1
|
Zolfagharypoor A, Ajdari A, Seirafianpour F, Pakbaz Y, Hosseinzadeh A, Mehrzadi S. Signaling pathways in skin cancers and the protective functions of melatonin. Biochimie 2024:S0300-9084(24)00268-2. [PMID: 39577617 DOI: 10.1016/j.biochi.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Melatonin, a hormone primarily synthesized in the pineal gland, has an essential role in the regulation of various physiological processes, such as the sleep-wake cycle, immune function, and antioxidative responses. Emerging evidence suggests that melatonin also exerts significant protective effects against skin cancers, particularly melanoma and non-melanoma skin cancers. This review aims to provide a comprehensive overview of melatonin's multifaceted mechanisms of action in preventing and treating skin cancers, focusing on its antioxidant, photoprotective, and radioprotective properties. Melatonin's capability to modulate skin cancer's related key signaling pathways underscores its complex yet potent anticancer mechanisms. Furthermore, synergistic effects between melatonin and conventional oncology treatments, such as radiotherapy, chemotherapy, and targeted therapies, hold promise for improving treatment outcomes while mitigating adverse effects. However, while melatonin shows great potential as an adjunct in oncology treatment regimens, further research is needed to optimize its clinical applications and fully understand its safety profile and potential side effects. Overall, elucidating melatonin's role in skin cancer prevention and treatment represents a promising avenue for advancing cancer therapeutics and improving patient outcomes.
Collapse
Affiliation(s)
- Azin Zolfagharypoor
- Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Atra Ajdari
- School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | | | - Yeganeh Pakbaz
- Breast Health & Cancer Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Azam Hosseinzadeh
- Razi Drug Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Saeed Mehrzadi
- Razi Drug Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
2
|
Szögi T, Borsos BN, Masic D, Radics B, Bella Z, Bánfi A, Ördög N, Zsiros C, Kiricsi Á, Pankotai-Bodó G, Kovács Á, Paróczai D, Botkáné AL, Kajtár B, Sükösd F, Lehoczki A, Polgár T, Letoha A, Pankotai T, Tiszlavicz L. Novel biomarkers of mitochondrial dysfunction in Long COVID patients. GeroScience 2024:10.1007/s11357-024-01398-4. [PMID: 39495479 DOI: 10.1007/s11357-024-01398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) can lead to severe acute respiratory syndrome, and while most individuals recover within weeks, approximately 30-40% experience persistent symptoms collectively known as Long COVID, post-COVID-19 syndrome, or post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC). These enduring symptoms, including fatigue, respiratory difficulties, body pain, short-term memory loss, concentration issues, and sleep disturbances, can persist for months. According to recent studies, SARS-CoV-2 infection causes prolonged disruptions in mitochondrial function, significantly altering cellular energy metabolism. Our research employed transmission electron microscopy to reveal distinct mitochondrial structural abnormalities in Long COVID patients, notably including significant swelling, disrupted cristae, and an overall irregular morphology, which collectively indicates severe mitochondrial distress. We noted increased levels of superoxide dismutase 1 which signals oxidative stress and elevated autophagy-related 4B cysteine peptidase levels, indicating disruptions in mitophagy. Importantly, our analysis also identified reduced levels of circulating cell-free mitochondrial DNA (ccf-mtDNA) in these patients, serving as a novel biomarker for the condition. These findings underscore the crucial role of persistent mitochondrial dysfunction in the pathogenesis of Long COVID. Further exploration of the cellular and molecular mechanisms underlying post-viral mitochondrial dysfunction is critical, particularly to understand the roles of autoimmune reactions and the reactivation of latent viruses in perpetuating these conditions. This comprehensive understanding could pave the way for targeted therapeutic interventions designed to alleviate the chronic impacts of Long COVID. By utilizing circulating ccf-mtDNA and other novel mitochondrial biomarkers, we can enhance our diagnostic capabilities and improve the management of this complex syndrome.
Collapse
Affiliation(s)
- Titanilla Szögi
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Barbara N Borsos
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | - Dejana Masic
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Bence Radics
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zsolt Bella
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Bánfi
- Department of Pediatrics and Pediatric Health Center, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Nóra Ördög
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Csenge Zsiros
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ágnes Kiricsi
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gabriella Pankotai-Bodó
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ágnes Kovács
- Pulmonology Clinic, Albert Szent-Györgyi Medical and Pharmaceutical Centre, University of Szeged, Szeged, Hungary
| | - Dóra Paróczai
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Lugosi Botkáné
- Pulmonology Clinic, Albert Szent-Györgyi Medical and Pharmaceutical Centre, University of Szeged, Szeged, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Farkas Sükösd
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Tamás Polgár
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Annamária Letoha
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tibor Pankotai
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary.
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary.
| | - László Tiszlavicz
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
3
|
Hong WL, Huang H, Zeng X, Duan CY. Targeting mitochondrial quality control: new therapeutic strategies for major diseases. Mil Med Res 2024; 11:59. [PMID: 39164792 PMCID: PMC11337860 DOI: 10.1186/s40779-024-00556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 07/13/2024] [Indexed: 08/22/2024] Open
Abstract
Mitochondria play a crucial role in maintaining the normal physiological state of cells. Hence, ensuring mitochondrial quality control is imperative for the prevention and treatment of numerous diseases. Previous reviews on this topic have however been inconsistencies and lack of systematic organization. Therefore, this review aims to provide a comprehensive and systematic overview of mitochondrial quality control and explore the possibility of targeting the same for the treatment of major diseases. This review systematically summarizes three fundamental characteristics of mitochondrial quality control, including mitochondrial morphology and dynamics, function and metabolism, and protein expression and regulation. It also extensively examines how imbalances in mitochondrial quality are linked to major diseases, such as ischemia-hypoxia, inflammatory disorders, viral infections, metabolic dysregulations, degenerative conditions, and tumors. Additionally, the review explores innovative approaches to target mitochondrial quality control, including using small molecule drugs that regulate critical steps in maintaining mitochondrial quality, nanomolecular materials designed for precise targeting of mitochondria, and novel cellular therapies, such as vesicle therapy and mitochondrial transplantation. This review offers a novel perspective on comprehending the shared mechanisms underlying the occurrence and progression of major diseases and provides theoretical support and practical guidance for the clinical implementation of innovative therapeutic strategies that target mitochondrial quality control for treating major diseases.
Collapse
Affiliation(s)
- Wei-Long Hong
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - He Huang
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xue Zeng
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Chen-Yang Duan
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
4
|
Mok BWY, Kwok M, Li HS, Ling L, Lai A, Yan B, Law CTY, Yeung CH, Zhang AJ, Tam RCY, Kukic A, Cremin CJ, Zhang Y, Long T, Kang Z, Luo R, Leung KT, Li AM, Lui G, Tsui SKW, Chan JFW, To KKW, Chan PKS, Yan BP, Chen H, Poon ENY. SARS-CoV-2 variants divergently infect and damage cardiomyocytes in vitro and in vivo. Cell Biosci 2024; 14:101. [PMID: 39095802 PMCID: PMC11297708 DOI: 10.1186/s13578-024-01280-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND COVID-19 can cause cardiac complications and the latter are associated with poor prognosis and increased mortality. SARS-CoV-2 variants differ in their infectivity and pathogenicity, but how they affect cardiomyocytes (CMs) is unclear. METHODS The effects of SARS-CoV-2 variants were investigated using human induced pluripotent stem cell-derived (hiPSC-) CMs in vitro and Golden Syrian hamsters in vivo. RESULTS Different variants exhibited distinct tropism, mechanism of viral entry and pathology in the heart. Omicron BA.2 most efficiently infected and injured CMs in vitro and in vivo, and induced expression changes consistent with increased cardiac dysfunction, compared to other variants tested. Bioinformatics and upstream regulator analyses identified transcription factors and network predicted to control the unique transcriptome of Omicron BA.2 infected CMs. Increased infectivity of Omicron BA.2 is attributed to its ability to infect via endocytosis, independently of TMPRSS2, which is absent in CMs. CONCLUSIONS In this study, we reveal previously unknown differences in how different SARS-CoV-2 variants affect CMs. Omicron BA.2, which is generally thought to cause mild disease, can damage CMs in vitro and in vivo. Our study highlights the need for further investigations to define the pathogenesis of cardiac complications arising from different SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Bobo Wing-Yee Mok
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, SAR, China.
| | - Maxwell Kwok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Hong Kong Hub of Paediatric Excellence (HK HOPE), The Chinese University of Hong Kong, Hong Kong, SAR, China
- The School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Hung Sing Li
- Hong Kong Hub of Paediatric Excellence (HK HOPE), The Chinese University of Hong Kong, Hong Kong, SAR, China
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Lowell Ling
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Angel Lai
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Heart and Vascular Institute, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Bin Yan
- Department of Computer Science, The University of Hong Kong, Hong Kong, SAR, China
| | - Cherie Tsz-Yiu Law
- The School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Chui Him Yeung
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Anna Jinxia Zhang
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Rachel Chun-Yee Tam
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, SAR, China
| | - Anja Kukic
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, SAR, China
| | - Conor J Cremin
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, SAR, China
| | - Yajie Zhang
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, SAR, China
| | - Teng Long
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, SAR, China
| | - Zhisen Kang
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, SAR, China
| | - Ruibang Luo
- Department of Computer Science, The University of Hong Kong, Hong Kong, SAR, China
| | - Kam Tong Leung
- Hong Kong Hub of Paediatric Excellence (HK HOPE), The Chinese University of Hong Kong, Hong Kong, SAR, China
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Albert M Li
- Hong Kong Hub of Paediatric Excellence (HK HOPE), The Chinese University of Hong Kong, Hong Kong, SAR, China
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Grace Lui
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Stephen Kwok-Wing Tsui
- The School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, SAR, China
| | - Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, SAR, China
| | - Paul K S Chan
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Bryan P Yan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Heart and Vascular Institute, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, SAR, China
| | - Ellen Ngar-Yun Poon
- Hong Kong Hub of Paediatric Excellence (HK HOPE), The Chinese University of Hong Kong, Hong Kong, SAR, China.
