1
|
O'Mahony AG, Mazzocchi M, Morris A, Morales-Prieto N, Guinane C, Wyatt SL, Collins LM, Sullivan AM, O'Keeffe GW. The class-IIa HDAC inhibitor TMP269 promotes BMP-Smad signalling and is neuroprotective in in vitro and in vivo 6-hydroxydopamine models of Parkinson's disease. Neuropharmacology 2025; 268:110319. [PMID: 39842624 DOI: 10.1016/j.neuropharm.2025.110319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/11/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Degeneration of midbrain nigrostriatal dopaminergic neurons is a pathological hallmark of Parkinson's disease (PD). Peripheral delivery of a compound(s) to arrest or slow this dopaminergic degeneration is a key therapeutic goal. Pan-inhibitors of histone deacetylase (HDAC) enzymes, key epigenetic regulators, have shown therapeutic promise in PD models. However as there are several classes of HDACs (ClassI-IV), class-specific inhibition will be important to ensure target specificity. Here we examine the neuroprotective potential of the Class-IIa HDAC inhibitor, TMP269. We show that TMP269 protected against 6-hydroxydopamine (6-OHDA)-induced neurite injury in SH-SY5Y cells and cultured rat ventral mesencephalic dopaminergic neurons. We find that TMP269 upregulated the neurotrophic factor BMP2 and BMP-Smad dependent transcription signalling in SH-SY5Y cells, which was necessary for its neuroprotective effect against 6-OHDA-induced injury. Furthermore, peripheral continuous infusion of 0.5 mg/kg of TMP269 for 7 days via a mini-osmotic pump, reduced forelimb impairments induced by striatal 6-OHDA administration. TMP269 also protected dopaminergic neurons in the substantia nigra and their striatal terminals from striatal 6-OHDA-induced neurodegeneration and prevented the 6-OHDA-induced increases in the numbers of IBA1-positive microglia in the striatum and substantia nigra in vivo. TMP269 also prevented 6-OHDA-induced decreases in BMP2, pSmad1/5 and acetylated histone 3 levels, and it reversed 6-OHDA-induced increase in nuclear HDAC5 in dopaminergic neurons in the substantia nigra. These data add to the growing body of evidence that Class-IIa specific HDAC inhibitors may be pharmacological agents of interest for peripheral delivery with the goal of neuroprotection in PD.
Collapse
Affiliation(s)
- Adam G O'Mahony
- Department of Anatomy & Neuroscience, School of Medicine, University College Cork (UCC), Cork, Ireland
| | - Martina Mazzocchi
- Department of Anatomy & Neuroscience, School of Medicine, University College Cork (UCC), Cork, Ireland
| | - Alex Morris
- Department of Biological Sciences, Munster Technological University (MTU), Cork Campus, Cork, Ireland
| | - Noelia Morales-Prieto
- Department of Anatomy & Neuroscience, School of Medicine, University College Cork (UCC), Cork, Ireland
| | - Caitriona Guinane
- Department of Biological Sciences, Munster Technological University (MTU), Cork Campus, Cork, Ireland
| | - Sean L Wyatt
- Cardiff School of Biosciences, Cardiff University, Wales, UK
| | - Louise M Collins
- Department of Anatomy & Neuroscience, School of Medicine, University College Cork (UCC), Cork, Ireland; Department of Physiology, School of Medicine, UCC, Cork, Ireland
| | - Aideen M Sullivan
- Department of Pharmacology and Therapeutics, School of Medicine, UCC, Cork, Ireland; APC Microbiome Ireland, UCC, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy & Neuroscience, School of Medicine, University College Cork (UCC), Cork, Ireland; APC Microbiome Ireland, UCC, Cork, Ireland.
| |
Collapse
|
2
|
Banerjee S, Hsu YT, Nguyen DH, Yeh SH, Liou KC, Liu JJ, Liou JP, Chuang JY. Development of BACE2-IN-1/tranylcypromine-based compounds to induce steroidogenesis-dependent neuroprotection. Biomed Pharmacother 2025; 183:117851. [PMID: 39837213 DOI: 10.1016/j.biopha.2025.117851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
Traumatic brain injury (TBI) constitutes a significant burden on global healthcare systems, especially affecting younger populations, where it is a leading cause of disability and mortality. Current treatments for TBI mainly focus on preventing further brain damage and controlling symptoms. However, despite these approaches, several clinical needs remain unmet. Revelations from single-cell RNA sequencing (scRNA-seq) performed to determine cell-type heterogeneity and gene expression changes in brain tissue indicated that brain trauma increases the expression of lysine-specific demethylase 1 (LSD1) and secretase 2 (BACE2). To capitalize on this finding, a medicinal chemistry campaign was conducted to pragmatically insert tranylcypromine, an LSD1 inhibitor, into a carefully designed BACE2 inhibitory template (BACE2-IN-1). Additionally, tranylcypromine was structurally modified to enhance the effects of LSD1 inhibition in TBI. As a result, a tractable neuroprotective agent, BACE2-IN-1/tranylcypromine-based compound 4, was identified, showing potential to maintain Neuro-2a cell survival by alleviating mitochondrial damage after oxidative stress. Compound 4 also restored TBI-mediated inhibition of the cholesterol biosynthetic pathway (mevalonate pathway) and damage of redox metabolism, increasing neuroprotective effects. Furthermore, behavioral assays, including nest-building and cognitive performance tests, demonstrated significant improvement in mice post-TBI following treatment with compound 4. Taken together, the outcomes of this study validate the favorable effects of inhibiting LSD1 and beta-secretase in mitigating mitochondrial stress and promoting neurometabolic recovery in TBI. These findings pave the way for the development of rationally designed inhibitors as promising neuroprotective agents, potentially addressing unmet clinical needs in TBI treatment.
Collapse
Affiliation(s)
| | - Ying-Ting Hsu
- Ph.D. Program in Medical Neuroscience, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan; Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Duc-Hieu Nguyen
- Ph.D. Program in Medical Neuroscience, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan
| | - Shiu-Hwa Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Ke-Chi Liou
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Jr-Jiun Liu
- Ph.D. Program in Medical Neuroscience, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| | - Jian-Ying Chuang
- Ph.D. Program in Medical Neuroscience, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan; International Master Program in Medical Neuroscience, Taipei Medical University, New Taipei City 23564, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 11031, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80780, Taiwan.
