1
|
Yan L, Gu L, Lv X, Ni Z, Qian W, Chen Z, Yang S, Zhuge Q, Yuan L, Ni H. Butylphthalide mitigates traumatic brain injury by activating anti-ferroptotic AHR-CYP1B1 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118758. [PMID: 39222762 DOI: 10.1016/j.jep.2024.118758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Increasing evidence suggests that ferroptosis, an iron-dependent form of cell death characterized by lipid peroxidation, may play a substantial role in the traumatic brain injury (TBI) pathophysiology. 3-n-butylphthalide (NBP), a compound extracted from the seeds of Apium graveolens Linn (Chinese celery) and used in China to treat ischemic stroke, has demonstrated encouraging anti-reactive oxygen species (ROS) effects. Ascertaining whether NBP can inhibit ferroptosis and its mechanism could potentially expand its use in models of neurological injury and neurodegenerative diseases. METHODS AND RESULTS In this study, we used erastin-induced in vitro ferroptosis models (HT22 cells, hippocampal slices, and primary neurons) and an in vivo controlled cortical impact mouse model. Our study revealed that NBP administration mitigated erastin-induced death in HT-22 cells and decreased ROS levels, lipid peroxidation, and mitochondrial superoxide indicators, resulting in mitochondrial protection. Moreover, the ability of NBP to inhibit ferroptosis was confirmed in organotypic hippocampal slice cultures and a TBI mouse model. NBP rescued neurons, inhibited microglial activation, and reduced iron levels in the brain tissue. The protective effect of NBP can be partly attributed to the inhibition of the AHR-CYP1B1 axis, as evidenced by RNA-seq and CYP1B1 overexpression/inhibition experiments in HT22 cells and primary neurons. CONCLUSIONS Our study underscores that NBP inhibition of the AHR-CYP1B1 axis reduces ferroptosis in neuronal damage and ameliorates brain injury.
Collapse
Affiliation(s)
- Lin Yan
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Department of Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, Fujian, China.
| | - Liuqing Gu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Xinhuang Lv
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Zhihui Ni
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Wenqi Qian
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Zhibo Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Su Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Qichuan Zhuge
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Lin Yuan
- Institute of Biomedical Sciences, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Haoqi Ni
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
2
|
Lin H, Li Z, Zeng T, Wang Y, Zhang L. The crucial involvement of gamma-Mangostin and CYP1B1 in the mechanism underlying the toxicity caused by cigarette smoke extract: In silico and in vitro insights. Toxicology 2025; 510:154016. [PMID: 39615578 DOI: 10.1016/j.tox.2024.154016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/05/2024] [Accepted: 11/24/2024] [Indexed: 12/13/2024]
Abstract
Cigarette smoke extracts (CSE) contain harmful substances that significantly contribute to respiratory conditions. Previous studies have primarily focused on the presence of carcinogens in CSE. However, it should be noted that other compounds may also synergistically contribute to a greater impact. This study proposes an innovative collaboration between natural products in CSE and carcinogens to enhance CSE-induced acute toxicity. Bioinformatics analysis coupled with experimental validation have elucidated the pivotal role of CYP1B1 in CSE-induced acute toxicity. Inhibitors targeting CYP1B1 have demonstrated preferential cytotoxicity towards cells exhibiting elevated levels of CYP1B1 expression. Afterwards, we conducted a virtual screening of the CSE composition database to identify a potential inhibitor for CYP1B1. After analyzing docking scores and complex interaction modes, γ-mangostin emerged as a highly promising CYP1B1 inhibitor. Molecular docking and dynamics were used to elucidate the complex structure formed between γ-mangostin and CYP1B1. Further investigations suggest that γ-mangostin can synergistically interact with carcinogens in CSE, causing cellular harm and contributing significantly to acute toxicity induced by CSE. Furthermore, γ-mangostin showed increased affinity towards CYP1B1 variants L432V and N453S, suggesting that organisms with these genetic variations may be more susceptible to cell damage caused by CSE. These new perspectives enhance our understanding of the mechanism behind acute toxicity associated with CSE and offer new possibilities for improving preventive measures and treatment strategies.
Collapse
Affiliation(s)
- Hao Lin
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Zijian Li
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Tao Zeng
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Ying Wang
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Lan Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
3
|
Wang Z, An R, Zhang L, Li X, Zhang C. Exposure to Bisphenol A jeopardizes decidualization and consequently triggers preeclampsia by up-regulating CYP1B1. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:137032. [PMID: 39740546 DOI: 10.1016/j.jhazmat.2024.137032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
Preeclampsia (PE) is a pregnancy-related disease that poses a significant threat to the health of both the mother and the fetus. Previous studies have primarily focused on the role of the placenta in PE pathogenesis; however, normal decidualization is crucial for the subsequent development of the placenta and pregnancy. Bisphenol A (BPA) is an environmental endocrine disruptor commonly used in the synthesis of polycarbonate and epoxy resins. Overexposure to BPA can result in severe reproductive issues. To further investigate the effects of BPA exposure on pregnancy, C57BL/6 mice were continuously exposed to either 0 or 100 mg/kg of BPA in this study. As a result, these mice developed symptoms of hypertension and proteinuria, indicative of PE. Additionally, their decidualization process was impaired. Transcriptome sequencing of artificially induced decidua revealed a significant upregulation in the expression of CYP1B1 within the BPA-treated group. This upregulation accelerated the metabolism of estrogen and progesterone, leading to significant decreases in their levels. Furthermore, the expression levels of estrogen and progesterone receptors and their responding genes were significantly reduced. These findings suggest that BPA exposure can negatively impact decidualization and placental development, potentially contributing to the development of PE.
Collapse
Affiliation(s)
- Zongting Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China; Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Ruohe An
- Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Liang Zhang
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Xiaohui Li
- Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Cong Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China; Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.
| |
Collapse
|
4
|
Zhu Y, Dutta S, Han Y, Choi D, Polverino F, Owen CA, Somanath PR, Wang X, Zhang D. Oxidative stress promotes lipid-laden macrophage formation via CYP1B1. Redox Biol 2024; 79:103481. [PMID: 39721495 DOI: 10.1016/j.redox.2024.103481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
Emerging evidence suggests that lipid-laden macrophages (LLM) participate in lung damage in various clinical conditions. However, the mechanisms involved in LLM formation are not fully understood. In this study, we aimed to investigate the link between reactive oxygen species (ROS) and LLM formation. We found that ROS triggered by cigarette smoke extract (CSE) or H2O2 significantly promoted LLM formation. Given the key role of ROS in LLM formation, we further demonstrated that LLM formation is induced by various ROS-producing stimuli, including bacteria, oxidized low-density lipoprotein (OxLDL), hyperoxia, and E-cigarette vapor extract (EVE). Meanwhile, cytochrome P450 family-1 subfamily B member 1 (CYP1B1) was highly upregulated in lung macrophages from chronic obstructive pulmonary disease (COPD) patients and CSE-treated macrophages. Functionally, CYP1B1 contributes to the CSE-induced lipid accumulation and LLM formation. CYP1B1 expression and LLM formation were effectively suppressed by antioxidant N-acetylcysteine (NAC) and carvedilol. The formation of LLM was also associated with classically activated M1 but not the M2 state. CSE-induced LLM showed time-dependent alterations in inflammatory response and phagocytic ability. In summary, our study highlights the role of oxidative stress in LLM formation. CYP1B1 contributes to ROS-induced LLM formation and may serve as a therapeutic target for reducing LLM-induced lung damage.
Collapse
Affiliation(s)
- Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Saugata Dutta
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Yohan Han
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30912, USA; Department of Microbiology, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea
| | - Dooyoung Choi
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30912, USA
| | | | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
5
|
Liu D, Zhang Y, Guo L, Fang R, Guo J, Li P, Qian T, Li W, Zhao L, Luo X, Zhang S, Shao J, Sun S. Single-cell atlas of healthy vocal folds and cellular function in the endothelial-to-mesenchymal transition. Cell Prolif 2024; 57:e13723. [PMID: 39245637 PMCID: PMC11628749 DOI: 10.1111/cpr.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/06/2024] [Accepted: 07/13/2024] [Indexed: 09/10/2024] Open
Abstract
The vocal fold is an architecturally complex organ comprising a heterogeneous mixture of various layers of individual epithelial and mesenchymal cell lineages. Here we performed single-cell RNA sequencing profiling of 5836 cells from the vocal folds of adult Sprague-Dawley rats. Combined with immunostaining, we generated a spatial and transcriptional map of the vocal fold cells and characterized the subpopulations of epithelial cells, mesenchymal cells, endothelial cells, and immune cells. We also identified a novel epithelial-to-mesenchymal transition-associated epithelial cell subset that was mainly found in the basal epithelial layers. We further confirmed that this subset acts as intermediate cells with similar genetic features to epithelial-to-mesenchymal transition in head and neck squamous cell carcinoma. Finally, we present the complex intracellular communication network involved homeostasis using CellChat analysis. These studies define the cellular and molecular framework of the biology and pathology of the VF mucosa and reveal the functional importance of developmental pathways in pathological states in cancer.
Collapse
Affiliation(s)
- Danling Liu
- Department of Otorhinolaryngology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular InstituteSouthern Medical UniversityGuangzhouChina
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science CenterShenzhen UniversityShenzhenChina
| | - Yunzhong Zhang
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Luo Guo
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Rui Fang
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Jin Guo
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Peifang Li
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Tingting Qian
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Wen Li
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Liping Zhao
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Xiaoning Luo
- Department of Otorhinolaryngology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular InstituteSouthern Medical UniversityGuangzhouChina
| | - Siyi Zhang
- Department of Otorhinolaryngology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular InstituteSouthern Medical UniversityGuangzhouChina
| | - Jun Shao
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Shan Sun
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| |
Collapse
|
6
|
Bozec J, Rousseau-Ralliard D, Jouneau L, Prézelin A, Dahirel M, Richard C, Gelin V, Fournier N, Helies V, Joly T, El Fouikar S, Léandri R, Chavatte-Palmer P, Couturier-Tarrade A. Preconception and/or preimplantation exposure to a mixture of environmental contaminants altered fetoplacental development and placental function in a rabbit model. ENVIRONMENTAL RESEARCH 2024; 262:119829. [PMID: 39179140 DOI: 10.1016/j.envres.2024.119829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Pregnant women are daily exposed to environmental contaminants, including endocrine disruptors that can impact the offspring's health. This study aimed to evaluate the effects of maternal oral exposure to a mixture of contaminants at a dose mimicking women's exposure, during folliculogenesis and/or preimplantation period (FED and ED groups, respectively) on the fetoplacental phenotype in a rabbit model. The mixture (DEHP, pp'DDE, β-HCH, HCB, BDE-47, BPS, PFOS, PFOA) was defined based on data from HELIX and INMA cohorts. FED and ED females or unexposed females (control) were inseminated, their embryos were collected and transferred to unexposed control recipient rabbits at 80 h post-insemination. The effects of maternal FED and ED exposure were evaluated on fetoplacental growth and development by ultrasound, fetoplacental biometry, fetal metabolism, placental structure and function. The results demonstrated that the mixture weakly affected ultrasound measurements, as only placental volume increased significantly in FED vs ED. Analysis of placental structure demonstrated that the volume fraction of the maternal blood space was increased in FED vs control. Pre- and/or periconception exposure did not affect biometric at the end of gestation, but affected FED fetal biochemistry. Plasma triglyceride concentration was reduced compared to control. However, total cholesterol, urea, ASAT and ALAT in fetal blood were affected in both exposed groups. Multiple factor analysis, including biometric, biochemical, and stereological datasets, indicated that the three groups were significantly different. Additionally, several placental genes were differentially expressed between groups, compared two by two, in a sex-specific manner, with more difference in females than in males. The differentially expressed genes were involved in lipid, cholesterol, and drug/xenobiotic metabolism in both sexes. These results indicate that maternal exposure to environmental contaminants during crucial developmental windows only mildly impaired fetoplacental development but disturbed fetal blood biochemistry and placental gene expression with potential long-term effects on offspring phenotype.
Collapse
Affiliation(s)
- Jeanne Bozec
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Audrey Prézelin
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Michèle Dahirel
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Christophe Richard
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Valérie Gelin
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Natalie Fournier
- Lip(Sys)2 - EA 7357, Athérosclérose et Macrophages: Impact des Phospholipides et des Fonctions Mitochondriales sur L'efflux du Cholestérol, Université Paris Saclay, UFR de Pharmacie, 91400, Orsay, France; Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, 75015, Paris, France
| | - Virginie Helies
- GenPhySE, INRAE, Université de Toulouse, INPT, ENVT, Castanet Tolosan, France
| | - Thierry Joly
- Université de Lyon, VetAgro Sup, UPSP Interaction Cellule Environnement, 69280, Marcy L'Etoile, France; Université de Lyon, ISARA-Lyon, 69007, Lyon, France
| | - Sara El Fouikar
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Roger Léandri
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Médecine de La Reproduction, Hôpital Paule de Viguier, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France.
| |
Collapse
|
7
|
Jiao C, Qiu J, Gong C, Li X, Liang H, He C, Cen S, Xie Y. Ganoderma lucidum extract reverses multidrug resistance in breast cancer cells through inhibiting ATPase activity of the P-glycoprotein via MAPK/ERK signaling pathway. Exp Cell Res 2024; 444:114355. [PMID: 39613022 DOI: 10.1016/j.yexcr.2024.114355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
Breast cancer represents a persistent global health challenge, with multidrug resistance (MDR) posing a significant obstacle to effective treatment. In this study, we investigate the potential of Ganoderma lucidum extract (GLE) in reversing MDR in breast cancer and delve into the underlying mechanisms. We establish a robust in vitro 3D model of breast cancer with acquired MDR induced by paclitaxel. Utilizing the CCK-8 method, we assess the impact of GLE on cytotoxic drug sensitivity to determine its in vitro MDR reversal activity. Our results reveal that GLE enhances the toxicity of paclitaxel in breast cancer cells by inhibiting the ATPase activity of P-glycoprotein (P-gp) and increasing the intracellular and extracellular excretion of P-gp substrates, all without significantly altering P-gp protein expression. Additionally, GLE inhibits the phosphorylation of ERK1/2, suggesting that the enhanced sensitivity of breast cancer cells to paclitaxel by GLE is associated with the MAPK pathway. These findings indicate that GLE may inhibit P-gp-mediated drug efflux via the MAPK pathway, thus effectively overcoming paclitaxel resistance in breast cancer. This study provides valuable insights into the potential clinical applications of GLE in reversing multidrug resistance, offering hope for improved breast cancer treatment strategies.
