutic interventions. Nevertheless, many detailed cellular and molecular mechanisms of HA and its applications remain unexplored and warrant further investigation.
Collapse
Affiliation(s)
- WeiTing Chang
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan
| | - LiRu Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei, Taiwan; Department of Mechanical Engineering, National YangMing ChiaoTung University, Hsinchu, Taiwan
| | - KuoHu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan; School of Medicine, Tzu-Chi University, Hualien, Taiwan.
| |
Collapse
|
20
|
Liu P, Fei L, Wu D, Zhang Z, Chen W, Li W, Yang Y. Progress in the metabolic kinetics and health benefits of functional polysaccharides from plants, animals and microbes: A review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2024; 7:100526. [DOI: 10.1016/j.carpta.2024.100526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
21
|
Li B, Cui J, Xu T, Xu Y, Long M, Li J, Liu M, Yang T, Du Y, Xu Q. Advances in the preparation, characterization, and biological functions of chitosan oligosaccharide derivatives: A review. Carbohydr Polym 2024; 332:121914. [PMID: 38431416 DOI: 10.1016/j.carbpol.2024.121914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Chitosan oligosaccharide (COS), which represent the positively charged basic amino oligosaccharide in nature, is the deacetylated and degraded products of chitin. COS has become the focus of intensive scientific investigation, with a growing body of practical and clinical studies highlighting its remarkable health-enhancing benefits. These effects encompass a wide range of properties, including antibacterial, antioxidant, anti-inflammatory, and anti-tumor activities. With the rapid advancements in chemical modification technology for oligosaccharides, many COS derivatives have been synthesized and investigated. These newly developed derivatives possess more stable chemical structures, improved biological activities, and find applications across a broader spectrum of fields. Given the recent interest in the chemical modification of COS, this comprehensive review seeks to consolidate knowledge regarding the preparation methods for COS derivatives, alongside discussions on their structural characterization. Additionally, various biological activities of COS derivatives have been discussed in detail. Lastly, the potential applications of COS derivatives in biomedicine have been reviewed and presented.
Collapse
Affiliation(s)
- Bing Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jingchun Cui
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Tiantian Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yunshu Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Mingxin Long
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jiaqi Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Mingzhi Liu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Ting Yang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yuguang Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Qingsong Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
22
|
Zhang J, Sun D, Liao Y, Cao B, Gao R, Zeng Z, Zheng C, Wei Y, Guo X. Time-Released Black Phosphorus Hydrogel Accelerates Myocardial Repairing through Antioxidant and Motivates Macrophage Polarization Properties. Biomater Res 2024; 28:0029. [PMID: 38720795 PMCID: PMC11077294 DOI: 10.34133/bmr.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
The improvement of the myocardial microenvironment largely determines the prognosis of myocardial infarction (MI). After MI, early removal of excessive reactive oxygen species (ROS) in the microenvironment can alleviate oxidative stress injury and promote M2 phenotype polarization of macrophages, which is important for advocating myocardial repair. In this study, we combined traditional natural hydrogel materials chitosan (CS) and gelatin (Gel) to encapsulate polydopamine-modified black phosphorus nanosheets (BP@PDA). We designed an injectable composite gel (CS-Gel-BP@PDA) with a time-released ability to achieve in situ sustained-release BP@PDA in the area of MI. Utilizing the inflammation inhibition ability of CS-Gel itself and the high reactive activity of BP@PDA with ROS, continuous improvement of infarct microenvironment and myocardial repair were achieved. The studies in vivo revealed that, compared with the saline group, CS-Gel-BP@PDA group had alleviated myocardial fibrosis and infarct size and importantly improved cardiac function. Immunofluorescence results showed that the ROS level and inflammatory response in the microenvironment of the CS-Gel-BP@PDA group were decreased. In conclusion, our study demonstrated the time-released ability, antioxidative stress activity and macrophage polarization modulation of the novel composite hydrogel CS-Gel-BP@PDA, which provides inspiration for novel therapeutic modalities for MI.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| | - Di Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhan Liao
- Department of Cardiology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bingxin Cao
- Cardiac Surgery, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ran Gao
- Department of Cardiology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhuanglin Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
23
|
Zhang Y, Li W, Wu Y, Tian X, Li G, Zhou Y, Sun J, Liao X, Liu Y, Wang Y, Yu Y. Chitosan oligosaccharide accelerates the dissemination of antibiotic resistance genes through promoting conjugative plasmid transfer. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133922. [PMID: 38442604 DOI: 10.1016/j.jhazmat.2024.133922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
The dissemination of antibiotic resistance genes (ARGs), especially via plasmid-mediated horizontal gene transfer, poses a pervasive threat to global health. Chitosan-oligosaccharide (COS) is extensively utilized in medicine, plant and animal husbandry. However, their impact on microflora implies the potential to exert selective pressure on plasmid transfer. To explore the role of COS in facilitating the dissemination of ARGs via plasmid conjugation, we established in vitro mating models. The addition of COS to conjugation mixtures significantly enhanced the transfer of RP4 plasmid and mcr-1 positive IncX4 plasmid in both intra- and inter-specific. Phenotypic and transcriptome analysis revealed that COS enhanced intercellular contact by neutralizing cell surface charge and increasing cell surface hydrophobicity. Additionally, COS increased membrane permeability by inhibiting the Tol-Pal system, thereby facilitating plasmid conjugative transfer. Furthermore, COS served as the carbon source and was metabolized by E. coli, providing energy for plasmid conjugation through regulating the expression of ATPase and global repressor factor-related genes in RP4 plasmid. Overall, these findings improve our awareness of the potential risks associated with the presence of COS and the spread of bacterial antibiotic resistance, emphasizing the need to establish guidelines for the prudent use of COS and its discharge into the environment.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Wenjie Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Yashuang Wu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Xiaomin Tian
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Gong Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Yufeng Zhou
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiaoping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Yahong Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Yu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
24
|
Lu H, Wang M, Zhou S, Chen K, Wang L, Yi Z, Bai L, Zhang Y. Chitosan Oligosaccharides Mitigate Flooding Stress Damage in Rice by Affecting Antioxidants, Osmoregulation, and Hormones. Antioxidants (Basel) 2024; 13:521. [PMID: 38790626 PMCID: PMC11117766 DOI: 10.3390/antiox13050521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Rice (Oryza sativa L.) is one of the most important food crops worldwide. However, during direct seeding, rice is extremely vulnerable to flooding stress, which impairs rice's emergence and seedling growth and results in a significant yield loss. According to our research, chitosan oligosaccharides have the potential to be a chemical seed-soaking agent that greatly increases rice's resistance to flooding. Chitosan oligosaccharides were able to enhance seed energy supply, osmoregulation, and antioxidant capacity, according to physiological index assessments. Using transcriptome and metabolomic analysis, we discovered that important differential metabolites and genes were involved in the signaling pathway for hormone synthesis and antioxidant capacity. Exogenous chitosan oligosaccharides specifically and significantly inhibit genes linked to auxin, jasmonic acid, and abscisic acid. This suggested that applying chitosan oligosaccharides could stabilize seedling growth and development by controlling associated hormones and reducing flooding stress by enhancing membrane stability and antioxidant capacity. Finally, we verified the effectiveness of exogenous chitosan oligosaccharides imbibed in seeds by field validation, demonstrating that they can enhance rice seedling emergence and growth under flooding stress.
Collapse
Affiliation(s)
- Haoyu Lu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (H.L.); (M.W.); (K.C.); (L.W.)
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China;
| | - Mei Wang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (H.L.); (M.W.); (K.C.); (L.W.)
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China;
| | - Shangfeng Zhou
- Hunan Agricultural Biotechnology Research Institute, Changsha 410125, China;
| | - Ke Chen
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (H.L.); (M.W.); (K.C.); (L.W.)
| | - Lifeng Wang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (H.L.); (M.W.); (K.C.); (L.W.)
| | - Zhenxie Yi
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China;
| | - Lianyang Bai
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (H.L.); (M.W.); (K.C.); (L.W.)