| |
Collapse
|
3
|
Almeida LM, Lima LP, Oliveira NAS, Silva RFO, Sousa B, Bessa J, Pinho BR, Oliveira JMA. Zebrafish as a model to study PERK function in developmental diseases: implications for Wolcott-Rallison syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589737. [PMID: 38659860 PMCID: PMC11042256 DOI: 10.1101/2024.04.16.589737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Developmental diseases are challenging to investigate due to their clinical heterogeneity and relatively low prevalence. The Wolcott-Rallison Syndrome (WRS) is a rare developmental disease characterized by skeletal dysplasia and permanent neonatal diabetes due to loss-of-function mutations in the endoplasmic reticulum stress kinase PERK (EIF2AK3). The lack of efficient and less invasive therapies for WRS highlights the need for new animal models that replicate the complex pathological phenotypes, while preserving scalability for drug screening. Zebrafish exhibits high fecundity and rapid development that facilitate efficient and scalable in vivo drug testing. Here, we aimed to assess the potential of zebrafish to study PERK function and its pharmacological modulation, and as model organism of developmental diseases such as the WRS. Using bioinformatic analyses, we showed high similarity between human and zebrafish PERK. We used the pharmacological PERK inhibitor GSK2606414, which was bioactive in zebrafish, to modulate PERK function. Using transgenic zebrafish expressing fluorescent pancreatic markers and a fluorescent glucose probe, we observed that PERK inhibition decreased β cell mass and disrupted glucose homeostasis. By combining behavioural and functional assays, we show that PERK-inhibited zebrafish present marked skeletal defects and defective growth, as well as neuromuscular and cardiac deficiencies, which are clinically relevant in WRS patients, while sparing parameters like otolith area and eye/body ratio which are not associated with WRS. These results show that zebrafish holds potential to study PERK function and its pharmacological modulation in developmental disorders like WRS, assisting research on their pathophysiology and experimental treatments.
Collapse
|
4
|
Toledano-Pinedo M, Porro-Pérez A, Schäker-Hübner L, Romero F, Dong M, Samadi A, Almendros P, Iriepa I, Bautista-Aguilera ÒM, Rodríguez-Fernández MM, Solana-Manrique C, Sanchis I, Mora-Morell A, Rodrìguez AC, Sànchez-Pérez AM, Knez D, Gobec S, Bellver-Sanchis A, Pérez B, Dobrydnev AV, Artetxe-Zurutuza A, Matheu A, Siwek A, Wolak M, Satała G, Bojarski AJ, Doroz-Płonka A, Handzlik J, Godyń J, Więckowska A, Paricio N, Griñán-Ferré C, Hansen FK, Marco-Contelles J. Contilisant+Tubastatin A Hybrids: Polyfunctionalized Indole Derivatives as New HDAC Inhibitor-Based Multitarget Small Molecules with In Vitro and In Vivo Activity in Neurodegenerative Diseases. J Med Chem 2024; 67:16533-16555. [PMID: 39256214 DOI: 10.1021/acs.jmedchem.4c01367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Herein, we describe the design, synthesis, and biological evaluation of 15 Contilisant+Tubastatin A hybrids. These ligands are polyfunctionalized indole derivatives developed by juxtaposing selected pharmacophoric moieties of Contilisant and Tubastatin A to act as multifunctional ligands. Compounds 3 and 4 were identified as potent HDAC6 inhibitors (IC50 = 0.012 μM and 0.035 μM, respectively), so they were further evaluated in Drosophila and human cell models of Parkinson's disease (PD). Both compounds attenuated PD-like phenotypes, such as motor defects, oxidative stress, and mitochondrial dysfunction in PD model flies. Ligands 3 and 4 were also studied in the transgenic Caenorhabditis elegans CL2006 model of Alzheimer's disease (AD). Both compounds were nontoxic, did not induce undesirable animal functional changes, inhibited age-related paralysis, and improved cognition in the thrashing assay. These results highlight 3 and 4 as novel multifunctional ligands that improve the features of PD and AD hallmarks in the respective animal models.
Collapse
Affiliation(s)
- Mireia Toledano-Pinedo
- Institute of General Organic Chemistry (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Alicia Porro-Pérez
- Institute of General Organic Chemistry (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Linda Schäker-Hübner
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Fernando Romero
- Institute of General Organic Chemistry (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Min Dong
- Institute of General Organic Chemistry (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Abdelouahid Samadi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain 15551, UAE
| | - Pedro Almendros
- Institute of General Organic Chemistry (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Isabel Iriepa
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), 28805 Alcalá de Henares, Madrid, Spain
- Grupo DISCOBAC, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 28805 Alcalá de Henares, Madrid, Spain
| | - Òscar M Bautista-Aguilera
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), 28805 Alcalá de Henares, Madrid, Spain
| | | | - Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Universidad Europea de Valencia, 46010 Valencia, Spain
| | - Inmaculada Sanchis
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Alba Mora-Morell
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | | | - Ana M Sànchez-Pérez
- Insitute of Advanced Materials, INAM, University of Jaume I, Castellón 12071, Spain
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Askerceva 7, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Askerceva 7, 1000 Ljubljana, Slovenia
| | - Aina Bellver-Sanchis
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona (NeuroUB), 08035 Barcelona, Spain
| | - Belén Pérez
- Department of Pharmacology, Therapeutic and Toxicology. Universitat Autònoma de Barcelona, E-08193 Barcelona, Spain
| | - Alexey V Dobrydnev
- Chemistry Department, Taras Shevchenko National University of Kyiv, Lva Tolstoho Street 12, Kyiv 01033, Ukraine
| | | | - Ander Matheu
- Cellular Oncology group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain
- CIBERfes, Carlos III Institute, 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | - Małgorzata Wolak
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | - Grzegorz Satała
- Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Agata Doroz-Płonka
- Department of Technology and Biotechnology of Drugs, Medical College, Jagiellonian University, 9 Medyczna St., 30-688 Krakow, Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Medical College, Jagiellonian University, 9 Medyczna St., 30-688 Krakow, Poland
| | - Justyna Godyń
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | - Anna Więckowska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona (NeuroUB), 08035 Barcelona, Spain
- Spanish Biomedical Research Center in Neurodegenerative Diseases (CIBERNED)-Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Finn K Hansen
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - José Marco-Contelles
- Institute of General Organic Chemistry (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
5
|
Zhang LY, Zhang SY, Wen R, Zhang TN, Yang N. Role of histone deacetylases and their inhibitors in neurological diseases. Pharmacol Res 2024; 208:107410. [PMID: 39276955 DOI: 10.1016/j.phrs.2024.107410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Histone deacetylases (HDACs) are zinc-dependent deacetylases that remove acetyl groups from lysine residues of histones or form protein complexes with other proteins for transcriptional repression, changing chromatin structure tightness, and inhibiting gene expression. Recent in vivo and in vitro studies have amply demonstrated the critical role of HDACs in the cell biology of the nervous system during both physiological and pathological processes and have provided new insights into the conduct of research on neurological disease targets. In addition, in vitro and in vivo studies on HDAC inhibitors show promise for the treatment of various diseases. This review summarizes the regulatory mechanisms of HDAC and the important role of its downstream targets in nervous system diseases, and summarizes the therapeutic mechanisms and efficacy of HDAC inhibitors in various nervous system diseases. Additionally, the current pharmacological situation, problems, and developmental prospects of HDAC inhibitors are described. A better understanding of the pathogenic mechanisms of HDACs in the nervous system may reveal new targets for therapeutic interventions in diseases and help to relieve healthcare pressure through preventive measures.