- The School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- Ministry of Education Key Laboratory for Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
5
|
Rurek M. Mitochondria in COVID-19: from cellular and molecular perspective. Front Physiol 2024; 15:1406635. [PMID: 38974521 PMCID: PMC11224649 DOI: 10.3389/fphys.2024.1406635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
The rapid development of the COVID-19 pandemic resulted in a closer analysis of cell functioning during β-coronavirus infection. This review will describe evidence for COVID-19 as a syndrome with a strong, albeit still underestimated, mitochondrial component. Due to the sensitivity of host mitochondria to coronavirus infection, SARS-CoV-2 affects mitochondrial signaling, modulates the immune response, modifies cellular energy metabolism, induces apoptosis and ageing, worsening COVID-19 symptoms which can sometimes be fatal. Various aberrations across human systems and tissues and their relationships with mitochondria were reported. In this review, particular attention is given to characterization of multiple alterations in gene expression pattern and mitochondrial metabolism in COVID-19; the complexity of interactions between SARS-CoV-2 and mitochondrial proteins is presented. The participation of mitogenome fragments in cell signaling and the occurrence of SARS-CoV-2 subgenomic RNA within membranous compartments, including mitochondria is widely discussed. As SARS-CoV-2 severely affects the quality system of mitochondria, the cellular background for aberrations in mitochondrial dynamics in COVID-19 is additionally characterized. Finally, perspectives on the mitigation of COVID-19 symptoms by affecting mitochondrial biogenesis by numerous compounds and therapeutic treatments are briefly outlined.
Collapse
Affiliation(s)
- Michał Rurek
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
6
|
Hosseinzadeh A, Jamshidi Naeini A, Sheibani M, Gholamine B, Reiter RJ, Mehrzadi S. Melatonin and oral diseases: possible therapeutic roles based on cellular mechanisms. Pharmacol Rep 2024; 76:487-503. [PMID: 38607587 DOI: 10.1007/s43440-024-00593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Oral diseases, including periodontal disorders, oral cancer, periodontitis, and mucositis are the major challenges for both patients and healthcare providers. These conditions often involve inflammation, oxidative stress, and impaired cellular processes, leading to symptoms ranging from discomfort to severe debilitation. Conventional treatments for such oral diseases exhibit constraints, prompting the investigation of innovative therapeutic approaches. Considering the anti-inflammatory, anti-oxidant, and anti-cancer effects of melatonin, this study was carried out to investigate the potential protective effects of melatonin in mitigating the severity of oral diseases. Studies indicate that melatonin influences the differentiation of periodontal stem cells, inhibits oral cancer progression, reduces inflammation associated with periodontitis, and alleviates the severity of oral mucositis. Melatonin has demonstrated potential efficacy in both preclinical and clinical investigations; however, findings are frequently heterogeneous and contingent upon contextual factors. This review provides a comprehensiveoverview of current state of knowledge in this domain, elucidating the multifaceted role that melatonin may assume in combatingoral diseases. Further research should be directed toward determining the most effective dosing, timing, and administration methods for melatonin-based therapies for oral diseases.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Jamshidi Naeini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Gholamine
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Liu BH, Xu CZ, Liu Y, Lu ZL, Fu TL, Li GR, Deng Y, Luo GQ, Ding S, Li N, Geng Q. Mitochondrial quality control in human health and disease. Mil Med Res 2024; 11:32. [PMID: 38812059 PMCID: PMC11134732 DOI: 10.1186/s40779-024-00536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.
Collapse
Affiliation(s)
- Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Qing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
8
|
Hosseinzadeh A, Alinaghian N, Sheibani M, Seirafianpour F, Naeini AJ, Mehrzadi S. Melatonin: Current evidence on protective and therapeutic roles in gynecological diseases. Life Sci 2024; 344:122557. [PMID: 38479596 DOI: 10.1016/j.lfs.2024.122557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Melatonin, a potent antioxidant and free radical scavenger, has been demonstrated to be effective in gynecological conditions and female reproductive cancers. This review consolidates the accumulating evidence on melatonin's multifaceted protective effects in different pathological contexts. In gynecological conditions such as endometriosis, polycystic ovary syndrome (PCOS), and uterine leiomyoma, melatonin has shown promising effects in reducing oxidative stress, inflammation, and hormonal imbalances. It inhibits adhesion molecules' production, and potentially mitigates leukocyte adherence and inflammatory responses. Melatonin's regulatory effects on hormone production and insulin sensitivity in PCOS individuals make it a promising candidate for improving oocyte quality and menstrual irregularities. Moreover, melatonin exhibits significant antitumor effects by modulating various signaling pathways, promoting apoptosis, and suppressing metastasis in breast cancers and gynecological cancers, including ovarian, endometrial, and cervical cancers. Furthermore, melatonin's protective effects are suggested to be mediated by interactions with its receptors, estrogen receptors and other nuclear receptors. The regulation of clock-related genes and circadian clock systems may also contribute to its inhibitory effects on cancer cell growth. However, more comprehensive research is warranted to fully elucidate the underlying molecular mechanisms and establish melatonin as a potential therapeutic agent for these conditions.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nazila Alinaghian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Ali Jamshidi Naeini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Soto ME, Pérez-Torres I, Manzano-Pech L, Palacios-Chavarría A, Valdez-Vázquez RR, Guarner-Lans V, Soria-Castro E, Díaz-Díaz E, Castrejón-Tellez V. Redox Homeostasis Alteration Is Restored through Melatonin Treatment in COVID-19 Patients: A Preliminary Study. Int J Mol Sci 2024; 25:4543. [PMID: 38674128 PMCID: PMC11050031 DOI: 10.3390/ijms25084543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Type II pneumocytes are the target of the SARS-CoV-2 virus, which alters their redox homeostasis to increase reactive oxygen species (ROS). Melatonin (MT) has antioxidant proprieties and protects mitochondrial function. In this study, we evaluated whether treatment with MT compensated for the redox homeostasis alteration in serum from COVID-19 patients. We determined oxidative stress (OS) markers such as carbonyls, glutathione (GSH), total antioxidant capacity (TAC), thiols, nitrites (NO2-), lipid peroxidation (LPO), and thiol groups in serum. We also studied the enzymatic activities of glutathione peroxidase (GPx), glutathione-S-transferase (GST), reductase (GR), thioredoxin reductase (TrxR), extracellular superoxide dismutase (ecSOD) and peroxidases. There were significant increases in LPO and carbonyl quantities (p ≤ 0.03) and decreases in TAC and the quantities of NO2-, thiols, and GSH (p < 0.001) in COVID-19 patients. The activities of the antioxidant enzymes such as ecSOD, TrxR, GPx, GST, GR, and peroxidases were decreased (p ≤ 0.04) after the MT treatment. The treatment with MT favored the activity of the antioxidant enzymes that contributed to an increase in TAC and restored the lost redox homeostasis. MT also modulated glucose homeostasis, functioning as a glycolytic agent, and inhibited the Warburg effect. Thus, MT restores the redox homeostasis that is altered in COVID-19 patients and can be used as adjuvant therapy in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- María Elena Soto
- Research Direction, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Israel Pérez-Torres
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.M.-P.); (E.S.-C.)
| | - Linaloe Manzano-Pech
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.M.-P.); (E.S.-C.)
| | - Adrían Palacios-Chavarría
- Critical Care Units, Temporal COVID-19 Unit, Citibanamex Center, Mexico City 11200, Mexico; (A.P.-C.); (R.R.V.-V.)
| | | | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (V.G.-L.)
| | - Elizabeth Soria-Castro
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.M.-P.); (E.S.-C.)
| | - Eulises Díaz-Díaz
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Sección XVI, Tlalpan, Mexico City 14000, Mexico;
| | - Vicente Castrejón-Tellez
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (V.G.-L.)