Collapse
Affiliation(s)
- Chunwei Jiao
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China; Guangdong Yuewei Bioscience Co., Ltd., Zhaoqing, 526000, PR China
| | - Jinshou Qiu
- Zhangzhou Hospital Affiliated to Fujian Medical University, Zhangzhou, Fujian, 363000, PR China
| | - Congcong Gong
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China; South China University of Technology, PR China
| | - Xiaoyi Li
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China
| | - Huijia Liang
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China
| | - Chunyan He
- Guangdong Yuewei Bioscience Co., Ltd., Zhaoqing, 526000, PR China
| | - Sien Cen
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China
| | - Yizhen Xie
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China; Guangdong Yuewei Bioscience Co., Ltd., Zhaoqing, 526000, PR China.
| |
Collapse
|
8
|
Tęcza K, Kalinowska-Herok M, Rusinek D, Zajkowicz A, Pfeifer A, Oczko-Wojciechowska M, Pamuła-Piłat J. Are the Common Genetic 3'UTR Variants in ADME Genes Playing a Role in Tolerance of Breast Cancer Chemotherapy? Int J Mol Sci 2024; 25:12283. [PMID: 39596349 PMCID: PMC11594993 DOI: 10.3390/ijms252212283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
We studied the associations between 3'UTR genetic variants in ADME genes, clinical factors, and the risk of breast cancer chemotherapy toxicity. Those variants and factors were tested in relation to seven symptoms belonging to myelotoxicity (anemia, leukopenia, neutropenia), gastrointestinal side effects (vomiting, nausea), nephrotoxicity, and hepatotoxicity, occurring in overall, early, or recurrent settings. The cumulative risk of overall symptoms of anemia was connected with AKR1C3 rs3209896 AG, ERCC1 rs3212986 GT, and >6 cycles of chemotherapy; leukopenia was determined by ABCC1 rs129081 allele G and DPYD rs291593 allele T; neutropenia risk was correlated with accumulation of genetic variants of DPYD rs291583 allele G, ABCB1 rs17064 AT, and positive HER2 status. Risk of nephrotoxicity was determined by homozygote DPYD rs291593, homozygote AKR1C3 rs3209896, postmenopausal age, and negative ER status. Increased risk of hepatotoxicity was connected with NR1/2 rs3732359 allele G, postmenopausal age, and with present metastases. The risk of nausea and vomiting was linked to several genetic factors and premenopausal age. We concluded that chemotherapy tolerance emerges from the simultaneous interaction of many genetic and clinical factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jolanta Pamuła-Piłat
- Department of Clinical and Molecular Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.T.); (M.K.-H.); (D.R.); (A.Z.); (A.P.); (M.O.-W.)
| |
Collapse
|
9
|
Dong J, Li Y, Jin Z, Wu Z, Cai M, Pan G, Ye W, Zhou W, Li Z, Tian S, Chen ZS, Qin JJ. Synthesis and evaluation of novel tetrahydroisoquinoline-benzo[h]chromen-4-one conjugates as dual ABCB1/CYP1B1 inhibitors for overcoming MDR in cancer. Bioorg Med Chem 2024; 114:117944. [PMID: 39418747 DOI: 10.1016/j.bmc.2024.117944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
The emergence of multidrug resistance (MDR) in malignant tumors is one of the major threats encountered currently by many chemotherapeutic agents. Among the various mechanisms involved in drug resistance, P-glycoprotein (P-gp, ABCB1), a member of the ABC transporter family that significantly increases the efflux of various anticancer drugs from tumor cells, and the metabolic enzyme CYP1B1 are widely considered to be two critical targets for overcoming MDR. Unfortunately, no MDR modulator has been approved by the FDA to date. In this study, based on pharmacophore hybridization, bioisosteric and fragment-growing strategies, we designed and synthesized 11 novel tetrahydroisoquinoline-benzo[h]chromen-4-one conjugates as dual ABCB1/CYP1B1 inhibitors. Among them, the preferred compound A10 exhibited the best MDR reversal activity (IC50 = 0.25 μM, RF = 44.4) in SW620/AD300 cells, being comparable to one of the most potent third-generation P-gp inhibitors WK-X-34. In parallel, this dual ABCB1/CYP1B1 inhibitory effect drives compound A10 exhibiting prominent drug resistance reversal activity to doxorubicin (IC50 = 4.7 μM, RF = 13.7) in ABCB1/CYP1B1-overexpressing DOX-SW620/AD300-1B1 resistant cells, which is more potent than that of the CYP1B1 inhibitor ANF. Furthermore, although compound A2 possessed moderate ABCB1/CYP1B1 inhibitory activity, it showed considerable antiproliferative activity towards drug-resistant SW620/AD300 and MKN45-DDP-R cells, which may be partly related to the increase of PUMA expression to promote the apoptosis of the drug-resistant MKN45-DDP-R cells as confirmed by proteomics and western blot assay. These results indicated that the tetrahydroisoquinoline-benzo[h]chromen-4-one conjugates may provide a fundamental scaffold reference for further discovery of MDR reversal agents.
Collapse
Affiliation(s)
- Jinyun Dong
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - YuLong Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Zhiyuan Jin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Zumei Wu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Maohua Cai
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Guangzhao Pan
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Wenchong Ye
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China
| | - Zheshen Li
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Sichao Tian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
10
|
Lin K, Xiong L, Zhang W, Chen X, Zhu J, Li X, Zhang J. Exploring the pharmacological mechanism of fermented Eucommia ulmoides leaf extract in the treatment of cisplatin-induced kidney injury in mice: Integrated traditional pharmacology, metabolomics and network pharmacology. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1248:124358. [PMID: 39527890 DOI: 10.1016/j.jchromb.2024.124358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Cisplatin (CP) is a widely utilized anticancer drug, which also produces significant side effects, notably acute kidney injury (AKI). Fermented Eucommia ulmoides leaf (FEUL), a medicinal and edible Chinese herbal remedy, is known for its renoprotective properties. However, the effect and underlying mechanism of FEUL extract in AKI therapy have remained largely unexplored. This research aimed to elucidate the protective roles of FEUL extract in an AKI mouse model through biochemical assays, histopathological examinations, and investigating the underlying mechanisms based on metabolomics and network pharmacology. The findings demonstrated that pretreatment with orally administered FEUL extract significantly reduced blood urea nitrogen (BUN), and serum creatinine (SCr) levels, and ameliorated CP-induced kidney histopathological injuries. Moreover, FEUL extract attenuated CP-induced endoplasmic reticulum (ER) stress by reducing the protein expressions of PERK, IRE 1α, GRP78, ATF6, ATF4, and CHOP. The metabolomics results indicated that a total of 31 metabolites, involved in taurine and hypotaurine metabolism, lysine degradation, and steroid hormone biosynthesis, were altered after FEUL extract administration. Furthermore, metabolomics integrated with network pharmacology revealed that 8 targets, 4 metabolites, and 3 key pathways including steroid hormone biosynthesis, purine metabolism, and tryptophan metabolism were the main mechanisms of FEUL extract in treating CP-induced AKI. These findings suggested that FEUL extract could offer valuable insights for potential CP-induced AKI treatment strategies.
Collapse
Affiliation(s)
- Kexin Lin
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Lijuan Xiong
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Wen Zhang
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xuan Chen
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Jieqi Zhu
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xiaofei Li
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China.
| | - Jianyong Zhang
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
11
|
Yu Z, Zhang Y, Wang G, Song S, Su H, Duan W, Wu Y, Zhang Y, Liu X. Identification of competing endogenous RNA networks associated with circRNA and lncRNA in TCDD-induced cleft palate development. Toxicol Lett 2024; 401:71-81. [PMID: 39270811 DOI: 10.1016/j.toxlet.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/20/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
2,3,7,8 -tetrachlorodibenzo-p-dioxin (TCDD) is a teratogen that can induce cleft palate formation, a common birth defect. Competing endogenous RNAs (ceRNAs), including circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), indirectly regulate gene expression via sharing microRNAs (miRNAs). Nevertheless, the mechanism by which they act as ceRNAs to regulate palatal development remains to be explored in greater detail. Here, the cleft palate model of C57BL/6 N pregnant mice was constructed by gavage of TCDD (64 ug/kg) on gestation day (GD) 10.5, and the palatal shelves were taken on gestation day (GD) 14.5 for whole-transcriptome sequencing to investigate the underlying mechanisms of the roles of circRNAs and lncRNAs as ceRNAs in cleft palate. Sequencing results revealed that 293 lncRNA, 589 circRNA, 47 miRNA, and 138 messenger RNA (mRNA) were significantly dysregulated, and the cytochrome P450 (CYP) enzymes and the aryl hydrocarbon receptor (AhR) pathway play key roles in the induction of cleft palate upon exposure to TCDD. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed the function of TCDD function was mainly related to the metabolic processes of intracellular compounds, including the metabolic processes of cellular aromatic compounds and the metabolism of exogenous drugs by cytochrome P450, etc. Furthermore, quantitative reverse transcription polymerase chain reaction (qRT-PCR) indicated that the circRNA_1781/miR-30c-1-3p/PKIB and XR_380026.2/miR-1249-3p/DNAH10 ceRNA networks were hypothesized to be a hub involved in palatal development suggesting that the circRNA_1781/miR-30c-1-3p/PKIB and XR_380026.2/miR-1249-3p/DNAH10 ceRNA networks may be critical for palatogenesis, setting the foundation for the investigation of cleft palate.
Collapse
Affiliation(s)
- Zengli Yu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yaxin Zhang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guoxu Wang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaixing Song
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Hexin Su
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjing Duan
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yang Wu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yuwei Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
12
|
Song W, Lam M, Liu R, Simona A, Weiner SG, Urman RD, Mukamal KJ, Wright A, Bates DW. A genome-wide Association study of the Count of Codeine prescriptions. Sci Rep 2024; 14:22780. [PMID: 39354046 PMCID: PMC11445378 DOI: 10.1038/s41598-024-73925-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Opioid prescription records in existing electronic health record (EHR) databases are a potentially useful, high-fidelity data source for opioid use-related risk phenotyping in genetic analyses. Prescriptions for codeine derived from EHR records were used as targeting traits by screening 16 million patient-level medication records. Genome-wide association analyses were then conducted to identify genomic loci and candidate genes associated with different count patterns of codeine prescriptions. Both low- and high-prescription counts were captured by developing 8 types of phenotypes with selected ranges of prescription numbers to reflect potentially different levels of opioid risk severity. We identified one significant locus associated with low-count codeine prescriptions (1, 2 or 3 prescriptions), while up to 7 loci were identified for higher counts (≥ 4, ≥ 5, ≥6, or ≥ 7 prescriptions), with a strong overlap across different thresholds. We identified 9 significant genomic loci with all-count phenotype. Further, using the polygenic risk approach, we identified a significant correlation (Tau = 0.67, p = 0.01) between an externally derived polygenic risk score for opioid use disorder and numbers of codeine prescriptions. As a proof-of-concept study, our research provides a novel and generalizable phenotyping pipeline for the genomic study of opioid-related risk traits.
Collapse
Affiliation(s)
- Wenyu Song
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Max Lam
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- North Region, Institute of Mental Health, Singapore, Singapore
- Population and Global Health, LKC Medicine, Nanyang Technological University of Singapore, Singapore, Singapore
| | - Ruize Liu
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Aurélien Simona
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Scott G Weiner
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Richard D Urman
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kenneth J Mukamal
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Adam Wright
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David W Bates
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Tung HC, Kim JW, Zhu J, Li S, Yan J, Liu Q, Koo I, Koshkin SA, Hao F, Zhong G, Xu M, Wang Z, Wang J, Huang Y, Xi Y, Cai X, Xu P, Ren S, Higashiyama T, Gonzalez FJ, Li S, Isoherranen N, Yang D, Ma X, Patterson AD, Xie W. Inhibition of heme-thiolate monooxygenase CYP1B1 prevents hepatic stellate cell activation and liver fibrosis by accumulating trehalose. Sci Transl Med 2024; 16:eadk8446. [PMID: 39321267 DOI: 10.1126/scitranslmed.adk8446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/05/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024]
Abstract
Activation of extracellular matrix-producing hepatic stellate cells (HSCs) is a key event in liver fibrogenesis. We showed that the expression of the heme-thiolate monooxygenase cytochrome P450 1B1 (CYP1B1) was elevated in human and mouse fibrotic livers and activated HSCs. Systemic or HSC-specific ablation and pharmacological inhibition of CYP1B1 attenuated HSC activation and protected male but not female mice from thioacetamide (TAA)-, carbon tetrachloride (CCl4)-, or bile duct ligation (BDL)-induced liver fibrosis. Metabolomic analysis revealed an increase in the disaccharide trehalose in CYP1B1-deficient HSCs resulting from intestinal suppression of the trehalose-metabolizing enzyme trehalase, whose gene we found to be a target of RARα. Trehalose or its hydrolysis-resistant derivative lactotrehalose exhibited potent antifibrotic activity in vitro and in vivo by functioning as an HSC-specific autophagy inhibitor, which may account for the antifibrotic effect of CYP1B1 inhibition. Our study thus reveals an endobiotic function of CYP1B1 in liver fibrosis in males, mediated by liver-intestine cross-talk and trehalose. At the translational level, pharmacological inhibition of CYP1B1 or the use of trehalose/lactotrehalose may represent therapeutic strategies for liver fibrosis.