Collapse
Affiliation(s)
- Li-Ying Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Sen-Yu Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ri Wen
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Ni Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
6
|
Zhou C, Zhao D, Wu C, Wu Z, Zhang W, Chen S, Zhao X, Wu S. Role of histone deacetylase inhibitors in non-neoplastic diseases. Heliyon 2024; 10:e33997. [PMID: 39071622 PMCID: PMC11283006 DOI: 10.1016/j.heliyon.2024.e33997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Background Epigenetic dysregulation has been implicated in the development and progression of a variety of human diseases, but epigenetic changes are reversible, and epigenetic enzymes and regulatory proteins can be targeted using small molecules. Histone deacetylase inhibitors (HDACis), as a class of epigenetic drugs, are widely used to treat various cancers and other diseases involving abnormal gene expression. Results Specially, HDACis have emerged as a promising strategy to enhance the therapeutic effect of non-neoplastic conditions, including neurological disorders, cardiovascular diseases, renal diseases, autoimmune diseases, inflammatory diseases, infectious diseases and rare diseases, along with their related mechanisms. However, their clinical efficacy has been limited by drug resistance and toxicity. Conclusions To date, most clinical trials of HDAC inhibitors have been related to the treatment of cancer rather than the treatment of non-cancer diseases, for which experimental studies are gradually underway. Discussions regarding non-neoplastic diseases often concentrate on specific disease types. Therefore, this review highlights the development of HDACis and their potential therapeutic applications in non-neoplastic diseases, either as monotherapy or in combination with other drugs or therapies.
Collapse
Affiliation(s)
- Chunxiao Zhou
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Dengke Zhao
- Harbin Medical University, Harbin, 150000, China
| | - Chunyan Wu
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Zhimin Wu
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Wen Zhang
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Shilv Chen
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Xindong Zhao
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Shaoling Wu
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| |
Collapse
|
7
|
Wang X, Mao Y, Liang T, Li Z, Li X, Zhu X, Cao F, Zhang J. Nervonic acid suppresses MPTP-induced Parkinson's disease in an adult zebrafish model by regulating the MAPK/NF-κB signaling pathway, inflammation, apoptosis, and oxidative stress. FOOD BIOSCI 2024; 59:103777. [DOI: 10.1016/j.fbio.2024.103777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Oliveira NAS, Pinho BR, Pinto J, Guedes de Pinho P, Oliveira JMA. Edaravone counteracts redox and metabolic disruptions in an emerging zebrafish model of sporadic ALS. Free Radic Biol Med 2024; 217:126-140. [PMID: 38531462 DOI: 10.1016/j.freeradbiomed.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which the death of motor neurons leads to loss of muscle function. Additionally, cognitive and circadian disruptions are common in ALS patients, contributing to disease progression and burden. Most ALS cases are sporadic, and environmental exposures contribute to their aetiology. However, animal models of these sporadic ALS cases are scarce. The small vertebrate zebrafish is a leading organism to model neurodegenerative diseases; previous studies have proposed bisphenol A (BPA) or β-methylamino-l-alanine (BMAA) exposure to model sporadic ALS in zebrafish, damaging motor neurons and altering motor responses. Here we characterise the face and predictive validity of sporadic ALS models, showing their potential for the mechanistic study of ALS drugs. We phenotypically characterise the BPA and BMAA-induced models, going beyond motor activity and motor axon morphology, to include circadian, redox, proteostasis, and metabolomic phenotypes, and assessing their predictive validity for ALS modelling. BPA or BMAA exposure induced concentration-dependent activity impairments. Also, exposure to BPA but not BMAA induced motor axonopathy and circadian alterations in zebrafish larvae. Our further study of the BPA model revealed loss of habituation to repetitive startles, increased oxidative damage, endoplasmic reticulum (ER) stress, and metabolome abnormalities. The BPA-induced model shows predictive validity, since the approved ALS drug edaravone counteracted BPA-induced motor phenotypes, ER stress, and metabolic disruptions. Overall, BPA exposure is a promising model of ALS-related redox and ER imbalances, contributing to fulfil an unmet need for validated sporadic ALS models.
Collapse
Affiliation(s)
- Nuno A S Oliveira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Brígida R Pinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Faculty of Pharmacy, Laboratory of Toxicology, University of Porto, 4050-313, Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Faculty of Pharmacy, Laboratory of Toxicology, University of Porto, 4050-313, Porto, Portugal
| | - Jorge M A Oliveira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
9
|
Deng HW, Li BR, Zhou SD, Luo C, Lv BH, Dong ZM, Qin C, Hu RT. Revealing Novel Genes Related to Parkinson's Disease Pathogenesis and Establishing an associated Model. Neuroscience 2024; 544:64-74. [PMID: 38458535 DOI: 10.1016/j.neuroscience.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/10/2024]
Abstract
Parkinson's disease (PD) represents a multifaceted neurological disorder whose genetic underpinnings warrant comprehensive investigation. This study focuses on identifying genes integral to PD pathogenesis and evaluating their diagnostic potential. Initially, we screened for differentially expressed genes (DEGs) between PD and control brain tissues within a dataset comprising larger number of specimens. Subsequently, these DEGs were subjected to weighted gene co-expression network analysis (WGCNA) to discern relevant gene modules. Notably, the yellow module exhibited a significant correlation with PD pathogenesis. Hence, we conducted a detailed examination of the yellow module genes using a cytoscope-based approach to construct a protein-protein interaction (PPI) network, which facilitated the identification of central hub genes implicated in PD pathogenesis. Employing two machine learning techniques, including XGBoost and LASSO algorithms, along with logistic regression analysis, we refined our search to three pertinent hub genes: FOXO3, HIST2H2BE, and HDAC1, all of which demonstrated a substantial association with PD pathogenesis. To corroborate our findings, we analyzed two PD blood datasets and clinical plasma samples, confirming the elevated expression levels of these genes in PD patients. The association of the genes with PD, as reflected by the area under the curve (AUC) values for FOXO3, HIST2H2BE, and HDAC1, were moderate for each gene. Collectively, this research substantiates the heightened expression of FOXO3, HIST2H2BE, and HDAC1 in both PD brain and blood samples, underscoring their pivotal contribution to the pathogenesis of PD.