- Hunan Agricultural Biotechnology Research Institute, Changsha 410125, China;
| | - Yuzhu Zhang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (H.L.); (M.W.); (K.C.); (L.W.)
| |
Collapse
|
25
|
Li J, Liu C, Wang S, Mao X. Staphylococcus aureus enters viable-but-nonculturable state in response to chitooligosaccharide stress by altering metabolic pattern and transmembrane transport function. Carbohydr Polym 2024; 330:121772. [PMID: 38368090 DOI: 10.1016/j.carbpol.2023.121772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/17/2023] [Accepted: 12/29/2023] [Indexed: 02/19/2024]
Abstract
Although chitooligosaccharide (COS) has attracted the attention of some researchers due to its good solubility and broad-spectrum antibacterial activity, our study found that Staphylococcus aureus treated with low concentration of COS actively entered the viable-but-nonculturable (VBNC) state to resist this environmental stress. In this study, the transcriptome of VBNC-state S. aureus after COS treatment was analyzed by RNA-sequencing. Compared with the control group, pathway enrichment analysis showed that COS-treated S. aureus adopted a series of adaptive adjustment strategies for survival, including significant up-regulation of the differential genes' expression of such as ABC transporters (metI, tagG), Sec dependent transport pathway (secDF), peptidoglycan synthesis pathway (murG) and alteration of their physiological metabolic patterns, where ATP depletion played a key role in the formation of the VBNC-state S. aureus. Further, by using oxidative phosphorylation uncoupling agent to adjust the initial level of ATP in S. aureus, it was found that the reduction of intracellular ATP level could accelerate the formation of VBNC state. Overall, our results preliminarily elucidated the molecular mechanism of COS inducing the VBNC-state S. aureus. It provided an important theoretical reference for further achieving effective bacterial inactivation by COS.
Collapse
Affiliation(s)
- Jiao Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Chunhui Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Sai Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| |
Collapse
|
26
|
Selvaraj S, Chauhan A, Dutta V, Verma R, Rao SK, Radhakrishnan A, Ghotekar S. A state-of-the-art review on plant-derived cellulose-based green hydrogels and their multifunctional role in advanced biomedical applications. Int J Biol Macromol 2024; 265:130991. [PMID: 38521336 DOI: 10.1016/j.ijbiomac.2024.130991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
The most prevalent carbohydrate on Earth is cellulose, a polysaccharide composed of glucose units that may be found in diverse sources, such as cell walls of wood and plants and some bacterial and algal species. The inherent availability of this versatile material provides a natural pathway for exploring and identifying novel uses. This study comprehensively analyzes cellulose and its derivatives, exploring their structural and biochemical features and assessing their wide-ranging applications in tissue fabrication, surgical dressings, and pharmaceutical delivery systems. The use of diverse cellulose particles as fundamental components gives rise to materials with distinct microstructures and characteristics, fulfilling the requirements of various biological applications. Although cellulose boasts substantial potential across various sectors, its exploration has predominantly unfolded within industrial realms, leaving the biomedical domain somewhat overlooked in its initial stages. This investigation, therefore, endeavors to shed light on the contemporary strides made in synthesizing cellulose and its derivatives. These innovative techniques give rise to distinctive attributes, presenting a treasure trove of advantages for their compelling integration into the intricate tapestry of biomedical applications.
Collapse
Affiliation(s)
- Satheesh Selvaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Ankush Chauhan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India.
| | - Vishal Dutta
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Ritesh Verma
- Department of Physics, Amity University, Gurugram, Haryana 122413, India
| | - Subha Krishna Rao
- Centre for Nanoscience and Nanotechnology, International Research Centre, Sathyabama Institute for Science and Technology, Chennai 600119, India
| | - Arunkumar Radhakrishnan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India; Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Suresh Ghotekar
- Department of Chemistry, Smt. Devkiba Mohansinhji Chauhan College of Commerce and Science (University of Mumbai), Silvassa 396230, UT of DNH & DD, India.
| |
Collapse
|
27
|
Linh NV, Lubis AR, Dinh-Hung N, Wannavijit S, Montha N, Fontana CM, Lengkidworraphiphat P, Srinual O, Jung WK, Paolucci M, Doan HV. Effects of Shrimp Shell-Derived Chitosan on Growth, Immunity, Intestinal Morphology, and Gene Expression of Nile Tilapia ( Oreochromis niloticus) Reared in a Biofloc System. Mar Drugs 2024; 22:150. [PMID: 38667767 PMCID: PMC11050815 DOI: 10.3390/md22040150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Chitosan (CH) shows great potential as an immunostimulatory feed additive in aquaculture. This study evaluates the effects of varying dietary CH levels on the growth, immunity, intestinal morphology, and antioxidant status of Nile tilapia (Oreochromis niloticus) reared in a biofloc system. Tilapia fingerlings (mean weight 13.54 ± 0.05 g) were fed diets supplemented with 0 (CH0), 5 (CH5), 10 (CH10), 20 (CH20), and 40 (CH40) mL·kg-1 of CH for 8 weeks. Parameters were assessed after 4 and 8 weeks. Their final weight was not affected by CH supplementation, but CH at 10 mL·kg-1 significantly improved weight gain (WG) and specific growth rate (SGR) compared to the control (p < 0.05) at 8 weeks. Skin mucus lysozyme and peroxidase activities were lower in the chitosan-treated groups at weeks 4 and 8. Intestinal villi length and width were enhanced by 10 and 20 mL·kg-1 CH compared to the control. However, 40 mL·kg-1 CH caused detrimental impacts on the villi and muscular layer. CH supplementation, especially 5-10 mL·kg-1, increased liver and intestinal expressions of interleukin 1 (IL-1), interleukin 8 (IL-8), LPS-binding protein (LBP), glutathione reductase (GSR), glutathione peroxidase (GPX), and glutathione S-transferase (GST-α) compared to the control group. Overall, dietary CH at 10 mL·kg-1 can effectively promote growth, intestinal morphology, innate immunity, and antioxidant capacity in Nile tilapia fingerlings reared in biofloc systems.
Collapse
Affiliation(s)
- Nguyen Vu Linh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (N.V.L.); (S.W.); (N.M.); (C.M.F.); (O.S.)
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Anisa Rilla Lubis
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (N.V.L.); (S.W.); (N.M.); (C.M.F.); (O.S.)
| | - Nguyen Dinh-Hung
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biochemical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Supreya Wannavijit
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (N.V.L.); (S.W.); (N.M.); (C.M.F.); (O.S.)
| | - Napatsorn Montha
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (N.V.L.); (S.W.); (N.M.); (C.M.F.); (O.S.)
| | - Camilla Maria Fontana
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (N.V.L.); (S.W.); (N.M.); (C.M.F.); (O.S.)
| | - Phattawin Lengkidworraphiphat
- Multidisciplinary Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai 50200, Thailand;
| | - Orranee Srinual
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (N.V.L.); (S.W.); (N.M.); (C.M.F.); (O.S.)
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea;
| | - Marina Paolucci
- Department of Science and Technologies, University of Sannio, 82100 Benevento, Italy;
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (N.V.L.); (S.W.); (N.M.); (C.M.F.); (O.S.)