Collapse
Affiliation(s)
- Hung-Chun Tung
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jong-Won Kim
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junjie Zhu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sihan Li
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jiong Yan
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Qing Liu
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Imhoi Koo
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Sergei A Koshkin
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Fuhua Hao
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Guo Zhong
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Zehua Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jingyuan Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yixian Huang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yue Xi
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xinran Cai
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Song Li
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Da Yang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Andrew D Patterson
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
14
|
Du X, Ma Z, Xing Y, Feng L, Li Y, Dong C, Ma X, Huo R, Tian X. Identification and validation of potential biomarkers related to oxidative stress in idiopathic pulmonary fibrosis. Immunobiology 2024; 229:152791. [PMID: 39180853 DOI: 10.1016/j.imbio.2024.152791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 08/27/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic interstitial pneumonia with a poor prognosis and a pathogenesis that has not been fully elucidated. Oxidative stress is closely associated with IPF. In this research, we aimed to identify reliable diagnostic biomarkers associated with the oxidative stress through bioinformatics techniques. The gene expression profile data from the GSE70866 dataset was retrieved from the gene expression omnibus (GEO) database. We extracted 437 oxidative stress-related genes (ORGs) from gene set enrichment analysis (GSEA). The GSE141939 dataset was used for single-cell RNA-seq analysis to identify the expression of diagnostic genes in different cell clusters. A total of 10 differentially expressed oxidative stress-related genes (DE-ORGs) were screened. Subsequently, SOD3, CD36, ACOX2, RBM11, CYP1B1, SNCA, and MPO from the 10 DE-ORGs were identified as diagnostic genes based on random forest algorithm with randomized least absolute shrinkage and selection operator (LASSO) regression. A nomogram was constructed to evaluate the risk of disease. The decision curve analysis (DCA) and clinical impact curves indicated that the nomogram based on these seven biomarkers had extraordinary predictive power. Immune cell infiltration analysis results revealed that DE-ORGs were closely related to various immune cells, especially CYP1B1 was in positive correlation with monocytes and negative correlation with macrophages M1. Single-cell RNA-seq analysis showed that CYP1B1 was mainly associated with macrophages, and SNCA was mainly associated with basal cells. CYP1B1 and SNCA were diagnostic genes associated with oxidative stress in IPF.
Collapse
Affiliation(s)
- Xianglin Du
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhen Ma
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanqing Xing
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Liting Feng
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yupeng Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chuanchuan Dong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinkai Ma
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Rujie Huo
- Department of Respiratory Medicine, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi, China
| | - Xinrui Tian
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
15
|
Khatun MM, Bhuia MS, Chowdhury R, Sheikh S, Ajmee A, Mollah F, Al Hasan MS, Coutinho HDM, Islam MT. Potential utilization of ferulic acid and its derivatives in the management of metabolic diseases and disorders: An insight into mechanisms. Cell Signal 2024; 121:111291. [PMID: 38986730 DOI: 10.1016/j.cellsig.2024.111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Metabolic diseases are abnormal conditions that impair the normal metabolic process, which involves converting food into energy at a cellular level, and cause difficulties like obesity and diabetes. The study aimed to investigate how ferulic acid (FA) and its derivatives could prevent different metabolic diseases and disorders and to understand the specific molecular mechanisms responsible for their therapeutic effects. Information regarding FA associations with metabolic diseases and disorders was compiled from different scientific search engines, including Science Direct, Wiley Online, PubMed, Scopus, Web of Science, Springer Link, and Google Scholar. This review revealed that FA exerts protective effects against metabolic diseases such as diabetes, diabetic retinopathy, neuropathy, nephropathy, cardiomyopathy, obesity, and diabetic hypertension, with beneficial effects on pancreatic cancer. Findings also indicated that FA improves insulin secretion by increasing Ca2+ influx through the L-type Ca2+ channel, thus aiding in diabetes management. Furthermore, FA regulates the activity of inflammatory cytokines (TNF-α, IL-18, and IL-1β) and antioxidant enzymes (CAT, SOD, and GSH-Px) and reduces oxidative stress and inflammation, which are common features of metabolic diseases. FA also affects various signaling pathways, including the MAPK/NF-κB pathways, which play an important role in the progression of diabetic neuropathy and other metabolic disorders. Additionally, FA regulates apoptosis markers (Bcl-2, Bax, and caspase-3) and exerts its protective effects on cellular destruction. In conclusion, FA and its derivatives may act as potential medications for the management of metabolic diseases.
Collapse
Affiliation(s)
- Mst Muslima Khatun
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Salehin Sheikh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Afiya Ajmee
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Faysal Mollah
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE 63105-000, Brazil.
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh; Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh.
| |
Collapse
|
16
|
Helal SA, El-Sherbeni AA, El-Kadi AOS. 11-Hydroxyeicosatetraenoics induces cellular hypertrophy in an enantioselective manner. Front Pharmacol 2024; 15:1438567. [PMID: 39188949 PMCID: PMC11345585 DOI: 10.3389/fphar.2024.1438567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/08/2024] [Indexed: 08/28/2024] Open
Abstract
Background R/S enantiomers of 11-hydroxyeicosatertraenoic acid (11-HETE) are formed from arachidonic acid by enzymatic and non-enzymatic pathways. 11-HETE is predominately formed by the cytochrome P450 1B1 (CYP1B1). The role of CYP1B1 in the development of cardiovascular diseases is well established. Objectives This study aimed to assess the cellular hypertrophic effect of 11-HETE enantiomers in human RL-14 cardiomyocyte cell line and to examine their association with CYP1B1 levels. Methods Human fetal ventricular cardiomyocyte, RL-14 cells, were treated with 20 µM (R) or (S) 11-HETE for 24 h. Thereafter, cellular hypertrophic markers and cell size were then determined using real-time polymerase chain reaction (RT-PCR) and phase-contrast imaging, respectively. The mRNA and protein levels of selected CYPs were determined using RT-PCR and Western blot, respectively. In addition, we examined the effect of (R) and (S) 11-HETE on CYP1B1 catalytic activity using human recombinant CYP1B1 and human liver microsomes. Results Both (R) and (S) 11-HETE induced cellular hypertrophic markers and cell surface area in RL-14 cells. Both enantiomers significantly upregulated CYP1B1, CYP1A1, CYP4F2, and CYP4A11 at the mRNA and protein levels, however, the effect of the S-enantiomer was more pronounced. Furthermore, 11(S)-HETE increased the mRNA and protein levels of CYP2J and CYP4F2, whereas 11(R)-HETE increased only CYP4F2. Only 11(S)-HETE significantly increased the catalytic activity of CYP1B1 in recombinant human CYP1B1, suggesting allosteric activation in an enantioselective manner. Conclusion Our study provides the first evidence that 11-HETE can induce cellular hypertrophy in RL-14 cells via the increase in CYP1B1 mRNA, protein, and activity levels.
Collapse
Affiliation(s)
- Sara A. Helal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ahmed A. El-Sherbeni
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ayman O. S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
17
|
Lu J, Jin Z, Jin X, Chen W. Prognostic value and potential regulatory relationship of miR-200c-5p in colorectal cancer. J Biochem Mol Toxicol 2024; 38:e23770. [PMID: 39016041 DOI: 10.1002/jbt.23770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/23/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
This study aimed to investigate the relationship and potential mechanisms of miR-200c-5p in colorectal cancer (CRC) progression. Differentially expressed miRNAs were screened using the TCGA database. Subsequently, univariate analysis was performed to identify CRC survival-related miRNAs. Survival and receiver operator characteristic curves were generated. The target genes of miR-200c-5p and the relevant signaling pathways or biological processes were predicted by the miRNet database and enrichment analyses. The miR-200c-5p expression was detected using quantitative reverse-transcription polymerase chain reaction, Cell Counting Kit-8, Transwell, and cell apoptosis experiments were performed to determine miR-200c-5p's impact on CRC cell viability, invasiveness, and apoptosis. Finally, we constructed a CRC mouse model with inhibited miR-200c-5p to evaluate its impact on tumors. miR-200c-5p was upregulated in CRC, implying a favorable prognosis. Gene set enrichment analysis revealed that miR-200c-5p may participate in signaling pathways such as the TGF-β signaling pathway, RIG-I-like receptor signaling pathway, renin-angiotensin system, and DNA replication. miR-200c-5p potentially targeted mRNAs, including KCNE4 and CYP1B1, exhibiting a negative correlation with their expression. Furthermore, these mRNAs may participate in biological processes like the regulation of intracellular transport, cAMP-dependent protein kinase regulatory activity, ubiquitin protein ligase binding, MHC class II protein complex binding, and regulation of apoptotic signaling pathway. Lastly, miR-200c-5p overexpression repressed the viability and invasiveness of CRC cells but promoted apoptosis. The tumor size, weight, and volume were significantly increased by inhibiting miR-200c-5p (p < 0.05). miR-200c-5p is upregulated in CRC, serving as a promising biomarker for predicting CRC prognosis.
Collapse
Affiliation(s)
- Jiying Lu
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Colorectal and Anal Surgery, The Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Zhekang Jin
- Department of Colorectal and Anal Surgery, The Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xihan Jin
- Department of Colorectal and Anal Surgery, The Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Wenbin Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Li Y, Ma H, Wang J. Effects of polycyclic aromatic hydrocarbons on the gut-testis axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116539. [PMID: 38870734 DOI: 10.1016/j.ecoenv.2024.116539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic compounds which are comprised of two or more fused benzene rings. As a typical environmental pollutant, PAHs are widely distributed in water, soil, atmosphere and food. Despite extensive researches on the mechanisms of health damage caused by PAHs, especially their carcinogenic and mutagenic toxicity, there is still a lack of comprehensive summarization and synthesis regarding the mechanisms of PAHs on the gut-testis axis, which represents an intricate interplay between the gastrointestinal and reproductive systems. Thus, this review primarily focuses on the potential forms of interaction between PAHs and the gut microbiota and summarizes their adverse outcomes that may lead to gut microbiota dysbiosis, then compiles the possible mechanistic pathways on dysbiosis of the gut microbiota impairing the male reproductive function, in order to provide valuable insights for future research and guide further exploration into the intricate mechanisms underlying the impact of gut microbiota dysbiosis caused by PAHs on male reproductive function.
Collapse
Affiliation(s)
- Yuanjie Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Haitao Ma
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Junling Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
19
|
Yao X, Mao J, Zhang H, Xiao Y, Wang Y, Liu H. Development of novel N-aryl-2,4-bithiazole-2-amine-based CYP1B1 degraders for reversing drug resistance. Eur J Med Chem 2024; 272:116488. [PMID: 38733885 DOI: 10.1016/j.ejmech.2024.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Extrahepatic cytochrome P450 1B1 (CYP1B1), which is highly expressed in non-small cell lung cancer, is an attractive target for cancer prevention, therapy, and overcoming drug resistance. Historically, CYP1B1 inhibition has been the primary therapeutic approach for treating CYP1B1-related malignancies, but its success has been limited. This study introduced CYP1B1 degradation as an alternative strategy to counter drug resistance and metastasis in CYP1B1-overexpressing non-small cell lung cancer A549/Taxol cells via a PROTAC strategy. Our investigation revealed that the identification of the potent CYP1B1 degrader PV2, achieving DC50 values of 1.0 nM and inducing >90 % CYP1B1 degradation at concentrations as low as 10 nM in A549/Taxol cells. Importantly, PV2 enhanced the sensitivity of the A549/Taxol subline to Taxol, possibly due to its stronger inhibitory effects on P-gp through CYP1B1 degradation. Additionally, compared to the CYP1B1 inhibitor A1, PV2 effectively suppressed the migration and invasion of A549/Taxol cells by inhibiting the FAK/SRC and EMT pathways. These findings hold promise for a novel therapy targeting advanced CYP1B1+ non-small cell lung cancer.
Collapse
Affiliation(s)
- Xiaoxuan Yao
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, PR China
| | - Jianping Mao
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, PR China
| | - Haoyu Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, PR China
| | - Yi Xiao
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, PR China
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, PR China.
| | - Hongzhuo Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, PR China.
| |
Collapse
|
20
|
Hidayat R, Shoieb SM, Mosa FES, Barakat K, Brocks DR, Isse FA, Gerges SH, El-Kadi AOS. 16R-HETE and 16S-HETE alter human cytochrome P450 1B1 enzyme activity probably through an allosteric mechanism. Mol Cell Biochem 2024; 479:1379-1390. [PMID: 37436655 DOI: 10.1007/s11010-023-04801-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/25/2023] [Indexed: 07/13/2023]
Abstract
Cytochrome P450 1B1 (CYP1B1) has been widely associated with the development of cardiac pathologies due to its ability to produce cardiotoxic metabolites like midchain hydroxyeicosatetraenoic acids (HETEs) from arachidonic acid (AA) through an allylic oxidation reaction. 16-HETE is a subterminal HETE that is also produced by CYP-mediated AA metabolism. 19-HETE is another subterminal HETE that was found to inhibit CYP1B1 activity, lower midchain HETEs, and have cardioprotective effects. However, the effect of 16-HETE enantiomers on CYP1B1 has not yet been investigated. We hypothesized that 16(R/S)-HETE could alter the activity of CYP1B1 and other CYP enzymes. Therefore, this study was carried out to investigate the modulatory effect of 16-HETE enantiomers on CYP1B1 enzyme activity, and to examine the mechanisms by which they exert these modulatory effects. To investigate whether these effects are specific to CYP1B1, we also investigated 16-HETE modulatory effects on CYP1A2. Our results showed that 16-HETE enantiomers significantly increased CYP1B1 activity in RL-14 cells, recombinant human CYP1B1, and human liver microsomes, as seen by the significant increase in 7-ethoxyresorufin deethylation rate. On the contrary, 16-HETE enantiomers significantly inhibited CYP1A2 catalytic activity mediated by the recombinant human CYP1A2 and human liver microsomes. 16R-HETE showed stronger effects than 16S-HETE. The sigmoidal binding mode of the enzyme kinetics data demonstrated that CYP1B1 activation and CYP1A2 inhibition occurred through allosteric regulation. In conclusion, our study provides the first evidence that 16R-HETE and 16S-HETE increase CYP1B1 catalytic activity through an allosteric mechanism.
