1
|
Li Y, Yu Y, Xia B, Zhao S, Li X, Hu Q, Tian Y, Wang Y, Zhou Y, Yang C, Zhang D, Zhang Z, Kong L. Engineered vesicular cancer vaccines for immunosuppressive microenvironment reversion and in situ vaccine generation. J Control Release 2025; 382:113658. [PMID: 40122241 DOI: 10.1016/j.jconrel.2025.113658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
It is crucial to reverse immunosuppressive tumor microenvironment (TME) and effectively activate both cellular and humoral immunity in cancer immunotherapy. We have found that decitabine, an epigenetic regulator, can increase antigen exposure and induce double-stranded RNA (dsRNA) accumulation in tumor cells. The corresponding cell-derived nanovesicles (NV) have the ability to stimulate both cellular and humoral immunity due to the internal dsRNA. However, the efficacy of dsRNA-containing NV (dsRNA@NV) remains constrained by the inadequate activation efficiency of immune cells in immunosuppressive TME. In this study, CD40L, an immune cell regulator, was incorporated on the surface of dsRNA@NV (dsRNA@NVCD40L) through lentiviral transfection to further reverse the immunosuppressive TME, by activating dendritic cells and regulating macrophages phenotypes via CD40-CD40L interaction. In addition, CD40L could induce immunogenic death of tumor cells, and the administration of dsRNA@NVCD40L effectively elicited an in situ cancer vaccine response in B16-OVA tumor. This proposed NV-based vaccine was expected to solve the problems of low immunogenicity, insufficient activation of immune responses and lack of effective regulation of immunosuppressive TME of existing tumor vesicular vaccines.
Collapse
Affiliation(s)
- Yang Li
- Department of Pharmaceutics, Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yulin Yu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bin Xia
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Siyu Zhao
- Department of Pharmaceutics, Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaonan Li
- Department of Pharmaceutics, Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Hu
- Department of Pharmaceutics, Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yinmei Tian
- Department of Pharmaceutics, Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Wang
- Department of Pharmaceutics, Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yixuan Zhou
- Department of Pharmaceutics, Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Department of Pharmaceutics, Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan Zhang
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China.
| | - Zhiping Zhang
- Department of Pharmaceutics, Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Engineering Research Centre for Novel Drug Delivery System, Wuhan 430030, China.
| | - Li Kong
- Department of Pharmaceutics, Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Engineering Research Centre for Novel Drug Delivery System, Wuhan 430030, China.
| |
Collapse
|
2
|
Dai X, Fan Y, Zhao X. Systemic lupus erythematosus: updated insights on the pathogenesis, diagnosis, prevention and therapeutics. Signal Transduct Target Ther 2025; 10:102. [PMID: 40097390 PMCID: PMC11914703 DOI: 10.1038/s41392-025-02168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 01/26/2025] [Indexed: 03/19/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory illness with heterogeneous clinical manifestations covering multiple organs. Diversified types of medications have been shown effective for alleviating SLE syndromes, ranging from cytokines, antibodies, hormones, molecular inhibitors or antagonists, to cell transfusion. Drugs developed for treating other diseases may benefit SLE patients, and agents established as SLE therapeutics may be SLE-inductive. Complexities regarding SLE therapeutics render it essential and urgent to identify the mechanisms-of-action and pivotal signaling axis driving SLE pathogenesis, and to establish innovative SLE-targeting approaches with desirable therapeutic outcome and safety. After introducing the research history of SLE and its epidemiology, we categorized primary determinants driving SLE pathogenesis by their mechanisms; combed through current knowledge on SLE diagnosis and grouped them by disease onset, activity and comorbidity; introduced the genetic, epigenetic, hormonal and environmental factors predisposing SLE; and comprehensively categorized preventive strategies and available SLE therapeutics according to their functioning mechanisms. In summary, we proposed three mechanisms with determinant roles on SLE initiation and progression, i.e., attenuating the immune system, restoring the cytokine microenvironment homeostasis, and rescuing the impaired debris clearance machinery; and provided updated insights on current understandings of SLE regarding its pathogenesis, diagnosis, prevention and therapeutics, which may open an innovative avenue in the fields of SLE management.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China.
| | - Yuting Fan
- Tissue Engineering and Stem Cell Experiment Center, Tumor Immunotherapy Technology Engineering Research Center, Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, P. R. China
- Department of Gastroenterology, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, P. R. China
| | - Xing Zhao
- Tissue Engineering and Stem Cell Experiment Center, Tumor Immunotherapy Technology Engineering Research Center, Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, P. R. China.
| |
Collapse
|
3
|
Deng S, Zhang Y, Shen S, Li C, Qin C. Immunometabolism of Liver Xenotransplantation and Prospective Solutions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407610. [PMID: 39912334 PMCID: PMC11884532 DOI: 10.1002/advs.202407610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/26/2024] [Indexed: 02/07/2025]
Abstract
End-stage liver diseases, such as hepatocellular carcinoma or acute liver failure, critically necessitate liver transplantation. However, the shortage of available organ donors fails to meet the rapidly growing transplantation demand. Due to the high similarity of liver tissue structure and metabolism between miniature pigs and humans, xenotransplantation of pig livers is considered as a potentially viable solution to organ scarcity. In the 2024, teams from China first time have successfully transplanted a genetically modified Bama miniature pig liver into a clinically brain-dead man lasting for 10 days. This milestone in human xenotransplantation research not only confirms the feasibility of clinical application of xenotransplantation, but also underscores the daunting and protracted nature of this pathway. Despite advanced gene-editing technologies theoretically circumventing the occurrence of most transplant rejection reactions, patients still face challenges such as chronic immune rejection, coagulation disorders, and thrombotic microangiopathy after receiving xenografts. Moreover, prolonged use of immunosuppressive drugs may induce irreversible immune dysfunction, leading to opportunistic infections and metabolic disorders. This article compares the similarities and differences in livers between humans and pigs, summarizes the immunometabolism of xenotransplantation based on current findings, and provides research perspectives on pre-transplantation and post-transplantation strategies for prolonging the survival time of xenografts.
Collapse
Affiliation(s)
- Shoulong Deng
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, National Health Commission of China (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences and Comparative Medicine CenterPeking Union Medical CollegeBeijing100021China
| | - Yi Zhang
- Department of MedicinePanzhihua UniversitySichuan61700China
| | - Shasha Shen
- Department of MedicinePanzhihua UniversitySichuan61700China
| | - Chongyang Li
- Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijing100193China
| | - Chuan Qin
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, National Health Commission of China (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences and Comparative Medicine CenterPeking Union Medical CollegeBeijing100021China
| |
Collapse
|
4
|
Schultheiß C, Schmidt-Barbo P, Paschold L, Esperanzate C, Behn A, Mikolajczyk R, Kastner DL, Aksentijevich I, Binder M. Deficiency of adenosine deaminase 2 skews adaptive immune repertoires toward specific sets of T- and B-cell receptors. J Allergy Clin Immunol 2025:S0091-6749(25)00124-1. [PMID: 39924119 DOI: 10.1016/j.jaci.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/20/2025] [Accepted: 01/29/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND Adenosine deaminase 2 deficiency (DADA2) is a genetic disorder caused by biallelic hypomorphic or loss-of-function mutations in the ADA2 gene, which encodes a protein deaminase regulating extracellular adenosine metabolism. Clinical features encompass inflammatory vasculopathy, early-onset strokes, and a complex presentation involving both immunodeficiency and autoinflammation/autoimmunity. OBJECTIVE Our aim was to determine a DADA2-specific adaptive immune architecture. METHODS We profiled immunoglobulin levels and peripheral B- and T-cell phenotypes in 47 previously reported and 5 unreported patients with DADA2. Levels of 21 cytokines and chemokines were quantified in patients with or without anti-TNF treatment. To characterize the DADA2 immune architecture, we performed T- and B-cell receptor immunosequencing. We trained a binary LightGBM classifier to distinguish DADA2 T- and B-cell immune repertoires from healthy individuals. RESULTS We detected hypogammaglobulinemia in 65% of patients with DADA2 (34 of 52) and cytopenias in 48% (25 of 52). Flow cytometric profiling revealed contraction of B- and T-cell memory compartments. In addition, we observed elevated levels of TNF, IL-8, several interferons, a proliferation-inducing ligand (APRIL), B-cell activating factor (BAFF), and soluble CD40 ligand (sCD40L). High serum levels of TNF, BAFF, and sCD40L persisted under anti-TNF therapy. Next-generation immunosequencing of peripheral lymphocytes showed restricted T-cell receptor repertoires and B cells, which were particularly skewed toward immunoglobulin heavy chain V4-34 rearrangements. With high accuracy, our machine learning algorithm separated individuals with DADA2 from healthy individuals on the basis of immunogenetic parameters regarding B-cell clone fraction, CDR3 length, and selected Kidera factors. CONCLUSIONS Our findings underscore the significant influence of ADA2 on the adaptive immune system, which results in a highly specific immunogenetic signature in patients with DADA2.
Collapse
Affiliation(s)
- Christoph Schultheiß
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland; Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel; Basel, Switzerland
| | - Paul Schmidt-Barbo
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland; Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel; Basel, Switzerland; Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
| | - Lisa Paschold
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Carl Esperanzate
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Md
| | - Alissa Behn
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Rafael Mikolajczyk
- Institute for Medical Epidemiology, Biometrics and Informatics, Interdisciplinary Centre for Health Sciences, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Daniel L Kastner
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Md
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Md
| | - Mascha Binder
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland; Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel; Basel, Switzerland; Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany.
| |
Collapse
|
5
|
Yan W, Cao Y, Xu S, Li Y, Wu T, Yuan W, Yin Q, Li Y. Personalized Multi-Epitope Nanovaccine Unlocks B Cell-Mediated Multiple Pathways of Antitumor Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411361. [PMID: 39711226 DOI: 10.1002/adma.202411361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/13/2024] [Indexed: 12/24/2024]
Abstract
B lymphocytes have emerged as an important immune-regulating target. Inoculation with tumor cell membrane-derived vaccines is a promising strategy to activate B cells, yet their efficiency is limited due to lack of costimulatory molecules. To amplify B cell responses against tumor, herein, a spatiotemporally-synchronized antigen-adjuvant integrated nanovaccine, termed as CM-CpG-aCD40, is constructed by conjugating the immune stimulative CpG oligonucleotide and the anti-CD40 antibody (aCD40) onto the membrane vesicles derived from triple negative breast cancer cells. CM-CpG-aCD40 actively accumulates in lymph nodes and is effectively captured by antigen-presenting cells via the recognition of CD40 by aCD40. Tumor antigens on CM-CpG-aCD40 bind to B cell receptors, providing the first stimulation signal for B cells. Meanwhile, the interaction between CpG/Toll like receptor and aCD40/CD40 provides superposed co-stimulation signals, improving the antibody-secreting and antigen-presenting abilities of B cells. The nanovaccine also stimulates dendritic cells to activate CD8+ T cells, and reprograms tumor associated macrophages. CM-CpG-aCD40 activating humoral, cellular, and innate antitumor immunity achieves a tumor inhibition rate of 89.3%, which is further improved to 95.4% when combined with the anti-programmed death ligand 1 (PD-L1) antibody. CM-CpG-aCD40, as a personalized multi-epitope nanovaccine, paves the way for ushering the era of B cell-based immunotherapy.
Collapse
Affiliation(s)
- Wenlu Yan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Cao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Shanshan Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ting Wu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, 211116, China
| | - Wenhui Yuan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264000, China
| |
Collapse
|
6
|
Choi, JP, Kim, YE, Kim, MK, Kang, MH, Hwang, YK, Yoon, JE, Chang, YS, Kim, SH. Repeated and alternate stimulations with dsRNA and SEB alter responses in macrophages and epithelial cells. World Allergy Organ J 2025; 18:101026. [PMID: 39925983 PMCID: PMC11804812 DOI: 10.1016/j.waojou.2025.101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/05/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
Introduction The innate immune system is activated by foreign molecules via pattern recognition receptors and other surveillance systems, producing diverse cytokines that recruit and activate other immune cells. Recent studies have shown that once activated by foreign molecules, the innate immune system exhibits altered responses upon subsequent exposure to the same or different infectious agents, such as lipopolysaccharides (LPS) or bacteria. However, as these alterations in response to viral infection and staphylococcal enterotoxin B (SEB) in the airways have not been fully elucidated, we focused on the changes in immune responses induced by repeated stimulation of macrophages and epithelial cells with foreign molecules. Methods THP-1-derived macrophages and BEAS-2B epithelial cells were stimulated with dsRNA (double-stranded RNA) or SEB and cultured in fresh complete medium for 4 days. Subsequently, the cells were re-stimulated with different doses of dsRNA or SEB, and the cytokine and signal phosphorylation levels were evaluated. Results Repeated stimulation with high dose of dsRNA or SEB, induced an increase in IL-10, CCL2, CCL22, CCL24, CXCL10, and CXCL11 in macrophages, while only repeated stimulation with dsRNA stimulation resulted in an increase in IL-6, CCL2, CCL5, CCL24, CXCL11, and TGF-β in epithelial cells. Cross-stimulation with SEB-dsRNA induced an increase in CCL5, CCL20, CCL22, CCL24, CXCL10, and CXCL11 levels in macrophages. However, in epithelial cells, SEB-dsRNA stimulation increased the levels of CCL5, CXCL11, and TGF-β, while dsRNA-SEB stimulation elevated CCL1, CCL20, CXCL10, and CXCL11. These cytokine changes were driven by distinct phosphorylation patterns in macrophages and epithelial cells, depending on the type and intensity of stimuli. Conclusion Repeated stimulation with the same or cross-over stimuli induced alterations in the immune response of macrophages and epithelial cells. These observations indicated that persistent airway stimulation can lead to changes in airway inflammation, potentially leading to asthma.
