1
|
Moretti V, Romeo S, Valenti L. The contribution of genetics and epigenetics to MAFLD susceptibility. Hepatol Int 2024; 18:848-860. [PMID: 38662298 PMCID: PMC11450136 DOI: 10.1007/s12072-024-10667-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/25/2024] [Indexed: 04/26/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common liver disease worldwide. The risk of developing MAFLD varies among individuals, due to a combination of environmental inherited and acquired genetic factors. Genome-wide association and next-generation sequencing studies are leading to the discovery of the common and rare genetic determinants of MAFLD. Thanks to the great advances in genomic technologies and bioinformatics analysis, genetic and epigenetic factors involved in the disease can be used to develop genetic risk scores specific for liver-related complications, which can improve risk stratification. Genetic and epigenetic factors lead to the identification of specific sub-phenotypes of MAFLD, and predict the individual response to a pharmacological therapy. Moreover, the variant transcripts and protein themselves represent new therapeutic targets. This review will discuss the current status of research into genetic as well as epigenetic modifiers of MAFLD development and progression.
Collapse
Affiliation(s)
- Vittoria Moretti
- Precision Medicine Lab, Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Via F Sforza 35, 20122, Milan, Italy
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Luca Valenti
- Precision Medicine Lab, Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Via F Sforza 35, 20122, Milan, Italy.
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
2
|
Zhang M, Hu T, Ma T, Huang W, Wang Y. Epigenetics and environmental health. Front Med 2024; 18:571-596. [PMID: 38806988 DOI: 10.1007/s11684-023-1038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/15/2023] [Indexed: 05/30/2024]
Abstract
Epigenetic modifications including DNA methylation, histone modifications, chromatin remodeling, and RNA modifications complicate gene regulation and heredity and profoundly impact various physiological and pathological processes. In recent years, accumulating evidence indicates that epigenetics is vulnerable to environmental changes and regulates the growth, development, and diseases of individuals by affecting chromatin activity and regulating gene expression. Environmental exposure or induced epigenetic changes can regulate the state of development and lead to developmental disorders, aging, cardiovascular disease, Alzheimer's disease, cancers, and so on. However, epigenetic modifications are reversible. The use of specific epigenetic inhibitors targeting epigenetic changes in response to environmental exposure is useful in disease therapy. Here, we provide an overview of the role of epigenetics in various diseases. Furthermore, we summarize the mechanism of epigenetic alterations induced by different environmental exposures, the influence of different environmental exposures, and the crosstalk between environmental variation epigenetics, and genes that are implicated in the body's health. However, the interaction of multiple factors and epigenetics in regulating the initiation and progression of various diseases complicates clinical treatments. We discuss some commonly used epigenetic drugs targeting epigenetic modifications and methods to prevent or relieve various diseases regulated by environmental exposure and epigenetics through diet.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ting Hu
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianyu Ma
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
3
|
Tian Y, Duan C, Feng J, Liao J, Yang Y, Sun W. Roles of lipid metabolism and its regulatory mechanism in idiopathic pulmonary fibrosis: A review. Int J Biochem Cell Biol 2023; 155:106361. [PMID: 36592687 DOI: 10.1016/j.biocel.2022.106361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/06/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Idiopathic pulmonary fibrosis is a progressive lung disease of unknown etiology characterized by distorted distal lung architecture, inflammation, and fibrosis. Several lung cell types, including alveolar epithelial cells and fibroblasts, have been implicated in the development and progression of fibrosis. However, the pathogenesis of idiopathic pulmonary fibrosis is still incompletely understood. The latest research has found that dysregulation of lipid metabolism plays an important role in idiopathic pulmonary fibrosis. The changes in the synthesis and activity of fatty acids, cholesterol and other lipids seriously affect the regenerative function of alveolar epithelial cells and promote the transformation of fibroblasts into myofibroblasts. Mitochondrial function is the key to regulating the metabolic needs of a variety of cells, including alveolar epithelial cells. Sirtuins located in mitochondria are essential to maintain mitochondrial function and cellular metabolic homeostasis. Sirtuins can maintain normal lipid metabolism by regulating respiratory enzyme activity, resisting oxidative stress, and protecting mitochondrial function. In this review, we aimed to discuss the difference between normal and idiopathic pulmonary fibrosis lungs in terms of lipid metabolism. Additionally, we highlight recent breakthroughs on the effect of abnormal lipid metabolism on idiopathic pulmonary fibrosis, including the effects of sirtuins. Idiopathic pulmonary fibrosis has its high mortality and limited therapeutic options; therefore, we believe that this review will help to develop a new therapeutic direction from the aspect of lipid metabolism in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Yunchuan Tian
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunyan Duan
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Jiayue Feng
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China; Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China