Collapse
Affiliation(s)
- Hao-Wei Deng
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Bin-Ru Li
- Department of Neurology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning 530001, China
| | - Shao-Dan Zhou
- Department of Neurology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning 530001, China
| | - Chun Luo
- Department of Neurology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning 530001, China
| | - Bing-Hua Lv
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zi-Mei Dong
- Department of Neurology, People's Hospital of Chuxiong, Yi Autonomous Prefecture, Chuxiong, Yunnan, China
| | - Chao Qin
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Rui-Ting Hu
- Department of Neurology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning 530001, China.
| |
Collapse
|
10
|
Basavarajappa BS, Subbanna S. Unlocking the epigenetic symphony: histone acetylation's impact on neurobehavioral change in neurodegenerative disorders. Epigenomics 2024; 16:331-358. [PMID: 38321930 PMCID: PMC10910622 DOI: 10.2217/epi-2023-0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Recent genomics and epigenetic advances have empowered the exploration of DNA/RNA methylation and histone modifications crucial for gene expression in response to stress, aging and disease. Interest in understanding neuronal plasticity's epigenetic mechanisms, influencing brain rewiring amid development, aging and neurodegenerative disorders, continues to grow. Histone acetylation dysregulation, a commonality in diverse brain disorders, has become a therapeutic focus. Histone acetyltransferases and histone deacetylases have emerged as promising targets for neurodegenerative disorder treatment. This review delves into histone acetylation regulation, potential therapies and future perspectives for disorders like Alzheimer's, Parkinson's and Huntington's. Exploring genetic-environmental interplay through models and studies reveals molecular changes, behavioral insights and early intervention possibilities targeting the epigenome in at-risk individuals.
Collapse
Affiliation(s)
- Balapal S Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, NY 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, NY 10032, USA
- Department of Psychiatry, New York University Langone Medical Center, NY 10016, USA
| | - Shivakumar Subbanna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
11
|
Ilyin NP, Petersen EV, Kolesnikova TO, Demin KA, Khatsko SL, Apuhtin KV, Kalueff AV. Developing Peripheral Biochemical Biomarkers of Brain Disorders: Insights from Zebrafish Models. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:377-391. [PMID: 38622104 DOI: 10.1134/s0006297924020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/09/2024] [Accepted: 02/13/2024] [Indexed: 04/17/2024]
Abstract
High prevalence of human brain disorders necessitates development of the reliable peripheral biomarkers as diagnostic and disease-monitoring tools. In addition to clinical studies, animal models markedly advance studying of non-brain abnormalities associated with brain pathogenesis. The zebrafish (Danio rerio) is becoming increasingly popular as an animal model organism in translational neuroscience. These fish share some practical advantages over mammalian models together with high genetic homology and evolutionarily conserved biochemical and neurobehavioral phenotypes, thus enabling large-scale modeling of human brain diseases. Here, we review mounting evidence on peripheral biomarkers of brain disorders in zebrafish models, focusing on altered biochemistry (lipids, carbohydrates, proteins, and other non-signal molecules, as well as metabolic reactions and activity of enzymes). Collectively, these data strongly support the utility of zebrafish (from a systems biology standpoint) to study peripheral manifestations of brain disorders, as well as highlight potential applications of biochemical biomarkers in zebrafish models to biomarker-based drug discovery and development.
Collapse
Affiliation(s)
- Nikita P Ilyin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
| | - Elena V Petersen
- Moscow Institute of Physics and Technology, Moscow, 115184, Russia.
| | - Tatyana O Kolesnikova
- Neuroscience Program, Sirius University of Science and Technology, Sochi, 354340, Russia.
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
- Moscow Institute of Physics and Technology, Moscow, 115184, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of the Russian Federation, St. Petersburg, 197341, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of the Russian Federation, Pesochny, 197758, Russia
| | | | - Kirill V Apuhtin
- Laboratory of Biopsychiatry, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia.
- Neuroscience Division, Sirius University of Science and Technology, Sirius Federal Territory, 354340, Russia
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of the Russian Federation, St. Petersburg, 197341, Russia
- Ural Federal University, Ekaterinburg, 620002, Russia
- Laboratory of Biopsychiatry, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia
| |
Collapse
|
12
|
Zhao J, He Y, Duan Y, Ma Y, Dong H, Zhang X, Fang R, Zhang Y, Yu M, Huang F. HDAC6 Deficiency Has Moderate Effects on Behaviors and Parkinson's Disease Pathology in Mice. Int J Mol Sci 2023; 24:9975. [PMID: 37373121 DOI: 10.3390/ijms24129975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Histone deacetylase 6 (HDAC6) is involved in the regulation of protein aggregation and neuroinflammation, but its role in Parkinson's disease (PD) remains controversial. In this study, Hdac6-/- mice were generated by CRISPR-Cas9 technology for exploring the effect of HDAC6 on the pathological progression of PD. We found that male Hdac6-/- mice exhibit hyperactivity and certain anxiety. In the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice, though motor injury was slightly alleviated by HDAC6 deficiency, dopamine (DA) depletion in the striatum, the decrease in the number of DA neurons in the substantia nigra (SN) and the reduction in DA neuronal terminals were not affected. In addition, activation of glial cells and the expression of α-synuclein, as well as the levels of apoptosis-related proteins in the nigrostriatal pathway, were not changed in MPTP-injected wild-type and Hdac6-/- mice. Therefore, HDAC6 deficiency leads to moderate alterations of behaviors and Parkinson's disease pathology in mice.
Collapse
Affiliation(s)
- Jiayin Zhao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yongtao He
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yufei Duan
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yuanyuan Ma
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Hongtian Dong
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Xiaoshuang Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Rong Fang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yunhe Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Mei Yu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Fang Huang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
13
|
Brembati V, Faustini G, Longhena F, Bellucci A. Alpha synuclein post translational modifications: potential targets for Parkinson's disease therapy? Front Mol Neurosci 2023; 16:1197853. [PMID: 37305556 PMCID: PMC10248004 DOI: 10.3389/fnmol.2023.1197853] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative disorder with motor symptoms. The neuropathological alterations characterizing the brain of patients with PD include the loss of dopaminergic neurons of the nigrostriatal system and the presence of Lewy bodies (LB), intraneuronal inclusions that are mainly composed of alpha-synuclein (α-Syn) fibrils. The accumulation of α-Syn in insoluble aggregates is a main neuropathological feature in PD and in other neurodegenerative diseases, including LB dementia (LBD) and multiple system atrophy (MSA), which are therefore defined as synucleinopathies. Compelling evidence supports that α-Syn post translational modifications (PTMs) such as phosphorylation, nitration, acetylation, O-GlcNAcylation, glycation, SUMOylation, ubiquitination and C-terminal cleavage, play important roles in the modulation α-Syn aggregation, solubility, turnover and membrane binding. In particular, PTMs can impact on α-Syn conformational state, thus supporting that their modulation can in turn affect α-Syn aggregation and its ability to seed further soluble α-Syn fibrillation. This review focuses on the importance of α-Syn PTMs in PD pathophysiology but also aims at highlighting their general relevance as possible biomarkers and, more importantly, as innovative therapeutic targets for synucleinopathies. In addition, we call attention to the multiple challenges that we still need to face to enable the development of novel therapeutic approaches modulating α-Syn PTMs.