Collapse
Affiliation(s)
- Jun-Pyo Choi,
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Yae-Eun Kim,
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Min-Kyung Kim,
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Mi-Hyun Kang,
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Yu-Kyoung Hwang,
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jeong-Eun Yoon,
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Yoon-Seok Chang,
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sae-Hoon Kim,
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Zhong Y, Chen G, Chen M, Cui J, Tan Q, Xiao Z. Gene prediction of immune cells association between gut microbiota and colorectal cancer: a Mendelian randomization study. Front Immunol 2025; 16:1460936. [PMID: 39958359 PMCID: PMC11825486 DOI: 10.3389/fimmu.2025.1460936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/06/2025] [Indexed: 02/18/2025] Open
Abstract
Background An increasing number of studies have revealed that gut microbiota influences the development and progression of Colorectal cancer (CRC). However, whether a causal relationship exists between the two remains unclear, and the role of immune cells in this context is not well understood. Objective To elucidate the causal relationship between gut microbiota and CRC and to explore the potential mediating role of circulating immune cells. Materials and methods To analyze the causal relationship between gut microbiota and CRC, we employed a univariable Mendelian randomization (UVMR) approach. Subsequently, a two-step multivariable Mendelian randomization (MVMR) to assess the potential mediating role of circulating immune cells. Primarily, applied the Inverse-Variance Weighted method to evaluate the causal relationship between exposure and outcome. To ensure the robustness of the results linking gut microbiota and CRC, we validated the findings using Robust Inverse-Variance Weighted, Penalized Inverse-Variance Weighted, and Penalized Robust Inverse-Variance Weighted methods. Additionally, we employed MR-Egger Intercept to mitigate the influence of horizontal pleiotropy. MR-PRESSO was used to detect and correct outliers by excluding anomalous instrumental variables. Finally, we supplemented our analysis with methods such as Bayesian Weighted Mendelian Randomization (BWMR), Maximum-Likelihood, Lasso, Debiased Inverse Variance Weighted, and Contamination Mixture to establish a robust and compelling causal relationship. Results After accounting for reverse causality, horizontal pleiotropy, and various methodological corrections, Bifidobacterium kashiwanohense, GCA-900066755 sp900066755, Geminocystis, and Saccharofermentanaceae exhibited strong and robust causal effects on CRC. Specifically, CD40 on monocytes (2.82%) and CD45 on CD33+HLA-DR+CD14- cells (12.87%) mediated the causal relationship between Bifidobacterium kashiwanohense and CRC risk. Furthermore, CD45 on CD33-HLA-DR+ (3.94%) mediated the causal relationship between GCA-900066755 sp900066755 and CRC risk. Additionally, terminally differentiated CD4+T cells (11.55%) mediated the causal relationship between Geminocystis and CRC risk. Lastly, CD40 on monocytes (2.35%), central memory CD4+T cells (5.76%), and CD28 on CD28+CD45RA+CD8+T cells (5.00%) mediated the causal relationship between Saccharofermentanaceae and CRC risk. Conclusion Our mediation MR analysis provides genetic evidence suggesting that circulating immune cells may mediate the causal relationship between gut microbiota and CRC. The identified associations and mediation effects offer new insights into potential therapeutic avenues for CRC.
Collapse
Affiliation(s)
- Yan Zhong
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Guanglei Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Menglu Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Junsong Cui
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Qianren Tan
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Zhenghua Xiao
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
8
|
Hong J, Adam SY, Wang S, Huang H, Kim IH, Ahmed AA, Liu HY, Cai D. Melatonin Modulates ZAP70 and CD40 Transcripts via Histone Modifications in Canine Ileum Epithelial Cells. Vet Sci 2025; 12:87. [PMID: 40005847 PMCID: PMC11860356 DOI: 10.3390/vetsci12020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Melatonin (MLT), produced by the pineal gland and other tissues, is known for its anti-inflammatory effects, particularly in regulating inflammatory markers and cytokines in intestinal cells. Our study aimed to investigate how MLT influences the expression of inflammatory genes through histone modification in canine ileum epithelial cells (cIECs). In our experiment, cIECs were cultured and divided into a control group (CON) and an MLT-treatment group. MLT did not significantly affect cell growth or death in cIECs compared to the CON. However, MLT treatment led to an upregulation of CD40, ZAP70, and IL7R and a downregulation of LCK, RPL37, TNFRSF13B, CD4, CD40LG, BLNK, and CIITA at the mRNA expression level. Moreover, MLT significantly altered the NF-kappa B signaling pathway by upregulating genes, such as CD40, ZAP70, TICAM1, VCAMI, GADD45B, IRAK1, TRADD, RELA, RIPK1, and RELB, and downregulating PRKCB, LY96, CD40LG, ILIB, BLNK, and TNFRSF11A. Using ChIP-qPCR, we discovered that MLT treatment enhanced histone acetylation marks H3K9ac, H3K18ac, H3K27ac, and methylation marks H3K4me1 and H3K4me3 at the ZAP70 and CD40 gene loci (p < 0.05). Additionally, the enrichment of RNA polymerase II and phosphorylated Ser5 pol-II at these loci was increased in MLT-treated cells (p < 0.05), indicating heightened transcriptional activity. In conclusion, our findings suggest that MLT mitigates inflammation in cIECs by modulating the transcription of ZAP70 and CD40 through histone modifications, offering potential therapeutic insights for inflammatory bowel diseases.
Collapse
Affiliation(s)
- Jian Hong
- School of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China;
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.Y.A.); (S.W.); (H.H.); (H.-Y.L.)
| | - Saber Y. Adam
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.Y.A.); (S.W.); (H.H.); (H.-Y.L.)
| | - Shiqi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.Y.A.); (S.W.); (H.H.); (H.-Y.L.)
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hao Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.Y.A.); (S.W.); (H.H.); (H.-Y.L.)
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan 100000, Republic of Korea;
| | - Abdelkareem A. Ahmed
- Department of Veterinary Sciences, Botswana University of Agriculture and Natural Resources, Gaborone P.O. Box 100, Botswana;
- Biomedical Research Institute, Darfur University College, Nyala P.O. Box 160, Sudan
- Department of Physiology and Biochemistry, Faculty of Veterinary Science, University of Nyala, Nyala P.O. Box 155, Sudan
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.Y.A.); (S.W.); (H.H.); (H.-Y.L.)
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.Y.A.); (S.W.); (H.H.); (H.-Y.L.)
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Luo Z, Zhang T, Wang P, Yuan D, Jin S, Di J, Ma R, Yang L, Wang X, Liu J. Activation of V-Domain Immunoglobulin Suppressor of T-Cell Activation by Baloxavir Marboxil Ameliorates Systemic Lupus Erythematosus through Inhibiting Lysophosphatidylcholine/CD40 Ligand. Chem Res Toxicol 2025; 38:193-205. [PMID: 39772456 DOI: 10.1021/acs.chemrestox.4c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Deficiency of the V-domain immunoglobulin suppressor of T-cell activation (VISTA) accelerates disease progression in lupus-prone mice, and activation of VISTA shows therapeutic effects in mouse models of a lupus-like disease. Metabolic reprogramming of T cells in systemic lupus erythematosus (SLE) patients is important in regulating T-cell function and disease progression. However, the mechanism by which VISTA affects the immunometabolism in SLE remains unclear. Here, we demonstrated that the deficiency of VISTA promoted the synthesis of the metabolite lysophosphatidylcholine (LPC) using untargeted metabolomics and increased the protein expression of the CD40 ligand (CD40L). Furthermore, baloxavir marboxil (BXM), a small molecule agonist of VISTA, significantly ameliorated autoantibody production, renal damage, and imbalance of immune cell subpopulations in the models of a lupus-like disease in mice (chronic graft-versus-host disease and MRL/MpJ-Faslpr/J mice) possibly by inhibiting LPC synthesis to downregulate CD40L protein expression and inhibiting aberrant activation of noncanonical nuclear factor-κB pathway. Our results indicated that BXM targeting VISTA ameliorated lupus-like symptoms by altering lipid metabolism and CD40L expression, which offers novel mechanisms and a promising therapy for SLE.
Collapse
Affiliation(s)
- Zhijie Luo
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Tingting Zhang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Penglu Wang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Dingyi Yuan
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Shasha Jin
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Jianwen Di
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Ruixue Ma
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Lu Yang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Xinzhi Wang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Liu
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
10
|
Xu J, Si S, Han Y, Zeng L, Zhao J. Genetic insight into dissecting the immunophenotypes and inflammatory profiles in the pathogenesis of Sjogren syndrome. J Transl Med 2025; 23:56. [PMID: 39806364 PMCID: PMC11726950 DOI: 10.1186/s12967-024-05993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Sjogren syndrome (SS) is a chronic systemic autoimmune disease and its pathogenesis often involves the participation of numerous immune cells and inflammatory factors. Despite increased researches and studies recently focusing on this area, it remains to be fully elucidated. We decide to incorporate genetic insight into investigation of the causal link between various immune cells, inflammatory factors and pathogenesis of Sjogren syndrome (SS). METHODS Our study leveraged the genetic variants of multi-omics statistics extracted from genome-wide association study (GWAS), the University of Bristol and the FinnGen study. We performed a bidirectional Mendelian randomization and mediation study based on randomly allocated instrumental variables to infer causality, followed by external validation with UK Biobank data and Bayesian colocalization. RESULTS We demonstrated that an elevated level of CD27 on IgD + CD24 + B cell, a subset of B cells expressing both IgD and CD24, was associated with a higher risk of SS (OR = 1.119, 95% CI: 1.061-1.179, P < 0.001), while CD3 on CD45RA + CD4 + Treg was a protective factor (OR = 0.917, 95%CI: 0.877-0.959, P < 0.001). Results of meta-analysis and colocalization further supported the significant results identified in the primary analysis. A total of 4 inflammatory cytokines and 7 circulating proteins exhibited potential causal relationships with SS despite no significant result achieved after FDR correction. Finally, results of mediation analysis indicated that CD40L receptor levels had significant mediating effects (β = 0.0314, 95% CI: 0.0004-0.0624, P = 0.0471) at a mediation proportion of 28% (95% CI: 0.364%-55.6%) in causal relationship between CD27 on IgD + CD24 + B cell and SS. CONCLUSIONS By providing a novel genetic insight into unveiling the roles of autoimmunity and inflammation in Sjogren syndrome, our findings may potentially lead to identifying new clinical biomarkers for disease monitoring and therapeutic targets that offer more effective alternatives for treating this condition. Therefore, our study may provide valuable evidence for future clinical intervention and targeted immunotherapy.
Collapse
Affiliation(s)
- Jingyi Xu
- Department of Rheumatology and Immunology, Peking University Third Hospital, No. 49, North Garden Road, Beijing, 100191, China
| | - Shucheng Si
- Research Center of Clinical Epidemiology, Peking University Third Hospital, No. 49, North Garden Road, Beijing, 100191, China
| | - Yijun Han
- Department of Rheumatology and Immunology, Peking University Third Hospital, No. 49, North Garden Road, Beijing, 100191, China
| | - Lin Zeng
- Research Center of Clinical Epidemiology, Peking University Third Hospital, No. 49, North Garden Road, Beijing, 100191, China.
| | - Jinxia Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, No. 49, North Garden Road, Beijing, 100191, China.
| |
Collapse
|
11
|
Ding C, Li G, Li Y, Gao H, Sun F. The construction and experimental verification of a 6-LncRNA model based on Lactic acid metabolism in the tumor microenvironment of Wilms tumor. Gene 2025; 932:148898. [PMID: 39209182 DOI: 10.1016/j.gene.2024.148898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Lactic acid (LA) can promote the malignant progression of tumors through the crosstalk with the tumor microenvironment (TME). However, the function of long non-coding RNAs (lncRNAs) related to LA metabolism in Wilms tumor (WT) remains unclear. METHODS Gene expression data and clinical data of WT patients were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Through the ESTIMATE algorithm and Pearson correlation analysis, lncRNAs related to tumor immunity and LA metabolism were screened. Subsequently, Cox regression analysis and Lasso Cox regression analysis were used to construct a model. Furthermore, candidate genes were identified and a competitive endogenous RNA (ceRNA) network was conducted to explore the specific mechanism of characteristic genes. Finally, based on the strong clinical relevance of UNC5B-AS1, its expression and function were experimentally verified. RESULTS The immune score and stromal score were found to be closely related to the prognosis of WT. Eventually, a prognostic model (TME-LA-LM) consisting of 6 lncRNAs was successfully identified. The model demonstrated favorable predictive ability and accuracy, with significant variation in immune infiltration and drug susceptibility observed between risk groups. Additionally, the study revealed the involvement of 2 candidate genes and 5 microRNAs (miRNAs) in the tumor's development. Notably, UNC5B-AS1 was highly expressed and found to promote the proliferation and migration of tumor cells. CONCLUSION This study, for the first time, elucidated the prognostic signatures of WT using lncRNAs related to TME and LA metabolism. The fundings of this research offer valuable insights for future studies on immunotherapy, personalized chemotherapy and mechanism research.