| |
Collapse
|
10
|
Naidu AS, Wang CK, Rao P, Mancini F, Clemens RA, Wirakartakusumah A, Chiu HF, Yen CH, Porretta S, Mathai I, Naidu SAG. Precision nutrition to reset virus-induced human metabolic reprogramming and dysregulation (HMRD) in long-COVID. NPJ Sci Food 2024; 8:19. [PMID: 38555403 PMCID: PMC10981760 DOI: 10.1038/s41538-024-00261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
SARS-CoV-2, the etiological agent of COVID-19, is devoid of any metabolic capacity; therefore, it is critical for the viral pathogen to hijack host cellular metabolic machinery for its replication and propagation. This single-stranded RNA virus with a 29.9 kb genome encodes 14 open reading frames (ORFs) and initiates a plethora of virus-host protein-protein interactions in the human body. These extensive viral protein interactions with host-specific cellular targets could trigger severe human metabolic reprogramming/dysregulation (HMRD), a rewiring of sugar-, amino acid-, lipid-, and nucleotide-metabolism(s), as well as altered or impaired bioenergetics, immune dysfunction, and redox imbalance in the body. In the infectious process, the viral pathogen hijacks two major human receptors, angiotensin-converting enzyme (ACE)-2 and/or neuropilin (NRP)-1, for initial adhesion to cell surface; then utilizes two major host proteases, TMPRSS2 and/or furin, to gain cellular entry; and finally employs an endosomal enzyme, cathepsin L (CTSL) for fusogenic release of its viral genome. The virus-induced HMRD results in 5 possible infectious outcomes: asymptomatic, mild, moderate, severe to fatal episodes; while the symptomatic acute COVID-19 condition could manifest into 3 clinical phases: (i) hypoxia and hypoxemia (Warburg effect), (ii) hyperferritinemia ('cytokine storm'), and (iii) thrombocytosis (coagulopathy). The mean incubation period for COVID-19 onset was estimated to be 5.1 days, and most cases develop symptoms after 14 days. The mean viral clearance times were 24, 30, and 39 days for acute, severe, and ICU-admitted COVID-19 patients, respectively. However, about 25-70% of virus-free COVID-19 survivors continue to sustain virus-induced HMRD and exhibit a wide range of symptoms that are persistent, exacerbated, or new 'onset' clinical incidents, collectively termed as post-acute sequelae of COVID-19 (PASC) or long COVID. PASC patients experience several debilitating clinical condition(s) with >200 different and overlapping symptoms that may last for weeks to months. Chronic PASC is a cumulative outcome of at least 10 different HMRD-related pathophysiological mechanisms involving both virus-derived virulence factors and a multitude of innate host responses. Based on HMRD and virus-free clinical impairments of different human organs/systems, PASC patients can be categorized into 4 different clusters or sub-phenotypes: sub-phenotype-1 (33.8%) with cardiac and renal manifestations; sub-phenotype-2 (32.8%) with respiratory, sleep and anxiety disorders; sub-phenotype-3 (23.4%) with skeleto-muscular and nervous disorders; and sub-phenotype-4 (10.1%) with digestive and pulmonary dysfunctions. This narrative review elucidates the effects of viral hijack on host cellular machinery during SARS-CoV-2 infection, ensuing detrimental effect(s) of virus-induced HMRD on human metabolism, consequential symptomatic clinical implications, and damage to multiple organ systems; as well as chronic pathophysiological sequelae in virus-free PASC patients. We have also provided a few evidence-based, human randomized controlled trial (RCT)-tested, precision nutrients to reset HMRD for health recovery of PASC patients.
Collapse
Affiliation(s)
- A Satyanarayan Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA.
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA.
| | - Chin-Kun Wang
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung, 40201, Taiwan
| | - Pingfan Rao
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- College of Food and Bioengineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuqing City, Fujian, China
| | - Fabrizio Mancini
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President-Emeritus, Parker University, 2540 Walnut Hill Lane, Dallas, TX, 75229, USA
| | - Roger A Clemens
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- University of Southern California, Alfred E. Mann School of Pharmacy/D. K. Kim International Center for Regulatory & Quality Sciences, 1540 Alcazar St., CHP 140, Los Angeles, CA, 90089, USA
| | - Aman Wirakartakusumah
- International Union of Food Science and Technology (IUFoST), Guelph, ON, Canada
- IPMI International Business School Jakarta; South East Asian Food and Agriculture Science and Technology, IPB University, Bogor, Indonesia
| | - Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital, Ministry of Health & Well-being, Taichung, Taiwan
| | - Chi-Hua Yen
- Department of Family and Community Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sebastiano Porretta
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President, Italian Association of Food Technology (AITA), Milan, Italy
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121, Parma, Italy
| | - Issac Mathai
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- Soukya International Holistic Health Center, Whitefield, Bengaluru, India
| | - Sreus A G Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA
| |
Collapse
|
11
|
Lempesis IG, Georgakopoulou VE, Reiter RJ, Spandidos DA. A mid‑pandemic night's dream: Melatonin, from harbinger of anti‑inflammation to mitochondrial savior in acute and long COVID‑19 (Review). Int J Mol Med 2024; 53:28. [PMID: 38299237 PMCID: PMC10852014 DOI: 10.3892/ijmm.2024.5352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
Coronavirus disease 2019 (COVID‑19), a systemic illness caused by severe acute respiratory distress syndrome 2 (SARS‑CoV‑2), has triggered a worldwide pandemic with symptoms ranging from asymptomatic to chronic, affecting practically every organ. Melatonin, an ancient antioxidant found in all living organisms, has been suggested as a safe and effective therapeutic option for the treatment of SARS‑CoV‑2 infection due to its good safety characteristics and broad‑spectrum antiviral medication properties. Melatonin is essential in various metabolic pathways and governs physiological processes, such as the sleep‑wake cycle and circadian rhythms. It exhibits oncostatic, anti‑inflammatory, antioxidant and anti‑aging properties, exhibiting promise for use in the treatment of numerous disorders, including COVID‑19. The preventive and therapeutic effects of melatonin have been widely explored in a number of conditions and have been well‑established in experimental ischemia/reperfusion investigations, particularly in coronary heart disease and stroke. Clinical research evaluating the use of melatonin in COVID‑19 has shown various improved outcomes, including reduced hospitalization durations; however, the trials are small. Melatonin can alleviate mitochondrial dysfunction in COVID‑19, improve immune cell function and provide antioxidant properties. However, its therapeutic potential remains underexplored due to funding limitations and thus further investigations are required.
Collapse
Affiliation(s)
- Ioannis G. Lempesis
- Department of Pathophysiology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vasiliki Epameinondas Georgakopoulou
- Department of Pathophysiology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
12
|
Lei X, Xu Z, Huang L, Huang Y, Tu S, Xu L, Liu D. The potential influence of melatonin on mitochondrial quality control: a review. Front Pharmacol 2024; 14:1332567. [PMID: 38273825 PMCID: PMC10808166 DOI: 10.3389/fphar.2023.1332567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/31/2023] [Indexed: 01/27/2024] Open
Abstract
Mitochondria are critical for cellular energetic metabolism, intracellular signaling orchestration and programmed death regulation. Therefore, mitochondrial dysfunction is associated with various pathogeneses. The maintenance of mitochondrial homeostasis and functional recovery after injury are coordinated by mitochondrial biogenesis, dynamics and autophagy, which are collectively referred to as mitochondrial quality control. There is increasing evidence that mitochondria are important targets for melatonin to exert protective effects under pathological conditions. Melatonin, an evolutionarily conserved tryptophan metabolite, can be synthesized, transported and metabolized in mitochondria. In this review, we summarize the important role of melatonin in the damaged mitochondria elimination and mitochondrial energy supply recovery by regulating mitochondrial quality control, which may provide new strategies for clinical treatment of mitochondria-related diseases.
Collapse
Affiliation(s)
- Xudan Lei
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenni Xu
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Lingxiao Huang
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yujun Huang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyu Tu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Xu
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Dengqun Liu
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Pourhanifeh MH, Hosseinzadeh A, Koosha F, Reiter RJ, Mehrzadi S. Therapeutic Effects of Melatonin in the Regulation of Ferroptosis: A Review of Current Evidence. Curr Drug Targets 2024; 25:543-557. [PMID: 38706348 DOI: 10.2174/0113894501284110240426074746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 05/07/2024]
Abstract
Ferroptosis is implicated in the pathogenesis of multiple diseases, including neurodegenerative diseases, cardiovascular diseases, kidney pathologies, ischemia-reperfusion injury, and cancer. The current review article highlights the involvement of ferroptosis in traumatic brain injury, acute kidney damage, ethanol-induced liver injury, and PM2.5-induced lung injury. Melatonin, a molecule produced by the pineal gland and many other organs, is well known for its anti- aging, anti-inflammatory, and anticancer properties and is used in the treatment of different diseases. Melatonin's ability to activate anti-ferroptosis pathways including sirtuin (SIRT)6/p- nuclear factor erythroid 2-related factor 2 (Nrf2), Nrf2/ antioxidant responsive element (ARE)/ heme oxygenase (HO-1)/SLC7A11/glutathione peroxidase (GPX4)/ prostaglandin-endoperoxide synthase 2 (PTGS2), extracellular signal-regulated kinase (ERK)/Nrf2, ferroportin (FPN), Hippo/ Yes-associated protein (YAP), Phosphoinositide 3-kinase (PI3K)/ protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) and SIRT6/ nuclear receptor coactivator 4 (NCOA4)/ ferritin heavy chain 1 (FTH1) signaling pathways suggests that it could serve as a valuable therapeutic agent for preventing cell death associated with ferroptosis in various diseases. Further research is needed to fully understand the precise mechanisms by which melatonin regulates ferroptosis and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Koosha
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cellular & Structural Biology, University of Texas, Health Science Center, San Antonio, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Mehrzadi S, Hosseini A, Hosseinzadeh A. Evaluating the Protective Effect of Melatonin on Atorvastatin-induced Mitochondrial Toxicity in Pancreatic Beta Cells. Curr Drug Saf 2024; 19:455-464. [PMID: 39188214 DOI: 10.2174/0115748863267262231025052412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 08/28/2024]
Abstract
BACKGROUND Atorvastatin and other statins belong to a category of cholesterollowering drugs, which may cause some damage to pancreatic cells despite their effectiveness. AIMS The present study investigated the effects of melatonin against atorvastatin-induced toxicity on islets of Langerhans and CRI-D2 cells. METHODS The MTT assay was used to determine cell viability. The effect of various concentrations of melatonin (0,10, 50, 100, 250, 500 and 1000 μM) on CRI-D2 cell viability was evaluated for 24 hours to determine the non-cytotoxic concentrations of melatonin. Additionally, cells were treated with different concentrations of atorvastatin (10, 100, and 150 ng/mL) for 24 hours to determine a concentration that could induce the maximum cell death. After selecting the appropriate concentrations for melatonin, cells were treated with atorvastatin (10, 100, and 150 ng/ml) and melatonin (10 and 100 μM) simultaneously for a period of 24 hours. Malondialdehyde (MDA), reactive oxygen species (ROS), superoxide dismutase, catalase, and glutathione peroxidase activity were assessed as indicators of oxidative stress. To assess mitochondrial function, the ratio of adenosine diphosphate (ADP) to adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP) were measured. RESULTS Atorvastatin markedly raised ROS and MDA levels. This result was associated with a decrease in MMP, an increase in the ADP/ATP ratio, and a change in the activity of antioxidant enzymes. Atorvastatin (150 ng/mL)-induced mitochondrial damage was alleviated by concurrent melatonin and atorvastatin therapy. CONCLUSION These results suggest that melatonin has a protective effect against atorvastatininduced toxicity in the mitochondria of pancreatic cells.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Moon JH, Hong JM, Seol JW, Park BY, Eo SK, Park SY. Melatonin inhibits Japanese encephalitis virus replication and neurotoxicity via calcineurin-autophagy pathways. BMC Neurosci 2023; 24:59. [PMID: 37932682 PMCID: PMC10629071 DOI: 10.1186/s12868-023-00832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that has no specific treatment except for supportive medical care. JEV is a neurotropic virus that affects the nervous system and triggers inflammation in the brain. METHODS Melatonin is used as a sleep-inducing agent in neurophysiology and may serve as a protective agent against neurological and neurodegenerative diseases. Herein, we investigated the effects of melatonin and the critical roles of the serine/threonine protein phosphatase calcineurin during JEV infection in SK-N-SH neuroblastoma cells. RESULTS Melatonin treatment decreased JEV replication and JEV-mediated neurotoxicity. Calcineurin activity was increased by JEV infection and inhibited by melatonin treatment. Through calcineurin regulation, melatonin decreased the JEV-mediated neuroinflammatory response and attenuated JEV-induced autophagy. CONCLUSIONS Calcineurin inactivation has a protective effect in JEV-infected neuronal cells, and melatonin is a novel resource for the development of anti-JEV agents.