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
28
|
Ipinza-Concha BM, Dibona-Villanueva L, Fuentealba D, Pinilla-Quispe A, Schwantes D, Garzón-Nivia MA, Herrera-Défaz MA, Valdés-Gómez HA. Effect of Chitosan-Riboflavin Bioconjugate on Green Mold Caused by Penicillium digitatum in Lemon Fruit. Polymers (Basel) 2024; 16:884. [PMID: 38611142 PMCID: PMC11013941 DOI: 10.3390/polym16070884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
Penicillium digitatum is the causal agent of green mold, a primary postharvest disease of citrus fruits. This study evaluated the efficacy of a novel photoactive chitosan-riboflavin bioconjugate (CH-RF) to control green mold in vitro and in lemon fruit. The results showed total inhibition of P. digitatum growth on APDA supplemented with CH-RF at 0.5% (w/v) and a significant reduction of 84.8% at 0.25% (w/v). Lemons treated with CH-RF and kept under controlled conditions (20 °C and 90-95% relative humidity) exhibited a noteworthy reduction in green mold incidence four days post-inoculation. Notably, these effects persisted, with all treatments remaining significantly distinct from the control group until day 14. Furthermore, CH-RF showed high control of green mold in lemons after 20 days of cold storage (5 ± 1 °C). The disease incidence five days after cold storage indicated significant differences from the values observed in the control. Most CH-RF treatments showed enhanced control of green mold when riboflavin was activated by white-light exposure. These findings suggest that this novel fungicide could be a viable alternative to conventional synthetic fungicides, allowing more sustainable management of lemon fruit diseases.
Collapse
Affiliation(s)
- Brenda M. Ipinza-Concha
- Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (B.M.I.-C.)
| | - Luciano Dibona-Villanueva
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Denis Fuentealba
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Alexander Pinilla-Quispe
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Daniel Schwantes
- Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (B.M.I.-C.)
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - María A. Garzón-Nivia
- Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (B.M.I.-C.)
| | - Mario A. Herrera-Défaz
- Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (B.M.I.-C.)
| | - Héctor A. Valdés-Gómez
- Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (B.M.I.-C.)
| |
Collapse
|
29
|
Xiao JH, Zhang ZB, Li J, Chen SM, Gao HL, Liao Y, Chen L, Wang Z, Lu Y, Hou Y, Wu H, Zou D, Yu SH. Bioinspired polysaccharide-based nanocomposite membranes with robust wet mechanical properties for guided bone regeneration. Natl Sci Rev 2024; 11:nwad333. [PMID: 38333231 PMCID: PMC10852990 DOI: 10.1093/nsr/nwad333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 02/10/2024] Open
Abstract
Polysaccharide-based membranes with excellent mechanical properties are highly desired. However, severe mechanical deterioration under wet conditions limits their biomedical applications. Here, inspired by the structural heterogeneity of strong yet hydrated biological materials, we propose a strategy based on heterogeneous crosslink-and-hydration (HCH) of a molecule/nano dual-scale network to fabricate polysaccharide-based nanocomposites with robust wet mechanical properties. The heterogeneity lies in that the crosslink-and-hydration occurs in the molecule-network while the stress-bearing nanofiber-network remains unaffected. As one demonstration, a membrane assembled by bacterial cellulose nanofiber-network and Ca2+-crosslinked and hydrated sodium alginate molecule-network is designed. Studies show that the crosslinked-and-hydrated molecule-network restricts water invasion and boosts stress transfer of the nanofiber-network by serving as interfibrous bridge. Overall, the molecule-network makes the membrane hydrated and flexible; the nanofiber-network as stress-bearing component provides strength and toughness. The HCH dual-scale network featuring a cooperative effect stimulates the design of advanced biomaterials applied under wet conditions such as guided bone regeneration membranes.
Collapse
Affiliation(s)
- Jian-Hong Xiao
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Department of Dental Implant Center, Stomatologic Hospital and College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Zhen-Bang Zhang
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - JiaHao Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Si-Ming Chen
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Huai-Ling Gao
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - YinXiu Liao
- Department of Oral Surgery, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Lu Chen
- Department of Oral Surgery, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - ZiShuo Wang
- Department of Oral Surgery, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - YiFan Lu
- Department of Dental Implant Center, Stomatologic Hospital and College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - YuanZhen Hou
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - HengAn Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - DuoHong Zou
- Department of Dental Implant Center, Stomatologic Hospital and College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei 230032, China
- Department of Oral Surgery, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Institute of Innovative Materials (I2M), Department of Chemistry, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
30
|
Sukmak R, Suttinun C, Kovitvadhi U, Kovitvadhi A, Vongsangnak W. Uncovering nutrients and energy related gene functions of black soldier fly Hermetia illucens strain KUP. Gene 2024; 896:148045. [PMID: 38042219 DOI: 10.1016/j.gene.2023.148045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/18/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
The black soldier fly (Hermetia illucens) has emerged as a significant insect species in the decomposition of organic waste for sustainable agricultural practices. Due to its remarkable characteristics and performance, H. illucens is increasingly utilised for insect farming, particularly for industrial-scale rearing throughout the world. In this study, we employed whole-genome sequencing to annotate the gene and protein functions of H. illucens and to explore the functional genomics related to nutrients and energy. As a result, a genome size of H. illucens strain KUP 1.68 Gb with a GC content of 42.13 % was achieved. Of the 14,036 coding sequences, we determined the function of 12,046 protein-coding genes. Based on metabolic functional assignment, we classified 4,218 protein-coding genes; the main category was metabolism (32.86 %). Comparative genomic analysis across the other H. illucens strain and insect species revealed that the major metabolic gene functions and pathways related to nutrient and energy sources of H. illucens KUP are involved in key amino acid metabolism (e.g., cysteine and methionine) as well as fatty acid biosynthesis and glycerolipid metabolism. These findings underscore the metabolic capability and versatility of H. illucens, which is regarded as a potential source of proteins and lipids. Our study contributes to the knowledge regarding the feed utilisation of H. illucens and offers insights into transforming waste into valuable products. H. illucens has the potential to create globally sustainable nutrients and environmentally friendly solutions, aligning with the goal of responsible resource utilisation.
Collapse
Affiliation(s)
- Rachrapee Sukmak
- Graduate Student in Animal Health and Biomedical Science Program, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Chanaporn Suttinun
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Uthaiwan Kovitvadhi
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Attawit Kovitvadhi
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand.
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand; Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand.
| |
Collapse
|
31
|
Chen Q, Wang L, Li S, Lv D, Li X, Yin W, Hu T, Li C, Cheng X. Selenizing chitooligosaccharide with site-selective modification to alleviate acute liver injury in vivo. Carbohydr Res 2024; 536:109042. [PMID: 38244321 DOI: 10.1016/j.carres.2024.109042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
Two selenized chitooligosaccharide (O-Se-COS and N,O-Se-COS) with different sites modification were synthesized to alleviate liver injury in vivo. Comparing to traditional COS, both selenized COS exhibited enhanced reducibility as well as antioxidant capacity in vitro. Furthermore, O-Se-COS demonstrated superior efficacy in reducing intracellular reactive oxygen species (ROS) and mitochondrial damage compared to N,O-Se-COS as its enhanced cellular uptake by the positive/negative charge interactions. Two mechanisms were proposed to explained these results: one is to enhance the enzymatic activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), which effectively scavenge free radicals; the other is to down-regulate intracellular cytochrome P450 (CYP2E1) levels, inhibiting carbon tetrachloride (CCl4)-induced peroxidation damage. In vivo studies further demonstrated the effective alleviation of CCl4-induced liver injury by selenized COS, with therapeutic efficacy observed in the following order: O-Se-COS > N,O-Se-COS > COS. Finally, hemolysis and histological tests confirmed the biosafety of both selenized COS. Taken together, these finding demonstrated that selenium has the potential to improve the biological activity of COS, and precise selenylation was more conducive to achieving the synergistic effect where 1 + 1>2.