Collapse
Affiliation(s)
- Chen Ding
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China.
| | - Guowei Li
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China.
| | - YingYing Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China.
| | - Hongjie Gao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China.
| | - Fengyin Sun
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
12
|
Dai Y, Dong C, Wang Z, Zhou Y, Wang Y, Hao Y, Chen P, Liang C, Li G. Infiltrating T lymphocytes and tumor microenvironment within cholangiocarcinoma: immune heterogeneity, intercellular communication, immune checkpoints. Front Immunol 2025; 15:1482291. [PMID: 39845973 PMCID: PMC11750830 DOI: 10.3389/fimmu.2024.1482291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Cholangiocarcinoma is the second most common primary liver cancer, and its global incidence has increased in recent years. Radical surgical resection and systemic chemotherapy have traditionally been the standard treatment options. However, the complexity of cholangiocarcinoma subtypes often presents a challenge for early diagnosis. Additionally, high recurrence rates following radical treatment and resistance to late-stage chemotherapy limit the benefits for patients. Immunotherapy has emerged as an effective strategy for treating various types of cancer, and has shown efficacy when combined with chemotherapy for cholangiocarcinoma. Current immunotherapies targeting cholangiocarcinoma have predominantly focused on T lymphocytes within the tumor microenvironment, and new immunotherapies have yielded unsatisfactory results in clinical trials. Therefore, it is essential to achieve a comprehensive understanding of the unique tumor microenvironment of cholangiocarcinoma and the pivotal role of T lymphocytes within it. In this review, we describe the heterogeneous immune landscape and intercellular communication in cholangiocarcinoma and summarize the specific distribution of T lymphocytes. Finally, we review potential immune checkpoints in cholangiocarcinoma.
Collapse
Affiliation(s)
- Yunyan Dai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Chenyang Dong
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Zhiming Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yunpeng Zhou
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yi Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yi Hao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Pinggui Chen
- Department of Nuclear Medicine, Nanyang First People’s Hospital, Nanyang, Henan, China
| | - Chaojie Liang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of biliary and Pancreatic Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Gaopeng Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
13
|
Canichella M, de Fabritiis P. CAR-T Therapy Beyond B-Cell Hematological Malignancies. Cells 2025; 14:41. [PMID: 39791742 PMCID: PMC11719893 DOI: 10.3390/cells14010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025] Open
Abstract
Despite the advances of CAR-T cells in certain hematological malignancies, mostly from B-cell derivations such as non-Hodgkin lymphomas, acute lymphoblastic leukemia and multiple myeloma, a significant portion of other hematological and non-hematological pathologies can benefit from this innovative treatment, as the results of clinical studies are demonstrating. The clinical application of CAR-T in the setting of acute T-lymphoid leukemia, acute myeloid leukemia, solid tumors, autoimmune diseases and infections has encountered limitations that are different from those of hematological B-cell diseases. To overcome these restrictions, strategies based on different molecular engineering platforms have been devised and will be illustrated below. The aim of this manuscript is to provide an overview of the CAR-T application in pathologies other than those currently treated, highlighting both the limits and results obtained with these settings.
Collapse
Affiliation(s)
| | - Paolo de Fabritiis
- Hematology, St. Eugenio Hospital, ASL Roma2, 00144 Rome, Italy;
- Department of Biomedicina e Prevenzione, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
14
|
Liu W, Liu Y, Li H, Wang S, Chen P, Liu Z, Huo X, Tian J. IGF2BP2 orchestrates global expression and alternative splicing profiles associated with glioblastoma development in U251 cells. Transl Oncol 2025; 51:102177. [PMID: 39515086 PMCID: PMC11582445 DOI: 10.1016/j.tranon.2024.102177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Glioblastoma (GBM) is a highly invasive and malignant central nervous system tumor with a median survival duration of 15 months despite multimodal therapy. The insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) has been implicated in various cancers and is known to regulate RNA metabolism and alternative splicing (AS). However, its role in GBM remains unclear. Overexpression of IGF2BP2 led to significant alterations in gene expression, with 472 genes upregulated and 99 downregulated. Gene ontology (GO) analysis indicated enrichment in immune-related biological processes. Notably, IGF2BP2 was found to regulate AS events, with 1372 regulated AS genes (RASGs) and 2096 significantly distinct ASEs identified. Furthermore, IGF2BP2 selectively bound to 3' and 5' untranslated regions (UTRs) via GG[AU]C motifs, and IFIH1 was identified as a direct binding partner and upregulated gene upon IGF2BP2 overexpression. Functional enrichment analysis suggested that IGF2BP2 influences pathways related to RNA splicing and immune responses. Our findings demonstrate that IGF2BP2 plays a crucial role in GBM by modulating the transcriptome and AS events. The upregulation of immune-related genes and the regulation of AS by IGF2BP2 highlight its potential as a therapeutic target in GBM, particularly for immunotherapy. The study provides a foundation for further investigation into the molecular mechanisms of IGF2BP2 in GBM and its implications for cancer treatment.
Collapse
Affiliation(s)
- Wenqing Liu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yan Liu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China; Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, Ningxia, China; Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Haoyuan Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China; Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, Ningxia, China; Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shixiong Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China; Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Pengfei Chen
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhongtao Liu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xianhao Huo
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Jihui Tian
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
15
|
Tan R, Wen M, Yang W, Zhan D, Zheng N, Liu M, Zhu F, Chen X, Wang M, Yang S, Xie B, He Q, Yuan K, Sun L, Wang Y, Qin J, Zhang Y. Integrated proteomics and scRNA-seq analyses of ovarian cancer reveal molecular subtype-associated cell landscapes and immunotherapy targets. Br J Cancer 2025; 132:111-125. [PMID: 39548315 PMCID: PMC11723995 DOI: 10.1038/s41416-024-02894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) represents the most lethal gynaecological malignancy, yet understanding the connections between its molecular subtypes and their therapeutic implications remains incomplete. METHODS We conducted mass spectrometry-based proteomics analyses of 154 EOC tumour samples and 29 normal fallopian tubes, and single-cell RNA sequencing (scRNA-seq) analyses of an additional eight EOC tumours to classify proteomic subtypes and assess their cellular ecosystems and clinical significance. The efficacy of identified therapeutic targets was evaluated in patient-derived xenograft (PDX) and orthotopic mouse models. RESULTS We identified four proteomic subtypes with distinct clinical relevance: malignant proliferative (C1), immune infiltrating (C2), Fallopian-like (C3) and differentiated (C4) subtypes. C2 subtype was characterized by lymphocyte infiltration, notably an increased presence of GZMK CD8+ T cells and phagocytosis-like MRC+ macrophages. Additionally, we identified CD40 as a specific prognostic factor for C2 subtype. The interaction between CD40+ phagocytosis-like macrophages and CD40RL+ IL17R CD4+ T cells was correlated with a favourable prognosis. Finally, we established a druggable landscape for non-immune EOC patients and verified a TYMP inhibitor as a promising therapeutic strategy. CONCLUSIONS Our study refines the current immune subtype for EOC, highlighting CD40 agonists as promising therapies for C2 subtype patients and targeting TYMP for non-immune patients.
Collapse
Affiliation(s)
- Rong Tan
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China.
| | - Ming Wen
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqing Yang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Gynecological Oncology Research and Engineering Center of Hunan Province, Changsha, Hunan, China
| | - Dongdong Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- Beijing Pineal Diagnostics Co., Ltd., Beijing, China
| | - Nairen Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Fang Zhu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Gynecological Oncology Research and Engineering Center of Hunan Province, Changsha, Hunan, China
| | - Xiaodan Chen
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Gynecological Oncology Research and Engineering Center of Hunan Province, Changsha, Hunan, China
| | - Meng Wang
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Siyu Yang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Gynecological Oncology Research and Engineering Center of Hunan Province, Changsha, Hunan, China
| | - Bin Xie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Qiongqiong He
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Kai Yuan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China
| | - Lunquan Sun
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha, China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Yu Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Gynecological Oncology Research and Engineering Center of Hunan Province, Changsha, Hunan, China.
| |
Collapse
|
16
|
Wang F, Chen L, Tian Y. Immune traits in combination with inflammatory proteins revealing the pathogenesis of autoimmune liver diseases: A Mendelian randomization study. Cytokine 2025; 185:156815. [PMID: 39579619 DOI: 10.1016/j.cyto.2024.156815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/03/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Prior observational research has shown relationships between immune cells, inflammatory proteins, and autoimmune liver diseases (AILD), but their causal associations remain controversial. Therefore, we aimed to clarify the causal association between them. METHODS We carried out a comprehensive Mendelian randomization (MR) analysis to clarify causal associations between 731 immune traits, 91 circulating inflammatory proteins, and AILD, including primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and autoimmune hepatitis (AIH). A two-step MR analysis was used to explore the mediating role of circulating inflammatory proteins. Additionally, we performed sensitivity analyses to evaluate the robustness of the results. RESULTS CD27 on IgD+CD24+B cell, CD27 on IgD-CD38dimB cell, CD27 on unswitched memory B cell, CD27 on switched memory B cell, and CD27 on CD24+CD27+B cell were risk factors for PBC. However, we detected protective effects of CD25 on IgD-CD27-B cell against PBC and CD28 on resting CD4+Treg cell against PSC. Circulating CD40, Interleukin-33, and Delta and Notch-like epidermal growth factor-related receptor were protective factors for PBC. Furthermore, CD40 mediated the association between immune traits and PBC, with the mediated proportions ranging from 18.3 % to 35.4 %. Tumor necrosis factor superfamily member 12 was identified as a risk factor for PSC, and monocyte chemotactic protein 3 was identified as a protective factor for PSC. Additionally, PBC and PSC had effects on eleven immune traits, which are suggested to be the consequences of them. We found no causal association between immune traits, circulating inflammatory proteins, and AIH. Sensitivity analyses demonstrated our results were robust. CONCLUSIONS Our results demonstrate the causal roles of immune traits and inflammatory proteins in PBC and PSC, which reveals their pathogenesis. It is necessary to investigate the specific mechanism by which immune cells and inflammatory proteins affecting the occurrence of AILD.
Collapse
Affiliation(s)
- Feifan Wang
- Department of Surgical, Hebei Medical University, Shijiazhuang 050017, China
| | - Lu Chen
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing 100191, China
| | - Yu Tian
- Department of Surgical, Hebei Medical University, Shijiazhuang 050017, China.; Department of Hand & Foot Surgery, First Hospital of Qinhuangdao, Qinhuangdao 066000, China..
| |
Collapse
|
17
|
Coquelet P, Da Cal S, El Hage G, Tastet O, Balthazard R, Chaumont H, Yuh SJ, Shedid D, Arbour N. Specific plasma biomarker signatures associated with patients undergoing surgery for back pain. Spine J 2025; 25:32-44. [PMID: 39276871 DOI: 10.1016/j.spinee.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/02/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND CONTEXT Intervertebral disc degeneration (IDD) affects numerous people worldwide. The role of inflammation is increasingly recognized but remains incompletely resolved. Peripheral molecules could access neovascularized degenerated discs and contribute to the ongoing pathology. PURPOSE To assess a large array of plasma molecules in patients with IDD to identify biomarkers associated with specific spinal pathologies and prognostic biomarkers for the surgery outcome. DESIGN Prospective observational study combining clinical data and plasma measures. PATIENT SAMPLE Plasma samples were collected just before surgery. Extensive clinical data (age, sex, smoking status, Modic score, glomerular filtration rate, etc.) were extracted from clinical files from 83 patients with IDD undergoing spine surgery. OUTCOME MEASURES Recovery 2 months postsurgery as assessed by the treating neurosurgeon. METHODS Over 40 biological molecules were measured in patients' plasma using multiplex assays. Statistical analyses were performed to identify associations between biological and clinical characteristics (age, sex, Body Mass Index (BMI), smoking status, herniated disc, radiculopathy, myelopathy, stenosis, MODIC score, etc.) and plasma levels of biological molecules. RESULTS Plasma levels of Neurofilament Light chain (NfL) were significantly elevated in patients with myelopathy and spinal stenosis compared to herniated disc. Plasma levels of C- reactive protein (CRP), Neurofilament Light chain (NfL), and Serum Amyloid A (SAA) were negatively associated, while CCL22 levels were positively associated with an efficient recovery 2 months postsurgery. CONCLUSIONS Our results show that CRP and CCL22 plasma levels combined with the age of the IDD patient can predict the 2-month postsurgery recovery (Area Under the Curve [AUC]=0.883). Moreover, NfL could become a valuable monitoring tool for patients with spinal cord injuries.