Collapse
Affiliation(s)
- Ji-Hong Moon
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
| | - Jeong-Min Hong
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
| | - Jae-Won Seol
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
| | - Byung-Yong Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
| | - Seong Kug Eo
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea.
| |
Collapse
|
16
|
Zong S, Wu Y, Li W, You Q, Peng Q, Wang C, Wan P, Bai T, Ma Y, Sun B, Qiao J. SARS-CoV-2 Nsp8 induces mitophagy by damaging mitochondria. Virol Sin 2023; 38:520-530. [PMID: 37156297 PMCID: PMC10163945 DOI: 10.1016/j.virs.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023] Open
Abstract
Autophagy plays an important role in the interaction between viruses and host cells. SARS-CoV-2 infection can disrupt the autophagy process in target cells. However, the precise molecular mechanism is still unknown. In this study, we discovered that the Nsp8 of SARS-CoV-2 could cause an increasing accumulation of autophagosomes by preventing the fusion of autophagosomes and lysosomes. From further investigation, we found that Nsp8 was present on mitochondria and can damage mitochondria to initiate mitophagy. The results of experiments with immunofluorescence revealed that Nsp8 induced incomplete mitophagy. Moreover, both domains of Nsp8 orchestrated their function during Nsp8-induced mitophagy, in which the N-terminal domain colocalized with mitochondria and the C-terminal domain induced auto/mitophagy. This novel finding expands our understanding of the function of Nsp8 in promoting mitochondrial damage and inducing incomplete mitophagy, which helps us to understand the etiology of COVID-19 as well as open up new pathways for creating SARS-CoV-2 treatment methods.
Collapse
Affiliation(s)
- Shan Zong
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Weiling Li
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Qiang You
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Qian Peng
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Chenghai Wang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Pin Wan
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Tao Bai
- Division of Gastroenterology, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, 430030, China
| | - Yanling Ma
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, 430030, China
| | - Binlian Sun
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China.
| | - Jialu Qiao
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
17
|
Mehrzadi S, Sheibani M, Koosha F, Alinaghian N, Pourhanifeh MH, Tabaeian SAP, Reiter RJ, Hosseinzadeh A. Protective and therapeutic potential of melatonin against intestinal diseases: updated review of current data based on molecular mechanisms. Expert Rev Gastroenterol Hepatol 2023; 17:1011-1029. [PMID: 37796746 DOI: 10.1080/17474124.2023.2267439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION Intestinal diseases, a leading global cause of mortality and morbidity, carry a substantial socioeconomic burden. Small and large intestines play pivotal roles in gastrointestinal physiology and food digestion. Pathological conditions, such as gut dysbiosis, inflammation, cancer, therapy-related complications, ulcers, and ischemia, necessitate the urgent exploration of safe and effective complementary therapeutic strategies for optimal intestinal health. AREAS COVERED This article evaluates the potential therapeutic effects of melatonin, a molecule with a wide range of physiological actions, on intestinal diseases including inflammatory bowel disease, irritable bowel syndrome, colon cancer, gastric/duodenal ulcers and other intestinal disorders. EXPERT OPINION Due to anti-inflammatory and antioxidant properties as well as various biological actions, melatonin could be a therapeutic option for improving digestive disorders. However, more researches are needed to fully understand the potential benefits and risks of using melatonin for digestive disorders.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Koosha
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazila Alinaghian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Siekacz K, Kumor-Kisielewska A, Miłkowska-Dymanowska J, Pietrusińska M, Bartczak K, Majewski S, Stańczyk A, Piotrowski WJ, Białas AJ. Oxidative Biomarkers Associated with the Pulmonary Manifestation of Post-COVID-19 Complications. J Clin Med 2023; 12:4253. [PMID: 37445288 DOI: 10.3390/jcm12134253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
INTRODUCTION The role of mitochondria in post coronavirus disease 2019 (post-COVID-19) complications is unclear, especially in the long-term pulmonary complications. This study aims to investigate the association between post-COVID-19 pulmonary complications and mitochondrial regulatory proteins in the context of oxidative stress. METHODOLOGY Patients who had recovered from COVID-19 were enrolled. According to the evidence of persistent interstitial lung lesions on computed tomography (CT), patients were divided into a long-term pulmonary complications group (P(+)) and a control group without long-term pulmonary complications (P(-)). We randomly selected 80 patients for investigation (40 subjects for each group). Biomarkers levels were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS The serum concentrations of mitochondrial regulatory proteins were significantly higher in the P(+) group, including PTEN-induced kinase 1 (PINK1): 1.62 [1.02-2.29] ng/mL vs. 1.34 [0.94-1.74] ng/mL (p = 0.046); Dynamin-1-like protein (DNM1L): 1.6 [0.9-2.4] ng/mL IQR vs. 0.9 [0.5-1.6] ng/mL (p = 0.004); and Mitofusin-2 (MFN2): 0.3 [0.2-0.5] ng/mL vs. 0.2 [0.1-0.3] ng/mL IQR (p = 0.001). Patients from the P(+) group also had higher serum levels of chemokine ligand 18 (PARC, CCL18), IL-6, and tumour necrosis factor-alpha (TNF-α) cytokines than the P(-) group. The concentration of interferon alpha (IFN-α) was decreased in the P(+) group. Furthermore, we observed statistically significant correlations between the advanced glycation end product (sRAGE) and TNF-α (Pearson's factor R = 0.637; p < 0.001) and between serum levels of DNM1L and IFN-α (Pearson's factor R = 0.501; p = 0.002) in P(+) patients. CONCLUSIONS Elevated concentrations of mitochondrial biomarkers in post-COVID-19 patients with long-term pulmonary complications indicate their possible role in the pathobiology of COVID-19 pulmonary sequelae. Oxidative stress is associated with the immune response and inflammation after COVID-19. TNF-α could be a promising biomarker for predicting pulmonary complications and may be a potential target for therapeutic intervention in patients with post-COVID-19 complications.