Collapse
Affiliation(s)
- Qiang Chen
- Collaborative Innovation Center of Targeted Development of Medicinal Resources, Anqing Normal University, Anqing, 246052, PR China
| | - Lu Wang
- Collaborative Innovation Center of Targeted Development of Medicinal Resources, Anqing Normal University, Anqing, 246052, PR China
| | - Sirong Li
- Collaborative Innovation Center of Targeted Development of Medicinal Resources, Anqing Normal University, Anqing, 246052, PR China
| | - Dan Lv
- Collaborative Innovation Center of Targeted Development of Medicinal Resources, Anqing Normal University, Anqing, 246052, PR China; The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing, 246133, PR China
| | - Xinyi Li
- Collaborative Innovation Center of Targeted Development of Medicinal Resources, Anqing Normal University, Anqing, 246052, PR China
| | - Wenting Yin
- Collaborative Innovation Center of Targeted Development of Medicinal Resources, Anqing Normal University, Anqing, 246052, PR China
| | - Ting Hu
- Collaborative Innovation Center of Targeted Development of Medicinal Resources, Anqing Normal University, Anqing, 246052, PR China; The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing, 246133, PR China
| | - Conghu Li
- Collaborative Innovation Center of Targeted Development of Medicinal Resources, Anqing Normal University, Anqing, 246052, PR China; The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing, 246133, PR China.
| | - Xu Cheng
- Collaborative Innovation Center of Targeted Development of Medicinal Resources, Anqing Normal University, Anqing, 246052, PR China; The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing, 246133, PR China.
| |
Collapse
|
32
|
Jagdale S, Agarwal B, Dixit A, Gaware S. Chitosan as excellent bio-macromolecule with myriad of anti-activities in biomedical applications - A review. Int J Biol Macromol 2024; 257:128697. [PMID: 38096939 DOI: 10.1016/j.ijbiomac.2023.128697] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/31/2023]
Abstract
The aim of the study is to explore the myriad of anti-activities of chitosan - deacylated derivative of chitin in biomedical applications. Chitosan consists of reactive residual amino groups, which can be modified chemically to obtain wide range of derivatives. These derivatives exhibit the controlled physicochemical characteristics, which in turn improve its functional properties. Such derivatives find numerous applications in the field of biomedical science, agriculture, tissue engineering, bone regeneration and environmental science. This study presents a comprehensive overview of the multifarious anti-activities of chitosan and its derivatives in the field of biomedical science including anti-microbial, antioxidant, anti-tumor, anti-HIV, anti-fungal, anti- inflammatory, anti-Alzheimer's, anti-hypertensive and anti-diabetic activity. It briefly details these anti-activities with respect to its mode of action, pharmacological effects and potential applications. It also presents the overview of current research exploring novel derivatives of chitosan and its anti- activities in the recent past. Finally, the review projects the prospective potential of chitosan and its derivatives and expects to encourage the readers to develop new drug delivery systems based on such chitosan derivatives and explore its applications in biomedical science for benefit of mankind.
Collapse
Affiliation(s)
- Sachin Jagdale
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon-Pune, Maharashtra 411033, India.
| | - Babita Agarwal
- Department of Pharmaceutical Chemistry, Marathwada Mitra Mandal's College of Pharmacy, Thergaon-Pune, Maharashtra 411033, India
| | - Abhishek Dixit
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon-Pune, Maharashtra 411033, India
| | - Saurabh Gaware
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon-Pune, Maharashtra 411033, India
| |
Collapse
|
33
|
Yamabhai M, Khamphio M, Min TT, Soem CN, Cuong NC, Aprilia WR, Luesukprasert K, Teeranitayatarn K, Maneedaeng A, Tuveng TR, Lorentzen SB, Antonsen S, Jitprasertwong P, Eijsink VGH. Valorization of shrimp processing waste-derived chitosan into anti-inflammatory chitosan-oligosaccharides (CHOS). Carbohydr Polym 2024; 324:121546. [PMID: 37985116 DOI: 10.1016/j.carbpol.2023.121546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/02/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Bioconversion of chitosan into soluble anti-inflammatory chitosan oligosaccharides (CHOS) using a Bacillus chitosanase, BsCsn46A, was investigated, including food-grade approaches. After 48 h of enzymatic reaction, most of the final products were dimers and trimers. None of the CHOS products showed toxicity to human fibroblasts. Analysis of CHOS bioactivity against LPS-induced inflammation of human macrophages indicated that CHOS generated from different bioconversion processes have anti-inflammatory activity, the magnitude of which depends on the type of substrate and production process. Both lactic acid and HCl can be used to dissolve chitosan; however, the product generated from lactic acid solution was highly hygroscopic after lyophilization, hence not suitable for long-term storage. Downstream processes, i.e., centrifugation and filtration, affect its anti-inflammatory activity. Analysis of standard CHOS with known structure showed that an acetyl group at the reducing end and the degree of polymerization (DP) are critical for biological activity. Importantly, when applied at levels above the optimal concentrations, certain standard CHOS and CHOS mixtures could induce inflammation. These results support the potential of CHOS as anti-inflammatory agents but reveal batch-to-batch variation and possible side effects, indicating that careful quality assurance of CHOS preparations is essential.
Collapse
Affiliation(s)
- Montarop Yamabhai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Munthipha Khamphio
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Thae Thae Min
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chai Noy Soem
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nguyen Cao Cuong
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; Faculty of Engineering and Food Technology, Hue University of Agriculture and Forestry, Hue University, Thua Thien Hue 530000, Vietnam
| | - Waheni Rizki Aprilia
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | | | | | - Atthaphon Maneedaeng
- School of Chemical Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Tina R Tuveng
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Silje B Lorentzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Simen Antonsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Paiboon Jitprasertwong
- SUT Oral Health Center, Suranaree University of Technology Hospital (SUTH), Nakhon Ratchasima 30000, Thailand; School of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| |
Collapse
|
34
|
Arreola J, Pérez-Cornejo P, Segura-Covarrubias G, Corral-Fernández N, León-Aparicio D, Guzmán-Hernández ML. Function and Regulation of the Calcium-Activated Chloride Channel Anoctamin 1 (TMEM16A). Handb Exp Pharmacol 2024; 283:101-151. [PMID: 35768554 DOI: 10.1007/164_2022_592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Various human tissues express the calcium-activated chloride channel Anoctamin 1 (ANO1), also known as TMEM16A. ANO1 allows the passive chloride flux that controls different physiological functions ranging from muscle contraction, fluid and hormone secretion, gastrointestinal motility, and electrical excitability. Overexpression of ANO1 is associated with pathological conditions such as hypertension and cancer. The molecular cloning of ANO1 has led to a surge in structural, functional, and physiological studies of the channel in several tissues. ANO1 is a homodimer channel harboring two pores - one in each monomer - that work independently. Each pore is activated by voltage-dependent binding of two intracellular calcium ions to a high-affinity-binding site. In addition, the binding of phosphatidylinositol 4,5-bisphosphate to sites scattered throughout the cytosolic side of the protein aids the calcium activation process. Furthermore, many pharmacological studies have established ANO1 as a target of promising compounds that could treat several illnesses. This chapter describes our current understanding of the physiological roles of ANO1 and its regulation under physiological conditions as well as new pharmacological compounds with potential therapeutic applications.