Collapse
Affiliation(s)
- Perrine Coquelet
- Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Sandra Da Cal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Gilles El Hage
- Neurosurgery Service, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada
| | - Olivier Tastet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Renaud Balthazard
- Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Hugo Chaumont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Sung-Joo Yuh
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada; Neurosurgery Service, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada; Department of Surgery, Division of Neurosurgery, Université de Montréal, Montréal, Quebec, Canada
| | - Daniel Shedid
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada; Neurosurgery Service, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada; Department of Surgery, Division of Neurosurgery, Université de Montréal, Montréal, Quebec, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada.
| |
Collapse
|
18
|
Yan M, Wang Z, Qiu Z, Cui Y, Xiang Q. Platelet signaling in immune landscape: comprehensive mechanism and clinical therapy. Biomark Res 2024; 12:164. [PMID: 39736771 DOI: 10.1186/s40364-024-00700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Platelets are essential for blood clotting and maintaining normal hemostasis. In pathological conditions, platelets are increasingly recognized as crucial regulatory factors in various immune-mediated inflammatory diseases. Resting platelets are induced by various factors such as immune complexes through Fc receptors, platelet-targeting autoantibodies and other platelet-activating stimuli. Platelet activation in immunological processes involves the release of immune activation stimuli, antigen presentation and interaction with immune cells. Platelets participate in both the innate immune system (neutrophils, monocytes/macrophages, dendritic cells (DCs) and Natural Killer (NK) cells and the adaptive immune system (T and B cells). Clinical therapeutic strategies include targeting platelet activation, platelet-immune cell interaction and platelet-endothelial cell interaction, which display positive development prospects. Understanding the mechanisms of platelets in immunity is important, and developing targeted modulations of these mechanisms will pave the way for promising therapeutic strategies.
Collapse
Affiliation(s)
- Mengyao Yan
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Zhe Wang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Zhiwei Qiu
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China.
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China.
| | - Qian Xiang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China.
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
19
|
Zhao L, Tan L, Liu W, Zhang S, Liao A, Yuan L, He Y, Chen X, Li Z. The Causal Relationships Between Inflammatory Proteins, Brain Structure, and Psychiatric Disorders: A Two-Step Mendelian Randomization Analysis. Schizophr Bull 2024:sbae208. [PMID: 39657824 DOI: 10.1093/schbul/sbae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
BACKGROUND AND HYPOTHESIS Inflammatory proteins are implicated in psychiatric disorders, but the causality and underlying mechanisms remain unclear. STUDY DESIGN We conducted bidirectional Mendelian randomization (MR) using genetic variants from genome-wide association studies (GWAS) for 91 inflammatory proteins (N = 14 824) and 11 psychiatric disorders (N = 9725 to 1 035 760). The primary analysis used the inverse variance weighted (IVW) method, with additional sensitivity analyses to confirm robustness. A two-step MR approach assessed whether brain imaging-derived phenotypes (IDPs) mediated the observed effects. STUDY RESULTS Forward MR analysis found the protective effect of CD40 on schizophrenia (SCZ) (IVW OR = 0.90, P = 5.29 × 10-6) and bipolar disorder (BD) (IVW OR = 0.89, P = 5.08 × 10-6). Reverse MR demonstrated that increased genetic risk of Tourette's syndrome (TS) was associated with reduced Fms-associated tyrosine kinase 3 ligand (Flt3L) levels (Flt3L) (Wald Ratio beta = -0.42, P = 1.99 × 10-7). The protective effect of CD40 on SCZ was partially mediated by the modulation of fractional anisotropy (FA) values in the right and left superior frontal occipital fasciculus, with mediation proportions of 9.6% (P = .025) and 11.5% (P = .023), respectively. CONCLUSION CD40 exerts an immunoprotective effect on SCZ and BD, and the effect of CD40 on SCZ was partially mediated through modulation of FA values in the superior frontal occipital fasciculus. These findings enhance comprehension of the etiology of these psychiatric conditions and underscore the promise of therapeutic strategies aimed at inflammatory proteins.
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Liwen Tan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Weiqing Liu
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, 200122, China
- Laboratory for Molecular Mechanisms of Brain Development, Center for Brain Science (CBS), RIKEN, Saitama, 351-0198, Japan
| | - Sijie Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Aijun Liao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Liu Yuan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ying He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zongchang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
20
|
Jiang H, Li Q, Yang X, Jia L, Cheng H, Wang J, Wang S, Li X, Xie Y, Wang J, Wang Y, Hu M, Guo J, Peng Z, Wang M, Li T, Zhao H, Wang L, Liu Z. Bone marrow stromal cells protect myeloma cells from ferroptosis through GPX4 deSUMOylation. Cancer Lett 2024; 611:217388. [PMID: 39653239 DOI: 10.1016/j.canlet.2024.217388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/18/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Bone marrow stromal cells (BMSCs) are vital for preventing chemotherapy induced apoptosis of multiple myeloma (MM), but roles and machinery in other forms of cell death have not been well elucidated. Here, using an in vitro BMSC-MM interacting model, we observed BMSCs protected MM cells from labile iron pool (LIP) and reactive oxygen species (ROS) triggered ferroptosis by elevating glutathione peroxidase 4 (GPX4). Mechanistically, direct interaction with BMSCs upregulated the expression of SUMO-specific protease 3 (SENP3) in MM cells through CD40/CD40L signaling pathway, and SENP3 de-conjugated SUMO2 at lysine 75 residue to stabilize GPX4 protein, thereby consuming ROS to obviate ferroptosis in MM cells from the Vk∗MYC mouse model, as well as in CD138+B220- cells separated from the Cd40lfl/fl;Prx1Cre/+ mice (CD40-CKO) and Sumo2 knock out (SUMO2-KO) mice. Using the NOD-scid IL2Rgammanull (NSG) mouse based xenograft model and intra-bone MM growth model, we validated that target SENP3 enhanced the killing effect of GPX4 inhibitor RSL3, thereby reduced tumor burden, prolonged survival of mice, and alleviated bone disruption of mice bearing MM tumors. Our study deciphers the mechanism of BMSCs preventing MM cells from spontaneous ferroptosis, and clarifies the therapeutic potential of non-apoptosis strategies in managing refractory or relapsed MM patients.
Collapse
Affiliation(s)
- Hongmei Jiang
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China; Department of Pathology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Qian Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xudan Yang
- Department of Pathology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Linchuang Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Hao Cheng
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Jingya Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Sheng Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Xin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Ying Xie
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jingjing Wang
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yixuan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Meilin Hu
- Tianjin Medical University School of Stomatology, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Jing Guo
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Ziyi Peng
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Mengqi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Tiantian Li
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Haifeng Zhao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Lijuan Wang
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, 276037, China.
| | - Zhiqiang Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
21
|
Gümüş A, Sönmez D, Demirkol Ş, Tolgahan Hakan M, Verim A, Süoğlu Y, Yaylım İ, Ergen A. Impact of CD40 (rs1883832) and CD40L (rs1126535) gene variants on laryngeal cancer susceptibility and their association with serum biomarker levels of sCD40 and sCD40L. PLoS One 2024; 19:e0312576. [PMID: 39625893 PMCID: PMC11614260 DOI: 10.1371/journal.pone.0312576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/10/2024] [Indexed: 12/06/2024] Open
Abstract
INTRODUCTION The most prevalent head and neck cancer type is laryngeal cancer. Laryngeal cancer susceptibility is increased by a combination of genetic variables and environmental factors. Genetic predispositions that influence the functioning of the immune system can affect tumor development. Our study investigates the impact of alterations in CD40 (rs1883832) and CD40L (rs1126535) genes and the levels of their proteins on the development of laryngeal cancer. MATERIALS AND METHODS The PCR-RFLP method was used for genotyping SNPs in 96 patients with laryngeal cancer and 127 healthy individuals. Additionally, ELISA was utilized to measure circulating levels of sCD40 and sCD40L. RESULTS We identified a significant difference in the genotype distribution of CD40 (rs1883832) between laryngeal cancer patients and healthy individuals (p = 0.05). The C allele was dominant, and the CC genotype was more frequently observed in patients with laryngeal cancer (OR: 2.34, 95% CI: 0.98-5.54). In contrast, no statistically significant difference in the genotypes of CD40L (rs1126535) was detected between laryngeal cancer patients and the control group (p = 0.12). Additionally, no significant differences in serum sCD40 or sCD40L levels were observed between the groups (p = 0.48 and p = 0.15, respectively). However, a moderate positive correlation was found between sCD40 and sCD40L levels in the laryngeal cancer group (r = 0.52, p<0.01), a relationship that was not observed in the control group. DISCUSSION According to the current findings, it is suggested that the CD40 (rs1883832) gene variation found in patients may indicate an individual's susceptibility to developing laryngeal cancer. On the other hand, CD40L (rs1126535) seems to not play a significant role. While serum sCD40 and sCD40L levels did not show significant differences between patients and controls, the correlation in cancer patients suggests that these markers may be relevant in tumor progression. Further research is required to clarify the functional implications of these genetic variants and their potential use as biomarkers for laryngeal cancer.
Collapse
Affiliation(s)
- Alper Gümüş
- Medical Biochemistry Laboratory, Çam Sakura City Hospital, University of Health Sciences, Istanbul, Turkey
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Dilara Sönmez
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Şeyda Demirkol
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Mehmet Tolgahan Hakan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ayşegül Verim
- Department of Otorhinolaryngology/Head and Neck Surgery, Haydarpasa Numune Education and Research Hospital, Istanbul, Turkey
| | - Yusufhan Süoğlu
- Istanbul Faculty of Medicine, Department of Otorhinolaryngology, Istanbul University, Istanbul, Turkey
| | - İlhan Yaylım
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Arzu Ergen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
22
|
Miao S, Liu H, Yang Q, Zhang Y, Chen T, Chen S, Mao X, Zhang Q. Cathelicidin peptide LL-37: A multifunctional peptide involved in heart disease. Pharmacol Res 2024; 210:107529. [PMID: 39615616 DOI: 10.1016/j.phrs.2024.107529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Heart disease is a common human disease with high morbidity and mortality. Timely and effective prevention and treatment is an urgent clinical problem. The pathogenesis of heart disease is complex and diverse, involving hypertension, diabetes, atherosclerosis, drug toxicity, thrombosis, infection and other aspects. LL-37, an endogenous peptide, is well known for its antimicrobial properties. In recent years, LL-37 has been found to have a variety of biological functions, including its role in the regulation of atherosclerosis, thrombosis, inflammatory responses, and cardiac hypertrophy. Engineered LL-37-related peptides were developed and proved to regulate the development of disease, which revealed its potential clinical application. A comprehensive review and summary of LL-37 is presented to clarify its role in heart disease and to provide a reference and direction for future research.
Collapse
Affiliation(s)
- Shuo Miao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China; School of Basic Medicine, Qingdao University, Qingdao, China
| | - Houde Liu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qingyu Yang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaping Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Chen
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Ruipule Medical Technology Co., Ltd, China
| | - Shuai Chen
- School of Basic Medicine, Guizhou University of Traditional Chinese, China
| | - Xin Mao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Qingsong Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
23
|
Fatima T, Mirza A, Fatima F, Karamat RI, Ahmad B, Naeem S, Shahid I, Akilimali A. Frexalimab (SAR441344) as a potential multiautoimmune disorder tackling mAB targeting the CD40-CD40L pathway undergoing clinical trials: a review. Ann Med Surg (Lond) 2024; 86:7305-7313. [PMID: 39649860 PMCID: PMC11623868 DOI: 10.1097/ms9.0000000000002745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024] Open
Abstract
Autoimmune disorders exhibit intricate pathology. Their mechanisms are complex, which attenuates the need for novel therapeutic interventions. Frexalimab, a potent monoclonal antibody targeting the dysregulated CD40-CD40L pathway, stands out as a formidable weapon against the assault of inflammation and tissue devastation. Diverse electronic databases were searched using relevant keywords to extract data on the role of Frexalimab in combating various autoimmune diseases. This review highlights Frexalimab's efficacy in improving various disability indicators of relapsing multiple sclerosis (RMS), alleviating fatigue in primary Sjögren's syndrome (PSJS), and improving glycemic control in diabetic patients. Across multiple trials, its favorable safety profile has proven its superiority over first-generation drugs in minimizing side effects. Indeed, Frexalimab has become a harbinger of hope in the fight against autoimmune diseases and has pioneered a unique and unchallenging way for tackling complex autoimmune diseases in the clinical realm, however, further large-scale trials are needed to establish its therapeutic benefits across different autoimmune conditions.