| | - Jie Liao
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China; Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China
| | - Yang Yang
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| | - Wei Sun
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
4
|
Liu Y, Cui DX, Pan Y, Yu SH, Zheng LW, Wan M. Metabolic-epigenetic nexus in regulation of stem cell fate. World J Stem Cells 2022; 14:490-502. [PMID: 36157525 PMCID: PMC9350619 DOI: 10.4252/wjsc.v14.i7.490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/31/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
Stem cell fate determination is one of the central questions in stem cell biology, and although its regulation has been studied at genomic and proteomic levels, a variety of biological activities in cells occur at the metabolic level. Metabolomics studies have established the metabolome during stem cell differentiation and have revealed the role of metabolites in stem cell fate determination. While metabolism is considered to play a biological regulatory role as an energy source, recent studies have suggested the nexus between metabolism and epigenetics because several metabolites function as cofactors and substrates in epigenetic mechanisms, including histone modification, DNA methylation, and microRNAs. Additionally, the epigenetic modification is sensitive to the dynamic metabolites and consequently leads to changes in transcription. The nexus between metabolism and epigenetics proposes a novel stem cell-based therapeutic strategy through manipulating metabolites. In the present review, we summarize the possible nexus between metabolic and epigenetic regulation in stem cell fate determination, and discuss the potential preventive and therapeutic strategies via targeting metabolites.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Di-Xin Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yue Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Si-Han Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li-Wei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mian Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
5
|
Wang G, Han JJ. Connections between metabolism and epigenetic modifications in cancer. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:199-221. [PMID: 37724300 PMCID: PMC10388788 DOI: 10.1515/mr-2021-0015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/19/2021] [Indexed: 09/20/2023]
Abstract
How cells sense and respond to environmental changes is still a key question. It has been identified that cellular metabolism is an important modifier of various epigenetic modifications, such as DNA methylation, histone methylation and acetylation and RNA N6-methyladenosine (m6A) methylation. This closely links the environmental nutrient availability to the maintenance of chromatin structure and gene expression, and is crucial to regulate cellular homeostasis, cell growth and differentiation. Cancer metabolic reprogramming and epigenetic alterations are widely observed, and facilitate cancer development and progression. In cancer cells, oncogenic signaling-driven metabolic reprogramming modifies the epigenetic landscape via changes in the key metabolite levels. In this review, we briefly summarized the current evidence that the abundance of key metabolites, such as S-adenosyl methionine (SAM), acetyl-CoA, α-ketoglutarate (α-KG), 2-hydroxyglutarate (2-HG), uridine diphospho-N-acetylglucosamine (UDP-GlcNAc) and lactate, affected by metabolic reprogramming plays an important role in dynamically regulating epigenetic modifications in cancer. An improved understanding of the roles of metabolic reprogramming in epigenetic regulation can contribute to uncover the underlying mechanisms of metabolic reprogramming in cancer development and identify the potential targets for cancer therapies.
Collapse
Affiliation(s)
- Guangchao Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Jingdong J. Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| |
Collapse
|
6
|
Yao S, Shang W, Huang L, Xu R, Wu M, Wang F. The oncogenic and prognostic role of PDK1 in the progression and metastasis of ovarian cancer. J Cancer 2021; 12:630-643. [PMID: 33403023 PMCID: PMC7778543 DOI: 10.7150/jca.47278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal of gynecological tumors in women. Tumor metabolism has become a new opportunity in the treatment of tumors. Pyruvate dehydrogenase kinase 1 (PDK1), as a key regulatory enzyme implicated in metabolic reprogramming of tumors, abnormally high expressed in various tumors and involved in the regulation of tumor cell biological behavior. However, the role of PDK1 in the occurrence and development of ovarian cancer remains unclear. Our team identified the expression of PDK1 in ovarian cancer cell lines and tissues through RT-PCR and immunohistochemical staining and evaluated the correlation of PDK1 expression with clinicopathologic features of patients and survival analyses. We used a variety of in vitro experiments to explore the influence of PDK1 on proliferation, invasion, migration, colony formation, apoptosis and the cell cycle of ovarian cancer cell lines CAOV3 and SKOV3. PDK1 was highly expressed in ovarian cancer cell lines and OC tissues. High expression of PDK1 was closely correlated to tumor size, FIGO stage, extraovarian metastases status and distribution. Univariate and multivariate Cox regression analysis identified that PDK1 was an independent prognostic factor for overall survival. Moreover, PDK1 was a superior predictor in prognosis of ovarian cancer and the incorporation of CA125 into PDK1 generated a predictive combination that displayed better predictive accuracy for overall survival. Downregulation of PDK1 suppressed the biological behavior of ovarian cancer cells due to S phase arrest and cellular apoptosis. PDK1 may serve as a novel prognostic biomarker, even a promising antineoplastic target of ovarian cancer.