Collapse
Affiliation(s)
| | | | | | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
14
|
Briñez-Gallego P, da Costa Silva DG, Cordeiro MF, Horn AP, Hort MA. Experimental models of chemically induced Parkinson's disease in zebrafish at the embryonic larval stage: a systematic review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:201-237. [PMID: 36859813 DOI: 10.1080/10937404.2023.2182390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra that results in a decrease in dopamine levels, resulting in motor-type disturbances. Different vertebrate models, such as rodents and fish, have been used to study PD. In recent decades, Danio rerio (zebrafish) has emerged as a potential model for the investigation of neurodegenerative diseases due to its homology to the nervous system of humans. In this context, this systematic review aimed to identify publications that reported the utilization of neurotoxins as an experimental model of parkinsonism in zebrafish embryos and larvae. Ultimately, 56 articles were identified by searching three databases (PubMed, Web of Science, and Google Scholar). Seventeen studies using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 4 1-methyl-4-phenylpyridinium (MPP+), 24 6-hydroxydopamine (6-OHDA), 6 paraquat/diquat, 2 rotenone, and 6 articles using other types of unusual neurotoxins to induce PD were selected. Neurobehavioral function, such as motor activity, dopaminergic neuron markers, oxidative stress biomarkers, and other relevant parameters in the zebrafish embryo-larval model were examined. In summary, this review provides information to help researchers determine which chemical model is suitable to study experimental parkinsonism, according to the effects induced by neurotoxins in zebrafish embryos and larvae.
Collapse
Affiliation(s)
- Paola Briñez-Gallego
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Dennis Guilherme da Costa Silva
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Marcos Freitas Cordeiro
- Programa de Pós-graduação em Biociências e Saúde, Universidade do Oeste de Santa Catarina - UNOESC, Joaçaba, SC, Brasil
| | - Ana Paula Horn
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Mariana Appel Hort
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| |
Collapse
|
15
|
Yan Z, Chen Y, Zhang X, Lu G. The metabolites could not be ignored: A comparative study of the metabolite norfluoxetine with its parent fluoxetine on zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106467. [PMID: 36870174 DOI: 10.1016/j.aquatox.2023.106467] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The ubiquitous pharmaceuticals in aquatic environments have attracted huge attention due to their significant risks to humans and ecosystems. However, even though the knowledge of the negative effects induced by the parent pharmaceuticals is quite extensive, little is known about their metabolites for a long time. This study provides systematical knowledge about the potential toxicity of metabolite norfluoxetine and its parent fluoxetine on zebrafish (Danio rerio) at the early life stage. The results showed that the metabolite norfluoxetine had similar acute toxicity in fish with the parent fluoxetine. For the altered fish development, there was no significant difference in most cases between the two pharmaceuticals. Compared to the control, the metabolite markedly inhibited the locomotor behavior under light-to-dark transitions, which was comparable to the parent. Norfluoxetine could easily accumulate but hardly eliminate from fish, relative to fluoxetine. In addition, the accumulated fluoxetine in zebrafish may rapidly metabolize to norfluoxetine and then be eliminated through different metabolic pathways. The functional genes related to serotonergic process (5-ht1aa, 5-ht2c, slc6a4b, and vmat), early growth (egr4), and circadian rhythm (per2) were downregulated by both the norfluoxetine and fluoxetine, indicative of the same mode-of-action of norfluoxetine with its parent in these functions. Meanwhile, the alterations caused by norfluoxetine were more pronounced than that of fluoxetine in the genes of 5-ht2c, slc6a4b, vmat, and per2. The molecular docking also confirmed that norfluoxetine could bind with serotonin transporter protein in the same as fluoxetine with a lower binding free energy. Overall, the metabolite norfluoxetine could induce similar and even more toxic effects on zebrafish with the same mode of action. The different and binding energy of the metabolite norfluoxetine and its parent fluoxetine on zebrafish may be responsible for the differentiated effects. It highlights the risks of the metabolite norfluoxetine in the aquatic environment could not be ignored.
Collapse
Affiliation(s)
- Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yufang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xiadong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
16
|
Oliveira NAS, Pinho BR, Oliveira JMA. Swimming against ALS: How to model disease in zebrafish for pathophysiological and behavioral studies. Neurosci Biobehav Rev 2023; 148:105138. [PMID: 36933816 DOI: 10.1016/j.neubiorev.2023.105138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that leads to progressive disability and motor impairment. Existing therapies provide modest improvements in patient survival, raising a need for new treatments for ALS. Zebrafish is a promising model animal for translational and fundamental research in ALS - it is an experimentally tractable vertebrate, with high homology to humans and an ample experimental toolbox. These advantages allow high-throughput study of behavioral and pathophysiological phenotypes. The last decade saw an increased interest in modelling ALS in zebrafish, leading to the current abundance and variety of available methods and models. Additionally, the rise of gene editing techniques and toxin combination studies has created novel opportunities for ALS studies in zebrafish. In this review, we address the relevance of zebrafish as a model animal for ALS studies, the strategies for model induction and key phenotypical evaluation. Furthermore, we discuss established and emerging zebrafish models of ALS, analyzing their validity, including their potential for drug testing, and highlighting research opportunities in this area.
Collapse
Affiliation(s)
- Nuno A S Oliveira
- UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313 Porto, Portugal
| | - Brígida R Pinho
- UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313 Porto, Portugal
| | - Jorge M A Oliveira
- UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
17
|
Ptacek J, Snajdr I, Schimer J, Kutil Z, Mikesova J, Baranova P, Havlinova B, Tueckmantel W, Majer P, Kozikowski A, Barinka C. Selectivity of Hydroxamate- and Difluoromethyloxadiazole-Based Inhibitors of Histone Deacetylase 6 In Vitro and in Cells. Int J Mol Sci 2023; 24:4720. [PMID: 36902164 PMCID: PMC10003107 DOI: 10.3390/ijms24054720] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family of enzymes due to its complex domain organization and cytosolic localization. Experimental data point toward the therapeutic use of HDAC6-selective inhibitors (HDAC6is) for use in both neurological and psychiatric disorders. In this article, we provide side-by-side comparisons of hydroxamate-based HDAC6is frequently used in the field and a novel HDAC6 inhibitor containing the difluoromethyl-1,3,4-oxadiazole function as an alternative zinc-binding group (compound 7). In vitro isotype selectivity screening uncovered HDAC10 as a primary off-target for the hydroxamate-based HDAC6is, while compound 7 features exquisite 10,000-fold selectivity over all other HDAC isoforms. Complementary cell-based assays using tubulin acetylation as a surrogate readout revealed approximately 100-fold lower apparent potency for all compounds. Finally, the limited selectivity of a number of these HDAC6is is shown to be linked to cytotoxicity in RPMI-8226 cells. Our results clearly show that off-target effects of HDAC6is must be considered before attributing observed physiological readouts solely to HDAC6 inhibition. Moreover, given their unparalleled specificity, the oxadiazole-based inhibitors would best be employed either as research tools in further probing HDAC6 biology or as leads in the development of truly HDAC6-specific compounds in the treatment of human disease states.