Collapse
Affiliation(s)
| | | | | | | | - Bilal Ahmad
- Shaikh Khalifa bin Zayed Al Nahyan Medical and Dental College, Lahore, Pakistan
| | | | | | - Aymar Akilimali
- Department of Research, Medical Research Circle (MedReC), Bukavu
| |
Collapse
|
24
|
Shao Y, Yang WY, Nanayakkara G, Saaoud F, Ben Issa M, Xu K, Lu Y, Jiang X, Mohsin S, Wang H, Yang X. Immune Checkpoints Are New Therapeutic Targets in Regulating Cardio-, and Cerebro-Vascular Diseases and CD4 +Foxp3 + Regulatory T Cell Immunosuppression. INTERNATIONAL JOURNAL OF DRUG DISCOVERY AND PHARMACOLOGY 2024; 3:100022. [PMID: 39926714 PMCID: PMC11804271 DOI: 10.53941/ijddp.2024.100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Although previous reviews explored the roles of selected immune checkpoints (ICPs) in cardiovascular diseases (CVD) and cerebrovascular diseases from various perspectives, many related aspects have yet to be thoroughly reviewed and analyzed. Our comprehensive review addresses this gap by discussing the cellular functions of ICPs, focusing on the tissue-specific and microenvironment-localized transcriptomic and posttranslational regulation of ICP expressions, as well as their functional interactions with metabolic reprogramming. We also analyze how 14 pairs of ICPs, including CTLA-4/CD86-CD80, PD1-PDL-1, and TIGIT-CD155, regulate CVD pathogenesis. Additionally, the review covers the roles of ICPs in modulating CD4+Foxp3+ regulatory T cells (Tregs), T cells, and innate immune cells in various CVDs and cerebrovascular diseases. Furthermore, we outline seven immunological principles to guide the development of new ICP-based therapies for CVDs. This timely and thorough analysis of recent advancements and challenges provide new insights into the role of ICPs in CVDs, cerebrovascular diseases and Tregs, and will support the development of novel therapeutics strategies for these diseases.
Collapse
Affiliation(s)
- Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - William Y. Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Gayani Nanayakkara
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT84112, USA
| | - Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Mohammed Ben Issa
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Sadia Mohsin
- Aging + Cardiovascular Discovery Center (ACDC), Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| |
Collapse
|
25
|
Hikosaka-Kuniishi M, Iwata C, Ozawa Y, Ogawara S, Wakaizumi T, Itaya R, Sunakawa R, Sato A, Nagai H, Morita M, So T. The Role of TNF Receptor-Associated Factor 5 in the Formation of Germinal Centers by B Cells During the Primary Phase of the Immune Response in Mice. Int J Mol Sci 2024; 25:12331. [PMID: 39596396 PMCID: PMC11595067 DOI: 10.3390/ijms252212331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
TNF receptor-associated factors (TRAFs) function as intracellular adaptor proteins utilized by members of the TNF receptor superfamily, such as CD40. Among the TRAF family proteins, TRAF5 has been identified as a potential regulator of CD40. However, it remains unclear whether TRAF5 regulates the generation of germinal center (GC) B cells and antigen-specific antibody production in the T-dependent (TD) immune response. TRAF5-deficient (Traf5-/-) and TRAF5-sufficient (Traf5+/+) mice were immunized in the footpad with 2,4,6-trinitrophenol-conjugated keyhole limpet hemocyanin (TNP-KLH) and complete Freund's adjuvant (CFA). We found that GC B cell generation and antigen-specific IgM and IgG1 production were significantly impaired in Traf5-/- mice compared to Traf5+/+ mice. The expression levels of CD40-target genes Fas and Lta, which are involved in GC formation, were significantly decreased in B220+ cells isolated from immunized Traf5-/- mice. Traf5-/- B cells showed decreased antibody production, proliferation, and induction of CD40-target genes Tnfaip3, Tnfsf4, and Cd80 in response to agonistic Fc-CD40L protein in vitro. Furthermore, administration of TNP-KLH and Fc-CD40L to Traf5-/- mice resulted in a severe loss of GC B cell development. These results highlight the crucial role of TRAF5 in driving CD40-mediated TD immune response in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Takanori So
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
26
|
Zhu C, Liao JY, Liu YY, Chen ZY, Chang RZ, Chen XP, Zhang BX, Liang JN. Immune dynamics shaping pre-metastatic and metastatic niches in liver metastases: from molecular mechanisms to therapeutic strategies. Mol Cancer 2024; 23:254. [PMID: 39543660 PMCID: PMC11562679 DOI: 10.1186/s12943-024-02171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Liver metastases are commonly detected in the advanced stages of various malignant tumors, representing a significant clinical challenge. Throughout the process of liver metastases formation, immune cells play a pivotal role, particularly in the pre-metastatic and metastatic niches within the liver. Immune cells establish extensive and intricate interactions with tumor cells and other components in the liver, collectively promoting and sustaining the growth of liver metastases. Despite the limited efficacy of existing therapeutic modalities against some advanced liver metastases, novel immune-based treatment approaches are continuously being explored and validated. Building on the systematic elucidation of the immunosuppressive characteristics of liver metastases, we explored the potential of novel immunotherapies applicable to patients with liver metastases from multiple dimensions.
Collapse
Affiliation(s)
- Chang Zhu
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Jing-Yu Liao
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Yi-Yang Liu
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Ze-Yu Chen
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Rui-Zhi Chang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
| | - Jun-Nan Liang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
| |
Collapse
|
27
|
Chuang ST, Alcazar O, Watts B, Abdulreda MH, Buchwald P. Small-molecule inhibitors of the CD40-CD40L costimulatory interaction are effective in pancreatic islet transplantation and prevention of type 1 diabetes models. Front Immunol 2024; 15:1484425. [PMID: 39606229 PMCID: PMC11599200 DOI: 10.3389/fimmu.2024.1484425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
As part of our work to develop small-molecule inhibitors (SMIs) of the CD40-CD40L(CD154) costimulatory protein-protein interaction, here, we describe the ability of two of our most promising SMIs, DRI-C21041 and DRI-C21095, to prolong the survival and function of islet allografts in two murine models of islet transplantation (under the kidney capsule and in the anterior chamber of the eye) and to prevent autoimmune type 1 diabetes (T1D) onset in NOD mice. In both transplant models, a significant portion of islet allografts (50%-80%) remained intact and functional long after terminating treatment, suggesting the possibility of inducing operational immune tolerance via inhibition of the CD40-CD40L axis. SMI-treated mice maintained the structural integrity and function of their islet allografts with concomitant reduction in immune cell infiltration as evidenced by direct longitudinal imaging in situ. Furthermore, in female NODs, three-month SMI treatment reduced the incidence of diabetes from 80% to 60% (DRI-C21041) and 25% (DRI-C21095). These results (i) demonstrate the susceptibility of this TNF superfamily protein-protein interaction to small-molecule inhibition, (ii) confirm the in vivo therapeutic potential of these SMIs of a critical immune checkpoint, and (iii) reaffirm the therapeutic promise of CD40-CD40L blockade in islet transplantation and T1D prevention. Thus, CD40L-targeting SMIs could ultimately lead to alternative immunomodulatory therapeutics for transplant recipients and prevention of autoimmune diseases that are safer, less immunogenic, more controllable (shorter half-lives), and more patient-friendly (i.e., suitable for oral administration, which makes them easier to administer) than corresponding antibody-based interventions.
Collapse
Affiliation(s)
- Sung-Ting Chuang
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Oscar Alcazar
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Brandon Watts
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Midhat H. Abdulreda
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Ophthalmology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
28
|
Veerasubramanian PK, Wynn TA, Quan J, Karlsson FJ. Targeting TNF/TNFR superfamilies in immune-mediated inflammatory diseases. J Exp Med 2024; 221:e20240806. [PMID: 39297883 PMCID: PMC11413425 DOI: 10.1084/jem.20240806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/19/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Dysregulated signaling from TNF and TNFR proteins is implicated in several immune-mediated inflammatory diseases (IMIDs). This review centers around seven IMIDs (rheumatoid arthritis, systemic lupus erythematosus, Crohn's disease, ulcerative colitis, psoriasis, atopic dermatitis, and asthma) with substantial unmet medical needs and sheds light on the signaling mechanisms, disease relevance, and evolving drug development activities for five TNF/TNFR signaling axes that garner substantial drug development interest in these focus conditions. The review also explores the current landscape of therapeutics, emphasizing the limitations of the approved biologics, and the opportunities presented by small-molecule inhibitors and combination antagonists of TNF/TNFR signaling.
Collapse
Affiliation(s)
| | - Thomas A. Wynn
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA, USA
| | - Jie Quan
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA, USA
| | | |
Collapse
|
29
|
Zhang Z, Zhang W, Liu X, Yan Y, Fu W. T lymphocyte‑related immune response and immunotherapy in gastric cancer (Review). Oncol Lett 2024; 28:537. [PMID: 39319215 PMCID: PMC11421013 DOI: 10.3892/ol.2024.14670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Gastric cancer (GC) remains a global healthcare challenge because of its high incidence and poor prognosis. The efficacy of current chemotherapy regimens for advanced GC is limited. T cells, which have been implicated in the progression of GC, have a significant impact in the tumor microenvironment. With a more detailed understanding of the mechanisms underlying the cancer immunoediting process, immunotherapy may become a promising treatment option for patients with GC. Several clinical trials are currently investigating different mechanisms targeting the tumor immune response. The present review summarized T cell-involved immune responses and various immunotherapy strategies for GC.
Collapse
Affiliation(s)
- Zhaoxiong Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Wenxin Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xin Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yongjia Yan
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Weihua Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
30
|
Li W, Xiao J, Zhang C, Di X, Yao J, Li X, Huang J, Li Z. Pathomics models for CD40LG expression and prognosis prediction in glioblastoma. Sci Rep 2024; 14:24350. [PMID: 39420038 PMCID: PMC11487080 DOI: 10.1038/s41598-024-75018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma (GBM) is the most prevalent primary malignant tumor of the nervous system. In this study, we utilized pathomics analysis to explore the expression of CD40LG and its predictive value for the prognosis of GBM patients. We analyzed the expression differences of CD40LG in GBM tissue and normal brain tissue, along with performing survival prognosis analysis. Additionally, histopathological sections of GBM were used to screen for pathological features. Subsequently, SVM and LR pathomics models were constructed, and the models' performance was evaluated. The pathomics model was employed to predict CD40LG expression and patient prognosis. Furthermore, we investigated the potential molecular mechanisms through enrichment analysis, WGCNA analysis, immune correlation analysis, and immune checkpoint analysis. The expression level of CD40LG was significantly increased in GBM. Multivariate analysis demonstrated that high expression of CD40LG is a risk factor for overall survival (OS) in GBM patients. Five pathological features were identified, and SVM and LR pathomics models were constructed. Model evaluation showed promising predictive effects, with an AUC value of 0.779 for the SVM model, and the Hosmer-Lemeshow test confirmed the model's prediction probability consistency (P > 0.05). The LR model achieved an AUC value of 0.785, and the Hosmer-Lemeshow test indicated good agreement between the LR model's predicted probabilities and the true value (P > 0.05). Immune infiltration analysis revealed a significant correlation between the pathomics score (PS) and the degree of infiltration of activated DC cells, T cells CD4 naïve, Macrophages M2, Macrophages M1, and T cells CD4 memory resting. Our results demonstrate that the pathomics model exhibits predictability for CD40LG expression and GBM patient survival. These findings can be utilized to assist neurosurgeons in selecting optimal treatment strategies in clinical practice.
Collapse
Affiliation(s)
- Wenle Li
- Department of Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Jianqi Xiao
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Chunyu Zhang
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Xiaoqing Di
- Pathological Diagnosis and Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Jieqin Yao
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Xiaopeng Li
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Jincheng Huang
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Zhenzhe Li
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China.
| |
Collapse
|
31
|
Bendas G, Gobec M, Schlesinger M. Modulating Immune Responses: The Double-Edged Sword of Platelet CD40L. Semin Thromb Hemost 2024. [PMID: 39379039 DOI: 10.1055/s-0044-1791512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The CD40-CD40L receptor ligand pair plays a fundamental role in the modulation of the innate as well as the adaptive immune response, regulating monocyte, T and B cell activation, and antibody isotype switching. Although the expression and function of the CD40-CD40L dyad is mainly attributed to the classical immune cells, the majority of CD40L is expressed by activated platelets, either in a membrane-bound form or shed as soluble molecules in the circulation. Platelet-derived CD40L is involved in the communication with different immune cell subpopulations and regulates their functions effectively. Thus, platelet CD40L contributes to the containment and clearance of bacterial and viral infections, and additionally guides leukocytes to sites of infection. However, platelet CD40L promotes inflammatory cellular responses also in a pathophysiological context. For example, in HIV infections, platelet CD40L is supportive of neuronal inflammation, damage, and finally HIV-related dementia. In sepsis, platelet CD40L can induce extensive endothelial and epithelial damage resulting in barrier dysfunction of the gut, whereby the translocation of microbiota into the circulation further aggravates the uncontrolled systemic inflammation. Nevertheless, a distinct platelet subpopulation expressing CD40L under septic conditions can attenuate systemic inflammation and reduce mortality in mice. This review focuses on recent findings in the field of platelet CD40L biology and its physiological and pathophysiological implications, and thereby highlights platelets as vital immune cells that are essential for a proper immune surveillance. In this context, platelet CD40L proves to be an interesting target for various inflammatory diseases. However, either an agonism or a blockade of CD40L needs to be well balanced since both the approaches can cause severe adverse events, ranging from hyperinflammation to immune deficiency. Thus, an interference in CD40L activities should be likely done in a context-dependent and timely restricted manner.