Collapse
Affiliation(s)
- Shasha Yao
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China.,Department of Laboratory Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, 211100, Nanjing, China
| | - Wenwen Shang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Lei Huang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Rui Xu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Ming Wu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Fang Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| |
Collapse
|
7
|
Li YY, Ghanbari R, Pathmasiri W, McRitchie S, Poustchi H, Shayanrad A, Roshandel G, Etemadi A, Pollock JD, Malekzadeh R, Sumner SCJ. Untargeted Metabolomics: Biochemical Perturbations in Golestan Cohort Study Opium Users Inform Intervention Strategies. Front Nutr 2020; 7:584585. [PMID: 33415121 PMCID: PMC7783045 DOI: 10.3389/fnut.2020.584585] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Objective: Over 50 million people worldwide are estimated to use opioids, of which ~30 million use opiates (opium and its derivatives). Use of opiates has been associated with a variety of adverse complications such as neurological and behavioral outcomes, addiction, cancers, diabetes, and cardiovascular disease. While it is well known that opiates exert their neurobiological effects through binding with mu, kappa, and delta receptors to exert analgesic and sedative effects, mechanistic links to other health effects are not well understood. Our study focuses on the identification of biochemical perturbations in Golestan Cohort Study (GCS) opium users. Methods: We used untargeted metabolomics to evaluate the metabolic profiles of 218 opium users and 80 non-users participating in the GCS. Urine samples were obtained from adult (age 40–75) opium users living in the Golestan Province of Iran. Untargeted analysis of urine was conducted using a UPLC-Q-Exactive HFx Mass Spectrometry and a 700 MHz NMR Spectrometry. Results: These GCS opium users had a significantly higher intake of tobacco and alcohol and a significantly decreased BMI compared with non-users. Metabolites derived from opium (codeine, morphine, and related glucuronides), nicotine, and curing or combustion of plant material were increased in opium users compared with non-users. Endogenous compounds which differentiated the opium users and non-users largely included vitamins and co-factors, metabolites involved in neurotransmission, Kreb's cycle, purine metabolism, central carbon metabolism, histone modification, and acetylation. Conclusions: Our study reveals biochemical perturbations in GCS opium users that are important to the development of intervention strategies to mitigate against the development of adverse effects of substance abuse.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Reza Ghanbari
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Wimal Pathmasiri
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Susan McRitchie
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Hossein Poustchi
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Amaneh Shayanrad
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Gholamreza Roshandel
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Arash Etemadi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Jonathan D Pollock
- Genetics, Epigenetics, and Developmental Neuroscience Branch, National Institute on Drug Abuse, Bethesda, MD, United States
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Susan C J Sumner
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
8
|
Audano M, Pedretti S, Ligorio S, Crestani M, Caruso D, De Fabiani E, Mitro N. "The Loss of Golden Touch": Mitochondria-Organelle Interactions, Metabolism, and Cancer. Cells 2020; 9:cells9112519. [PMID: 33233365 PMCID: PMC7700504 DOI: 10.3390/cells9112519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondria represent the energy hub of cells and their function is under the constant influence of their tethering with other subcellular organelles. Mitochondria interact with the endoplasmic reticulum, lysosomes, cytoskeleton, peroxisomes, and nucleus in several ways, ranging from signal transduction, vesicle transport, and membrane contact sites, to regulate energy metabolism, biosynthetic processes, apoptosis, and cell turnover. Tumorigenesis is often associated with mitochondrial dysfunction, which could likely be the result of an altered interaction with different cell organelles or structures. The purpose of the present review is to provide an updated overview of the links between inter-organellar communications and interactions and metabolism in cancer cells, with a focus on mitochondria. The very recent publication of several reviews on these aspects testifies the great interest in the area. Here, we aim at (1) summarizing recent evidence supporting that the metabolic rewiring and adaptation observed in tumors deeply affect organelle dynamics and cellular functions and vice versa; (2) discussing insights on the underlying mechanisms, when available; and (3) critically presenting the gaps in the field that need to be filled, for a comprehensive understanding of tumor cells’ biology. Chemo-resistance and druggable vulnerabilities of cancer cells related to the aspects mentioned above is also outlined.