Collapse
Affiliation(s)
- Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Guadalupe Segura-Covarrubias
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Nancy Corral-Fernández
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Daniel León-Aparicio
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | |
Collapse
|
35
|
Fang R, Liao Y, Qiu H, Liu Y, Lin S, Chen H. Chitosan Oligosaccharide Modified Bovine Serum Albumin Nanoparticles for Improving Oral Bioavailability of Naringenin. Curr Drug Deliv 2024; 21:1142-1150. [PMID: 37464826 DOI: 10.2174/1567201820666230718143726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/30/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION With the rapid development of nanotechnology, the research and development of nano-drugs have become one of the development directions of drug innovation. The encapsulation of the nanoparticles can change the biological distribution of the drug in vivo and improve the bioavailability of the drug in vivo. Naringenin is poorly soluble in water and has a low bioavailability, thus limiting its clinical application. The main purpose of this study was to develop a nano-sized preparation that could improve the oral bioavailability of naringenin. METHODS Chitosan oligosaccharide modified naringenin-loaded bovine serum albumin nanoparticles (BSA-COS@Nar NPs) were prepared by emulsification solvent evaporation and electrostatic interaction. The nanoparticles were characterized by HPLC, laser particle size analyzer, transmission electron microscope and X-ray diffraction analysis. The release in vitro was investigated, and the behavior of nanoparticles in rats was also studied. The caco-2 cell model was established in vitro to investigate the cytotoxicity and cellular uptake of nanoparticles. RESULTS BSA-COS@Nar NPs were successfully prepared, and the first-order release model was confirmed in vitro release. In vivo pharmacokinetic results indicated that the area under the drug concentration- time curve (AUC) of BSA-COS@Nar NPs was 2.37 times more than free naringenin. Cytotoxicity and cellular uptake results showed that BSA-COS@Nar NPs had no significant cytotoxic effect on Caco- 2 cells and promoted cellular uptake of the drug. CONCLUSION BSA-COS@Nar NPs could improve the in vivo bioavailability of naringenin.
Collapse
Affiliation(s)
- Ruiyue Fang
- College of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Yiqi Liao
- College of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Huishuang Qiu
- College of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Yuxin Liu
- College of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Shiyuan Lin
- College of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Hui Chen
- College of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| |
Collapse
|
36
|
Wang M, Xian Y, Lu Z, Wu P, Zhang G. Engineering polysaccharide hydrolases in the product-releasing cleft to alter their product profiles. Int J Biol Macromol 2024; 256:128416. [PMID: 38029919 DOI: 10.1016/j.ijbiomac.2023.128416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Polysaccharide hydrolases are enzymes capable of hydrolyzing polysaccharides to generate oligosaccharides that have diverse applications in the food, feed and pharmaceutical industries. However, the detailed mechanisms governing the compositions of their hydrolysates remain poorly understood. Previously, we identified a novel neopullulase Amy117, which exclusively converts pullulan to panose by specifically cleaving α-1,4-glycosidic bonds. Yet, several enzymes with high homology to Amy117 produce a mixture of glucose, maltose and panose during pullulan hydrolysis. To explore this particular phenomenon, we compared the sequences and structures between Amy117 and the maltose amylase ThMA, and identified a specific residue Thr299 in Amy117 (equivalent to His294 in ThMA) within the product-releasing cleft of Amy117, which might be responsible for this characteristic feature. Using structure-based rational design, we have successfully converted the product profiles of pullulan hydrolysates between Amy117 and ThMA by simply altering this key residue. Molecular docking analysis indicated that the key residue at the product-releasing outlet altered the product profile by affecting the panose release rate. Moreover, we modeled the long-chain pullulan substrate G8 to examine its potential conformations and found that G8 might undergo a conformational change in the narrow cleft that allows the Amy117 variant to specifically recognize α-1,6-glycosidic bonds.
Collapse
Affiliation(s)
- Meixing Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yufan Xian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenghui Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Pan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Guimin Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
37
|
Zeng H, Jin T, Shi S, Liu L, Guo H, Xie L, Chai X, Xu K, Du G, Zhang L. Boiling water resistant fully bio-based adhesive made from maleated chitosan and glucose with excellent performance. Int J Biol Macromol 2023; 253:127446. [PMID: 37839593 DOI: 10.1016/j.ijbiomac.2023.127446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023]
Abstract
Biomass resources are widely considered potential alternatives to formaldehyde-based wood adhesives because of their abundance. In this study, an environmentally friendly biomass adhesive, carboxylated chitosan-glucose (CSC-G), was prepared using chitosan, maleic anhydride, and glucose. The structure and water resistance of the adhesive were analyzed in detail. Maleic anhydride act as a bridge connecting chitosan and glucose, giving the adhesive good water solubility and resistance. The improved water resistance of the CSC-G adhesive was attributed to the formation of covalent cross-linked structures and an increased degree of system cross-linking. Additionally, the curing temperature of the CSC-G adhesive was superior to those of previously reported polyester adhesives. This study not only expands the application scope of fishery waste, but also demonstrates its great potential for the preparation of high-performance plywood.
Collapse
Affiliation(s)
- Heyang Zeng
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Tao Jin
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Senlei Shi
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Li Liu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Haiyang Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Linkun Xie
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Xijuan Chai
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Kaimeng Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Guanben Du
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China.
| | - Lianpeng Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China.
| |
Collapse
|
38
|
Li J, Guan S, Cai B, Li Q, Rong S. Low molecular weight chitosan oligosaccharides form stable complexes with human lactoferrin. FEBS Open Bio 2023; 13:2215-2223. [PMID: 37872003 PMCID: PMC10699096 DOI: 10.1002/2211-5463.13722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/09/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023] Open
Abstract
Proteins in tears, including human lactoferrin (HLF), can be deposited and denatured on contact lenses, increasing the risk of microbial cell attachment to the lens and ocular complications. The surfactants currently used in commercial contact lens care solutions have low clearance ability for tear proteins. Chitosan oligosaccharide (COS) binds to a variety of proteins and has potential for use in protein removal, especially in contact lens care solutions. Here, we analyzed the interaction mechanism of COSs hydrolyzed from chitosan from different resources with HLF. The molecular weights (MWs) and concentrations of COSs were key factors for the formation of COS-HLF complexes. Lower MWs of COSs could form more stable COS-HLF complexes. COS from Aspergillus ochraceus had a superior effect on HLF compared with COS from shrimp and crab shell with the same MWs. In conclusion, COSs could bind to and cause a conformational change in HLF. Therefore, COSs, especially those with low MWs, have potential as deproteinizing agents in contact lens care solution.
Collapse
Affiliation(s)
- Juan Li
- Department of Bioengineering, School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| | - Shimin Guan
- Department of Bioengineering, School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| | - Baoguo Cai
- Department of Bioengineering, School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| | - Qianqian Li
- Department of Bioengineering, School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| | - Shaofeng Rong
- Department of Bioengineering, School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| |
Collapse
|
39
|
Lin C, Luan F, Su S, Jiang A, Tan W, Guo Z. Water-soluble fluorine-functionalized chitooligosaccharide derivatives: Synthesis, characterization and antimicrobial activity. Carbohydr Res 2023; 533:108935. [PMID: 37717482 DOI: 10.1016/j.carres.2023.108935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
In this work, a series of water-soluble fluorine-functionalized chitooligosaccharide derivatives were synthesized by conjugating nicotinic acid to chitooligosaccharide via nicotinylation reaction, followed by nucleophilic reaction with ethyl bromide, benzyl bromide and fluorobenzyl bromides. Synthesized derivatives were identified structurally by Fourier Transform Infrared Spectroscopy and Nuclear Magnetic Resonance. In addition, the antibacterial activities of chitooligosaccharide derivatives against several disease-causing bacteria were assessed by the broth dilution method and Kirby-Bauer method, the mycelium growth rate method was used to assessing the antifungal properties of samples against three plant-threatening fungi. Among the chitooligosaccharide derivatives, those containing benzyl or fluorobenzyl exhibited noteworthy antimicrobial activity. Specifically, the chitooligosaccharide derivative containing 2,3,4-trifluorobenzyl displayed remarkable antimicrobial activity, with an inhibition index of 84.35% against Botryis cinerea at a concentration of 1.0 mg/mL. Additionally, its MIC value against Staphylococcus aureus was found to be 0.03125 mg/mL, while the MBC value was determined to be 0.0625 mg/mL. The findings of the study revealed that the incorporation of pyridinium cations and fluorine into the chitooligosaccharide backbone may play a critical role in strengthening its ability to combat harmful microorganisms. Furthermore, the cytotoxicities of chitooligosaccharide derivatives against Huvec cells were evaluated through MTT assay, and all samples were not toxic. As a consequence, the water-soluble fluorine-functionalized chitooligosaccharide derivatives possessed rapid microbicidal properties and good biocompatibility, which provided promising prospects for the development of a more effective and environmentally friendly antimicrobial agent.