Collapse
Affiliation(s)
- Kamil Siekacz
- Department of Pneumology, Medical University of Lodz, 90-419 Lodz, Poland
| | | | | | | | - Krystian Bartczak
- Department of Pneumology, Medical University of Lodz, 90-419 Lodz, Poland
| | - Sebastian Majewski
- Department of Pneumology, Medical University of Lodz, 90-419 Lodz, Poland
| | - Adam Stańczyk
- Department of Clinical Pharmacology, Medical University of Lodz, 90-419 Lodz, Poland
| | | | - Adam J Białas
- Department of Pneumology, Medical University of Lodz, 90-419 Lodz, Poland
- Department of Pulmonary Rehabilitation, Regional Medical Center for Lung Diseases and Rehabilitation, Blessed Rafal Chylinski Memorial Hospital for Lung Diseases, 91-520 Lodz, Poland
| |
Collapse
|
19
|
Stefano GB, Büttiker P, Weissenberger S, Esch T, Anders M, Raboch J, Kream RM, Ptacek R. Independent and sensory human mitochondrial functions reflecting symbiotic evolution. Front Cell Infect Microbiol 2023; 13:1130197. [PMID: 37389212 PMCID: PMC10302212 DOI: 10.3389/fcimb.2023.1130197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
The bacterial origin of mitochondria has been a widely accepted as an event that occurred about 1.45 billion years ago and endowed cells with internal energy producing organelle. Thus, mitochondria have traditionally been viewed as subcellular organelle as any other - fully functionally dependent on the cell it is a part of. However, recent studies have given us evidence that mitochondria are more functionally independent than other organelles, as they can function outside the cells, engage in complex "social" interactions, and communicate with each other as well as other cellular components, bacteria and viruses. Furthermore, mitochondria move, assemble and organize upon sensing different environmental cues, using a process akin to bacterial quorum sensing. Therefore, taking all these lines of evidence into account we hypothesize that mitochondria need to be viewed and studied from a perspective of a more functionally independent entity. This view of mitochondria may lead to new insights into their biological function, and inform new strategies for treatment of disease associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- George B. Stefano
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Pascal Büttiker
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | | | - Tobias Esch
- Institute for Integrative Health Care and Health Promotion, School of Medicine, Witten/Herdecke University, Witten, Germany
| | - Martin Anders
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Jiri Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Richard M. Kream
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Radek Ptacek
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| |
Collapse
|
20
|
Bekheit MS, Panda SS, Kariuki BM, Mahmoud SH, Mostafa A, Girgis AS. Spiroindole-containing compounds bearing phosphonate group of potential M pro-SARS-CoV-2 inhibitory properties. Eur J Med Chem 2023; 258:115563. [PMID: 37329713 DOI: 10.1016/j.ejmech.2023.115563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
Microwave-assisted reaction of 3,5-bis((E)-ylidene)-1-phosphonate-4-piperidones 3a‒g with azomethine ylide (produced through interaction of isatins 4 and sarcosine 5) cycloaddition afforded the corresponding (dispiro[indoline-3,2'-pyrrolidine-3',3″-piperidin]-1″-yl)phosphonates 6a‒l in excellent yields (80-95%). Structure of the synthesized agents was evidenced by single crystal X-ray studies of 6d, 6i and 6l. Some of the synthesized agents revealed promising anti-SARS-CoV-2 properties in the viral infected Vero-E6 cell technique with noticeable selectivity indices. Compounds 6g and 6b are the most promising agents synthesized (R = 4-BrC6H4, Ph; R' = H, Cl, respectively) with considerable selectivity index values. Mpro-SARS-CoV-2 inhibitory properties supported the anti-SARS-CoV-2 observations of the potent analogs synthesized. Molecular docking studies (PDB ID: 7C8U) are consistent with the Mpro inhibitory properties. The presumed mode of action was supported by both experimentally investigated Mpro-SARS-CoV-2 inhibitory properties and explained by docking observations.
Collapse
Affiliation(s)
- Mohamed S Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Siva S Panda
- Department of Chemistry and Physics, Augusta University, Augusta, GA, 30912, USA
| | - Benson M Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Sara H Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Adel S Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
21
|
Naidu SAG, Clemens RA, Naidu AS. SARS-CoV-2 Infection Dysregulates Host Iron (Fe)-Redox Homeostasis (Fe-R-H): Role of Fe-Redox Regulators, Ferroptosis Inhibitors, Anticoagulants, and Iron-Chelators in COVID-19 Control. J Diet Suppl 2023; 20:312-371. [PMID: 35603834 DOI: 10.1080/19390211.2022.2075072] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Severe imbalance in iron metabolism among SARS-CoV-2 infected patients is prominent in every symptomatic (mild, moderate to severe) clinical phase of COVID-19. Phase-I - Hypoxia correlates with reduced O2 transport by erythrocytes, overexpression of HIF-1α, altered mitochondrial bioenergetics with host metabolic reprogramming (HMR). Phase-II - Hyperferritinemia results from an increased iron overload, which triggers a fulminant proinflammatory response - the acute cytokine release syndrome (CRS). Elevated cytokine levels (i.e. IL6, TNFα and CRP) strongly correlates with altered ferritin/TF ratios in COVID-19 patients. Phase-III - Thromboembolism is consequential to erythrocyte dysfunction with heme release, increased prothrombin time and elevated D-dimers, cumulatively linked to severe coagulopathies with life-threatening outcomes such as ARDS, and multi-organ failure. Taken together, Fe-R-H dysregulation is implicated in every symptomatic phase of COVID-19. Fe-R-H regulators such as lactoferrin (LF), hemoxygenase-1 (HO-1), erythropoietin (EPO) and hepcidin modulators are innate bio-replenishments that sequester iron, neutralize iron-mediated free radicals, reduce oxidative stress, and improve host defense by optimizing iron metabolism. Due to its pivotal role in 'cytokine storm', ferroptosis is a potential intervention target. Ferroptosis inhibitors such as ferrostatin-1, liproxstatin-1, quercetin, and melatonin could prevent mitochondrial lipid peroxidation, up-regulate antioxidant/GSH levels and abrogate iron overload-induced apoptosis through activation of Nrf2 and HO-1 signaling pathways. Iron chelators such as heparin, deferoxamine, caffeic acid, curcumin, α-lipoic acid, and phytic acid could protect against ferroptosis and restore mitochondrial function, iron-redox potential, and rebalance Fe-R-H status. Therefore, Fe-R-H restoration is a host biomarker-driven potential combat strategy for an effective clinical and post-recovery management of COVID-19.
Collapse
Affiliation(s)
| | - Roger A Clemens
- Department of International Regulatory Science, University of Southern California School of Pharmacy, Los Angeles, CA, USA
| | | |
Collapse
|
22
|
Koči J, Novotová M, Sláviková M, Klempa B, Zahradník I. SARS-CoV-2 Exploits Non-Canonical Autophagic Processes to Replicate, Mature, and Egress the Infected Vero E6 Cells. Pathogens 2022; 11:pathogens11121535. [PMID: 36558869 PMCID: PMC9781122 DOI: 10.3390/pathogens11121535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
The coronavirus transforms the cytoplasm of susceptible cells to support virus replication. It also activates autophagy-like processes, the role of which is not well understood. Here, we studied SARS-CoV-2-infected Vero E6 cells using transmission electron microscopy and autophagy PCR array. After 6-24 h post-infection (hpi), the cytoplasm of infected cells only contained double-membrane vesicles, phagophores, and phagosomes engulfing virus particles and cytoplasmic debris, including damaged mitochondria. The phagosomes interacted with the viral nucleoprotein complex, virus particles, mitochondria, and lipid droplets. The phagosomes transformed into egress vacuoles, which broke through the plasmalemma and discharged the virus particles. The Vero E6 cells exhibited pronounced virus replication at 6 hpi, which stabilized at 18-24 hpi at a high level. The autophagy PCR array tests revealed a significant upregulation of 10 and downregulation of 8 autophagic gene markers out of 84. Altogether, these results underline the importance of autophagy-like processes for SARS-CoV-2 maturation and egress, and point to deviations from a canonical autophagy response.
Collapse
Affiliation(s)
- Juraj Koči
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
- Correspondence: (J.K.); (I.Z.)
| | - Marta Novotová
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Monika Sláviková
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Boris Klempa
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia
| | - Ivan Zahradník
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
- Correspondence: (J.K.); (I.Z.)
| |
Collapse
|
23
|
Lei S, Chen X, Wu J, Duan X, Men K. Small molecules in the treatment of COVID-19. Signal Transduct Target Ther 2022; 7:387. [PMID: 36464706 PMCID: PMC9719906 DOI: 10.1038/s41392-022-01249-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 12/11/2022] Open
Abstract
The outbreak of COVID-19 has become a global crisis, and brought severe disruptions to societies and economies. Until now, effective therapeutics against COVID-19 are in high demand. Along with our improved understanding of the structure, function, and pathogenic process of SARS-CoV-2, many small molecules with potential anti-COVID-19 effects have been developed. So far, several antiviral strategies were explored. Besides directly inhibition of viral proteins such as RdRp and Mpro, interference of host enzymes including ACE2 and proteases, and blocking relevant immunoregulatory pathways represented by JAK/STAT, BTK, NF-κB, and NLRP3 pathways, are regarded feasible in drug development. The development of small molecules to treat COVID-19 has been achieved by several strategies, including computer-aided lead compound design and screening, natural product discovery, drug repurposing, and combination therapy. Several small molecules representative by remdesivir and paxlovid have been proved or authorized emergency use in many countries. And many candidates have entered clinical-trial stage. Nevertheless, due to the epidemiological features and variability issues of SARS-CoV-2, it is necessary to continue exploring novel strategies against COVID-19. This review discusses the current findings in the development of small molecules for COVID-19 treatment. Moreover, their detailed mechanism of action, chemical structures, and preclinical and clinical efficacies are discussed.