Collapse
Affiliation(s)
| | | | | | | | | | - Emma De Fabiani
- Correspondence: (E.D.F.); (N.M.); Tel.: +39-02-503-18329 (E.D.F.); +39-02-503-18253 (N.M.)
| | - Nico Mitro
- Correspondence: (E.D.F.); (N.M.); Tel.: +39-02-503-18329 (E.D.F.); +39-02-503-18253 (N.M.)
| |
Collapse
|
9
|
Shimokhina NY, Savchenko AA, Petrova MM. Peculiarities of Platelet Metabolism in Patients with Acute Coronary Syndrome with Anxiety-Depressive Disorders and Informativity of Enzymes in the Forecast of Development of Cardiovascular Complications. Pharmaceuticals (Basel) 2020; 13:ph13080169. [PMID: 32731561 PMCID: PMC7466177 DOI: 10.3390/ph13080169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023] Open
Abstract
Anxiety–depressive disorders (ADD) are a risk factor of cardiovascular mortality in patients with coronary artery disease (CAD). Acute coronary syndrome (ACS) is the main clinical manifestation of a progressing CAD. Metabolic processes disorder in platelets can be one of the causes of cardiovascular complications in patients with ACS and concomitant ADD. We studied platelets metabolism and prognostic informativity of NAD(P)-dependent dehydrogenases of platelets in ACS patients with ADD in terms of forecasting cardiovascular complications development over a year of observation. The levels of NAD- and NADP-dependent dehydrogenases of platelets were determined by means of a bioluminescent method during the first 24 h after admission to hospital and in dynamics in 10 days. Among 315 examined patients, ADD was found in 161 (51.1%). ACS patients with concomitant ADD had both cytoplasmic and mitochondrial processes impairment in platelets that consisted in a decrease of energy metabolism intensity, inhibition of anaerobic glycolysis reactions and lipid catabolism. After 12 months of follow-up, 41 (25.5%) cardiovascular complications were detected in the group of ACS patients with ADD and 20 (13.0%) in the group of ACS patients without ADD. According to the results of the analysis of the neural network based on NAD(P)-dependent dehydrogenases of platelets activity in ACS patients with ADD, indicators were obtained that are informative for predicting the development of recurrent cardiovascular complications.
Collapse
Affiliation(s)
- Natalya Yu. Shimokhina
- Faculty of Medicine, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Partizan Zheleznyak Street 1, 660022 Krasnoyarsk, Russia; (A.A.S.); (M.M.P.)
- Correspondence: ; Tel.: +7-923-356-9392
| | - Andrey A. Savchenko
- Faculty of Medicine, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Partizan Zheleznyak Street 1, 660022 Krasnoyarsk, Russia; (A.A.S.); (M.M.P.)
- Laboratory of Molecular and Cellular Physiology and Pathology, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, Partizan Zheleznyak Street 3g, 660022 Krasnoyarsk, Russia
| | - Marina M. Petrova
- Faculty of Medicine, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Partizan Zheleznyak Street 1, 660022 Krasnoyarsk, Russia; (A.A.S.); (M.M.P.)