Collapse
Affiliation(s)
- Conghao Lin
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Fang Luan
- Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai, 264200, China
| | - Shengjia Su
- Shandong Saline-Alkali Land Modern Agriculture Company, Dongying, 257300, China
| | - Aili Jiang
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Wenqiang Tan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Zhanyong Guo
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
40
|
Wang Y, Ji X, Zhao M, Li J, Yin H, Jin J, Zhao L. Modulation of tryptophan metabolism via AHR-IL22 pathway mediates the alleviation of DSS-induced colitis by chitooligosaccharides with different degrees of polymerization. Carbohydr Polym 2023; 319:121180. [PMID: 37567716 DOI: 10.1016/j.carbpol.2023.121180] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 08/13/2023]
Abstract
Oral administration of chitooligosaccharides (COS) has been reported to alleviate colitis in mice. However, the mechanism of action of COS with specific polymerization degree on gut inflammation and metabolism remains unclear. This study aimed to investigate the effects of chitobiose (COS2), chitotetraose (COS4), and chitohexaose (COS6) on colitis, and to elucidate their underlying mechanisms. COS2, COS4, and COS6 were able to significantly alleviate colonic injury and inflammation levels. COS6 has the best anti-inflammatory effect. Furthermore, COS6 could down-regulate the level of indoleamine-2,3-dioxygenase1 (IDO1) and restore the levels of indole, indoleacetic-3-acid (IAA), and indole-3-carbaldehyde (I3A) in the cecum of chronic colitis mice (p < 0.05), thereby regulating tryptophan metabolism. In the aromatic hydrocarbon receptor-IL-22 (AHR-IL-22) pathway, although there were differences between chronic colitis and acute colitis mice, COS intervention could restore the AHR-IL-22 pathway to normal, promote the expression of MUC2, and repair the intestinal mucosal barrier. In conclusion, the results of this study suggested that COS had a good inhibitory effect on IDO1 under inflammation and the changes of AHR and IL-22 levels at different stages of disease development. This provides new insights into the potential use of COS as a functional food for improving intestinal inflammation and metabolism.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoguo Ji
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai 200237, China
| | - Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai 200237, China
| | - Juan Li
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Jiayang Jin
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai 200237, China.
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai 200003, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China.
| |
Collapse
|
41
|
Shagdarova B, Konovalova M, Varlamov V, Svirshchevskaya E. Anti-Obesity Effects of Chitosan and Its Derivatives. Polymers (Basel) 2023; 15:3967. [PMID: 37836016 PMCID: PMC10575173 DOI: 10.3390/polym15193967] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The number of obese people in the world is rising, leading to an increase in the prevalence of type 2 diabetes and other metabolic disorders. The search for medications including natural compounds for the prevention of obesity is an urgent task. Chitosan polysaccharide obtained through the deacetylation of chitin, and its derivatives, including short-chain oligosaccharides (COS), have hypolipidemic, anti-inflammatory, anti-diabetic, and antioxidant properties. Chemical modifications of chitosan can produce derivatives with increased solubility under neutral conditions, making them potential therapeutic substances for use in the treatment of metabolic disorders. Multiple studies both in animals and clinical trials have demonstrated that chitosan improves the gut microbiota, restores intestinal barrier dysfunction, and regulates thermogenesis and lipid metabolism. However, the effect of chitosan is rather mild, especially if used for a short periods, and is mostly independent of chitosan's physical characteristics. We hypothesized that the major mechanism of chitosan's anti-obesity effect is its flocculant properties, enabling it to collect the chyme in the gastrointestinal tract and facilitating the removal of extra food. This review summarizes the results of the use of COS, chitosan, and its derivatives in obesity control in terms of pathways of action and structural activity.
Collapse
Affiliation(s)
- Balzhima Shagdarova
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Mariya Konovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Valery Varlamov
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Elena Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia;
| |
Collapse
|
42
|
Mavrogeni ME, Asadpoor M, Judernatz JH, van Ark I, Wösten MMSM, Strijbis K, Pieters RJ, Folkerts G, Braber S. Protective Effects of Alginate and Chitosan Oligosaccharides against Clostridioides difficile Bacteria and Toxin. Toxins (Basel) 2023; 15:586. [PMID: 37888617 PMCID: PMC10610568 DOI: 10.3390/toxins15100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Clostridioides difficile infection is expected to become the most common healthcare-associated infection worldwide. C. difficile-induced pathogenicity is significantly attributed to its enterotoxin, TcdA, which primarily targets Rho-GTPases involved in regulating cytoskeletal and tight junction (TJ) dynamics, thus leading to cytoskeleton breakdown and ultimately increased intestinal permeability. This study investigated whether two non-digestible oligosaccharides (NDOs), alginate (AOS) and chitosan (COS) oligosaccharides, possess antipathogenic and barrier-protective properties against C. difficile bacteria and TcdA toxin, respectively. Both NDOs significantly reduced C. difficile growth, while cell cytotoxicity assays demonstrated that neither COS nor AOS significantly attenuated the TcdA-induced cell death 24 h post-exposure. The challenge of Caco-2 monolayers with increasing TcdA concentrations increased paracellular permeability, as measured by TEER and LY flux assays. In this experimental setup, COS completely abolished, and AOS mitigated, the deleterious effects of TcdA on the monolayer's integrity. These events were not accompanied by alterations in ZO-1 and occludin protein levels; however, immunofluorescence microscopy revealed that both AOS and COS prevented the TcdA-induced occludin mislocalization. Finally, both NDOs accelerated TJ reassembly upon a calcium-switch assay. Overall, this study established the antipathogenic and barrier-protective capacity of AOS and COS against C. difficile and its toxin, TcdA, while revealing their ability to promote TJ reassembly in Caco-2 cells.
Collapse
Affiliation(s)
- Maria Eleni Mavrogeni
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Mostafa Asadpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Jo H Judernatz
- Structural Biochemistry Group, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Ingrid van Ark
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Marc M S M Wösten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Karin Strijbis
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Roland J Pieters
- Division of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
43
|
Ranneh Y, Fadel A, Md Akim A, Idris I, Ilesanmi-Oyelere BL, Ismail LC. Effect of Dietary Fiber Supplementation on Metabolic Endotoxemia: A Protocol for Systematic Review and Meta-Analysis of Randomized Clinical Trials. Methods Protoc 2023; 6:84. [PMID: 37736967 PMCID: PMC10514783 DOI: 10.3390/mps6050084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
Introduction: Metabolic endotoxemia (ME) is the main cause of sub-clinical chronic inflammation, which subsequently triggers the onset of several chronic diseases. However, recent reports have indicated that dietary fiber (DF) contributes significantly to ameliorating ME and inflammation. This protocol aims to provide an outline of all procedures in synthesizing the available data on the effect of DF against ME. Methods: Following the PRISMA 2020 guidelines for preparing protocols, this protocol was registered in the International Prospective Registry of Systematic Reviews (PROSPERO) with registration number (CRD42023417833). In this review, we specifically focused on the inclusion of clinical trials that met the following criteria: they were published or available as preprints, employed random, quasi-random, or cross-over designs, and were exclusively documented in the English language. Clinical medical subject headings (MeSH) as search terms were used on prominent databases such as MEDLINE, COCHRANE library, PubMed, World Health Organization International Clinical Trials Registry Platforms, and US National Institutes of Health Ongoing Trials Register Clinicaltrials.gov. Results and discussion: This protocol will guide the exploration of articles that report changes in ME biomarkers in subjects supplemented with DF. The findings of this protocol will ensure a comprehensive evaluation of available evidence, provide a quantitative summary, identify patterns and trends, enhance statistical power, and address heterogeneity, which collectively will clarify the optimal types, doses, and duration of DF interventions for managing ME and low-grade inflammation. Ethics and dissemination: The quantitative data of clinical trials will be collected, and a meta-analysis will be performed using RevMan V.5.3 software. Therefore, no ethical approval is required.