Collapse
Affiliation(s)
- Rahmat Hidayat
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Sherif M Shoieb
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Farag E S Mosa
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Khaled Barakat
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Dion R Brocks
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Fadumo A Isse
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Samar H Gerges
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada.
| |
Collapse
|
21
|
Guo Z, Li H, Yu W, Ren Y, Zhu Z. Insights into the effect of benzotriazoles in liver using integrated metabolomic and transcriptomic analysis. ENVIRONMENT INTERNATIONAL 2024; 187:108716. [PMID: 38723456 DOI: 10.1016/j.envint.2024.108716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
Benzotriazoles (BTRs) are a class of benzoheterocyclic chemicals that are frequently used as metal-corrosive inhibitors, both in industry and daily use. However, the exposure effect information on BTRs remains relatively limited. In this study, an integrated metabolomic and transcriptomic approach was utilized to evaluate the effect of three BTRs, benzotriazole, 6-chloro-1-hydroxi-benzotriazole, and 1-hydroxy-benzotriazole, in the mouse liver with results showing disrupted basal metabolic processes and vitamin and cofactor metabolism after 28 days. The expression of several genes that are related to the inflammatory response and aryl hydrocarbon receptor pathways, such as Gstt2 and Arntl, was altered by the exposure to BTRs. Exposure to BTRs also affected metabolites and genes that are involved in the immune system and xenobiotic responses. The altered expression of several cytochrome P450 family genes reveal a potential detoxification mechanism in the mouse liver. Taken together, our findings provide new insights into the multilayer response of the mouse liver to BTRs exposure as well as a resource for further exploration of the molecular mechanisms by which the response occurs.
Collapse
Affiliation(s)
- Zeqin Guo
- Medical College, Jiujiang University, Jiujiang, Jiangxi, 332000, China; Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, Jiangxi, 332000, China.
| | - Huimin Li
- Medical College, Jiujiang University, Jiujiang, Jiangxi, 332000, China; Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, Jiangxi, 332000, China
| | - Wenmin Yu
- Medical College, Jiujiang University, Jiujiang, Jiangxi, 332000, China; Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, Jiangxi, 332000, China
| | - Yaguang Ren
- Medical College, Jiujiang University, Jiujiang, Jiangxi, 332000, China; Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, Jiangxi, 332000, China
| | - Zhiguo Zhu
- Medical College, Jiujiang University, Jiujiang, Jiangxi, 332000, China; College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, Jiangxi, 332000, China.
| |
Collapse
|
22
|
Pan Y, Iwata T. Exploring the Genetic Landscape of Childhood Glaucoma. CHILDREN (BASEL, SWITZERLAND) 2024; 11:454. [PMID: 38671671 PMCID: PMC11048810 DOI: 10.3390/children11040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Childhood glaucoma, a significant cause of global blindness, represents a heterogeneous group of disorders categorized into primary or secondary forms. Primary childhood glaucoma stands as the most prevalent subtype, comprising primary congenital glaucoma (PCG) and juvenile open-angle glaucoma (JOAG). Presently, multiple genes are implicated in inherited forms of primary childhood glaucoma. This comprehensive review delves into genetic investigations into primary childhood glaucoma, with a focus on identifying causative genes, understanding their inheritance patterns, exploring essential biological pathways in disease pathogenesis, and utilizing animal models to study these mechanisms. Specifically, attention is directed towards genes such as CYP1B1 (cytochrome P450 family 1 subfamily B member 1), LTBP2 (latent transforming growth factor beta binding protein 2), TEK (TEK receptor tyrosine kinase), ANGPT1 (angiopoietin 1), and FOXC1 (forkhead box C1), all associated with PCG; and MYOC (myocilin), associated with JOAG. Through exploring these genetic factors, this review aims to deepen our understanding of the intricate pathogenesis of primary childhood glaucoma, thereby facilitating the development of enhanced diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | - Takeshi Iwata
- National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo 152-8902, Japan;
| |
Collapse
|
23
|
Dignam JP, Sharma S, Stasinopoulos I, MacLean MR. Pulmonary arterial hypertension: Sex matters. Br J Pharmacol 2024; 181:938-966. [PMID: 37939796 DOI: 10.1111/bph.16277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex disease of multifactorial origin. While registries have demonstrated that women are more susceptible to the disease, females with PAH have superior right ventricle (RV) function and a better prognosis than their male counterparts, a phenomenon referred to as the 'estrogen paradox'. Numerous pre-clinical studies have investigated the involvement of sex hormones in PAH pathobiology, often with conflicting results. However, recent advances suggest that abnormal estrogen synthesis, metabolism and signalling underpin the sexual dimorphism of this disease. Other sex hormones, such as progesterone, testosterone and dehydroepiandrosterone may also play a role. Several non-hormonal factor including sex chromosomes and epigenetics have also been implicated. Though the underlying pathophysiological mechanisms are complex, several compounds that modulate sex hormones levels and signalling are under investigation in PAH patients. Further elucidation of the estrogen paradox will set the stage for the identification of additional therapeutic targets for this disease.
Collapse
Affiliation(s)
- Joshua P Dignam
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Smriti Sharma
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Ioannis Stasinopoulos
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | - Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| |
Collapse
|
24
|
Jiang YJ, Cao YM, Cao YB, Yan TH, Jia CL, He P. A Review: Cytochrome P450 in Alcoholic and Non-Alcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2024; 17:1511-1521. [PMID: 38586542 PMCID: PMC10997053 DOI: 10.2147/dmso.s449494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/16/2024] [Indexed: 04/09/2024] Open
Abstract
Alcoholic fatty liver disease (FALD) and non-alcoholic fatty liver disease (NAFLD) have similar pathological spectra, both of which are associated with a series of symptoms, including steatosis, inflammation, and fibrosis. These clinical manifestations are caused by hepatic lipid synthesis and metabolism dysregulation and affect human health. Despite having been studied extensively, targeted therapies remain elusive. The Cytochrome P450 (CYP450) family is the most important drug-metabolising enzyme in the body, primarily in the liver. It is responsible for the metabolism of endogenous and exogenous compounds, completing biological transformation. This process is relevant to the occurrence and development of AFLD and NAFLD. In this review, the correlation between CYP450 and liver lipid metabolic diseases is summarised, providing new insights for the treatment of AFLD and NAFLD.
Collapse
Affiliation(s)
- Yu-Jie Jiang
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211100, People’s Republic of China
| | - Ye-Ming Cao
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
| | - Yong-Bing Cao
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
| | - Tian-Hua Yan
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211100, People’s Republic of China
| | - Cheng-Lin Jia
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
| | - Ping He
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
| |
Collapse
|
25
|
Li J, Wei Y, Liu J, Cheng S, Zhang X, Qiu H, Li J, He C. Integrative analysis of metabolism subtypes and identification of prognostic metabolism-related genes for glioblastoma. Biosci Rep 2024; 44:BSR20231400. [PMID: 38419527 PMCID: PMC10965397 DOI: 10.1042/bsr20231400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024] Open
Abstract
Increasing evidence has demonstrated that cancer cell metabolism is a critical factor in tumor development and progression; however, its role in glioblastoma (GBM) remains limited. In the present study, we classified GBM into three metabolism subtypes (MC1, MC2, and MC3) through cluster analysis of 153 GBM samples from the RNA-sequencing data of The Cancer Genome Atlas (TCGA) based on 2752 metabolism-related genes (MRGs). We further explored the prognostic value, metabolic signatures, immune infiltration, and immunotherapy sensitivity of the three metabolism subtypes. Moreover, the metabolism scoring model was established to quantify the different metabolic characteristics of the patients. Results showed that MC3, which is associated with a favorable survival outcome, had higher proportions of isocitrate dehydrogenase (IDH) mutations and lower tumor purity and proliferation. The MC1 subtype, which is associated with the worst prognosis, shows a higher number of segments and homologous recombination defects and significantly lower mRNA expression-based stemness index (mRNAsi) and epigenetic-regulation-based mRNAsi. The MC2 subtype has the highest T-cell exclusion score, indicating a high likelihood of immune escape. The results were validated using an independent dataset. Five MRGs (ACSL1, NDUFA2, CYP1B1, SLC11A1, and COX6B1) correlated with survival outcomes were identified based on metabolism-related co-expression module analysis. Laboratory-based validation tests further showed the expression of these MRGs in GBM tissues and how their expression influences cell function. The results provide a reference for developing clinical management approaches and treatments for GBM.
Collapse
Affiliation(s)
- Jiahui Li
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu Province 215228, China
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Yutian Wei
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jiali Liu
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Shupeng Cheng
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Xia Zhang
- Center of Rehabilitation Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi Province 710054, China
| | - Huaide Qiu
- Faculty of Rehabilitation Science, Nanjing Normal University of Special Education, Nanjing, Jiangsu Province 210038, China
| | - Jianan Li
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Chuan He
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu Province 215228, China
| |
Collapse
|
26
|
Xia G, Zhou G, Jiang W, Chu C, Wang L, Moorthy B. Attenuation of Polycyclic Aromatic Hydrocarbon (PAH)-Induced Carcinogenesis and Tumorigenesis by Omega-3 Fatty Acids in Mice In Vivo. Int J Mol Sci 2024; 25:3781. [PMID: 38612589 PMCID: PMC11012139 DOI: 10.3390/ijms25073781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. Polycyclic aromatic hydrocarbons (PAHs) are metabolized by the cytochrome P450 (CYP)1A and 1B1 to DNA-reactive metabolites, which could lead to mutations in critical genes, eventually resulting in cancer. Omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial against cancers. In this investigation, we elucidated the mechanisms by which omega-3 fatty acids EPA and DHA will attenuate PAH-DNA adducts and lung carcinogenesis and tumorigenesis mediated by the PAHs BP and MC. Adult wild-type (WT) (A/J) mice, Cyp1a1-null, Cyp1a2-null, or Cyp1b1-null mice were exposed to PAHs benzo[a]pyrene (BP) or 3-methylcholanthrene (MC), and the effects of omega-3 fatty acid on PAH-mediated lung carcinogenesis and tumorigenesis were studied. The major findings were as follows: (i) omega-3 fatty acids significantly decreased PAH-DNA adducts in the lungs of each of the genotypes studied; (ii) decreases in PAH-DNA adduct levels by EPA/DHA was in part due to inhibition of CYP1B1; (iii) inhibition of soluble epoxide hydrolase (sEH) enhanced the EPA/DHA-mediated prevention of pulmonary carcinogenesis; and (iv) EPA/DHA attenuated PAH-mediated carcinogenesis in part by epigenetic mechanisms. Taken together, our results suggest that omega-3 fatty acids have the potential to be developed as cancer chemo-preventive agents in people.
Collapse
Affiliation(s)
- Guobin Xia
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Childrens’ Hospital, Houston, TX 77030, USA; (G.X.); (W.J.); (C.C.); (L.W.)
| | - Guodong Zhou
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Weiwu Jiang
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Childrens’ Hospital, Houston, TX 77030, USA; (G.X.); (W.J.); (C.C.); (L.W.)
| | - Chun Chu
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Childrens’ Hospital, Houston, TX 77030, USA; (G.X.); (W.J.); (C.C.); (L.W.)
| | - Lihua Wang
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Childrens’ Hospital, Houston, TX 77030, USA; (G.X.); (W.J.); (C.C.); (L.W.)
| | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Childrens’ Hospital, Houston, TX 77030, USA; (G.X.); (W.J.); (C.C.); (L.W.)
| |
Collapse
|
27
|
Li J, Gao P, Qin M, Wang J, Luo Y, Deng P, Hao R, Zhang L, He M, Chen C, Lu Y, Ma Q, Li M, Tan M, Wang L, Yue Y, Wang H, Tian L, Xie J, Chen M, Yu Z, Zhou Z, Pi H. Long-term cadmium exposure induces epithelial-mesenchymal transition in breast cancer cells by activating CYP1B1-mediated glutamine metabolic reprogramming in BT474 cells and MMTV-Erbb2 mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170773. [PMID: 38336054 DOI: 10.1016/j.scitotenv.2024.170773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/04/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Cadmium (Cd) exposure is known to enhance breast cancer (BC) progression. Cd promotes epithelial-mesenchymal transition (EMT) in BC cells, facilitating BC cell aggressiveness and invasion, but the underlying molecular mechanisms are unclear. Hence, transgenic MMTV-Erbb2 mice (6 weeks) were orally administered Cd (3.6 mg/L, approximately equal to 19.64 μΜ) for 23 weeks, and BC cells (BT474 cells) were exposed to Cd (0, 0.1, 1 or 10 μΜ) for 72 h to investigate the effect of Cd exposure on EMT in BC cells. Chronic Cd exposure dramatically expedited tumor metastasis to multiple organs; decreased E-cadherin density; and increased Vimentin, N-cadherin, ZEB1, and Twist density in the tumor tissues of MMTV-Erbb2 mice. Notably, transcriptomic analysis of BC tumors revealed cytochrome P450 1B1 (CYP1B1) as a key factor that regulates EMT progression in Cd-treated MMTV-Erbb2 mice. Moreover, Cd increased CYP1B1 expression in MMTV-Erbb2 mouse BC tumors and in BT474 cells, and CYP1B1 inhibition decreased Cd-induced BC cell malignancy and EMT in BT474 cells. Importantly, the promotion of EMT by CYP1B1 in Cd-treated BC cells was presumably controlled by glutamine metabolism. This study offers novel perspectives into the effect of environmental Cd exposure on driving BC progression and metastasis, and this study provides important guidance for comprehensively assessing the ecological and health risks of Cd.