Collapse
Affiliation(s)
- Gerd Bendas
- Department of Pharmacy, University of Bonn, Bonn, Germany
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Martin Schlesinger
- Department of Pharmacy, University of Bonn, Bonn, Germany
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| |
Collapse
|
32
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
33
|
Chen Z, Chen T, Lin R, Zhang Y. Circulating inflammatory proteins and abdominal aortic aneurysm: A two-sample Mendelian randomization and colocalization analyses. Cytokine 2024; 182:156700. [PMID: 39033731 DOI: 10.1016/j.cyto.2024.156700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/24/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVES Inflammatory proteins are implicated in the progression of abdominal aortic aneurysms (AAA); however, it remains debated whether they are causal or consequential. This study aimed to assess the influence of circulating inflammatory proteins on AAA via two-sample Mendelian randomization (MR) and colocalization analysis. METHODS Summary data on 91 circulating inflammatory protein levels were extracted from a comprehensive protein quantitative trait loci (pQTL) study involving 14,824 individuals. Genetic associations with AAA were derived from the FinnGen study (3,869 cases and 381,977 controls). MR analysis was conducted to assess the relationships between proteins and AAA risk. Colocalization analysis was employed to explore potential shared causal variants between identified proteins and AAA. RESULTS Using a two-sample bidirectional MR study, our findings suggested that genetically predicted elevated levels of TGFB1 (OR = 1.21, P = 0.003), SIRT2 (OR = 1.196, P = 0.031) and TNFSF14 (OR = 1.129, P = 0.034) were linked to an increased risk of AAA. Conversely, genetically predicted higher levels of CD40 (OR = 0.912, P = 0.049), IL2RB (OR = 0.839, P = 0.028) and KITLG (OR = 0.827, P = 0.008) were associated with a decreased risk of AAA. Colocalization analyses supported the association of TGFB1 and SIRT2 levels with AAA risk. CONCLUSIONS The proteome-wide MR and colocalization study identified TGFB1 and SIRT2 as being associated with the risk of AAA, warranting further investigation as potential therapeutic targets.
Collapse
Affiliation(s)
- Zhan Chen
- Department of Vascular Surgery, Beijing Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing, China
| | - Tingting Chen
- Department of Hematology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Ruimin Lin
- Department of Vascular Surgery, Beijing Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing, China.
| | - Yue Zhang
- Department of Hematology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
34
|
Qin M, Chen Y, Wang X, Zhang X, Pan X. Dexmedetomidine induces IL-10 secretion by B lymphocytes in the peripheral blood of patients with hepatocellular carcinoma. Immunobiology 2024; 229:152842. [PMID: 39154383 DOI: 10.1016/j.imbio.2024.152842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND/AIM To investigate the distribution of subpopulations of peripheral blood B lymphocytes in individuals with hepatocellular carcinoma (HCC), and to evaluate the effect of dexmedetomidine (DEX) on B lymphocyte differentiation in patients with HCC in vitro. METHODS Peripheral blood mononuclear cells (PBMCs) were collected from the HCC group and the healthy group, and the distribution of peripheral blood B-lymphocyte subpopulations in the two groups was examined by Flow Cytometry (FCM). B lymphocytes extracted from the peripheral blood of the HCC group were divided into D0, D1, D2 and D4 groups according to the different dose of DEX in the culture medium (0 μM, 1 μM, 2 μM and 4 μM). After 72 h of in vitro culture, FCM was used to detect differences in the percentage of apoptotic B lymphocytes and the percentage of B lymphocytes that can express interleukin 10(IL-10) and transforming growth factor-β (TGF-β) in each group. RESULTS In contrast to the healthy group, the HCC group exhibited a statistically significant increase in the proportion of CD19 + CD73 + B lymphocyte subpopulation (P<0.05). In the in vitro culture experiment, the differences in apoptosis of B lymphocytes and the percentage of TGF-β expression in each group were not statistically significant; When compared to the control group, there was a significant increase in the percentage of B lymphocytes expressing IL-10 across the D1, D2, and D4 groups (P<0.05). CONCLUSION The peripheral blood of HCC patients is characterized by an elevated presence of CD19 + CD73 + B lymphocyte subpopulations; DEX may have an immunosuppressive effect by promoting IL-10 secretion from peripheral blood B lymphocytes of HCC patients.
Collapse
Affiliation(s)
- Miaomiao Qin
- Department of Anesthesiology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Yining Chen
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinxin Wang
- Department of Anesthesiology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Xiaobao Zhang
- Department of Anesthesiology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China.
| | - Xiongxiong Pan
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
35
|
Bender M, Abicht JM, Reichart B, Neumann E, Radan J, Mokelke M, Buttgereit I, Leuschen M, Wall F, Michel S, Ellgass R, Steen S, Paskevicius A, Lange A, Kessler B, Kemter E, Klymiuk N, Denner J, Godehardt AW, Tönjes RR, Burgmann JM, Figueiredo C, Milusev A, Zollet V, Salimi-Afjani N, Despont A, Rieben R, Ledderose S, Walz C, Hagl C, Ayares D, Wolf E, Schmoeckel M, Brenner P, Binder U, Gebauer M, Skerra A, Längin M. Combination of Anti-CD40 and Anti-CD40L Antibodies as Co-Stimulation Blockade in Preclinical Cardiac Xenotransplantation. Biomedicines 2024; 12:1927. [PMID: 39200391 PMCID: PMC11351779 DOI: 10.3390/biomedicines12081927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The blockade of the CD40/CD40L immune checkpoint is considered essential for cardiac xenotransplantation. However, it is still unclear which single antibody directed against CD40 or CD40L (CD154), or which combination of antibodies, is better at preventing organ rejection. For example, the high doses of antibody administered in previous experiments might not be feasible for the treatment of humans, while thrombotic side effects were described for first-generation anti-CD40L antibodies. To address these issues, we conducted six orthotopic pig-to-baboon cardiac xenotransplantation experiments, combining a chimeric anti-CD40 antibody with an investigational long-acting PASylated anti-CD40L Fab fragment. The combination therapy effectively resulted in animal survival with a rate comparable to a previous study that utilized anti-CD40 monotherapy. Importantly, no incidence of thromboembolic events associated with the administration of the anti-CD40L PAS-Fab was observed. Two experiments failed early because of technical reasons, two were terminated deliberately after 90 days with the baboons in excellent condition and two were extended to 120 and 170 days, respectively. Unexpectedly, and despite the absence of any clinical signs, histopathology revealed fungal infections in all four recipients. This study provides, for the first time, insights into a combination therapy with anti-CD40/anti-CD40L antibodies to block this immune checkpoint.
Collapse
Affiliation(s)
- Martin Bender
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Jan-Michael Abicht
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Bruno Reichart
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Elisabeth Neumann
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Julia Radan
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Maren Mokelke
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Ines Buttgereit
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Maria Leuschen
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Felicia Wall
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Sebastian Michel
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), 81377 Munich, Germany
| | - Reinhard Ellgass
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Stig Steen
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, 22242 Lund, Sweden
| | - Audrius Paskevicius
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, 22242 Lund, Sweden
| | - Andreas Lange
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
| | - Barbara Kessler
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
| | - Elisabeth Kemter
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
| | - Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| | - Antonia W. Godehardt
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Ralf R. Tönjes
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Jonathan M. Burgmann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Constança Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Anastasia Milusev
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3008 Bern, Switzerland
| | - Valentina Zollet
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3008 Bern, Switzerland
| | - Neda Salimi-Afjani
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3008 Bern, Switzerland
| | - Alain Despont
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Robert Rieben
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Stephan Ledderose
- Institute of Pathology, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Christoph Walz
- Institute of Pathology, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), 81377 Munich, Germany
| | | | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 81377 Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, 81377 Munich, Germany
| | - Michael Schmoeckel
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Paolo Brenner
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Uli Binder
- XL-protein GmbH, 85354 Freising, Germany
| | | | - Arne Skerra
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
36
|
Xiao L, He R, Hu K, Song G, Han S, Lin J, Chen Y, Zhang D, Wang W, Peng Y, Zhang J, Yu P. Exploring a specialized programmed-cell death patterns to predict the prognosis and sensitivity of immunotherapy in cutaneous melanoma via machine learning. Apoptosis 2024; 29:1070-1089. [PMID: 38615305 DOI: 10.1007/s10495-024-01960-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
The mortality and therapeutic failure in cutaneous melanoma (CM) are mainly caused by wide metastasis and chemotherapy resistance. Meanwhile, immunotherapy is considered a crucial therapy strategy for CM patients. However, the efficiency of currently available methods and biomarkers in predicting the response of immunotherapy and prognosis of CM is limited. Programmed cell death (PCD) plays a significant role in the occurrence, development, and therapy of various malignant tumors. In this research, we integrated fourteen types of PCD, multi-omics data from TCGA-SKCM and other cohorts in GEO, and clinical CM patients to develop our analysis. Based on significant PCD patterns, two PCD-related CM clusters with different prognosis, tumor microenvironment (TME), and response to immunotherapy were identified. Subsequently, seven PCD-related features, especially CD28, CYP1B1, JAK3, LAMP3, SFN, STAT4, and TRAF1, were utilized to establish the prognostic signature, namely cell death index (CDI). CDI accurately predicted the response to immunotherapy in both CM and other cancers. A nomogram with potential superior predictive ability was constructed, and potential drugs targeting CM patients with specific CDI have also been identified. Given all the above, a novel CDI gene signature was indicated to predict the prognosis and exploit precision therapeutic strategies of CM patients, providing unique opportunities for clinical intelligence and new management methods for the therapy of CM.
Collapse
Affiliation(s)
- Leyang Xiao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Ruifeng He
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Kaibo Hu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Gelin Song
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Shengye Han
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jitao Lin
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yixuan Chen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, 999077, Hong Kong, Hong Kong
| | - Wuming Wang
- Department of Thoracic Surgery, Jiangxi Provincial Chest Hospital, Nanchang, 330006, People's Republic of China
| | - Yating Peng
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, People's Republic of China.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, People's Republic of China.
| |
Collapse
|
37
|
Huang J, Luo G, Wang W, Lu Y, Wang M, Liu M, Zhu D, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Ou X, Tian B, Sun D, He Y, Wu Z, Cheng A, Jia R. Duck CD40L as an adjuvant enhances systemic immune responses of avian flavivirus DNA vaccine. NPJ Vaccines 2024; 9:135. [PMID: 39085226 PMCID: PMC11291490 DOI: 10.1038/s41541-024-00926-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Under the dual pressure of emerging zoonoses and the difficulty in eliminating conventional zoonoses, the strategic management of bird diseases through vaccination represents a highly efficacious approach to disrupting the transmission of zoonotic pathogens to humans. Immunization with a DNA vaccine yielded limited protection against avian pathogen infection. To improve its immunogenicity, the extracellular domain of duck-derived CD40L (designated as dusCD40L) was employed as a bio-adjuvant. Our findings unequivocally established the evolutionary conservation of dusCD40L across avian species. Notably, dusCD40L exhibited a compelling capacity to elicit robust immune responses from both B and T lymphocytes. Furthermore, when employed as an adjuvant, dusCD40L demonstrated a remarkable capacity to significantly augment the titers of neutralizing antibodies and the production of IFNγ elicited by a DNA vaccine encoding the prM-E region of an avian flavivirus, namely, the Tembusu virus (TMUV). Moreover, dusCD40L could strengthen virus clearance of the prM-E DNA vaccine in ducks post-TMUV challenge. This research study presents a highly effective adjuvant for advancing the development of DNA vaccines targeting TMUV in avian hosts. Additionally, it underscores the pivotal role of duCD40L as a potent adjuvant in the context of vaccines designed to combat zoonotic infections in avian species.
Collapse
Affiliation(s)
- Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Guiyuan Luo
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wanfa Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yuxin Lu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Yu He
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Zhen Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
38
|
Feng K, Zhou S, Sheng Y, Lu K, Li C, Liu W, Kong H, Liu H, Mu Y, Zhang L, Zhang Q, Wang J. Disulfidptosis-Related LncRNA Signatures for Prognostic Prediction in Kidney Renal Clear Cell Carcinoma. Clin Genitourin Cancer 2024; 22:102095. [PMID: 38833825 DOI: 10.1016/j.clgc.2024.102095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 06/06/2024]
Abstract
INTRODUCTION BACKGROUND Disulfidptosis is a prevalent apoptotic mechanism, intrinsically linked to cancer prognosis. However, the specific involvement of disulfidptosis-related long non-coding RNA (DRLncRNAs) in Kidney renal clear cell carcinoma (KIRC) remains incompletely understood. This study aims to elucidate the potential prognostic significance of disulfidptosis-related LncRNAs in KIRC. MATERIALS AND METHODS Expression profiles and clinical data of KIRC patients were retrieved from the TCGA database to discern differentially expressed DRLncRNAs correlated with overall survival. Cox univariate analysis, Lasso Regression, and Cox multivariate analysis were used to construct a clinical prediction model. RESULTS Six signatures, namely FAM83C.AS1, AC136475.2, AC121338.2, AC026401.3, AC254562.3, and AC000050.2, were established to evaluate overall survival (OS) in the context of Kidney renal clear cell carcinoma (KIRC) in this study. Survival analysis and ROC curves demonstrated the strong predictive performance of the associated signature. The nomogram exhibited accurate prognostic predictions for overall patient survival, offering substantial clinical utility. Gene set enrichment analysis revealed that risk signals were enriched in various immune-related pathways. Furthermore, the risk features exhibited significant correlations with immune cells, immune function, immune cell infiltration, and immune checkpoints. CONCLUSION This study has unveiled, for the first time, six disulfdptosis-related LncRNA signatures, laying a solid foundation for enhanced and precise prognostic predictions in KIRC.