Collapse
Affiliation(s)
- Yazan Ranneh
- Department of Nutrition and Dietetics, College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Abdulmannan Fadel
- Research Institute for Sport and Exercise Sciences, School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Abdah Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Iskandar Idris
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3NE, UK;
| | | | - Leila Cheikh Ismail
- Department of Clinical Nutrition and Dietetics, University of Sharjah, Sharjah P.O. Box 72772, United Arab Emirates;
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
44
|
Dias C, Commin L, Bonnefont-Rebeix C, Buff S, Bruyère P, Trombotto S. Comparative Evaluation of the In Vitro Cytotoxicity of a Series of Chitosans and Chitooligosaccharides Water-Soluble at Physiological pH. Polymers (Basel) 2023; 15:3679. [PMID: 37765533 PMCID: PMC10537996 DOI: 10.3390/polym15183679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Chitosans (CS) have been of great interest due to their properties and numerous applications. However, CS have poor solubility in neutral and basic media, which limits their use in these conditions. In contrast, chitooligosaccharides (COS) have better solubility in water and lower viscosity in aqueous solutions whilst maintaining interesting biological properties. CS and COS, unlike other sugars, are not single polymers with a defined structure but are groups of molecules with modifiable structural parameters, allowing the adaptation and optimization of their properties. The great versatility of CS and COS makes these molecules very attractive for different applications, such as cryopreservation. Here, we investigated the effect of the degree of polymerization (DP), degree of N-acetylation (DA) and concentration of a series of synthesized CS and COS, water-soluble at physiological pH, on their cytotoxicity in an L929 fibroblast cell culture. Our results demonstrated that CS and COS showed no sign of toxicity regarding cell viability at low concentrations (≤10 mg/mL), independently of their DP and DA, whereas a compromising effect on cell viability was observed at a high concentration (100 mg/mL).
Collapse
Affiliation(s)
- Catia Dias
- UPSP 2021.A104 ICE, Interaction Cellule Environnement, VetAgro Sup, Université de Lyon, F-69280 Marcy l’Etoile, France; (L.C.); (C.B.-R.); (S.B.); (P.B.)
| | - Loris Commin
- UPSP 2021.A104 ICE, Interaction Cellule Environnement, VetAgro Sup, Université de Lyon, F-69280 Marcy l’Etoile, France; (L.C.); (C.B.-R.); (S.B.); (P.B.)
| | - Catherine Bonnefont-Rebeix
- UPSP 2021.A104 ICE, Interaction Cellule Environnement, VetAgro Sup, Université de Lyon, F-69280 Marcy l’Etoile, France; (L.C.); (C.B.-R.); (S.B.); (P.B.)
| | - Samuel Buff
- UPSP 2021.A104 ICE, Interaction Cellule Environnement, VetAgro Sup, Université de Lyon, F-69280 Marcy l’Etoile, France; (L.C.); (C.B.-R.); (S.B.); (P.B.)
| | - Pierre Bruyère
- UPSP 2021.A104 ICE, Interaction Cellule Environnement, VetAgro Sup, Université de Lyon, F-69280 Marcy l’Etoile, France; (L.C.); (C.B.-R.); (S.B.); (P.B.)
| | - Stéphane Trombotto
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, F-69622 Villeurbanne, France;
| |
Collapse
|
45
|
Sim I, Choe W, Ri J, Su H, Moqbel SAA, Yan W. Chitosan oligosaccharide suppresses osteosarcoma malignancy by inhibiting CEMIP via the PI3K/AKT/mTOR pathway. Med Oncol 2023; 40:294. [PMID: 37668818 PMCID: PMC10480286 DOI: 10.1007/s12032-023-02165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
Osteosarcoma is a malignant bone tumor that is prone to metastasize early and primarily affects children and adolescents. Cell migration-inducing protein (CEMIP) plays a crucial role in the progression and malignancy of various tumor diseases, including osteosarcoma. Chitosan oligosaccharide (COS), an oligomer isolated from chitin, has been found to have significant anti-tumor activity in various cancers. This study investigates the effects of COS on CEMIP expression in osteosarcoma and explores the underlying mechanism. In present study, in vitro experiments were conducted to confirm the inhibitory activity of COS on human osteosarcoma cells. Our results demonstrate that COS possesses inhibitory effects against human osteosarcoma cells and significantly suppresses CEMIP expression in vitro. Next, we studied the inhibition of the expression of CEMIP by COS and then performed bioinformatics analysis to explore the potential inhibitory mechanism of COS against signaling pathways involved in regulating CEMIP expression. Bioinformatics analysis predicted a close association between the PI3K signaling pathway and CEMIP expression and that the inhibitory effect of COS on CEMIP expression may be related to PI3K signaling pathway regulation. The results of this study show that COS treatment significantly inhibits CEMIP expression and the PI3K/AKT/mTOR signaling pathway, as observed both in vitro and in vivo. This study demonstrates that COS could inhibit the expression of CEMIP, which is closely related to osteosarcoma malignancy. This inhibitory effect may be attributed to the inhibition of the PI3K/AKT/mTOR signaling pathway in vitro and in vivo.
Collapse
Affiliation(s)
- IlJin Sim
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Campus, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
- Zhejiang University School of Medicine, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, Jianggan District, Hangzhou, 310029 China
- Clinical Institute, Pyongyang Medical University, Pyongyang, 999093 Democratic People’s Republic of Korea
| | - WonGyom Choe
- Clinical Institute, Pyongyang Medical University, Pyongyang, 999093 Democratic People’s Republic of Korea
| | - JinJu Ri
- Department of Cardiology, Pyongyang Medical University Hospital, Pyongyang, 999093 Democratic People’s Republic of Korea
| | - Hang Su
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Campus, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
- Zhejiang University School of Medicine, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, Jianggan District, Hangzhou, 310029 China
| | - Safwat Adel Abdo Moqbel
- Zhejiang University School of Medicine, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, Jianggan District, Hangzhou, 310029 China
- Department of Emergency Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Campus, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
| | - WeiQi Yan
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Campus, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
- Zhejiang University School of Medicine, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, Jianggan District, Hangzhou, 310029 China
- The BioMed Innovation Institute of Hangzhou Medical College, Hangzhou, 310010 China
| |
Collapse
|
46
|
Li B, Han L, Ma J, Zhao M, Yang B, Xu M, Gao Y, Xu Q, Du Y. Synthesis of acylated derivatives of chitosan oligosaccharide and evaluation of their potential antifungal agents on Fusarium oxysporum. Carbohydr Polym 2023; 314:120955. [PMID: 37173050 DOI: 10.1016/j.carbpol.2023.120955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/16/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Chitosan oligosaccharide (COS) is an important carbohydrate-based biomaterial for synthesizing candidate drugs and biological agents. This study synthesized COS derivatives by grafting acyl chlorides of different alkyl chain lengths (C8, C10, and C12) onto COS molecules and further investigated their physicochemical properties and antimicrobial activity. The COS acylated derivatives were characterized using Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction, and thermogravimetric analysis. COS acylated derivatives were successfully synthesized and possessed high solubility and thermal stability. As for the evaluation of antibacterial activity, COS acylated derivatives did not significantly inhibit Escherichia coli and Staphylococcus aureus, but they significantly inhibited Fusarium oxysporum, which was superior to that of COS. Transcriptomic analysis revealed that COS acylated derivatives exerted antifungal activity mainly by downregulating the expression of efflux pumps, disrupting cell wall integrity, and impeding normal cell metabolism. Our findings provided a fundamental theory for the development of environmentally friendly antifungal agents.