Collapse
Affiliation(s)
- Jingdian Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Peng Gao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mingke Qin
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Junhua Wang
- Nuclear Medicine Department, General Hospital of Tibet Military Area Command, Lhasa 850000, Xizang, China
| | - Yan Luo
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Rongrong Hao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Lei Zhang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mindi He
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chunhai Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yonghui Lu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qinlong Ma
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Min Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Miduo Tan
- Department of Breast Surgery, Central Hospital of Zhuzhou City, Central South University, Zhuzhou 412000, Hunan, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China
| | - Yang Yue
- Bioinformatics Center of Academy of Military Medical Sciences, Beijing 100850, China
| | - Hui Wang
- Nuclear Medicine Department, General Hospital of Tibet Military Area Command, Lhasa 850000, Xizang, China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mengyan Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Zhou Zhou
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China.
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China; State key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
28
|
Song H, Li H, Shen X, Liu K, Feng H, Cui J, Wei W, Sun X, Fan Q, Bao W, Zhou H, Qian L, Nie H, Cheng X, Du Z. A pH-responsive cetuximab-conjugated DMAKO-20 nano-delivery system for overcoming K-ras mutations and drug resistance in colorectal carcinoma. Acta Biomater 2024; 177:456-471. [PMID: 38331131 DOI: 10.1016/j.actbio.2024.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Cetuximab (Cet) and oxaliplatin (OXA) are used as first-line drugs for patients with colorectal carcinoma (CRC). In fact, the heterogeneity of CRC, mainly caused by K-ras mutations and drug resistance, undermines the effectiveness of drugs. Recently, a hydrophobic prodrug, (1E,4E)-6-((S)-1-(isopentyloxy)-4-methylpent-3-en-1-yl)-5,8-dimethoxynaphthalene-1,4‑dione dioxime (DMAKO-20), has been shown to undergo tumor-specific CYP1B1-catalyzed bioactivation. This process results in the production of nitric oxide and active naphthoquinone mono-oximes, which exhibit specific antitumor activity against drug-resistant CRC. In this study, a Cet-conjugated bioresponsive DMAKO-20/PCL-PEOz-targeted nanocodelivery system (DMAKO@PCL-PEOz-Cet) was constructed to address the issue of DMAKO-20 dissolution and achieve multitargeted delivery of the cargoes to different subtypes of CRC cells to overcome K-ras mutations and drug resistance in CRC. The experimental results demonstrated that DMAKO@PCL-PEOz-Cet efficiently delivered DMAKO-20 to both K-ras mutant and wild-type CRC cells by targeting the epidermal growth factor receptor (EGFR). It exhibited a higher anticancer effect than OXA in K-ras mutant cells and drug-resistant cells. Additionally, it was observed that DMAKO@PCL-PEOz-Cet reduced the expression of glutathione peroxidase 4 (GPX4) in CRC cells and significantly inhibited the growth of heterogeneous HCT-116 subcutaneous tumors and patient-derived tumor xenografts (PDX) model tumors. This work provides a new strategy for the development of safe and effective approaches for treating CRC. STATEMENT OF SIGNIFICANCE: (1) Significance: This work reports a new approach for the treatment of colorectal carcinoma (CRC) using the bioresponsible Cet-conjugated PCL-PEOz/DMAKO-20 nanodelivery system (DMAKO@PCL-PEOz-Cet) prepared with Cet and PCL-PEOz for the targeted transfer of DMAKO-20, which is an anticancer multitarget drug that can even prevent drug resistance, to wild-type and K-ras mutant CRC cells. DMAKO@PCL-PEOz-Cet, in the form of nanocrystal micelles, maintained stability in peripheral blood and efficiently transported DMAKO-20 to various subtypes of colorectal carcinoma cells, overcoming the challenges posed by K-ras mutations and drug resistance. The system's secure and effective delivery capabilities have also been confirmed in organoid and PDX models. (2) This is the first report demonstrating that this approach simultaneously overcomes the K-ras mutation and drug resistance of CRC.
Collapse
Affiliation(s)
- Huiling Song
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haosheng Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Xiaonan Shen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Kuai Liu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haoran Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Jiahua Cui
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wei Wei
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaolu Sun
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qiong Fan
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai 200030, China
| | - Wei Bao
- Department of Obstetrics and Gynecology, Shanghai General Hospital affiliated with Shanghai Jiao Tong University, 100 Haining Road, Shanghai 200080, China
| | - Haiyan Zhou
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Liheng Qian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Huizhen Nie
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xi Cheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China.
| | - Zixiu Du
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
29
|
Cao DL, Ma LJ, Jiang BC, Gu Q, Gao YJ. Cytochrome P450 26A1 Contributes to the Maintenance of Neuropathic Pain. Neurosci Bull 2024; 40:293-309. [PMID: 37639183 PMCID: PMC10912416 DOI: 10.1007/s12264-023-01101-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/02/2023] [Indexed: 08/29/2023] Open
Abstract
The cytochrome P450 proteins (CYP450s) have been implicated in catalyzing numerous important biological reactions and contribute to a variety of diseases. CYP26A1, a member of the CYP450 family, carries out the oxidative metabolism of retinoic acid (RA), the active metabolite of vitamin A. Here we report that CYP26A1 was dramatically upregulated in the spinal cord after spinal nerve ligation (SNL). CYP26A1 was mainly expressed in spinal neurons and astrocytes. HPLC analysis displayed that the content of all-trans-RA (at-RA), the substrate of CYP26A1, was reduced in the spinal cord on day 7 after SNL. Inhibition of CYP26A1 by siRNA or inhibition of CYP26A1-mediated at-RA catabolism by talarozole relieved the SNL-induced mechanical allodynia during the maintenance phase of neuropathic pain. Talarozole also reduced SNL-induced glial activation and proinflammatory cytokine production but increased anti-inflammatory cytokine (IL-10) production. The RA receptors RARα, RXRβ, and RXRγ were expressed in spinal neurons and glial cells. The promoter of Il-10 has several binding sites for RA receptors, and at-RA directly increased Il-10 mRNA expression in vitro. Finally, intrathecal IL-10 attenuated SNL-induced neuropathic pain and reduced the activation of astrocytes and microglia. Collectively, the inhibition of CYP26A1-mediated at-RA catabolism alleviates SNL-induced neuropathic pain by promoting the expression of IL-10 and suppressing glial activation. CYP26A1 may be a potential therapeutic target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- De-Li Cao
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China
- Nantong University Medical School, Nantong, 226001, China
| | - Ling-Jie Ma
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Bao-Chun Jiang
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Qiang Gu
- Department of Pain Management, The Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
| |
Collapse
|
30
|
Liu Y, Chen Y, Zhang J, Ran G, Cheng Z, Wang X, Liao Y, Mao X, Peng Y, Li W, Zheng J. Dihydrotanshinone I-Induced CYP1 Enzyme Inhibition and Alteration of Estradiol Metabolism. Drug Metab Dispos 2024; 52:188-197. [PMID: 38123940 DOI: 10.1124/dmd.123.001490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Dihydrotanshinone I (DHTI) is a pharmacologically active component occurring in the roots of the herbal medicine Salvia miltiorrhiza Bunge. This study investigated DHTI-induced inhibition of CYP1A1, CYP1A2, and CYP1B1 with the aim to determine the potential effects of DHTI on the bioactivation of estradiol (E2), possibly related to preventive/therapeutic strategy for E2-associated breast cancer. Ethoxyresorufin as a specific substrate for CYP1s was incubated with human recombinant CYP1A1, CYP1A2, or CYP1B1 in the presence of DHTI at various concentrations. Enzymatic inhibition and kinetic behaviors were examined by monitoring the formation of the corresponding product. Molecular docking was further conducted to define the interactions between DHTI and the three CYP1s. The same method and procedure were employed to examine the DHTI-induced alteration of E2 metabolism. DHTI showed significant inhibition of ethoxyresorufin O-deethylation activity catalyzed by CYP1A1, CYP1A2 and CYP1B1 in a concentration-dependent manner (IC50 = 0.56, 0.44, and 0.11 μM, respectively). Kinetic analysis showed that DHTI acted as a competitive type of inhibitor of CYP1A1 and CYP1B1, whereas it noncompetitively inhibited CYP1A2. The observed enzyme inhibition was independent of NADPH and time. Molecular docking analysis revealed hydrogen bonding interactions between DHTI and Asp-326 of CYP1B1. Moreover, DHTI displayed preferential activity to inhibit 4-hydroxylation of E2 (a genotoxic pathway) mediated by CYP1B1. Exposure to DHTI could reduce the risk of genotoxicity induced by E2. SIGNIFICANCE STATEMENT: CYP1A1, CYP1A2, and CYP1B1 enzymes are involved in the conversion of estradiol (E2) into 2-hydroxyestradiol (2-OHE2) and 4-hydroxyestradiol (4-OHE2) through oxidation. 2-OHE2 is negatively correlated with breast cancer risk, and 4-OHE2 may be a significant initiator and promoter of breast cancer. The present study revealed that dihydrotanshinone I (DHTI) competitively inhibits CYP1A1/CYP1B1 and noncompetitively inhibits CYP1A2. DHTI exhibits a preference for inhibiting the genotoxicity associated with E2 4-hydroxylation pathway mediated by CYP1B1, potentially reducing the risk of 4-OHE2-induced genotoxicity.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Yu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Jingyu Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Guangyun Ran
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Zihao Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Xin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Yufen Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Xu Mao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Ying Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| |
Collapse
|
31
|
Ruparelia KC, Zeka K, Beresford KJM, Wilsher NE, Potter GA, Androutsopoulos VP, Brucoli F, Arroo RRJ. CYP1-Activation and Anticancer Properties of Synthetic Methoxylated Resveratrol Analogues. Molecules 2024; 29:423. [PMID: 38257336 PMCID: PMC10818546 DOI: 10.3390/molecules29020423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Naturally occurring stilbenoids, such as the (E)-stilbenoid resveratrol and the (Z)-stilbenoid combretastatin A4, have been considered as promising lead compounds for the development of anticancer drugs. The antitumour properties of stilbenoids are known to be modulated by cytochrome P450 enzymes CYP1A1 and CYP1B1, which contribute to extrahepatic phase I xenobiotic and drug metabolism. Thirty-four methyl ether analogues of resveratrol were synthesised, and their anticancer properties were assessed, using the MTT cell proliferation assay on a panel of human breast cell lines. Breast tumour cell lines that express CYP1 were significantly more strongly affected by the resveratrol analogues than the cell lines that did not have CYP1 activity. Metabolism studies using isolated CYP1 enzymes provided further evidence that (E)-stilbenoids can be substrates for these enzymes. Structures of metabolic products were confirmed by comparison with synthetic standards and LC-MS co-elution studies. The most promising stilbenoid was (E)-4,3',4',5'-tetramethoxystilbene (DMU212). The compound itself showed low to moderate cytotoxicity, but upon CYP1-catalysed dealkylation, some highly cytotoxic metabolites were formed. Thus, DMU212 selectively affects proliferation of cells that express CYP1 enzymes.
Collapse
Affiliation(s)
- Ketan C. Ruparelia
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| | - Keti Zeka
- Zayed Centre for Research into Rare Disease in Children, University College London, London WC1E 6BT, UK
| | - Kenneth J. M. Beresford
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| | - Nicola E. Wilsher
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| | - Gerry A. Potter
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| | - Vasilis P. Androutsopoulos
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| | - Federico Brucoli
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| | - Randolph R. J. Arroo
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| |
Collapse
|
32
|
Yu S, Mu Y, Wang K, Wang L, Wang C, Yang Z, Liu Y, Li S, Zhang M. Gestational exposure to 1-NP induces ferroptosis in placental trophoblasts via CYP1B1/ERK signaling pathway leading to fetal growth restriction. Chem Biol Interact 2024; 387:110812. [PMID: 37993079 DOI: 10.1016/j.cbi.2023.110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Fetal growth restriction (FGR) is a prevalent complication in obstetrics, yet its exact aetiology remains unknown. Numerous studies suggest that the degradation of the living environment is a significant risk factor for FGR. 1-Nitropyrene (1-NP) is a widespread environmental pollutant as a representative substance of nitro-polycyclic aromatic hydrocarbons. In this study, we revealed that 1-NP induced FGR in fetal mice by constructing 1-NP exposed pregnant mice models. Intriguingly, we found that placental trophoblasts of 1-NP exposed mice exhibited significant ferroptosis, which was similarly detected in placental trophoblasts from human FGR patients. In this regard, we established a 1-NP exposed cell model in vitro using two human trophoblast cell lines, HTR8/SVneo and JEG-3. We found that 1-NP not only impaired the proliferation, migration, invasion and angiogenesis of trophoblasts, but also induced severe cellular ferroptosis. Meanwhile, the ferroptosis inhibitor ferrostatin-1 (Fer-1) effectively rescued 1-NP-induced trophoblast biological function impairment. Mechanistically, we revealed that 1-NP regulated ferroptosis by activating the ERK signaling pathway. Moreover, we innovatively revealed that CYP1B1 was essential for the activation of ERK signaling pathway induced by 1-NP. Overall, our study innovatively identified ferroptosis as a significant contributor to 1-NP induced trophoblastic functional impairment leading to FGR and clarified the specific mechanism by which 1-NP induced ferroptosis via the CYP1B1/ERK signaling pathway. Our study provided novel insights into the aetiology of FGR and revealed new mechanisms of reproductive toxicity of environmental pollutants.