| |
Collapse
|
10
|
Green HLH, Brewer AC. Dysregulation of 2-oxoglutarate-dependent dioxygenases by hyperglycaemia: does this link diabetes and vascular disease? Clin Epigenetics 2020; 12:59. [PMID: 32345373 PMCID: PMC7189706 DOI: 10.1186/s13148-020-00848-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
The clinical, social and economic burden of cardiovascular disease (CVD) associated with diabetes underscores an urgency for understanding the disease aetiology. Evidence suggests that the hyperglycaemia associated with diabetes is, of itself, causal in the development of endothelial dysfunction (ED) which is recognised to be the critical determinant in the development of CVD. It is further recognised that epigenetic modifications associated with changes in gene expression are causal in both the initiation of ED and the progression to CVD. Understanding whether and how hyperglycaemia induces epigenetic modifications therefore seems crucial in the development of preventative treatments. A mechanistic link between energy metabolism and epigenetic regulation is increasingly becoming explored as key energy metabolites typically serve as substrates or co-factors for epigenetic modifying enzymes. Intriguing examples are the ten-eleven translocation and Jumonji C proteins which facilitate the demethylation of DNA and histones respectively. These are members of the 2-oxoglutarate-dependent dioxygenase superfamily which require the tricarboxylic acid metabolite, α-ketoglutarate and molecular oxygen (O2) as substrates and Fe (II) as a co-factor. An understanding of precisely how the biochemical effects of high glucose exposure impact upon cellular metabolism, O2 availability and cellular redox in endothelial cells (ECs) may therefore elucidate (in part) the mechanistic link between hyperglycaemia and epigenetic modifications causal in ED and CVD. It would also provide significant proof of concept that dysregulation of the epigenetic landscape may be causal rather than consequential in the development of pathology.
Collapse
Affiliation(s)
- Hannah L H Green
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Alison C Brewer
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK.
| |
Collapse
|
11
|
Cabré N, Luciano-Mateo F, Baiges-Gayà G, Fernández-Arroyo S, Rodríguez-Tomàs E, Hernández-Aguilera A, París M, Sabench F, Del Castillo D, López-Miranda J, Menéndez JA, Camps J, Joven J. Plasma metabolic alterations in patients with severe obesity and non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2020; 51:374-387. [PMID: 31825539 DOI: 10.1111/apt.15606] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/05/2019] [Accepted: 11/16/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Obesity can influence hepatic mitochondrial function, and cause non-alcoholic steatohepatitis (NASH). Diagnosis and follow-up rely on invasive liver biopsy so blood-based markers are urgently required. AIM To investigate whether values of circulating metabolites from energy and one-carbon (1-C) metabolism may: (a) reflect hepatic mitochondrial flexibility failure and (b) act as NASH biomarkers. METHODS Patients with severe obesity undergoing bariatric surgery (n = 270) were investigated using quantitative targeted plasma metabolomics. Comparisons were with non-obese controls without liver disease (n = 50). Obese patients with NASH (n = 53) and without NASH (n = 130) representing extreme groups of liver disease were assessed to test the diagnostic ability of the measured circulating metabolites. Paired liver biopsy and plasma samples from NASH patients were available 1 year post-surgery and were evaluated to monitor metabolomic changes with liver damage resolution. RESULTS We identified correlations between human liver metabolism and obesity. High-plasma α-ketoglutarate (α-KG) and lactate concentrations in NASH patients indicating citric acid cycle replenishment via glutaminolysis might also be a crucial point in NASH onset. Plasma measurements of α-KG, β-hydroxybutyrate, pyruvate and oxaloacetate reduced the uncertainty in clinical diagnosis of NASH [area under receiver operating characteristic curve (AUC) of 0.826] and predicted NASH resolution without ambiguity (AUC of 0.999). CONCLUSION Changes in plasma mitochondrial metabolites appear to be associated with NASH. These metabolic responses may be dynamically remodelled following resolution of liver damage through massive weight loss.