Collapse
Affiliation(s)
- Jakub Ptacek
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Ivan Snajdr
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Jiri Schimer
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Zsofia Kutil
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Jana Mikesova
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Petra Baranova
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Barbora Havlinova
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Werner Tueckmantel
- StarWise Therapeutics LLC, University Research Park, Inc., Madison, WI 53719, USA
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Alan Kozikowski
- StarWise Therapeutics LLC, University Research Park, Inc., Madison, WI 53719, USA
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Cyril Barinka
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| |
Collapse
|
18
|
Sixto-López Y, Gómez-Vidal JA, de Pedro N, Bello M, Rosales-Hernández MC, Correa-Basurto J. In silico design of HDAC6 inhibitors with neuroprotective effects. J Biomol Struct Dyn 2022; 40:14204-14222. [PMID: 34784487 DOI: 10.1080/07391102.2021.2001378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
HDAC6 has emerged as a molecular target to treat neurodegenerative disorders, due to its participation in protein aggregate degradation, oxidative stress process, mitochondrial transport, and axonal transport. Thus, in this work we have designed a set of 485 compounds with hydroxamic and bulky-hydrophobic moieties that may function as HDAC6 inhibitors with a neuroprotective effect. These compounds were filtered by their predicted ADMET properties and their affinity to HDAC6 demonstrated by molecular docking and molecular dynamics simulations. The combination of in silico with in vitro neuroprotective results allowed the identification of a lead compound (FH-27) which shows neuroprotective effect that could be due to HDAC6 inhibition. Further, FH-27 chemical moiety was used to design a second series of compounds improving the neuroprotective effect from 2- to 10-fold higher (YSL-99, YSL-109, YSL-112, YSL-116 and YSL-121; 1.25 ± 0.67, 1.82 ± 1.06, 7.52 ± 1.78, 5.59 and 5.62 ± 0.31 µM, respectively). In addition, the R enantiomer of FH-27 (YSL-106) was synthesized, showing a better neuroprotective effect (1.27 ± 0.60 µM). In conclusion, we accomplish the in silico design, synthesis, and biological evaluation of hydroxamic acid derivatives with neuroprotective effect as suggested by an in vitro model. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yudibeth Sixto-López
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de fármacos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico.,Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - José Antonio Gómez-Vidal
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - Nuria de Pedro
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Martiniano Bello
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de fármacos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - José Correa-Basurto
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de fármacos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
19
|
Silva RFO, Pinho BR, Santos MM, Oliveira JMA. Disruptions of circadian rhythms, sleep, and stress responses in zebrafish: New infrared-based activity monitoring assays for toxicity assessment. CHEMOSPHERE 2022; 305:135449. [PMID: 35750227 DOI: 10.1016/j.chemosphere.2022.135449] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/29/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Behavioural disruptions are sensitive indicators of alterations to normal animal physiology and can be used for toxicity assessment. The small vertebrate zebrafish is a leading model organism for toxicological studies. The ability to continuously monitor the toxicity of drugs, pollutants, or environmental changes over several days in zebrafish can have high practical application. Although video-recordings can be used to monitor short-term zebrafish behaviour, it is challenging to videorecord prolonged experiments (e.g. circadian behaviour over several days) because of the darkness periods (nights) and the heavy data storage and image processing requirements. Alternatively, infrared-based activity monitors, widely used in invertebrate models such as drosophila, generate simple and low-storage data and could optimize large-scale prolonged behavioural experiments in zebrafish, thus favouring the implementation of high-throughput testing strategies. Here, we validate the use of a Locomotor Activity Monitor (LAM) to study the behaviour of zebrafish larvae, and we characterize the behavioural phenotypes induced by abnormal light conditions and by the Parkinsonian toxin MPP+. When zebrafish were deprived from daily light-cycle synchronization, the LAM detected various circadian disruptions, such as increased activity period, phase shifts, and decreased inter-daily stability. Zebrafish exposed to MPP+ (10, 100, 500 μM) showed a concentration-dependent decrease in activity, sleep disruptions, impaired habituation to repetitive startles (visual-motor responses), and a slower recovery to normal activity after the startle-associated stress. These phenotypes evidence the feasibility of using infrared-based LAM to assess multi-parameter behavioural disruptions in zebrafish. The procedures in this study have wide applicability and may yield standard methods for toxicity testing.
Collapse
Affiliation(s)
- Rui F O Silva
- UCIBIO-REQUIMTE - Applied Molecular Biosciences Unit, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, Portugal
| | - Brígida R Pinho
- UCIBIO-REQUIMTE - Applied Molecular Biosciences Unit, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, Portugal
| | - Miguel M Santos
- CIMAR/CIIMAR - LA - Interdisciplinary Centre of Marine and Environmental Research, Group of Endocrine Disruptors and Emerging Contaminants and FCUP- Dep. Biology, Faculty of Sciences, University of Porto, Portugal
| | - Jorge M A Oliveira
- UCIBIO-REQUIMTE - Applied Molecular Biosciences Unit, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, Portugal.
| |
Collapse
|
20
|
Li Y, Gu Z, Lin S, Chen L, Dzreyan V, Eid M, Demyanenko S, He B. Histone Deacetylases as Epigenetic Targets for Treating Parkinson's Disease. Brain Sci 2022; 12:672. [PMID: 35625059 PMCID: PMC9140162 DOI: 10.3390/brainsci12050672] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative disease that is increasingly becoming a global threat to the health and life of the elderly worldwide. Although there are some drugs clinically available for treating PD, these treatments can only alleviate the symptoms of PD patients but cannot completely cure the disease. Therefore, exploring other potential mechanisms to develop more effective treatments that can modify the course of PD is still highly desirable. Over the last two decades, histone deacetylases, as an important group of epigenetic targets, have attracted much attention in drug discovery. This review focused on the current knowledge about histone deacetylases involved in PD pathophysiology and their inhibitors used in PD studies. Further perspectives related to small molecules that can inhibit or degrade histone deacetylases to treat PD were also discussed.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (Y.L.); (Z.G.); (S.L.); (L.C.)
| | - Zhicheng Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (Y.L.); (Z.G.); (S.L.); (L.C.)
| | - Shuxian Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (Y.L.); (Z.G.); (S.L.); (L.C.)
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (Y.L.); (Z.G.); (S.L.); (L.C.)
| | - Valentina Dzreyan
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave. 194/1, 344090 Rostov-on-Don, Russia; (V.D.); (M.E.)
| | - Moez Eid
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave. 194/1, 344090 Rostov-on-Don, Russia; (V.D.); (M.E.)
| | - Svetlana Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave. 194/1, 344090 Rostov-on-Don, Russia; (V.D.); (M.E.)