Collapse
Affiliation(s)
- Shuping Yu
- School of Public Health, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Yaming Mu
- School of Public Health, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Kai Wang
- School of Public Health, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Ling Wang
- Children's Hospital Affiliated to Shandong University, Jinan, 250014, Shandong, China
| | - Chunying Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, 250014, Shandong, China
| | - Zexin Yang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, 250014, Shandong, China
| | - Yu Liu
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, 250014, Shandong, China
| | - Shuxian Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, 250014, Shandong, China.
| | - Meihua Zhang
- School of Public Health, Weifang Medical University, Weifang, 261053, Shandong, China; Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, 250014, Shandong, China.
| |
Collapse
|
33
|
Low-Calle AM, Ghoneima H, Ortega N, Cuibus AM, Katz C, Prives C, Prywes R. A Non-Canonical Hippo Pathway Represses the Expression of ΔNp63. Mol Cell Biol 2024; 44:27-42. [PMID: 38270135 PMCID: PMC10829837 DOI: 10.1080/10985549.2023.2292037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/28/2023] [Indexed: 01/26/2024] Open
Abstract
The p63 transcription factor, a member of the p53 family, plays an oncogenic role in squamous cell carcinomas, while in breast cancers its expression is often repressed. In the canonical conserved Hippo pathway, known to play a complex role in regulating growth of cancer cells, protein kinases MST1/2 and LATS1/2 act sequentially to phosphorylate and inhibit the YAP/TAZ transcription factors. We found that in MCF10A mammary epithelial cells as well as in squamous and breast cancer cell lines, expression of ΔNp63 RNA and protein is strongly repressed by inhibition of the Hippo pathway protein kinases. While MST1/2 and LATS1 are required for p63 expression, the next step of the pathway, namely phosphorylation and degradation of the YAP/TAZ transcriptional activators is not required for p63 repression. This suggests that regulation of p63 expression occurs by a noncanonical version of the Hippo pathway. We identified similarly regulated genes, suggesting the broader importance of this pathway. Interestingly, lowering p63 expression lead to increased YAP protein levels, indicating crosstalk of the YAP/TAZ-independent and -dependent branches of the Hippo pathway. These results, which reveal the intersection of the Hippo and p63 pathways, may prove useful for the control of their activities in cancer cells.
Collapse
Affiliation(s)
- Ana Maria Low-Calle
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Hana Ghoneima
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Nicholas Ortega
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Adriana M. Cuibus
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Chen Katz
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Ron Prywes
- Department of Biological Sciences, Columbia University, New York, New York, USA
| |
Collapse
|
34
|
Paes LT, D'Almeida CTDS, do Carmo MAV, da Silva Cruz L, Bubula de Souza A, Viana LM, Gonçalves Maltarollo V, Martino HSD, Domingues de Almeida Lima G, Larraz Ferreira MS, Azevedo L, Barros FARD. Phenolic-rich extracts from toasted white and tannin sorghum flours have distinct profiles influencing their antioxidant, antiproliferative, anti-adhesive, anti-invasive, and antimalarial activities. Food Res Int 2024; 176:113739. [PMID: 38163694 DOI: 10.1016/j.foodres.2023.113739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Sorghum is a gluten-free cereal commonly used in foods, and its consumption has been associated with the prevention of human chronic conditions such as obesity and cancer, due to the presence of dietary fiber and phenolic compounds. This study aimed to evaluate, for the first time, the antiproliferative, antioxidant, anti-adhesion, anti-invasion, and antimalarial activities of phenolic extracts from toasted white and tannin sorghum flours to understand how different phenolic profiles contribute to sorghum biological activities. Water and 70 % ethanol/water (v/v), eco-friendly solvents, were used to obtain the phenolic extracts of toasted sorghum flours, and their phenolic profile was analyzed by UPLC-MSE. One hundred forty-five (145) phenolic compounds were identified, with 23 compounds common to all extracts. The solvent type affected the phenolic composition, with aqueous extract of both white sorghum (WSA) and tannin sorghum (TSA) containing mainly phenolic acids. White sorghum (WSE) and tannin sorghum (TSE) ethanolic extracts exhibited a higher abundance of flavonoids. WSE demonstrated the lowest IC50 on EA.hy926 (IC50 = 46.6 µg/mL) and A549 cancer cells (IC50 = 33.1 µg/mL), while TSE showed the lowest IC50 (IC50 = 70.8 µg/mL) on HCT-8 cells (human colon carcinoma). Aqueous extracts also demonstrated interesting results, similar to TSE, showing selectivity for cancer cells at higher IC50 concentrations. All sorghum extracts also reduced the adhesion and invasion of HCT-8 cells, suggesting antimetastatic potential. WSE, rich in phenolic acids and flavonoids, exhibited greater toxicity to both the W2 (chloroquine-resistant) and 3D7 (chloroquine-sensitive) strains of Plasmodium falciparum (IC50 = 8 µg GAE/mL and 22.9 µg GAE/mL, respectively). These findings underscore the potential health benefits of toasted sorghum flours, suggesting diverse applications in the food industry as a functional ingredient or even as an antioxidant supplement. Moreover, it is suggested that, besides the phenolic concentration, the phenolic profile is important to understand the health benefits of sorghum flours.
Collapse
Affiliation(s)
- Laise Trindade Paes
- Department of Food Technology, Federal University of Vicosa, Vicosa, MG, Brazil
| | | | | | | | | | | | - Vinicius Gonçalves Maltarollo
- Pharmaceutical Products Department, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Mariana Simões Larraz Ferreira
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil
| | - Luciana Azevedo
- Faculty of Nutrition, Federal University of Alfenas, Alfenas, MG, Brazil
| | | |
Collapse
|
35
|
Huang Q, Li Z, Liu C. Prognostic Value of Fatty Acid Metabolism-related Genes in Patients with Bladder Cancer. Recent Pat Anticancer Drug Discov 2024; 19:328-341. [PMID: 38214320 DOI: 10.2174/1574892818666230516143945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 01/13/2024]
Abstract
INTRODUCTION This study aimed to explore the expression profiles of fatty acid metabolism- related genes (FAMRGs) in patients with bladder cancer (BLCA). METHODS The corresponding clinicopathological features of BLCA patients and RNA sequencing data were downloaded from TCGA and GSE13507. Univariate Cox regression was used to determine the prognostic value of FRGS in BLCA patients. LASSO regression analysis was then performed to select potential risk genes and eliminate genes that might overfit the model. Based on the independent prognostication-related FRGs, the nomogram survival model was established using the root mean square value of the R packet to predict the 1-year, 3-year, and 5-year survival rates of BLCA patients. By determining the area under the curve (AUC) value, the time-dependent receiver operating characteristic curve (ROC) was used to evaluate the prognostic efficiency of our model. RESULTS A total of 243 DEFRGs were identified. Twenty FRGs were found to be related to the prognosis of BLCA in the TCGA database. Survival curves showed that high-risk patients had significantly shorter OS than low-risk cases (p < 0.001). The AUC of risk was 0.784, which was superior to age, sex, and stage, suggesting that the risk score was more favorable in predicting OS than traditional pathologic prognostic factors. The AUC was 0.757 at 1 year, 0.732 at 3 years, and 0.733 at 5 year-OS. CONCLUSION In this study, we demonstrated that a FAMRG prognosis biomarker is associated with the tumor immune microenvironment in patients with BLCA.
Collapse
Affiliation(s)
- Qiuzheng Huang
- Department of Urology, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China
| | - Zhijia Li
- Department of Urology, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China
| | - Chao Liu
- Department of Urology, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
36
|
Xu C, Prete M, Webb S, Jardine L, Stewart BJ, Hoo R, He P, Meyer KB, Teichmann SA. Automatic cell-type harmonization and integration across Human Cell Atlas datasets. Cell 2023; 186:5876-5891.e20. [PMID: 38134877 DOI: 10.1016/j.cell.2023.11.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/24/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023]
Abstract
Harmonizing cell types across the single-cell community and assembling them into a common framework is central to building a standardized Human Cell Atlas. Here, we present CellHint, a predictive clustering tree-based tool to resolve cell-type differences in annotation resolution and technical biases across datasets. CellHint accurately quantifies cell-cell transcriptomic similarities and places cell types into a relationship graph that hierarchically defines shared and unique cell subtypes. Application to multiple immune datasets recapitulates expert-curated annotations. CellHint also reveals underexplored relationships between healthy and diseased lung cell states in eight diseases. Furthermore, we present a workflow for fast cross-dataset integration guided by harmonized cell types and cell hierarchy, which uncovers underappreciated cell types in adult human hippocampus. Finally, we apply CellHint to 12 tissues from 38 datasets, providing a deeply curated cross-tissue database with ∼3.7 million cells and various machine learning models for automatic cell annotation across human tissues.
Collapse
Affiliation(s)
- Chuan Xu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Simone Webb
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Laura Jardine
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Benjamin J Stewart
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge University Hospitals NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Regina Hoo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Peng He
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Theory of Condensed Matter Group, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK.
| |
Collapse
|
37
|
Chen D, Li R, Shao Q, Wu Z, Cui J, Meng Q, Li S. Design and Synthesis of Novel Near-Infrared Fluorescence Probes Based on an Open Conformation of a Cytochrome P450 1B1 Complex for Molecular Imaging of Colorectal Tumors. J Med Chem 2023; 66:16032-16050. [PMID: 38031326 DOI: 10.1021/acs.jmedchem.3c01474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Cytochrome P450 1B1 (CYP1B1) is induced during the early stage of cancer and is universally overexpressed in tumors. Thus, it was considered as a potential biomarker for the monitoring of cancer. In this study, we designed and synthesized CYP1B1-targeted near-infrared (NIR) fluorescence molecular probes based on the latest reported open conformation of the CYP1B1-α-naphthoflavone (ANF) complex. According to the architecture of the open channel, we introduced linkers and a Cy5.5 fragment at the 5' position of ANF derivatives with strong CYP1B1 inhibitory activity to obtain probes 19-21. Then, in vitro cell-based studies showed that the probes could be enriched in tumor cells by binding to CYP1B1. During in vivo and ex vivo imaging in a xenograft mouse model, probe 19 with the best binding affinity was proven to be able to identify tumor sites in both fluorescence imaging and photoacoustic imaging modes.
Collapse
Affiliation(s)
- Dongmei Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ruining Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qi Shao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhihao Wu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiahua Cui
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qingqing Meng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shaoshun Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
38
|
Xu D, Wan B, Qiu K, Wang Y, Zhang X, Jiao N, Yan E, Wu J, Yu R, Gao S, Du M, Liu C, Li M, Fan G, Yin J. Single-Cell RNA-Sequencing Provides Insight into Skeletal Muscle Evolution during the Selection of Muscle Characteristics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305080. [PMID: 37870215 PMCID: PMC10724408 DOI: 10.1002/advs.202305080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/27/2023] [Indexed: 10/24/2023]
Abstract
Skeletal muscle comprises a large, heterogeneous assortment of cell populations that interact to maintain muscle homeostasis, but little is known about the mechanism that controls myogenic development in response to artificial selection. Different pig (Sus scrofa) breeds exhibit distinct muscle phenotypes resulting from domestication and selective breeding. Using unbiased single-cell transcriptomic sequencing analysis (scRNA-seq), the impact of artificial selection on cell profiles is investigated in neonatal skeletal muscle of pigs. This work provides panoramic muscle-resident cell profiles and identifies novel and breed-specific cells, mapping them on pseudotime trajectories. Artificial selection has elicited significant changes in muscle-resident cell profiles, while conserving signs of generational environmental challenges. These results suggest that fibro-adipogenic progenitors serve as a cellular interaction hub and that specific transcription factors identified here may serve as candidate target regulons for the pursuit of a specific muscle phenotype. Furthermore, a cross-species comparison of humans, mice, and pigs illustrates the conservation and divergence of mammalian muscle ontology. The findings of this study reveal shifts in cellular heterogeneity, novel cell subpopulations, and their interactions that may greatly facilitate the understanding of the mechanism underlying divergent muscle phenotypes arising from artificial selection.