Collapse
Affiliation(s)
- Bing Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Lingyu Han
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Jinlong Ma
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Meijuan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Binghui Yang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Mei Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yujia Gao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Qingsong Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Yuguang Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
47
|
Qi Y, Jin M, Li Q, Wu Q, Liao Z, Wei M, Fan X, Yang Q, Tian X, Giuseppe B, Luo L. Chitooligosaccharide reconstitutes intestinal mucus layer to improve oral absorption of water-soluble drugs. J Control Release 2023; 360:831-841. [PMID: 37481213 DOI: 10.1016/j.jconrel.2023.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Intestinal mucus is a complex natural hydrogel barrier with unique physical properties that impede the absorption of various oral drugs. Both washout from the upper water layer and the physical resistance of the mucus layer particularly affect bioavailability of, especially, highly water-soluble molecules. One potential strategy for designing pharmaceutical formulations is to add absorption enhancers (AEs). However, there are few reports of AEs that work on mucus and their underlying mechanisms, leading to imprecise application. In this study, we investigated chitooligosaccharide (COS) as a safe, low-cost, and effective oral drug AE. We revealed the hydrodynamic law of interaction between COS and the intestinal mucus layer, which was associated with absorption benefiting mucus structural reconstruction. Based on this, we designed a translational strategy to improve the bioavailability of a group of soluble oral drugs by drinking COS solution before administration. Moreover, this research is expected to expand its application scenario by reducing drug dosage such as avoiding gastro-intestinal irritation and slowing veterinary antibiotic resistance.
Collapse
Affiliation(s)
- Yiming Qi
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ming Jin
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qing Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qinghua Wu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhiqian Liao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Menghao Wei
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xinyi Fan
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qianzhan Yang
- Analytical Instruments Department, Analytical Applications Center, Shimadzu (China) Co., Ltd. Chongqing Branch, Chongqing 404100, China
| | - Xiaohe Tian
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Battaglia Giuseppe
- Department of Chemistry and Institute for the Physics of Living Systems, University College London, London WC1H0AJ, United Kingdom
| | - Lei Luo
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
48
|
Berradi A, Aziz F, Achaby ME, Ouazzani N, Mandi L. A Comprehensive Review of Polysaccharide-Based Hydrogels as Promising Biomaterials. Polymers (Basel) 2023; 15:2908. [PMID: 37447553 DOI: 10.3390/polym15132908] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Polysaccharides have emerged as a promising material for hydrogel preparation due to their biocompatibility, biodegradability, and low cost. This review focuses on polysaccharide-based hydrogels' synthesis, characterization, and applications. The various synthetic methods used to prepare polysaccharide-based hydrogels are discussed. The characterization techniques are also highlighted to evaluate the physical and chemical properties of polysaccharide-based hydrogels. Finally, the applications of SAPs in various fields are discussed, along with their potential benefits and limitations. Due to environmental concerns, this review shows a growing interest in developing bio-sourced hydrogels made from natural materials such as polysaccharides. SAPs have many beneficial properties, including good mechanical and morphological properties, thermal stability, biocompatibility, biodegradability, non-toxicity, abundance, economic viability, and good swelling ability. However, some challenges remain to be overcome, such as limiting the formulation complexity of some SAPs and establishing a general protocol for calculating their water absorption and retention capacity. Furthermore, the development of SAPs requires a multidisciplinary approach and research should focus on improving their synthesis, modification, and characterization as well as exploring their potential applications. Biocompatibility, biodegradation, and the regulatory approval pathway of SAPs should be carefully evaluated to ensure their safety and efficacy.
Collapse
Affiliation(s)
- Achraf Berradi
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech 40000, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
| | - Faissal Aziz
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech 40000, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
| | - Mounir El Achaby
- Materials Science and Nano-Engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660-Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Naaila Ouazzani
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech 40000, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
| | - Laila Mandi
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech 40000, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
| |
Collapse
|
49
|
Ibrahim MA, Alhalafi MH, Emam EAM, Ibrahim H, Mosaad RM. A Review of Chitosan and Chitosan Nanofiber: Preparation, Characterization, and Its Potential Applications. Polymers (Basel) 2023; 15:2820. [PMID: 37447465 DOI: 10.3390/polym15132820] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Chitosan is produced by deacetylating the abundant natural chitin polymer. It has been employed in a variety of applications due to its unique solubility as well as its chemical and biological properties. In addition to being biodegradable and biocompatible, it also possesses a lot of reactive amino side groups that allow for chemical modification and the creation of a wide range of useful derivatives. The physical and chemical characteristics of chitosan, as well as how it is used in the food, environmental, and medical industries, have all been covered in a number of academic publications. Chitosan offers a wide range of possibilities in environmentally friendly textile processes because of its superior absorption and biological characteristics. Chitosan has the ability to give textile fibers and fabrics antibacterial, antiviral, anti-odor, and other biological functions. One of the most well-known and frequently used methods to create nanofibers is electrospinning. This technique is adaptable and effective for creating continuous nanofibers. In the field of biomaterials, new materials include nanofibers made of chitosan. Numerous medications, including antibiotics, chemotherapeutic agents, proteins, and analgesics for inflammatory pain, have been successfully loaded onto electro-spun nanofibers, according to recent investigations. Chitosan nanofibers have several exceptional qualities that make them ideal for use in important pharmaceutical applications, such as tissue engineering, drug delivery systems, wound dressing, and enzyme immobilization. The preparation of chitosan nanofibers, followed by a discussion of the biocompatibility and degradation of chitosan nanofibers, followed by a description of how to load the drug into the nanofibers, are the first issues highlighted by this review of chitosan nanofibers in drug delivery applications. The main uses of chitosan nanofibers in drug delivery systems will be discussed last.
Collapse
Affiliation(s)
- Marwan A Ibrahim
- Department of Biology, College of Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia
- Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11566, Egypt
| | - Mona H Alhalafi
- Department of Chemistry, College of Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - El-Amir M Emam
- Faculty of Applied Arts, Textile Printing, Dyeing and Finishing Department, Helwan University, Cairo 11795, Egypt
| | - Hassan Ibrahim
- Pretreatment and Finishing of Cellulosic Fibers Department, Textile Research and Technology Institute, National Research Centre, Cairo 12622, Egypt
| | - Rehab M Mosaad
- Department of Biology, College of Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia
- Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
50
|
Chen Y, Wen Y, Zhu Y, Chen Z, Mu W, Zhao C. Synthesis of bioactive oligosaccharides and their potential health benefits. Crit Rev Food Sci Nutr 2023; 64:10319-10331. [PMID: 37341126 DOI: 10.1080/10408398.2023.2222805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Oligosaccharides, a low polymerization degree of carbohydrate, possess various physiological activities, such as anti-diabetes, anti-obesity, anti-aging, anti-viral, and gut microbiota regulation, having a widely used in food and medical fields. However, due to the limited natural oligosaccharides, many un-natural oligosaccharides from complex polysaccharides are being studied for amplifying the available pool of oligosaccharides. More recently, various oligosaccharides were developed by using several artificial strategies, such as chemical degradation, enzyme catalysis, and biosynthesis, then they can be applied in various sectors. Moreover, it has gradually become a trend to use biosynthesis to realize the synthesis of oligosaccharides with clear structure. Emerging research has found that un-natural oligosaccharides exert more comprehensive effects against various human diseases through multiple mechanisms. However, these oligosaccharides from various routes have not been critical reviewed and summarized. Therefore, the purpose of this review is to present the various routes of oligosaccharides preparations and healthy effects, with a focus on diabetes, obesity, aging, virus, and gut microbiota. Additionally, the application of multi-omics for these natural and un-natural oligosaccharides has also been discussed. Especially, the multi-omics are needed to apply in various disease models to find out various biomarkers to respond to the dynamic change process of oligosaccharides.
Collapse
Affiliation(s)
- Yihan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Ourense, Spain
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Zhengxin Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|