Collapse
Affiliation(s)
- Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaohua Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
24
|
Moradian F, Pourhanifeh MH, Mehrzadi S, Karimi‐Behnagh A, Hosseinzadeh A. Therapeutic potentials of melatonin in the treatment of lymphoma: A review of current evidence. Fundam Clin Pharmacol 2022; 36:777-789. [DOI: 10.1111/fcp.12780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/03/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Farid Moradian
- Departement of General Surgery Alborz University of Medical Science Alborz Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences Kashan University of Medical Sciences Kashan Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center Iran University of Medical Sciences Tehran Iran
| | | | - Azam Hosseinzadeh
- Razi Drug Research Center Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
25
|
Targeting autophagy regulation in NLRP3 inflammasome-mediated lung inflammation in COVID-19. Clin Immunol 2022; 244:109093. [PMID: 35944881 PMCID: PMC9356669 DOI: 10.1016/j.clim.2022.109093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Emerging evidence indicates that the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is activated, which results in a cytokine storm at the late stage of COVID-19. Autophagy regulation is involved in the infection and replication of SARS-CoV-2 at the early stage and the inhibition of NLRP3 inflammasome-mediated lung inflammation at the late stage of COVID-19. Here, we discuss the autophagy regulation at different stages of COVID-19. Specifically, we highlight the therapeutic potential of autophagy activators in COVID-19 by inhibiting the NLRP3 inflammasome, thereby avoiding the cytokine storm. We hope this review provides enlightenment for the use of autophagy activators targeting the inhibition of the NLRP3 inflammasome, specifically the combinational therapy of autophagy modulators with the inhibitors of the NLRP3 inflammasome, antiviral drugs, or anti-inflammatory drugs in the fight against COVID-19.
Collapse
|
26
|
Loh D, Reiter RJ. Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. Int J Mol Sci 2022; 23:8122. [PMID: 35897696 PMCID: PMC9368024 DOI: 10.3390/ijms23158122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The relentless, protracted evolution of the SARS-CoV-2 virus imposes tremendous pressure on herd immunity and demands versatile adaptations by the human host genome to counter transcriptomic and epitranscriptomic alterations associated with a wide range of short- and long-term manifestations during acute infection and post-acute recovery, respectively. To promote viral replication during active infection and viral persistence, the SARS-CoV-2 envelope protein regulates host cell microenvironment including pH and ion concentrations to maintain a high oxidative environment that supports template switching, causing extensive mitochondrial damage and activation of pro-inflammatory cytokine signaling cascades. Oxidative stress and mitochondrial distress induce dynamic changes to both the host and viral RNA m6A methylome, and can trigger the derepression of long interspersed nuclear element 1 (LINE1), resulting in global hypomethylation, epigenetic changes, and genomic instability. The timely application of melatonin during early infection enhances host innate antiviral immune responses by preventing the formation of "viral factories" by nucleocapsid liquid-liquid phase separation that effectively blockades viral genome transcription and packaging, the disassembly of stress granules, and the sequestration of DEAD-box RNA helicases, including DDX3X, vital to immune signaling. Melatonin prevents membrane depolarization and protects cristae morphology to suppress glycolysis via antioxidant-dependent and -independent mechanisms. By restraining the derepression of LINE1 via multifaceted strategies, and maintaining the balance in m6A RNA modifications, melatonin could be the quintessential ancient molecule that significantly influences the outcome of the constant struggle between virus and host to gain transcriptomic and epitranscriptomic dominance over the host genome during acute infection and PASC.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
27
|
Duan C, Ma R, Zeng X, Chen B, Hou D, Liu R, Li X, Liu L, Li T, Huang H. SARS-CoV-2 Achieves Immune Escape by Destroying Mitochondrial Quality: Comprehensive Analysis of the Cellular Landscapes of Lung and Blood Specimens From Patients With COVID-19. Front Immunol 2022; 13:946731. [PMID: 35844544 PMCID: PMC9283956 DOI: 10.3389/fimmu.2022.946731] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022] Open
Abstract
Mitochondria get caught in the crossfire of coronavirus disease 2019 (COVID-19) and antiviral immunity. The mitochondria-mediated antiviral immunity represents the host’s first line of defense against viral infection, and the mitochondria are important targets of COVID-19. However, the specific manifestations of mitochondrial damage in patients with COVID-19 have not been systematically clarified. This study comprehensively analyzed one single-cell RNA-sequencing dataset of lung tissue and two bulk RNA-sequencing datasets of blood from COVID-19 patients. We found significant changes in mitochondrion-related gene expression, mitochondrial functions, and related metabolic pathways in patients with COVID-19. SARS-CoV-2 first infected the host alveolar epithelial cells, which may have induced excessive mitochondrial fission, inhibited mitochondrial degradation, and destroyed the mitochondrial calcium uniporter (MCU). The type II alveolar epithelial cell count decreased and the transformation from type II to type I alveolar epithelial cells was blocked, which exacerbated viral immune escape and replication in COVID-19 patients. Subsequently, alveolar macrophages phagocytized the infected alveolar epithelial cells, which decreased mitochondrial respiratory capacity and activated the ROS–HIF1A pathway in macrophages, thereby aggravating the pro-inflammatory reaction in the lungs. Infected macrophages released large amounts of interferon into the blood, activating mitochondrial IFI27 expression and destroying energy metabolism in immune cells. The plasma differentiation of B cells and lung-blood interaction of regulatory T cells (Tregs) was exacerbated, resulting in a cytokine storm and excessive inflammation. Thus, our findings systematically explain immune escape and excessive inflammation seen during COVID-19 from the perspective of mitochondrial quality imbalance.
Collapse
Affiliation(s)
- Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Chenyang Duan, ; He Huang,
| | - Ruiyan Ma
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xue Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bing Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dongyao Hou
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruixue Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuehan Li
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liangming Liu
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Tao Li
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Chenyang Duan, ; He Huang,
| |
Collapse
|
28
|
Su WL, Wu CC, Wu SFV, Lee MC, Liao MT, Lu KC, Lu CL. A Review of the Potential Effects of Melatonin in Compromised Mitochondrial Redox Activities in Elderly Patients With COVID-19. Front Nutr 2022; 9:865321. [PMID: 35795579 PMCID: PMC9251345 DOI: 10.3389/fnut.2022.865321] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/23/2022] [Indexed: 12/17/2022] Open
Abstract
Melatonin, an endogenous indoleamine, is an antioxidant and anti-inflammatory molecule widely distributed in the body. It efficiently regulates pro-inflammatory and anti-inflammatory cytokines under various pathophysiological conditions. The melatonin rhythm, which is strongly associated with oxidative lesions and mitochondrial dysfunction, is also observed during the biological process of aging. Melatonin levels decline considerably with age and are related to numerous age-related illnesses. The signs of aging, including immune aging, increased basal inflammation, mitochondrial dysfunction, significant telomeric abrasion, and disrupted autophagy, contribute to the increased severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These characteristics can worsen the pathophysiological response of the elderly to SARS-CoV-2 and pose an additional risk of accelerating biological aging even after recovery. This review explains that the death rate of coronavirus disease (COVID-19) increases with chronic diseases and age, and the decline in melatonin levels, which is closely related to the mitochondrial dysfunction in the patient, affects the virus-related death rate. Further, melatonin can enhance mitochondrial function and limit virus-related diseases. Hence, melatonin supplementation in older people may be beneficial for the treatment of COVID-19.
Collapse
Affiliation(s)
- Wen-Lin Su
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Fang Vivienne Wu
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Mei-Chen Lee
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital Hsinchu Branch, Hsinchu City, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
29
|
Hosseinzadeh A, Dehdashtian E, Jafari-Sabet M, Mehrzadi S. The effects of vitamin D3 and melatonin combination on pentylenetetrazole-induced seizures in mice. Cent Nerv Syst Agents Med Chem 2022; 22:118-124. [PMID: 35507790 DOI: 10.2174/1871524922666220429121253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/06/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Epileptic seizures are associated with the overproduction of free radicals in the brain leading to neuronal cell death. Therefore, reduction of oxidative stress may inhibit seizure-induced neuronal cell damage. Current study evaluated the effects of Vit D3 and melatonin and their combination on pentylenetetrazol (PTZ)-induced tonic clonic seizures in mice. METHODS Animals were divided into six groups. Group I was administrated with normal saline (0.5 ml, intraperitoneally (i.p.)) on the 15th day of experiment. Group II was injected with PTZ (60 mg/kg dissolved in 0.5 ml normal saline, i.p) on the 15th day. Groups III-IV were treated with diazepam (4 mg/kg/day), Vit D3 (6000 IU/kg/day), melatonin (20 mg/kg/day) and Vit D3 (6000 IU/kg/day)/melatonin (20 mg/kg/day), respectively, and were then injected with PTZ (60 mg/kg) on the 15th day of experiment. Immediately after the injection of PTZ on the 15th day, mice were observed for a 30-min period for the measurement of seizure latency and duration. For determination of oxidative stress markers, malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were measured in mouse brains. RESULTS Treatment with Vit D3, melatonin, and Vit D3/melatonin significantly increased seizure latency and decreased seizure duration. The brain level of MDA was lower and SOD activity was greater than the PTZ group. Mice treated with Vit D3/melatonin had lower seizure duration compared to other treated groups. CONCLUSIONS Combination of Vit D3 and melatonin may reduce seizure frequency in epileptic patients; this effect may result from various mechanisms including inhibition of oxidative stress.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsanz Dehdashtian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Parkinson’s Disease and SARS-CoV-2 Infection: Particularities of Molecular and Cellular Mechanisms Regarding Pathogenesis and Treatment. Biomedicines 2022; 10:biomedicines10051000. [PMID: 35625737 PMCID: PMC9138688 DOI: 10.3390/biomedicines10051000] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
Accumulating data suggest that chronic neuroinflammation-mediated neurodegeneration is a significant contributing factor for progressive neuronal and glial cell death in age-related neurodegenerative pathology. Furthermore, it could be encountered as long-term consequences in some viral infections, including post-COVID-19 Parkinsonism-related chronic sequelae. The current systematic review is focused on a recent question aroused during the pandemic’s successive waves: are there post-SARS-CoV-2 immune-mediated reactions responsible for promoting neurodegeneration? Does the host’s dysregulated immune counter-offensive contribute to the pathogenesis of neurodegenerative diseases, emerging as Parkinson’s disease, in a complex interrelation between genetic and epigenetic risk factors? A synthetic and systematic literature review was accomplished based on the ”Preferred Reporting Items for Systematic Principles Reviews and Meta-Analyses” (PRISMA) methodology, including registration on the specific online platform: International prospective register of systematic reviews—PROSPERO, no. 312183. Initially, 1894 articles were detected. After fulfilling the five steps of the selection methodology, 104 papers were selected for this synthetic review. Documentation was enhanced with a supplementary 47 bibliographic resources identified in the literature within a non-standardized search connected to the subject. As a final step of the PRISMA method, we have fulfilled a Population-Intervention-Comparison-Outcome-Time (PICOT)/Population-Intervention-Comparison-Outcome-Study type (PICOS)—based metanalysis of clinical trials identified as connected to our search, targeting the outcomes of rehabilitative kinesitherapeutic interventions compared to clinical approaches lacking such kind of treatment. Accordingly, we identified 10 clinical trials related to our article. The multi/interdisciplinary conventional therapy of Parkinson’s disease and non-conventional multitarget approach to an integrative treatment was briefly analyzed. This article synthesizes the current findings on the pathogenic interference between the dysregulated complex mechanisms involved in aging, neuroinflammation, and neurodegeneration, focusing on Parkinson’s disease and the acute and chronic repercussions of COVID-19. Time will tell whether COVID-19 neuroinflammatory events could trigger long-term neurodegenerative effects and contribute to the worsening and/or explosion of new cases of PD. The extent of the interrelated neuropathogenic phenomenon remains obscure, so further clinical observations and prospective longitudinal cohort studies are needed.