Collapse
Affiliation(s)
- Doudou Xu
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Boyang Wan
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Kai Qiu
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Yubo Wang
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
- Molecular Design Breeding Frontier Science Center of the Ministry of EducationBeijingChina
| | - Ning Jiao
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Enfa Yan
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Jiangwei Wu
- Key Laboratory of Animal GeneticsBreeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYangling712100China
| | - Run Yu
- Beijing National Day SchoolBeijing100039China
| | - Shuai Gao
- Key Laboratory of Animal GeneticsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Min Du
- Nutrigenomics and Growth Biology LaboratoryDepartment of Animal Sciences and School of Molecular BioscienceWashington State UniversityPullmanWA99164USA
| | | | - Mingzhou Li
- Institute of Animal Genetics and BreedingCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu625014China
| | - Guoping Fan
- Department of Human GeneticsDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
- Molecular Design Breeding Frontier Science Center of the Ministry of EducationBeijingChina
| |
Collapse
|
39
|
Hu X, Logan JG, Kwon Y, Lima JAC, Jacobs DR, Duprez D, Brumback L, Taylor KD, Durda P, Johnson WC, Cornell E, Guo X, Liu Y, Tracy RP, Blackwell TW, Papanicolaou G, Mitchell GF, Rich SS, Rotter JI, Van Den Berg DJ, Chirinos JA, Hughes TM, Garrett-Bakelman FE, Manichaikul A. Multi-ancestry epigenome-wide analyses identify methylated sites associated with aortic augmentation index in TOPMed MESA. Sci Rep 2023; 13:17680. [PMID: 37848499 PMCID: PMC10582077 DOI: 10.1038/s41598-023-44806-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
Despite the prognostic value of arterial stiffness (AS) and pulsatile hemodynamics (PH) for cardiovascular morbidity and mortality, epigenetic modifications that contribute to AS/PH remain unknown. To gain a better understanding of the link between epigenetics (DNA methylation) and AS/PH, we examined the relationship of eight measures of AS/PH with CpG sites and co-methylated regions using multi-ancestry participants from Trans-Omics for Precision Medicine (TOPMed) Multi-Ethnic Study of Atherosclerosis (MESA) with sample sizes ranging from 438 to 874. Epigenome-wide association analysis identified one genome-wide significant CpG (cg20711926-CYP1B1) associated with aortic augmentation index (AIx). Follow-up analyses, including gene set enrichment analysis, expression quantitative trait methylation analysis, and functional enrichment analysis on differentially methylated positions and regions, further prioritized three CpGs and their annotated genes (cg23800023-ETS1, cg08426368-TGFB3, and cg17350632-HLA-DPB1) for AIx. Among these, ETS1 and TGFB3 have been previously prioritized as candidate genes. Furthermore, both ETS1 and HLA-DPB1 have significant tissue correlations between Whole Blood and Aorta in GTEx, which suggests ETS1 and HLA-DPB1 could be potential biomarkers in understanding pathophysiology of AS/PH. Overall, our findings support the possible role of epigenetic regulation via DNA methylation of specific genes associated with AIx as well as identifying potential targets for regulation of AS/PH.
Collapse
Affiliation(s)
- Xiaowei Hu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jeongok G Logan
- School of Nursing, University of Virginia, Charlottesville, VA, USA
| | - Younghoon Kwon
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Joao A C Lima
- Department of Internal Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David R Jacobs
- Division of Epidemiology, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Daniel Duprez
- Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Lyndia Brumback
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Peter Durda
- Laboratory for Clinical Biochemistry Research, University of Vermont, Burlington, VT, USA
| | - W Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Elaine Cornell
- Laboratory for Clinical Biochemistry Research, University of Vermont, Burlington, VT, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yongmei Liu
- Division of Cardiology, Department of Medicine, Duke University, Durham, NC, USA
| | - Russell P Tracy
- Laboratory for Clinical Biochemistry Research, University of Vermont, Burlington, VT, USA
| | - Thomas W Blackwell
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - George Papanicolaou
- Epidemiology Branch, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | | | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - David J Van Den Berg
- Department of Preventive Medicine and Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Julio A Chirinos
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy M Hughes
- Department of Internal Medicine - Section of Gerontology and Geriatric Medicine, and Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Francine E Garrett-Bakelman
- Department of Biochemistry and Molecular Genetics, Department of Medicine, University of Virginia, 1340 Jefferson Park Ave., Pinn hall 6054, Charlottesville, VA, 22908, USA.
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
40
|
Huang J, Zhang J, Zhang F, Lu S, Guo S, Shi R, Zhai Y, Gao Y, Tao X, Jin Z, You L, Wu J. Identification of a disulfidptosis-related genes signature for prognostic implication in lung adenocarcinoma. Comput Biol Med 2023; 165:107402. [PMID: 37657358 DOI: 10.1016/j.compbiomed.2023.107402] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most prevalent subtype of non-small cell lung cancer. Additionally, disulfidptosis, a newly discovered type of cell death, has been found to be closely associated with the onset and progression of tumors. METHODS The study first identified genes related to disulfidptosis through correlation analysis. These genes were then screened using univariate cox regression and LASSO regression, and a prognostic model was constructed through multivariate cox regression. A nomogram was also created to predict the prognosis of LUAD. The model was validated in three independent data sets: GSE72094, GSE31210, and GSE37745. Next, patients were grouped based on their median risk score, and differentially expressed genes between the two groups were analyzed. Enrichment analysis, immune infiltration analysis, and drug sensitivity evaluation were also conducted. RESULTS In this study, we examined 21 genes related to disulfidptosis and developed a gene signature that was found to be associated with a poorer prognosis in LUAD. Our model was validated using three independent datasets and showed AUC values greater than 0.5 at 1, 3, and 5 years. Enrichment analysis revealed that the disulfidptosis-related genes signature had a multifaceted impact on LUAD, particularly in relation to tumor development, proliferation, and metastasis. Patients in the high-risk group exhibited higher tumor purity and lower stromal score, ESTIMATE score, and Immune score. CONCLUSION This study constructed a gene signature related to disulfidptosis in lung adenocarcinoma and analyzed its impact on the disease and its association with the tumor microenvironment. The findings of this research provide valuable insights into the understanding of lung adenocarcinoma and could potentially lead to the development of new treatment strategies.
Collapse
Affiliation(s)
- Jiaqi Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingyuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fanqin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shan Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Siyu Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yiyan Zhai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yifei Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoyu Tao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhengsen Jin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Leiming You
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiarui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
41
|
Mao Y, Sun J, Wang Z, Liu Y, Sun J, Wei Z, Wang M, Yang Y. Combining transcriptomic analysis and network pharmacology to explore the mechanism by which Shaofu Zhuyu decoction improves diabetes mellitus erectile dysfunction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155006. [PMID: 37567007 DOI: 10.1016/j.phymed.2023.155006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/16/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Erectile dysfunction is common among the complications of diabetes mellitus. Shaofu Zhuyu decoction (SFZYD) is commonly used to treat diabetic mellitus erectile dysfunction (DMED). However, its main active components and specific mechanism are still unknown. PURPOSE To confirm the activity of SFZYD in improving DMED, explore the main active components of SFZYD, and clarify the underlying mechanism. METHODS A diabetic rat model was induced with streptozotocin (STZ). After intragastric administration, erectile function was assessed by the maximum intracavernous pressure (ICPmax)/mean arterial pressure (MAP). Corpus cavernosum fibrosis was evaluated by Masson staining, and ELISA methods were used to determine the serum levels of IL-6, TNF-α, IL-10, IL-4 and IL-1β to evaluate inflammation. Then, the main active components of SFZYD were identified by UPLC‒MS/MS. Finally, the target and biological mechanism of SFZYD in improving DMED were predicted by combined network pharmacology and transcriptomics, which was also validated by molecular docking and cellular thermal shift assay (CETSA) experiments. RESULTS SFZYD significantly improved erectile dysfunction and inhibited inflammatory responses and local tissue fibrosis in diabetic rats. A total of 1846 active components were identified by UPLC‒MS/MS, and isorhamnetin was the main active component. The transcriptomic results were used to identify differentially expressed genes among the control, DM and SFZYD groups, and 1264 differentially expressed genes were obtained from the intersection. The network pharmacology results showed that SFZYD acts on core targets such as AKT1, ALB, HSP90AA1 and ESR1 through core components such as isorhamnetin, quercetin and chrysophanic acid. Further combined analysis revealed that multiple targets, such as CYP1B1, DPP4, NOS2 and LCN2, as well as the regulation of the PI3K-AKT signaling pathway, may be important mechanisms by which SFZYD improves DMED. Molecular docking verification showed that isorhamnetin, the key component of SFZYD, has good binding ability with several core targets, and its binding ability with CYP1B1 was the strongest. The CETSA results showed that isorhamnetin binds to CYP1B1 in CCECs. CONCLUSION SFZYD improves DMED, inhibits the inflammatory response and alleviates local tissue fibrosis. The combined application of transcriptomic, network pharmacology, molecular docking and CETSA approaches was helpful for revealing the mechanism by which SFZYD improves DMED, which may be related to the regulation of CYP1B1 and the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Yinhui Mao
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Juntao Sun
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zhuo Wang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yang Liu
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jilei Sun
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China
| | - Zhitao Wei
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China
| | - Mingxing Wang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China.
| | - Yong Yang
- Changchun University of Chinese Medicine, Changchun 130117, China; Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China.
| |
Collapse
|
42
|
Liu J, Zhang L, Tang M, Chen X, Yang C, Li Y, Feng J, Deng Y, Wang X, Zhang Y. Functional variant rs10175368 which affects the expression of CYP1B1 plays a protective role against breast cancer in a Chinese Han population. Eur J Cancer Prev 2023; 32:450-459. [PMID: 37038992 PMCID: PMC10373845 DOI: 10.1097/cej.0000000000000800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/10/2023] [Indexed: 04/12/2023]
Abstract
OBJECTIVE Cytochrome P450 1B1 ( CYP1B1 ) genetic variants are relevant in the pathogenesis of breast cancer. Exploring the relationships between CYP1B1 functional variants and breast cancer could improve our understanding of breast cancer molecular pathophysiology. METHODS This is a two-stage hospital-based case-control study of a Chinese Han population. Genotyping was performed to identify candidate gene variants. 3DSNP, ANNOVAR, and RegulomeDB were used to determine functional single nucleotide polymorphisms (SNPs). The relationship between candidate variants and breast cancer risk was evaluated through unconditional logistic regression analysis. The PancanQTL platform was used to perform cis and trans expression quantitative trait loci (eQTL) analysis of positive SNPs. The GSCA platform was then used to compare the gene expression levels of potential target genes between breast cancer tissue and normal tissue adjacent to the cancer. RESULTS rs10175368-T acted as a protective factor against breast cancer based on an additive model [odds ratio (OR) = 0.722, 95% confidence interval (CI) = 0.613-0.850; P < 0.001], and was identified as a protective factor in the postmenopausal population (OR = 0.601; 95% CI, 0.474-0.764; P < 0.001). eQTL analysis and analysis of differential expression in carcinoma and paracancerous tissues revealed that the expression level of CYP1B1 - AS1 was associated with rs10175368 and that CYP1B1-AS1 had significantly higher expression levels in breast cancer tissues than in paracancerous tissues. CONCLUSION We show, for the first time in a Chinese Han population, that the functional variant rs10175368 plays a protective role against breast cancer, especially in the postmenopausal population.
Collapse
Affiliation(s)
- Jiarui Liu
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University
- Department of Preventive Medicine, Guizhou Province Preventive Medicine Experimental Teaching Demonstration Centre, Zunyi, Guizhou
| | - Lijia Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University
- Department of Preventive Medicine, Guizhou Province Preventive Medicine Experimental Teaching Demonstration Centre, Zunyi, Guizhou
| | - Mingwen Tang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University
- Department of Preventive Medicine, Guizhou Province Preventive Medicine Experimental Teaching Demonstration Centre, Zunyi, Guizhou
| | - Xinyu Chen
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University
- Department of Preventive Medicine, Guizhou Province Preventive Medicine Experimental Teaching Demonstration Centre, Zunyi, Guizhou
| | - Caiyun Yang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University
- Department of Preventive Medicine, Guizhou Province Preventive Medicine Experimental Teaching Demonstration Centre, Zunyi, Guizhou
| | - Yong Li
- Department of Oncology, GuiZhou Provincial People’s Hospital, Guiyang
| | - Jin Feng
- Department of Clinical Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi
| | - Yan Deng
- Department of Scientific Research and Education, The First People's Hospital of Bijie city, Bijie Guizhou, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University
- Department of Preventive Medicine, Guizhou Province Preventive Medicine Experimental Teaching Demonstration Centre, Zunyi, Guizhou
| |
Collapse
|
43
|
Ye G, Li J, Yu W, Xie Z, Zheng G, Liu W, Wang S, Cao Q, Lin J, Su Z, Li D, Che Y, Fan S, Wang P, Wu Y, Shen H. ALKBH5 facilitates CYP1B1 mRNA degradation via m6A demethylation to alleviate MSC senescence and osteoarthritis progression. Exp Mol Med 2023; 55:1743-1756. [PMID: 37524872 PMCID: PMC10474288 DOI: 10.1038/s12276-023-01059-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/01/2023] [Accepted: 05/24/2023] [Indexed: 08/02/2023] Open
Abstract
Improving health and delaying aging is the focus of medical research. Previous studies have shown that mesenchymal stem cell (MSC) senescence is closely related to organic aging and the development of aging-related diseases such as osteoarthritis (OA). m6A is a common RNA modification that plays an important role in regulating cell biological functions, and ALKBH5 is one of the key m6A demethylases. However, the role of m6A and ALKBH5 in MSC senescence is still unclear. Here, we found that the m6A level was enhanced and ALKBH5 expression was decreased in aging MSCs induced by multiple replications, H2O2 stimulation or UV irradiation. Downregulation of ALKBH5 expression facilitated MSC senescence by enhancing the stability of CYP1B1 mRNA and inducing mitochondrial dysfunction. In addition, IGF2BP1 was identified as the m6A reader restraining the degradation of m6A-modified CYP1B1 mRNA. Furthermore, Alkbh5 knockout in MSCs aggravated spontaneous OA in mice, and overexpression of Alkbh5 improved the efficacy of MSCs in OA. Overall, this study revealed a novel mechanism of m6A in MSC senescence and identified promising targets to protect against aging and OA.
Collapse
Affiliation(s)
- Guiwen Ye
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Jinteng Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Wenhui Yu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Guan Zheng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Wenjie Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Shan Wang
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Qian Cao
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Jiajie Lin
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Zepeng Su
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Dateng Li
- Department of Statistical Science, Southern Methodist University, Dallas, TX, USA
| | - Yunshu Che
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Shuai Fan
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China.