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (Y.L.); (Z.G.); (S.L.); (L.C.)
| |
Collapse
|
21
|
Mazzocchi M, Goulding SR, Morales-Prieto N, Foley T, Collins LM, Sullivan AM, O'Keeffe GW. Peripheral administration of the Class-IIa HDAC inhibitor MC1568 partially protects against nigrostriatal neurodegeneration in the striatal 6-OHDA rat model of Parkinson's disease. Brain Behav Immun 2022; 102:151-160. [PMID: 35217173 DOI: 10.1016/j.bbi.2022.02.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/03/2022] [Accepted: 02/19/2022] [Indexed: 01/12/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterised by nigrostriatal dopaminergic (DA) neurodegeneration. There is a critical need for neuroprotective therapies, particularly those that do not require direct intracranial administration. Small molecule inhibitors of histone deacetylases (HDIs) are neuroprotective in in vitro and in vivo models of PD, however it is unknown whether Class IIa-specific HDIs are neuroprotective when administered peripherally. Here we show that 6-hydroxydopamine (6-OHDA) treatment induces protein kinase C (PKC)-dependent nuclear accumulation of the Class IIa histone deacetylase (HDAC)5 in SH-SY5Y cells and cultured DA neurons in vitro. Treatment of these cultures with the Class IIa-specific HDI, MC1568, partially protected against 6-OHDA-induced cell death. In the intrastriatal 6-OHDA lesion in vivo rat model of PD, MC1568 treatment (0.5 mg/kg i.p.) for 7 days reduced forelimb akinesia and partially protected DA neurons in the substantia nigra and their striatal terminals from 6-OHDA-induced neurodegeneration. MC1568 treatment prevented 6-OHDA-induced increases in microglial activation in the striatum and substantia nigra. Furthermore, MC1568 treatment decreased 6-OHDA-induced increases in nuclear HDAC5 in nigral DA neurons. These data suggest that peripheral administration of Class IIa-specific HDIs may be a potential therapy for neuroprotective in PD.
Collapse
Affiliation(s)
- Martina Mazzocchi
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Susan R Goulding
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | | | - Tara Foley
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Louise M Collins
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; Department of Physiology, UCC, Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; APC Microbiome Ireland, UCC, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; APC Microbiome Ireland, UCC, Cork, Ireland.
| |
Collapse
|
22
|
Yan J, Zhang P, Tan J, Li M, Xu X, Shao X, Fang F, Zou Z, Zhou Y, Tian B. Cdk5 phosphorylation-induced SIRT2 nuclear translocation promotes the death of dopaminergic neurons in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:46. [PMID: 35443760 PMCID: PMC9021196 DOI: 10.1038/s41531-022-00311-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/28/2022] [Indexed: 12/17/2022] Open
Abstract
NAD-dependent protein deacetylase Sirtuin 2 (SIRT2), which regulates several cellular pathways by deacetylating multiple substrates, has been extensively studied in the context of Parkinson’s disease (PD). Although several studies based on the MPTP model of PD show that SIRT2 deletion can protect against dopaminergic neuron loss, the precise mechanisms of SIRT2-mediated neuronal death have largely remained unknown. Here, we show that SIRT2 knockout can effectively ameliorate anomalous behavioral phenotypes in transgenic mouse models of PD. Importantly, in both cellular and animal models of PD, it was observed that SIRT2 translocates from the cytoplasm to the nucleus. Further, the nuclear translocation of SIRT2 promotes neuronal death. Moreover, the cyclin-dependent kinase 5 (Cdk5)-mediated phosphorylation of SIRT2 at the Ser331 and Ser335 sites appears to be necessary for such nuclear translocation. Taken together, the results provide insights into the mechanisms involved in the regulation of neuronal death during PD progression via the Cdk5-dependent nuclear–cytoplasmic shuttling of SIRT2.
Collapse
Affiliation(s)
- Jianguo Yan
- Department of Physiology, Faculty of Basic Medical Science, Guilin Medical University, 1 Zhiyuan Road, Guilin, Guangxi Province, 541199, P. R. China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, 1 Zhiyuan Road, Guilin, Guangxi Province, 541199, P. R. China
| | - Pei Zhang
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei Province, 430030, P. R. China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, 1 Zhiyuan Road, Guilin, Guangxi Province, 541199, P. R. China
| | - Mao Li
- Department of Physiology, Faculty of Basic Medical Science, Guilin Medical University, 1 Zhiyuan Road, Guilin, Guangxi Province, 541199, P. R. China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, 1 Zhiyuan Road, Guilin, Guangxi Province, 541199, P. R. China
| | - Xingfeng Xu
- Department of Physiology, Faculty of Basic Medical Science, Guilin Medical University, 1 Zhiyuan Road, Guilin, Guangxi Province, 541199, P. R. China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, 1 Zhiyuan Road, Guilin, Guangxi Province, 541199, P. R. China
| | - Xiaoyun Shao
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, 1 Zhiyuan Road, Guilin, Guangxi Province, 541199, P. R. China
| | - Fang Fang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, 1 Zhiyuan Road, Guilin, Guangxi Province, 541199, P. R. China
| | - Zhenyou Zou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, 1 Zhiyuan Road, Guilin, Guangxi Province, 541199, P. R. China
| | - Yali Zhou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, 1 Zhiyuan Road, Guilin, Guangxi Province, 541199, P. R. China. .,Department of Microbiology, Faculty of Basic Medical Science, Guilin Medical University, 1 Zhiyuan Road, Guilin, Guangxi Province, 541199, P. R. China.
| | - Bo Tian
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei Province, 430030, P. R. China.
| |
Collapse
|
23
|
von Hellfeld R, Pannetier P, Braunbeck T. Specificity of time- and dose-dependent morphological endpoints in the fish embryo acute toxicity (FET) test for substances with diverse modes of action: the search for a "fingerprint". ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16176-16192. [PMID: 34643865 PMCID: PMC8827326 DOI: 10.1007/s11356-021-16354-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The fish embryo acute toxicity (FET) test with the zebrafish (Danio rerio) embryo according to OECD TG 236 was originally developed as an alternative test method for acute fish toxicity testing according to, e.g., OECD TG 203. Given the versatility of the protocol, however, the FET test has found application beyond acute toxicity testing as a common tool in environmental hazard and risk assessment. Whereas the standard OECD guideline is restricted to four core endpoints (coagulation as well as lack of somite formation, heartbeat, and tail detachment) for simple, rapid assessment of acute toxicity, further endpoints can easily be integrated into the FET test protocol. This has led to the hypothesis that an extended FET test might allow for the identification of different classes of toxicants via a "fingerprint" of morphological observations. To test this hypothesis, the present study investigated a set of 18 compounds with highly diverse modes of action with respect to acute and sublethal endpoints. Especially at higher concentrations, most observations proved toxicant-unspecific. With decreasing concentrations, however, observations declined in number, but gained in specificity. Specific observations may at best be made at test concentrations ≤ EC10. The existence of a "fingerprint" based on morphological observations in the FET is, therefore, highly unlikely in the range of acute toxicity, but cannot be excluded for experiments at sublethal concentrations.