Collapse
|
31
|
Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022; 11:102. [PMID: 35340277 PMCID: PMC8921693 DOI: 10.12688/f1000research.108667.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 08/26/2024] Open
Abstract
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, AP, 63074, Italy
| | | | - Emidio Troiani
- Cardiology Unit, Social Security Institute, State Hospital, Cailungo, 47893, San Marino
| | - Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Division,, ARNAS Civico Di Cristina Benfratelli Hospital Trust, Palermo, Italy
| |
Collapse
|
32
|
Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022; 11:102. [PMID: 35340277 PMCID: PMC8921693 DOI: 10.12688/f1000research.108667.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, AP, 63074, Italy
| | | | - Emidio Troiani
- Cardiology Unit, Social Security Institute, State Hospital, Cailungo, 47893, San Marino
| | - Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Division,, ARNAS Civico Di Cristina Benfratelli Hospital Trust, Palermo, Italy
| |
Collapse
|
33
|
Dong Z, Guo J, Deng T, Zhang J, Lv X, Zhang K, Ma Y, Ma Y. Acupuncture for nasal congestion in COVID-19: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e28600. [PMID: 35029243 PMCID: PMC8758042 DOI: 10.1097/md.0000000000028600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND From the end of 2019 to now, coronavirus disease 2019 (COVID-19) has put enormous strain on the world's health systems, causing significant deaths and economic losses worldwide. Nasal congestion, one of the symptoms of COVID-19, poses considerable problems for patients. In China, acupuncture has been widely used to treat nasal congestion caused by COVID-19, but there is still a lack of evidence-based medical evaluation. METHODS According to the retrieval strategies, randomized controlled trials on the acupuncture for COVID-19 nasal congestion were obtained from China National Knowledge Infrastructure, WanFang, VIP, PubMed, Embase, and Cochrane Library, regardless of publication date, or language. Studies were screened based on inclusion and exclusion criteria, and the Cochrane risk bias assessment tool was used to evaluate the quality of the studies. The meta-analysis was performed using Review Manager (RevMan 5.3) and STATA 14.2 software. Ultimately, the evidentiary grade for the results will be evaluated. RESULTS The study will provide a high-quality and convincing assessment of the efficacy and safety of acupuncture in the treatment of COVID-19's nasal congestion and will be published in peer-reviewed journals. CONCLUSION Our findings will provide references for future clinical decision and guidance development. PROSPERO REGISTRATION NUMBER NO.CRD42021299482.
Collapse
|
34
|
Shchetinin E, Baturin V, Arushanyan E, Bolatchiev A, Bobryshev D. Potential and Possible Therapeutic Effects of Melatonin on SARS-CoV-2 Infection. Antioxidants (Basel) 2022; 11:140. [PMID: 35052644 PMCID: PMC8772978 DOI: 10.3390/antiox11010140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 12/15/2022] Open
Abstract
The absence of effective drugs for COVID-19 prevention and treatment requires the search for new candidates among approved medicines. Fundamental studies and clinical observations allow us to approach an understanding of the mechanisms of damage and protection from exposure to SARS-CoV-2, to identify possible points of application for pharmacological interventions. In this review we presented studies on the anti-inflammatory, antioxidant, and immunotropic properties of melatonin. We have attempted to present scientifically proven mechanisms of action for the potential therapeutic use of melatonin during SARS-CoV-2 infection. A wide range of pharmacological properties allows its inclusion as an effective addition to the methods of prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Evgeny Shchetinin
- Department of Pathophysiology, Stavropol State Medical University, 355000 Stavropol, Russia
| | - Vladimir Baturin
- Department of Clinical Pharmacology, Stavropol State Medical University, 355000 Stavropol, Russia
| | - Eduard Arushanyan
- Department of Pharmacology, Stavropol State Medical University, 355000 Stavropol, Russia
| | - Albert Bolatchiev
- Department of Clinical Pharmacology, Stavropol State Medical University, 355000 Stavropol, Russia
| | - Dmitriy Bobryshev
- Center of Personalized Medicine, Stavropol State Medical University, 355000 Stavropol, Russia
| |
Collapse
|
35
|
Tan DX, Hardeland R. The Reserve/Maximum Capacity of Melatonin's Synthetic Function for the Potential Dimorphism of Melatonin Production and Its Biological Significance in Mammals. Molecules 2021; 26:7302. [PMID: 34885890 PMCID: PMC8659113 DOI: 10.3390/molecules26237302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 01/13/2023] Open
Abstract
In this article, we attempt to classify a potential dimorphism of melatonin production. Thus, a new concept of "reserve or maximum capacity of melatonin synthetic function" is introduced to explain the subtle dimorphism of melatonin production in mammals. Considering ASMT/ASMTL genes in the pseudoautosomal region of sex chromosomes with high prevalence of mutation in males, as well as the sex bias of the mitochondria in which melatonin is synthesized, we hypothesize the existence of a dimorphism in melatonin production to favor females, which are assumed to possess a higher reserve capacity for melatonin synthesis than males. Under physiological conditions, this subtle dimorphism is masked by the fact that cells or tissues only need baseline melatonin production, which can be accomplished without exploiting the full potential of melatonin's synthetic capacity. This capacity is believed to exceed the already remarkable nocturnal increase as observed within the circadian cycle. However, during aging or under stressful conditions, the reserve capacity of melatonin's synthetic function is required to be activated to produce sufficiently high levels of melatonin for protective purposes. Females seem to possess a higher reserve/maximum capacity for producing more melatonin than males. Thus, this dimorphism of melatonin production becomes manifest and detectable under these conditions. The biological significance of the reserve/maximum capacity of melatonin's synthetic function is to improve the recovery rate of organisms from injury, to increase resistance to pathogen infection, and even to enhance their chances of survival by maximizing melatonin production under stressful conditions. The higher reserve/maximum capacity of melatonin synthesis in females may also contribute to the dimorphism in longevity, favoring females in mammals.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany;
| |
Collapse
|
36
|
Fatemi I, Dehdashtian E, Pourhanifeh MH, Mehrzadi S, Hosseinzadeh A. Therapeutic Application of Melatonin in the Treatment of Melanoma: A Review. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394717666210526140950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melanoma is an aggressive type of skin cancer, which is responsible for more deaths
than nonmelanoma skin cancers. Therapeutic strategies include targeted therapy, biochemotherapy,
immunotherapy, photodynamic therapy, chemotherapy, and surgical resection. Depending on the
clinical stage, single or combination therapy may be used to prevent and treat cancer. Due to resistance
development during treatment courses, the efficacy of mentioned therapies can be reduced.
In addition to resistance, these treatments have serious side effects for melanoma patients. According
to available reports, melatonin, a pineal indolamine with a wide spectrum of biological potentials,
has anticancer features. Furthermore, melatonin could protect against chemotherapy- and radiation-
induced adverse events and can sensitize cancer cells to therapy. The present review discusses
the therapeutic application of melatonin in the treatment of melanoma. This review was carried
out in PubMed, Web of Science, and Scopus databases comprising the date of publication period
from January 1976 to March 2021.