Collapse
Affiliation(s)
- Kunlun Feng
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shanshan Zhou
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, China
| | - Yawen Sheng
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ke Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Chenghua Li
- International Office, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenhui Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hui Kong
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Haoxiang Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yu Mu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lu Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| | - Qingxiang Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| | - Jingwen Wang
- The second affiliated hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
39
|
Pazoki A, Dadfar S, Shadab A, Haghmorad D, Oksenych V. Soluble CD40 Ligand as a Promising Biomarker in Cancer Diagnosis. Cells 2024; 13:1267. [PMID: 39120299 PMCID: PMC11311304 DOI: 10.3390/cells13151267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Cancer remains a significant challenge in medicine due to its complexity and heterogeneity. Biomarkers have emerged as vital tools for cancer research and clinical practice, facilitating early detection, prognosis assessment, and treatment monitoring. Among these, CD40 ligand (CD40L) has gained attention for its role in immune response modulation. Soluble CD40 ligand (sCD40L) has shown promise as a potential biomarker in cancer diagnosis and progression, reflecting interactions between immune cells and the tumor microenvironment. This review explores the intricate relationship between sCD40L and cancer, highlighting its diagnostic and prognostic potential. It discusses biomarker discovery, emphasizing the need for reliable markers in oncology, and elucidates the roles of CD40L in inflammatory responses and interactions with tumor cells. Additionally, it examines sCD40L as a biomarker, detailing its significance across various cancer types and clinical applications. Moreover, the review focuses on therapeutic interventions targeting CD40L in malignancies, providing insights into cellular and gene therapy approaches and recombinant protein-based strategies. The clinical effectiveness of CD40L-targeted therapy is evaluated, underscoring the need for further research to unlock the full potential of this signaling pathway in cancer management.
Collapse
Affiliation(s)
- Alireza Pazoki
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Sepehr Dadfar
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Alireza Shadab
- Department of Health Science, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
40
|
Yang H, Zhou L, Shi M, Yu J, Xie Y, Sun Y. Ubiquitination-Related Gene Signature, Nomogram and Immune Features for Prognostic Prediction in Patients with Head and Neck Squamous Cell Carcinoma. Genes (Basel) 2024; 15:880. [PMID: 39062659 PMCID: PMC11276148 DOI: 10.3390/genes15070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The objective of this research was to create a prognostic model focused on genes related to ubiquitination (UbRGs) for evaluating their clinical significance in head and neck squamous cell carcinoma (HNSCC) patients. The transcriptome expression data of UbRGs were obtained from The Cancer Genome Atlas (TCGA) database, and weighted gene co-expression network analysis (WGCNA) was used to identify specific UbRGs within survival-related hub modules. A multi-gene signature was formulated using LASSO Cox regression analysis. Furthermore, various analyses, including time-related receiver operating characteristics (ROCs), Kaplan-Meier, Cox regression, nomogram prediction, gene set enrichment, co-expression, immune, tumor mutation burden (TMB), and drug sensitivity, were conducted. Ultimately, a prognostic signature consisting of 11 gene pairs for HNSCC was established. The Kaplan-Meier curves indicated significantly improved overall survival (OS) in the low-risk group compared to the high-risk group (p < 0.001), suggesting its potential as an independent and dependable prognostic factor. Additionally, a nomogram with AUC values of 0.744, 0.852, and 0.861 at 1-, 3-, and 5-year intervals was developed. Infiltration of M2 macrophages was higher in the high-risk group, and the TMB was notably elevated compared to the low-risk group. Several chemotherapy drugs targeting UbRGs were recommended for low-risk and high-risk patients, respectively. The prognostic signature derived from UbRGs can effectively predict prognosis and provide new personalized therapeutic targets for HNSCC.
Collapse
Affiliation(s)
- Huiwen Yang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (L.Z.); (M.S.); (J.Y.)
| | - Liuqing Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (L.Z.); (M.S.); (J.Y.)
| | - Mengwen Shi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (L.Z.); (M.S.); (J.Y.)
| | - Jintao Yu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (L.Z.); (M.S.); (J.Y.)
| | - Yi Xie
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (L.Z.); (M.S.); (J.Y.)
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
41
|
Joshi P, Mohr F, Rumig C, Kliemank E, Krenning G, Kopf S, Hecker M, Wagner AH. Impact of the -1T>C single-nucleotide polymorphism of the CD40 gene on the development of endothelial dysfunction in a pro-diabetic microenvironment. Atherosclerosis 2024; 394:117386. [PMID: 38030458 DOI: 10.1016/j.atherosclerosis.2023.117386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/23/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND AND AIMS Hyperglycemia reinforces pro-inflammatory conditions that enhance CD40 expression in endothelial cells (EC). Thymine to cytosine transition (-1T > C) in the promoter of the CD40 gene (rs1883832) further increases the abundance of CD40 protein on the EC surface. This study examines potential associations of the -1T > C SNP of the CD40 gene with type 1 (T1D) or type 2 (T2D) diabetes. Moreover, it investigates the impact of a pro-inflammatory diabetic microenvironment on gene expression in human cultured umbilical vein EC (HUVEC) derived from CC- vs. TT-genotype donors. METHODS Tetra-ARMS-PCR was used to compare genotype distribution in 252 patients with diabetes. Soluble CD40 ligand (sCD40L) and soluble CD40 receptor (sCD40) plasma levels were monitored using ELISA. RNA-sequencing was performed with sCD40L-stimulated CC- and TT-genotype HUVEC. Quantitative PCR, Western blot, multiplex-sandwich ELISA array, and immunocytochemistry were used to analyse changes in gene expression in these cells. RESULTS Homozygosity for the C-allele was associated with a significant 4.3-fold higher odds of developing T2D as compared to individuals homozygous for the T-allele. Inflammation and endothelial-to-mesenchymal transition (EndMT) driving genes were upregulated in CC-genotype but downregulated in TT-genotype HUVEC when exposed to sCD40L. Expression of EndMT markers significantly increased while that of endothelial markers decreased in HUVEC following exposure to hyperglycemia, tumour necrosis factor-α and sCD40L. CONCLUSIONS The -1T > C SNP of the CD40 gene is a risk factor for T2D. Depending on the genotype, it differentially affects gene expression in human cultured EC. CC-genotype HUVEC adopt a pro-inflammatory and intermediate EndMT-like phenotype in a pro-diabetic microenvironment.
Collapse
Affiliation(s)
- Pooja Joshi
- Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Franziska Mohr
- Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Cordula Rumig
- Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Elisabeth Kliemank
- Department of Internal Medicine I, Heidelberg University Hospital, Germany
| | - Guido Krenning
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Stefan Kopf
- Department of Internal Medicine I, Heidelberg University Hospital, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Andreas H Wagner
- Department of Cardiovascular Physiology, Heidelberg University, Germany.
| |
Collapse
|
42
|
Asano R, Nakakido M, Pérez JF, Ise T, Caaveiro JMM, Nagata S, Tsumoto K. Crystal structures of human CD40 in complex with monoclonal antibodies dacetuzumab and bleselumab. Biochem Biophys Res Commun 2024; 714:149969. [PMID: 38657446 DOI: 10.1016/j.bbrc.2024.149969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
CD40 is a member of the tumor necrosis factor receptor superfamily, and it is widely expressed on immune and non-immune cell types. The interaction between CD40 and the CD40 ligand (CD40L) plays an essential function in signaling, and the CD40/CD40L complex works as an immune checkpoint molecule. CD40 has become a therapeutic target, and a variety of agonistic/antagonistic anti-CD40 monoclonal antibodies (mAbs) have been developed. To better understand the mode of action of anti-CD40 mAbs, we determined the X-ray crystal structures of dacetuzumab (agonist) and bleselumab (antagonist) in complex with the extracellular domain of human CD40, respectively. The structure reveals that dacetuzumab binds to CD40 on the top of cysteine-rich domain 1 (CRD1), which is the domain most distant from the cell surface, and it does not compete with CD40L binding. The binding interface of bleselumab spread between CRD2 and CRD1, overlapping with the binding surface of the ligand. Our results offer important insights for future structural and functional studies of CD40 and provide clues to understanding the mechanism of biological response. These data can be applied to developing new strategies for designing antibodies with more therapeutic efficacy.
Collapse
Affiliation(s)
- Risa Asano
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Makoto Nakakido
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Jorge Fernández Pérez
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tomoko Ise
- Laboratory of Antibody Design, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Jose M M Caaveiro
- Department of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Nagata
- Laboratory of Antibody Design, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan; Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan; The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
43
|
Bsteh G, Dal Bianco A, Zrzavy T, Berger T. Novel and Emerging Treatments to Target Pathophysiological Mechanisms in Various Phenotypes of Multiple Sclerosis. Pharmacol Rev 2024; 76:564-578. [PMID: 38719481 DOI: 10.1124/pharmrev.124.001073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 06/16/2024] Open
Abstract
The objective is to comprehensively review novel pharmacotherapies used in multiple sclerosis (MS) and the possibilities they may carry for therapeutic improvement. Specifically, we discuss pathophysiological mechanisms worth targeting in MS, ranging from well known targets, such as autoinflammation and demyelination, to more novel and advanced targets, such as neuroaxonal damage and repair. To set the stage, a brief overview of clinical MS phenotypes is provided, followed by a comprehensive recapitulation of both clinical and paraclinical outcomes available to assess the effectiveness of treatments in achieving these targets. Finally, we discuss various promising novel and emerging treatments, including their respective hypothesized modes of action and currently available evidence from clinical trials. SIGNIFICANCE STATEMENT: This comprehensive review discusses pathophysiological mechanisms worth targeting in multiple sclerosis. Various promising novel and emerging treatments, including their respective hypothesized modes of action and currently available evidence from clinical trials, are reviewed.
Collapse
Affiliation(s)
- Gabriel Bsteh
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| | - Assunta Dal Bianco
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| | - Tobias Zrzavy
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
44
|
Iglesias M, Bibicheff D, Komin A, Chicco M, Guinn S, Foley B, Raimondi G. T cell responsiveness to IL-10 defines the immunomodulatory effect of costimulation blockade via anti-CD154 and impacts transplant survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598652. [PMID: 38915537 PMCID: PMC11195256 DOI: 10.1101/2024.06.12.598652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Costimulation blockade (CoB)-based immunotherapy is a promising alternative to immunosuppression for transplant recipients; however, the current limited understanding of the factors that impact its efficacy restrains its clinical applicability. In this context, pro- and anti-inflammatory cytokines are being recognized as having an impact on T cell activation beyond effector differentiation. This study aims at elucidating the impact of direct IL-10 signaling in T cells on CoB outcomes. We used a full-mismatch skin transplantation model where recipients had a T cell-restricted expression of a dominant negative IL-10 receptor (10R-DN), alongside anti-CD154 as CoB therapy. Unlike wild-type recipients, 10R-DN mice failed to benefit from CoB. This accelerated graft rejection correlated with increased accumulation of T cells producing TNF-α, IFN-γ, and IL-17. In vitro experiments indicated that while lack of IL-10 signaling did not change the ability of anti-CD154 to modulate alloreactive T cell proliferation, the absence of this pathway heightened TH1 effector cell differentiation. Furthermore, deficiency of IL-10 signaling in T cells impaired Treg induction, a hallmark of anti-CD154 therapy. Overall, these findings unveil an important and novel role of IL-10 signaling in T cells that defines the success of CoB therapies and identifies a target pathway for obtaining robust immunoregulation.
Collapse
Affiliation(s)
- Marcos Iglesias
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Darrel Bibicheff
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander Komin
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria Chicco
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samantha Guinn
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brendan Foley
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Giorgio Raimondi
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
45
|
Guo Z, Cao B, Hu Z, Wu J, Zhou W, Zhang W, Shi Z. Immunotherapy, prognostic, and tumor biomarker based on pancancer analysis, SMARCD3. Aging (Albany NY) 2024; 16:10074-10107. [PMID: 38862250 PMCID: PMC11210247 DOI: 10.18632/aging.205921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/10/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND SMARCD3 has recently been shown to be an important gene affecting cancer, playing an important role in medulloblastoma and pancreatic ductal adenocarcinoma. Therefore, we conducted this research to investigate the potential involvement of SMARCD3 across cancers and to offer recommendations for future studies. METHODS Utilizing information on 33 malignancies in the UCSC Xena database, SMARCD3 expression and its prognostic value were assessed. The tumor microenvironment was evaluated with the "CIBERSORT" and "ESTIMATE" algorithms. SMARCD3 and immune-related genes were analyzed using the TISIDB website. The pathways related to the target genes were examined using GSEA. MSI (microsatellite instability), TMB (tumor mutational burden), and immunotherapy analysis were used to evaluate the impact of target genes on the response to immunotherapy. RESULTS There is heterogeneity in terms of the expression and prognostic value of SMARCD3 among various cancers, but it is a risk factor for many cancers including uterine corpus endometrial cancer (UCEC), renal clear cell carcinoma (KIRC), and gastric adenocarcinoma (STAD). GSEA revealed that SMARCD3 is related to chromatin remodeling and transcriptional activation, lipid metabolism, and the activities of various immune cells. The TMB and MSI analyses suggested that SMARCD3 affects the immune response efficiency of KIRC, LUAD and STAD. Immunotherapy analysis suggested that SMARCD3 may be a potential immunotherapy target. RT-qPCR demonstrated the variation in SMARCD3 expression in KIRC, LUAD, and STAD. CONCLUSION Our study revealed that SMARCD3 affects the prognosis and immunotherapy response of some tumors, providing a direction for further research on this gene.