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China.
| |
Collapse
|
44
|
Lin YC, Cheung G, Zhang Z, Papadopoulos V. Mitochondrial cytochrome P450 1B1 is involved in pregnenolone synthesis in human brain cells. J Biol Chem 2023; 299:105035. [PMID: 37442234 PMCID: PMC10413356 DOI: 10.1016/j.jbc.2023.105035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Neurosteroids, which are steroids synthesized by the nervous system, can exert neuromodulatory and neuroprotective effects via genomic and nongenomic pathways. The neurosteroid and major steroid precursor pregnenolone has therapeutical potential in various diseases, such as psychiatric and pain disorders, and may play important roles in myelination, neuroinflammation, neurotransmission, and neuroplasticity. Although pregnenolone is synthesized by CYP11A1 in peripheral steroidogenic organs, our recent study showed that pregnenolone must be synthesized by another mitochondrial cytochrome P450 (CYP450) enzyme other than CYP11A1 in human glial cells. Therefore, we sought to identify the CYP450 responsible for pregnenolone production in the human brain. Upon screening for CYP450s expressed in the human brain that have mitochondrial localization, we identified three enzyme candidates: CYP27A1, CYP1A1, and CYP1B1. We found that inhibition of CYP27A1 through inhibitors and siRNA knockdown did not negatively affect pregnenolone synthesis in human glial cells. Meanwhile, treatment of human glial cells with CYP1A1/CYP1B1 inhibitors significantly reduced pregnenolone production in the presence of 22(R)-hydroxycholesterol. We performed siRNA knockdown of CYP1A1 or CYP1B1 in human glial cells and found that only CYP1B1 knockdown significantly decreased pregnenolone production. Furthermore, overexpression of mitochondria-targeted CYP1B1 significantly increased pregnenolone production under basal conditions and in the presence of hydroxycholesterols and low-density lipoprotein. Inhibition of CYP1A1 and/or CYP1B1 via inhibitors or siRNA knockdown did not significantly reduce pregnenolone synthesis in human adrenal cortical cells, implying that CYP1B1 is not a major pregnenolone-producing enzyme in the periphery. These data suggest that mitochondrial CYP1B1 is involved in pregnenolone synthesis in human glial cells.
Collapse
Affiliation(s)
- Yiqi Christina Lin
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Garett Cheung
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Zeyu Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
45
|
Juskevicius D, Lundberg P, Tzankov A, Dirnhofer S, Stenner F. Genetic Factors in Familial Manifestation of Primary Mediastinal Large B-Cell Lymphoma over Two Generations. Pathobiology 2023; 90:422-428. [PMID: 37490879 PMCID: PMC10733924 DOI: 10.1159/000532053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023] Open
Abstract
INTRODUCTION Primary mediastinal large B-cell lymphoma (PMBL) is a rarely occurring lymphoid malignancy which typically affects young adults and presents itself as an anterior mediastinal mass. Gene expression profiling as well as somatic genetic analysis revealed that it is closely related to classical Hodgkin lymphoma, whereas morphologically, it tends to resemble diffuse large B-cell lymphoma. Familial clustering of PMBL is rare - only two reports have been published to date. While it is generally accepted that positive family history is associated with increased risk of developing a lymphoma, genetic risk factors which might predispose to PMBL are largely unknown. CASE PRESENTATION We performed germline and tumor genetic analyses by whole-exome sequencing and array-CGH of a family, in which the father and the son both developed a PMBL. Germline investigations of both affected patients and of their two unaffected family members have not been able to provide a single risk factor associated with lymphoma predisposition. In addition, genes that were previously implicated in increased risk for PMBL, namely MLL (KMT2A) and TIRAP, were found to be intact in all investigated family members. Somatic genetic investigations identified known as well as novel genetic aberrations in tumors of the affected subjects. CONCLUSION We conclude that predisposition to a PMBL might be inherited through a combination of low- or moderate-risk factors and provide a shortlist of the most likely selected candidates, which can be used in future studies.
Collapse
Affiliation(s)
- Darius Juskevicius
- Department of Laboratory Medicine, Diagnostic Hematology, University Hospital Basel, Basel, Switzerland
| | - Pontus Lundberg
- Department of Laboratory Medicine, Diagnostic Hematology, University Hospital Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, Basel, Switzerland,
| | - Stefan Dirnhofer
- Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Frank Stenner
- Department of Oncology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
46
|
Manichaikul A, Hu X, Logan J, Kwon Y, Lima J, Jacobs D, Duprez D, Brumback L, Taylor K, Durda P, Johnson C, Cornell E, Guo X, Liu Y, Tracy R, Blackwell T, Papanicolaou G, Mitchell G, Rich S, Rotter J, Van Den Berg D, Chirinos J, Hughes T, Garrett-Bakelman F. Multi-ancestry epigenome-wide analyses identify methylated sites associated with aortic augmentation index in TOPMed MESA. RESEARCH SQUARE 2023:rs.3.rs-3125948. [PMID: 37502922 PMCID: PMC10371087 DOI: 10.21203/rs.3.rs-3125948/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Despite the prognostic value of arterial stiffness (AS) and pulsatile hemodynamics (PH) for cardiovascular morbidity and mortality, epigenetic modifications that contribute to AS/PH remain unknown. To gain a better understanding of the link between epigenetics (DNA methylation) and AS/PH, we examined the relationship of eight measures of AS/PH with CpG sites and co-methylated regions using multi-ancestry participants from Trans-Omics for Precision Medicine (TOPMed) Multi-Ethnic Study of Atherosclerosis (MESA) with sample sizes ranging from 438 to 874. Epigenome-wide association analysis identified one genome-wide significant CpG (cg20711926-CYP1B1) associated with aortic augmentation index (AIx). Follow-up analyses, including gene set enrichment analysis, expression quantitative trait methylation analysis, and functional enrichment analysis on differentially methylated positions and regions, further prioritized three CpGs and their annotated genes (cg23800023-ETS1, cg08426368-TGFB3, and cg17350632-HLA-DPB1) for AIx. Among these, ETS1 and TGFB3 have been previously prioritized as candidate genes. Furthermore, both ETS1 and HLA-DPB1 have significant tissue correlations between Whole Blood and Aorta in GTEx, which suggests ETS1 and HLA-DPB1 could be potential biomarkers in understanding pathophysiology of AS/PH. Overall, our findings support the possible role of epigenetic regulation via DNA methylation of specific genes associated with AIx as well as identifying potential targets for regulation of AS/PH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kent Taylor
- The Institute for Translational Genomics and Population Sciences
| | | | | | | | | | | | | | | | | | | | - Stephen Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia
| | - Jerome Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center
| | | | | | | | | |
Collapse
|
47
|
Mohagheghzadeh A, Badr P, Mohagheghzadeh A, Hemmati S. Hypericum perforatum L. and the Underlying Molecular Mechanisms for Its Choleretic, Cholagogue, and Regenerative Properties. Pharmaceuticals (Basel) 2023; 16:887. [PMID: 37375834 PMCID: PMC10300974 DOI: 10.3390/ph16060887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Any defects in bile formation, secretion, or flow may give rise to cholestasis, liver fibrosis, cirrhosis, and hepatocellular carcinoma. As the pathogenesis of hepatic disorders is multifactorial, targeting parallel pathways potentially increases the outcome of therapy. Hypericum perforatum has been famed for its anti-depressive effects. However, according to traditional Persian medicine, it helps with jaundice and acts as a choleretic medication. Here, we will discuss the underlying molecular mechanisms of Hypericum for its use in hepatobiliary disorders. Differentially expressed genes retrieved from microarray data analysis upon treatment with safe doses of Hypericum extract and intersection with the genes involved in cholestasis are identified. Target genes are located mainly at the endomembrane system with integrin-binding ability. Activation of α5β1 integrins, as osmo-sensors in the liver, activates a non-receptor tyrosine kinase, c-SRC, which leads to the insertion of bile acid transporters into the canalicular membrane to trigger choleresis. Hypericum upregulates CDK6 that controls cell proliferation, compensating for the bile acid damage to hepatocytes. It induces ICAM1 to stimulate liver regeneration and regulates nischarin, a hepatoprotective receptor. The extract targets the expression of conserved oligomeric Golgi (COG) and facilitates the movement of bile acids toward the canalicular membrane via Golgi-derived vesicles. In addition, Hypericum induces SCP2, an intracellular cholesterol transporter, to maintain cholesterol homeostasis. We have also provided a comprehensive view of the target genes affected by Hypericum's main metabolites, such as hypericin, hyperforin, quercitrin, isoquercitrin, quercetin, kaempferol, rutin, and p-coumaric acid to enlighten a new scope in the management of chronic liver disorders. Altogether, standard trials using Hypericum as a neo-adjuvant or second-line therapy in ursodeoxycholic-acid-non-responder patients define the future trajectories of cholestasis treatment with this product.
Collapse
Affiliation(s)
- Ala Mohagheghzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Parmis Badr
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (P.B.); (A.M.)
| | - Abdolali Mohagheghzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (P.B.); (A.M.)
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
48
|
Butranova OI, Ushkalova EA, Zyryanov SK, Chenkurov MS, Baybulatova EA. Pharmacokinetics of Antibacterial Agents in the Elderly: The Body of Evidence. Biomedicines 2023; 11:1633. [PMID: 37371728 DOI: 10.3390/biomedicines11061633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Infections are important factors contributing to the morbidity and mortality among elderly patients. High rates of consumption of antimicrobial agents by the elderly may result in increased risk of toxic reactions, deteriorating functions of various organs and systems and leading to the prolongation of hospital stay, admission to the intensive care unit, disability, and lethal outcome. Both safety and efficacy of antibiotics are determined by the values of their plasma concentrations, widely affected by physiologic and pathologic age-related changes specific for the elderly population. Drug absorption, distribution, metabolism, and excretion are altered in different extents depending on functional and morphological changes in the cardiovascular system, gastrointestinal tract, liver, and kidneys. Water and fat content, skeletal muscle mass, nutritional status, use of concomitant drugs are other determinants of pharmacokinetics changes observed in the elderly. The choice of a proper dosing regimen is essential to provide effective and safe antibiotic therapy in terms of attainment of certain pharmacodynamic targets. The objective of this review is to perform a structure of evidence on the age-related changes contributing to the alteration of pharmacokinetic parameters in the elderly.
Collapse
Affiliation(s)
- Olga I Butranova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Elena A Ushkalova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Sergey K Zyryanov
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
- State Budgetary Institution of Healthcare of the City of Moscow "City Clinical Hospital No. 24 of the Moscow City Health Department", Pistzovaya Srt. 10, 127015 Moscow, Russia
| | - Mikhail S Chenkurov
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Elena A Baybulatova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| |
Collapse
|
49
|
Grishanova AY, Klyushova LS, Perepechaeva ML. AhR and Wnt/β-Catenin Signaling Pathways and Their Interplay. Curr Issues Mol Biol 2023; 45:3848-3876. [PMID: 37232717 DOI: 10.3390/cimb45050248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
As evolutionarily conserved signaling cascades, AhR and Wnt signaling pathways play a critical role in the control over numerous vital embryonic and somatic processes. AhR performs many endogenous functions by integrating its signaling pathway into organ homeostasis and into the maintenance of crucial cellular functions and biological processes. The Wnt signaling pathway regulates cell proliferation, differentiation, and many other phenomena, and this regulation is important for embryonic development and the dynamic balance of adult tissues. AhR and Wnt are the main signaling pathways participating in the control of cell fate and function. They occupy a central position in a variety of processes linked with development and various pathological conditions. Given the importance of these two signaling cascades, it would be interesting to elucidate the biological implications of their interaction. Functional connections between AhR and Wnt signals take place in cases of crosstalk or interplay, about which quite a lot of information has been accumulated in recent years. This review is focused on recent studies about the mutual interactions of key mediators of AhR and Wnt/β-catenin signaling pathways and on the assessment of the complexity of the crosstalk between the AhR signaling cascade and the canonical Wnt pathway.
Collapse
Affiliation(s)
- Alevtina Y Grishanova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| | - Lyubov S Klyushova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| | - Maria L Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| |
Collapse
|
50
|
Chen C, Yang Y, Guo Y, He J, Chen Z, Qiu S, Zhang Y, Ding H, Pan J, Pan Y. CYP1B1 inhibits ferroptosis and induces anti-PD-1 resistance by degrading ACSL4 in colorectal cancer. Cell Death Dis 2023; 14:271. [PMID: 37059712 PMCID: PMC10104818 DOI: 10.1038/s41419-023-05803-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Immune checkpoint blockade (ICB) is a promising treatment strategy for colorectal cancer (CRC) patients. However, most CRC patients do not response well to ICB therapy. Increasing evidence indicates that ferroptosis plays a critical role in immunotherapy. ICB efficacy may be enhanced by inducing tumor ferroptosis. Cytochrome P450 1B1 (CYP1B1) is a metabolic enzyme that participates in arachidonic acid metabolism. However, the role of CYP1B1 in ferroptosis remains unclear. In this study, we demonstrated that CYP1B1 derived 20-HETE activated the protein kinase C pathway to increase FBXO10 expression, which in turn promoted the ubiquitination and degradation of acyl-CoA synthetase long-chain family member 4 (ACSL4), ultimately inducing tumor cells resistance to ferroptosis. Furthermore, inhibiting CYP1B1 sensitized tumor cells to anti-PD-1 antibody in a mouce model. In addition, CYP1B1 expression was negatively correlated with ACSL4 expression, and high expression indicates poor prognosis in CRC. Taken together, our work identified CYP1B1 as a potential biomarker for enhancing anti-PD-1 therapy in CRC.
Collapse
Affiliation(s)
- Congcong Chen
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yabing Yang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yanguan Guo
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiashuai He
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zuyang Chen
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shenghui Qiu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yiran Zhang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hui Ding
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Jinghua Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Yunlong Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes. Institute of Life and Health Engineering, Jinan University, Guangzhou, China.
| |
Collapse
|