Collapse
Affiliation(s)
- Noemí Cabré
- Department of Medicine and Surgery, Universitat Rovira i Virgili, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Fedra Luciano-Mateo
- Department of Medicine and Surgery, Universitat Rovira i Virgili, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Gerard Baiges-Gayà
- Department of Medicine and Surgery, Universitat Rovira i Virgili, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Salvador Fernández-Arroyo
- Department of Medicine and Surgery, Universitat Rovira i Virgili, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Elisabet Rodríguez-Tomàs
- Department of Medicine and Surgery, Universitat Rovira i Virgili, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Anna Hernández-Aguilera
- Department of Medicine and Surgery, Universitat Rovira i Virgili, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Marta París
- Department of Surgery, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Fàtima Sabench
- Department of Surgery, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Daniel Del Castillo
- Department of Surgery, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - José López-Miranda
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | - Javier A Menéndez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Jordi Camps
- Department of Medicine and Surgery, Universitat Rovira i Virgili, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Jorge Joven
- Department of Medicine and Surgery, Universitat Rovira i Virgili, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain.,The Campus of International Excellence Southern Catalonia, Tarragona, Spain
| |
Collapse
|
12
|
Crispo F, Condelli V, Lepore S, Notarangelo T, Sgambato A, Esposito F, Maddalena F, Landriscina M. Metabolic Dysregulations and Epigenetics: A Bidirectional Interplay that Drives Tumor Progression. Cells 2019; 8:E798. [PMID: 31366176 PMCID: PMC6721562 DOI: 10.3390/cells8080798] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer has been considered, for a long time, a genetic disease where mutations in keyregulatory genes drive tumor initiation, growth, metastasis, and drug resistance. Instead, theadvent of high-throughput technologies has revolutionized cancer research, allowing to investigatemolecular alterations at multiple levels, including genome, epigenome, transcriptome, proteome,and metabolome and showing the multifaceted aspects of this disease. The multi-omics approachesrevealed an intricate molecular landscape where different cellular functions are interconnected andcooperatively contribute to shaping the malignant phenotype. Recent evidence has brought to lighthow metabolism and epigenetics are highly intertwined, and their aberrant crosstalk can contributeto tumorigenesis. The oncogene-driven metabolic plasticity of tumor cells supports the energeticand anabolic demands of proliferative tumor programs and secondary can alter the epigeneticlandscape via modulating the production and/or the activity of epigenetic metabolites. Conversely,epigenetic mechanisms can regulate the expression of metabolic genes, thereby altering themetabolome, eliciting adaptive responses to rapidly changing environmental conditions, andsustaining malignant cell survival and progression in hostile niches. Thus, cancer cells takeadvantage of the epigenetics-metabolism crosstalk to acquire aggressive traits, promote cellproliferation, metastasis, and pluripotency, and shape tumor microenvironment. Understandingthis bidirectional relationship is crucial to identify potential novel molecular targets for theimplementation of robust anti-cancer therapeutic strategies.
Collapse
Affiliation(s)
- Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata,85028 Rionero in Vulture, PZ, Italy.
| | - Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata,85028 Rionero in Vulture, PZ, Italy.
| | - Silvia Lepore
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata,85028 Rionero in Vulture, PZ, Italy.
| | - Tiziana Notarangelo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata,85028 Rionero in Vulture, PZ, Italy.
| | - Alessandro Sgambato
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata,85028 Rionero in Vulture, PZ, Italy.
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II,80131 Naples, Italy.
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata,85028 Rionero in Vulture, PZ, Italy.
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata,85028 Rionero in Vulture, PZ, Italy.
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia,71100 Foggia, Italy.
| |
Collapse
|
13
|
Advances in epigenetics link genetics to the environment and disease. Nature 2019; 571:489-499. [DOI: 10.1038/s41586-019-1411-0] [Citation(s) in RCA: 566] [Impact Index Per Article: 113.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 06/14/2019] [Indexed: 12/16/2022]
|
14
|
Schmidt AM. Diabetes Mellitus and Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2019; 39:558-568. [PMID: 30786741 PMCID: PMC6532416 DOI: 10.1161/atvbaha.119.310961] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease remains a leading cause of morbidity and mortality in people with types 1 or 2 diabetes mellitus. Although beneficial roles for strict control of hyperglycemia have been suggested, such a strategy is not without liabilities. Specifically, the risk of hypoglycemia and its consequences remain an omnipresent threat with such approaches. The advent of the CVOT (Cardiovascular Outcomes Trials) for new antidiabetes mellitus treatments has uncovered unexpected benefits of cardiovascular protection in some of the new classes of agents, such as the GLP-1 RAs (glucagon-like peptide-1 receptor agonists) and the SGLT-2 (sodium-glucose cotransporter-2) inhibitors. Further, state-of-the-art approaches, such as antibodies to PCKSK9 (proprotein convertase subtilisin-kexin type 9); RNA therapeutics; agents targeting distinct components of the immune/inflammatory response; and novel small molecules that block the actions of RAGE (receptor for advanced glycation end products) signaling, also hold potential as new therapies for diabetes mellitus and cardiovascular disease. Finally, interventions such as weight loss, through bariatric surgery, may hold promise for benefit in diabetes and cardiovascular disease. In this Brief Review, some of the novel approaches and emerging targets for the treatment of diabetes mellitus and cardiovascular disease are discussed. Ultimately, identification of the optimal timing and combinations of such interventions, especially in the context of personalized approaches, together with emerging disease-modifying agents, holds great promise to reduce the burden that diabetes poses to the cardiovascular system.
Collapse
Affiliation(s)
- Ann Marie Schmidt
- From the Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York
| |
Collapse
|