Collapse
Affiliation(s)
- Zishun Guo
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Bingji Cao
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Zhuozheng Hu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jiajun Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Weijun Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zhihua Shi
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| |
Collapse
|
46
|
Wang Y, Ding S. Extracellular vesicles in cancer cachexia: deciphering pathogenic roles and exploring therapeutic horizons. J Transl Med 2024; 22:506. [PMID: 38802952 PMCID: PMC11129506 DOI: 10.1186/s12967-024-05266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Cancer cachexia (CC) is a debilitating syndrome that affects 50-80% of cancer patients, varying in incidence by cancer type and significantly diminishing their quality of life. This multifactorial syndrome is characterized by muscle and fat loss, systemic inflammation, and metabolic imbalance. Extracellular vesicles (EVs), including exosomes and microvesicles, play a crucial role in the progression of CC. These vesicles, produced by cancer cells and others within the tumor environment, facilitate intercellular communication by transferring proteins, lipids, and nucleic acids. A comprehensive review of the literature from databases such as PubMed, Scopus, and Web of Science reveals insights into the formation, release, and uptake of EVs in CC, underscoring their potential as diagnostic and prognostic biomarkers. The review also explores therapeutic strategies targeting EVs, which include modifying their release and content, utilizing them for drug delivery, genetically altering their contents, and inhibiting key cachexia pathways. Understanding the role of EVs in CC opens new avenues for diagnostic and therapeutic approaches, potentially mitigating the syndrome's impact on patient survival and quality of life.
Collapse
Affiliation(s)
- Yifeng Wang
- Department of Thoracic Surgery, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, 226001, P.R. China
- School of Medicine, Nantong University, Nantong, 226001, P.R. China
| | - Shengguang Ding
- Department of Thoracic Surgery, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, 226001, P.R. China.
| |
Collapse
|
47
|
Shu X, Shao Y, Chen Y, Zeng C, Huang X, Wei R. Immune checkpoints: new insights into the pathogenesis of thyroid eye disease. Front Immunol 2024; 15:1392956. [PMID: 38817600 PMCID: PMC11137266 DOI: 10.3389/fimmu.2024.1392956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Thyroid eye disease (TED) is a disfiguring autoimmune disease characterized by changes in the orbital tissues and is caused by abnormal thyroid function or thyroid-related antibodies. It is the ocular manifestation of Graves' disease. The expression of thyroid-stimulating hormone receptor (TSHR) and the insulin-like growth factor-1 receptor (IGF-1 R) on the cell membrane of orbital fibroblasts (OFs) is responsible for TED pathology. Excessive inflammation is caused when these receptors in the orbit are stimulated by autoantibodies. CD34+ fibrocytes, found in the peripheral blood and orbital tissues of patients with TED, express immune checkpoints (ICs) like MHC II, B7, and PD-L1, indicating their potential role in presenting antigens and regulating the immune response in TED pathogenesis. Immune checkpoint inhibitors (ICIs) have significantly transformed cancer treatment. However, it can also lead to the occurrence of TED in some instances, suggesting the abnormality of ICs in TED. This review will examine the overall pathogenic mechanism linked to the immune cells of TED and then discuss the latest research findings on the immunomodulatory role of ICs in the development and pathogenesis of TED. This will offer fresh perspectives on the study of pathogenesis and the identification of potential therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruili Wei
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Shanghai, China
| |
Collapse
|
48
|
Ghanta PP, Dang CM, Nelson CM, Feaster DJ, Forrest DW, Tookes H, Pahwa RN, Pallikkuth S, Pahwa SG. Soluble Plasma Proteins of Tumor Necrosis Factor and Immunoglobulin Superfamilies Reveal New Insights into Immune Regulation in People with HIV and Opioid Use Disorder. Vaccines (Basel) 2024; 12:520. [PMID: 38793771 PMCID: PMC11125794 DOI: 10.3390/vaccines12050520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
People with HIV (PWH) frequently suffer from Opioid (OP) Use Disorder (OUD). In an investigation of the impact of OUD on underlying immune dysfunction in PWH, we previously reported that OP use exacerbates inflammation in virally controlled PWH followed in the Infectious Diseases Elimination Act (IDEA) Syringe Services Program (SSP). Unexpectedly, Flu vaccination-induced antibody responses in groups with OUD were superior to PWH without OUD. Here, we investigated the profile of 48 plasma biomarkers comprised of TNF and Ig superfamily (SF) molecules known to impact interactions between T and B cells in 209 participants divided into four groups: (1) HIV+OP+, (2) HIV-OP+, (3) HIV+OP-, and (4) HIV-OP-. The differential expression of the top eight molecules ranked by median values in individual Groups 1-3 in comparison to Group 4 was highly significant. Both OP+ groups 1 and 2 had higher co-stimulatory TNF SF molecules, including 4-1BB, OX-40, CD40, CD30, and 4-1BBL, which were found to positively correlate with Flu Ab titers. In contrast, HIV+OP- exhibited a profile dominant in Ig SF molecules, including PDL-2, CTLA-4, and Perforin, with PDL-2 showing a negative correlation with Flu vaccine titers. These findings are relevant to vaccine development in the fields of HIV and OUD.
Collapse
Affiliation(s)
- Priya P. Ghanta
- Department of Medicine, Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (P.P.G.); (D.W.F.); (H.T.)
| | - Christine M. Dang
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.M.D.); (R.N.P.); (S.P.)
| | - C. Mindy Nelson
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.M.N.); (D.J.F.)
| | - Daniel J. Feaster
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.M.N.); (D.J.F.)
| | - David W. Forrest
- Department of Medicine, Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (P.P.G.); (D.W.F.); (H.T.)
| | - Hansel Tookes
- Department of Medicine, Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (P.P.G.); (D.W.F.); (H.T.)
| | - Rajendra N. Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.M.D.); (R.N.P.); (S.P.)
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.M.D.); (R.N.P.); (S.P.)
| | - Savita G. Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.M.D.); (R.N.P.); (S.P.)
| |
Collapse
|
49
|
Xie S, Zhang R, Tang Y, Dai Q. Exploring causal correlations between inflammatory cytokines and Ménière's disease: a Mendelian randomization. Front Immunol 2024; 15:1373723. [PMID: 38742115 PMCID: PMC11089180 DOI: 10.3389/fimmu.2024.1373723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Objectives Previous studies have highlighted associations between certain inflammatory cytokines and Ménière's Disease (MD), such as interleukin (IL) -13 and IL-1β. This Mendelian randomization aims to comprehensively evaluate the causal relationships between 91 inflammatory cytokines and MD. Methods A comprehensive two-sample Mendelian randomization (MR) analysis was conducted to determine the causal association between inflammatory cytokines and MD. Utilizing publicly accessible genetic datasets, we explored causal links between 91 inflammatory cytokines and MD risk. Comprehensive sensitivity analyses were employed to assess the robustness, heterogeneity, and presence of horizontal pleiotropy in our findings. Results Our findings indicate that MD causally influences the levels of two cytokine types: IL-10 (P=0.048, OR=0.945, 95%CI =0.894~1.000) and Neurotrophin-3 (P=0.045, OR=0954, 95%CI =0.910~0.999). Furthermore, three cytokines exhibited significant causal effects on MD: CD40L receptor (P=0.008, OR=0.865, 95%CI =0.777-0.963), Delta and Notch-like epidermal growth factor-related receptor (DNER) (P=0.010, OR=1.216, 95%CI =1.048-1.412), and STAM binding protein (P=0.044, OR=0.776, 95%CI =0.606-0.993). Conclusion This study suggests that the CD40L receptor, DNER, and STAM binding protein could potentially serve as upstream determinants of MD. Furthermore, our results imply that when MD is regarded as the exposure variable in MR analysis, it may causally correlate with elevated levels of IL-10 and Neurotrophin-3. Using these cytokines for MD diagnosis or as potential therapeutic targets holds great clinical significance.
Collapse
Affiliation(s)
- SongTao Xie
- Hearing Center/Hearing and Speech Laboratory, Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, China
- Department of Hearing and Speech Rehabilitation, West China School of Clinical Medicine, Sichuan University, Chengdu, China
- Department of Otorhinolaryngology Head and Neck Surgery, West China TianFu Hospital of Sichuan University, Chengdu, China
| | - RuoFeng Zhang
- Otolaryngology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - YuRou Tang
- Hearing Center/Hearing and Speech Laboratory, Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, China
- Department of Hearing and Speech Rehabilitation, West China School of Clinical Medicine, Sichuan University, Chengdu, China
- Department of Otorhinolaryngology Head and Neck Surgery, West China TianFu Hospital of Sichuan University, Chengdu, China
| | - QingQing Dai
- Hearing Center/Hearing and Speech Laboratory, Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, China
- Department of Hearing and Speech Rehabilitation, West China School of Clinical Medicine, Sichuan University, Chengdu, China
- Department of Otorhinolaryngology Head and Neck Surgery, West China TianFu Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Song Y, Lou B, Wang H, Zhang G, Xia Y, Ban R, Zhao X, Sun H, Wang J, Lin J, Guo T, Zhou J, Xia Z. Screening and validation of atherosclerosis PAN-apoptotic immune-related genes based on single-cell sequencing. Front Immunol 2024; 15:1297298. [PMID: 38736872 PMCID: PMC11082397 DOI: 10.3389/fimmu.2024.1297298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
Background Carotid atherosclerosis (CAS) is a complication of atherosclerosis (AS). PAN-optosome is an inflammatory programmed cell death pathway event regulated by the PAN-optosome complex. CAS's PAN-optosome-related genes (PORGs) have yet to be studied. Hence, screening the PAN-optosome-related diagnostic genes for treating CAS was vital. Methods We introduced transcriptome data to screen out differentially expressed genes (DEGs) in CAS. Subsequently, WGCNA analysis was utilized to mine module genes about PANoptosis score. We performed differential expression analysis (CAS samples vs. standard samples) to obtain CAS-related differentially expressed genes at the single-cell level. Venn diagram was executed to identify PAN-optosome-related differential genes (POR-DEGs) associated with CAS. Further, LASSO regression and RF algorithm were implemented to were executed to build a diagnostic model. We additionally performed immune infiltration and gene set enrichment analysis (GSEA) based on diagnostic genes. We verified the accuracy of the model genes by single-cell nuclear sequencing and RT-qPCR validation of clinical samples, as well as in vitro cellular experiments. Results We identified 785 DEGs associated with CAS. Then, 4296 module genes about PANoptosis score were obtained. We obtained the 7365 and 1631 CAS-related DEGs at the single-cell level, respectively. 67 POR-DEGs were retained Venn diagram. Subsequently, 4 PAN-optosome-related diagnostic genes (CNTN4, FILIP1, PHGDH, and TFPI2) were identified via machine learning. Cellular function tests on four genes showed that these genes have essential roles in maintaining arterial cell viability and resisting cellular senescence. Conclusion We obtained four PANoptosis-related diagnostic genes (CNTN4, FILIP1, PHGDH, and TFPI2) associated with CAS, laying a theoretical foundation for treating CAS.
Collapse
Affiliation(s)
- Yamin Song
- Department of Neurology, Liaocheng People’s Hospital, Shandong University, Jinan, China
- Department of Neurology, Liaocheng People’s Hospital, Liaocheng, China
| | - Bo Lou
- Department of Neurology, The Third People’s Hospital of Liaocheng, Liaocheng, China
| | - Huiting Wang
- Department of Neurology, Liaocheng People’s Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Guifeng Zhang
- Department of Neurology, Liaocheng People’s Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Yitong Xia
- School of Rehabilitation Medicine, Jining Medical University, Jining, China
| | - Ru Ban
- Department of Neurology, Liaocheng People’s Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Xin Zhao
- Department of Neurology, Liaocheng People’s Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Hao Sun
- Department of Neurology, Liaocheng People’s Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Jingru Wang
- Department of Neurology, Liaocheng People’s Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Jie Lin
- Department of Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, China
| | - Tingting Guo
- Department of Neurology, Liaocheng People’s Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Jing Zhou
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhangyong Xia
- Department of Neurology, Liaocheng People’s Hospital, Shandong University, Jinan, China
- Department of Neurology, Liaocheng People’s Hospital, Liaocheng, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Shandong Sub-centre, Liaocheng, China
- Department of Neurology, The Second People’s Hospital of Liaocheng, Liaocheng, China
| |
Collapse
|