Collapse
Affiliation(s)
- Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman,Iran
| | - Ehsan Dehdashtian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran,Iran
| | | | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran,Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran,Iran
| |
Collapse
|
37
|
Mitochondria as a Cellular Hub in Infection and Inflammation. Int J Mol Sci 2021; 22:ijms222111338. [PMID: 34768767 PMCID: PMC8583510 DOI: 10.3390/ijms222111338] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are the energy center of the cell. They are found in the cell cytoplasm as dynamic networks where they adapt energy production based on the cell’s needs. They are also at the center of the proinflammatory response and have essential roles in the response against pathogenic infections. Mitochondria are a major site for production of Reactive Oxygen Species (ROS; or free radicals), which are essential to fight infection. However, excessive and uncontrolled production can become deleterious to the cell, leading to mitochondrial and tissue damage. Pathogens exploit the role of mitochondria during infection by affecting the oxidative phosphorylation mechanism (OXPHOS), mitochondrial network and disrupting the communication between the nucleus and the mitochondria. The role of mitochondria in these biological processes makes these organelle good targets for the development of therapeutic strategies. In this review, we presented a summary of the endosymbiotic origin of mitochondria and their involvement in the pathogen response, as well as the potential promising mitochondrial targets for the fight against infectious diseases and chronic inflammatory diseases.
Collapse
|
38
|
Ramos E, López-Muñoz F, Gil-Martín E, Egea J, Álvarez-Merz I, Painuli S, Semwal P, Martins N, Hernández-Guijo JM, Romero A. The Coronavirus Disease 2019 (COVID-19): Key Emphasis on Melatonin Safety and Therapeutic Efficacy. Antioxidants (Basel) 2021; 10:1152. [PMID: 34356384 PMCID: PMC8301107 DOI: 10.3390/antiox10071152] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Viral infections constitute a tectonic convulsion in the normophysiology of the hosts. The current coronavirus disease 2019 (COVID-19) pandemic is not an exception, and therefore the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, like any other invading microbe, enacts a generalized immune response once the virus contacts the body. Melatonin is a systemic dealer that does not overlook any homeostasis disturbance, which consequently brings into play its cooperative triad, antioxidant, anti-inflammatory, and immune-stimulant backbone, to stop the infective cycle of SARS-CoV-2 or any other endogenous or exogenous threat. In COVID-19, the corporal propagation of SARS-CoV-2 involves an exacerbated oxidative activity and therefore the overproduction of great amounts of reactive oxygen and nitrogen species (RONS). The endorsement of melatonin as a possible protective agent against the current pandemic is indirectly supported by its widely demonstrated beneficial role in preclinical and clinical studies of other respiratory diseases. In addition, focusing the therapeutic action on strengthening the host protection responses in critical phases of the infective cycle makes it likely that multi-tasking melatonin will provide multi-protection, maintaining its efficacy against the virus variants that are already emerging and will emerge as long as SARS-CoV-2 continues to circulate among us.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Francisco López-Muñoz
- Faculty of Health Sciences, University Camilo José Cela, C/Castillo de Alarcón 49, Villanueva de la Cañada, 28692 Madrid, Spain;
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i + 12), Avda. Córdoba, s/n, 28041 Madrid, Spain
- Portucalense Institute of Neuropsychology and Cognitive and Behavioural Neurosciences (INPP), Portucalense University, R. Dr. António Bernardino de Almeida 541, 4200-072 Porto, Portugal
- Thematic Network for Cooperative Health Research (RETICS), Addictive Disorders Network, Health Institute Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Emilio Gil-Martín
- Nutrition, Food & Plant Science Group NF1, Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain;
| | - Javier Egea
- Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain;
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain; (I.Á.-M.); (J.M.H.-G.)
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9100, 28029 Madrid, Spain
| | - Sakshi Painuli
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand 248002, India; (S.P.); (P.S.)
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand 248002, India; (S.P.); (P.S.)
- Uttarakhand State Council for Science and Technology, Dehradun, Uttarakhand 248007, India
| | - Natália Martins
- Faculty of Medicine, Institute for Research and Innovation in Health (i3S), University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
- Institute for Research and Advanced Training in Health Sciences and Technologies, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Jesús M. Hernández-Guijo
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain; (I.Á.-M.); (J.M.H.-G.)
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9100, 28029 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
39
|
Melatonin and neuroblastoma: a novel therapeutic approach. Mol Biol Rep 2021; 48:4659-4665. [PMID: 34061325 DOI: 10.1007/s11033-021-06439-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/26/2021] [Indexed: 12/11/2022]
Abstract
Neuroblastoma is a deadly and serious malignancy among children. Although many developments have been occurred for the treatment of this disease, the rate of mortality is still high. Therefore, it is necessary to search for novel complementary and alternative therapies. Melatonin, a hormone secreted from pineal gland, is a multifunctional agent having anticancer potentials. Recently, several investigations have been conducted indicating melatonin effects against neuroblastoma. In this paper, we summarize current evidence on anti-neuroblastoma effects of melatonin based on cellular pathways.
Collapse
|
40
|
Brimson JM, Prasanth MI, Malar DS, Brimson S, Thitilertdecha P, Tencomnao T. Drugs that offer the potential to reduce hospitalization and mortality from SARS-CoV-2 infection: The possible role of the sigma-1 receptor and autophagy. Expert Opin Ther Targets 2021; 25:435-449. [PMID: 34236922 PMCID: PMC8290373 DOI: 10.1080/14728222.2021.1952987] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Introduction: Despite the availability of new vaccines for SARS-CoV-2, there has been slow uptake and problems with supply in some parts of the world. Hence, there is still a necessity for drugs that can prevent hospitalization of patients and reduce the strain on health care systems. Drugs with sigma affinity potentially provide protection against the most severe symptoms of SARS-COV-2 and could prevent mortality via interactions with the sigma-1 receptor.Areas covered: This review examines the role of the sigma-1 receptor and autophagy in SARS-CoV-2 infections and how they may be linked. The authors reveal how sigma ligands may reduce the symptoms, complications, and deaths resulting from SARS-CoV-2 and offer insights on those patient cohorts that may benefit most from these drugs.Expert opinion: Drugs with sigma affinity potentially offer protection against the most severe symptoms of SARS-CoV-2 via interactions with the sigma-1 receptor. Agonists of the sigma-1 receptor may provide protection of the mitochondria, activate mitophagy to remove damaged and leaking mitochondria, prevent ER stress, manage calcium ion transport, and induce autophagy to prevent cell death in response to infection.
Collapse
Affiliation(s)
- James Michael Brimson
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Dicson Sheeja Malar
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sirikalaya Brimson
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Premrutai Thitilertdecha
- Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
41
|
Zhou Y, Yan X, Ma F, Xia Q, Lu Y, Li W, Song S, Sun Y, Ma Y, Ma Y. Effects of moxibustion for COVID-19 convalescence: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e25389. [PMID: 33832128 PMCID: PMC8036045 DOI: 10.1097/md.0000000000025389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is still spreading around the world. Moxibustion, as a significant therapy in traditional Chinese medicine (TCM), has been widely used to treat COVID-19, especially in recovery period. The study will aim to assess the efficacy and safety of moxibustion for COVID-19 convalescence. METHODS We will systematically search the relevant randomized controlled trials in the 7 databases from inception to February 2021, including PubMed, MEDLINE, Embase, Cochrane Clinical Trials Database, Web of Science, China National Knowledge Infrastructure and Chinese Biomedical Literature Database. No language and publication status restrictions will be applied. Two reviewers will independently conduct and screen all included studies and the meta-analysis will be performed with RevMan V5.3 (The Cochrane Collaboration, Oxford, England). RESULTS The study will provide a high-quality convincing assessment of the efficacy and safety of moxibustion for the treatment of COVID-19 convalescence, which will be published in a peer-reviewed journal. CONCLUSION Our study will give more comprehensive evidence of the effectiveness of moxibustion for COVID-19 convalescence. TRIAL REGISTRATION NUMBER CRD42021230364.
Collapse
Affiliation(s)
- Yue Zhou
- Shandong University of Traditional Chinese Medicine
| | - Xiao Yan
- Shandong University of Traditional Chinese Medicine
| | - Fengjun Ma
- Shandong University of Traditional Chinese Medicine
| | | | - Yunping Lu
- Shandong University of Traditional Chinese Medicine
| | - Wenyuan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shuai Song
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yan Sun
- Shandong University of Traditional Chinese Medicine
| | - Yuxia Ma
- Shandong University of Traditional Chinese Medicine
| | - Yuning Ma
- Shandong University of Traditional Chinese Medicine
| |
Collapse
|
42
|
Mehrzadi S, Pourhanifeh MH, Mirzaei A, Moradian F, Hosseinzadeh A. An updated review of mechanistic potentials of melatonin against cancer: pivotal roles in angiogenesis, apoptosis, autophagy, endoplasmic reticulum stress and oxidative stress. Cancer Cell Int 2021; 21:188. [PMID: 33789681 PMCID: PMC8011077 DOI: 10.1186/s12935-021-01892-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Cancers are serious life-threatening diseases which annually are responsible for millions of deaths across the world. Despite many developments in therapeutic approaches for affected individuals, the rate of morbidity and mortality is high. The survival rate and life quality of cancer patients is still low. In addition, the poor prognosis of patients and side effects of the present treatments underscores that finding novel and effective complementary and alternative therapies is a critical issue. Melatonin is a powerful anticancer agent and its efficiency has been widely documented up to now. Melatonin applies its anticancer abilities through affecting various mechanisms including angiogenesis, apoptosis, autophagy, endoplasmic reticulum stress and oxidative stress. Regarding the implication of mentioned cellular processes in cancer pathogenesis, we aimed to further evaluate the anticancer effects of melatonin via these mechanisms.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mirzaei
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Farid Moradian
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|