Collapse
Affiliation(s)
- Rebecca von Hellfeld
- Center for Organismal Studies, Aquatic Ecology and Toxicology Section, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
- University of Aberdeen, Institute of Biological and Environmental Science, 23 St Machar Drive, AB24 3UU, Aberdeen, UK.
| | - Pauline Pannetier
- Center for Organismal Studies, Aquatic Ecology and Toxicology Section, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Thomas Braunbeck
- Center for Organismal Studies, Aquatic Ecology and Toxicology Section, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| |
Collapse
|
24
|
El-Saiy KA, Sayed RH, El-Sahar AE, Kandil EA. Modulation of histone deacetylase, the ubiquitin proteasome system, and autophagy underlies the neuroprotective effects of venlafaxine in a rotenone-induced Parkinson's disease model in rats. Chem Biol Interact 2022; 354:109841. [PMID: 35104487 DOI: 10.1016/j.cbi.2022.109841] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by motor and non-motor symptoms. Impairment of the ubiquitin proteasome system (UPS) and autophagy has been suggested to contribute to α-synuclein accumulation, which is identified as the pathological hallmark of PD. Recently, alteration in histone-3 acetylation has also been found to be correlated to PD. Interestingly, the histone deacetylase 6 (HDAC6) enzyme, which regulates the acetylation of histone-3, was shown to be involved in autophagy. Venlafaxine is an antidepressant that was proposed to inhibit HDAC expression in depressive rats' hippocampi. In this study, we aimed to examine the ability of venlafaxine to inhibit striatal HDAC6 and to enhance α-synuclein clearance through the activation of the UPS and autophagy, in addition to treating depression, which is the most debilitating non-motor symptom, in a rotenone model of PD. Venlafaxine administration was noted to decrease α-synuclein accumulation and preserve dopaminergic neurons along with restoration of striatal dopamine levels and motor recovery. Its administration augmented the UPS and autophagic markers (beclin-1, p62, and LC3) with consequent modulation of apoptotic indicators (Bax/Bcl-2 ratio, cytochrome c, and caspase-3). Additionally, venlafaxine inhibited HDAC6 with further enhancement of autophagy and restoration of histone-3 acetylation with subsequent increases in survival gene expressions (Bcl-2 and brain-derived neurotrophic factor). Chloroquine (autophagy inhibitor) was used to indicate the proposed pathway. Moreover, venlafaxine hampered depressive symptoms and improved hippocampal noradrenaline and serotonin levels. Collectively, venlafaxine is suggested to display neuroprotective effects with improvement of motor and non-motor PD symptoms.
Collapse
Affiliation(s)
- Khalid A El-Saiy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
25
|
An Overview of Zebrafish Modeling Methods in Drug Discovery and Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1387:145-169. [PMID: 34961915 DOI: 10.1007/5584_2021_684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Animal studies are recognized as a significant step forward in the bridging between drug discovery and clinical applications. Animal models, due to their relative genetic, molecular, physiological, and even anatomical similarities to humans, can provide a suitable platform for unraveling the mechanisms underlying human diseases and discovering new therapeutic approaches as well. Recently, zebrafish has attracted attention as a valuable experimental and pharmacological model in drug discovery and development studies due to its prominent characteristics such as the high degree of genetic similarity with humans, genetic manipulability, and prominent clinical features. Since advancing a theory to a valid and reliable observation requires the manipulation of animals, it is, therefore, essential to use efficient modeling methods appropriate to the different aspects of experimental conditions. In this context, applying several various approaches such as using chemicals, pathogens, and genetic manipulation approaches allows zebrafish development into a preferable model that mimics some human disease pathophysiology. Thus, such modeling approaches not only can provide a framework for a comprehensive understanding of the human disease mechanisms that have a counterpart in zebrafish but also can pave the way for discovering new drugs that are accompanied by higher amelioration effects on different human diseases.
Collapse
|
26
|
Baltan S, Sandau US, Brunet S, Bastian C, Tripathi A, Nguyen H, Liu H, Saugstad JA, Zarnegarnia Y, Dutta R. Identification of miRNAs That Mediate Protective Functions of Anti-Cancer Drugs During White Matter Ischemic Injury. ASN Neuro 2021; 13:17590914211042220. [PMID: 34619990 PMCID: PMC8642107 DOI: 10.1177/17590914211042220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have previously shown that two anti-cancer drugs, CX-4945 and MS-275, protect and preserve white matter (WM) architecture and improve functional recovery in a model of WM ischemic injury. While both compounds promote recovery, CX-4945 is a selective Casein kinase 2 (CK2) inhibitor and MS-275 is a selective Class I histone deacetylase (HDAC) inhibitor. Alterations in microRNAs (miRNAs) mediate some of the protective actions of these drugs. In this study, we aimed to (1) identify miRNAs expressed in mouse optic nerves (MONs); (2) determine which miRNAs are regulated by oxygen glucose deprivation (OGD); and (3) determine the effects of CX-4945 and MS-275 treatment on miRNA expression. RNA isolated from MONs from control and OGD-treated animals with and without CX-4945 or MS-275 treatment were quantified using NanoString nCounter® miRNA expression profiling. Comparative analysis of experimental groups revealed that 12 miRNAs were expressed at high levels in MONs. OGD upregulated five miRNAs (miR-1959, miR-501-3p, miR-146b, miR-201, and miR-335-3p) and downregulated two miRNAs (miR-1937a and miR-1937b) compared to controls. OGD with CX-4945 upregulated miR-1937a and miR-1937b, and downregulated miR-501-3p, miR-200a, miR-1959, and miR-654-3p compared to OGD alone. OGD with MS-275 upregulated miR-2134, miR-2141, miR-2133, miR-34b-5p, miR-153, miR-487b, miR-376b, and downregulated miR-717, miR-190, miR-27a, miR-1959, miR-200a, miR-501-3p, and miR-200c compared to OGD alone. Interestingly, miR-501-3p and miR-1959 were the only miRNAs upregulated by OGD, and downregulated by OGD plus CX-4945 and MS-275. Therefore, we suggest that protective functions of CX-4945 or MS-275 against WM injury maybe mediated, in part, through miRNA expression.
Collapse
Affiliation(s)
- Selva Baltan
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Selva Baltan, Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Mackenzie Hall 2140A, L459, 3181 S.W. Sam Jackson Park Rd., Portland, OR 97239, USA.
| | - Ursula S. Sandau
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sylvain Brunet
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Chinthasagar Bastian
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Ajai Tripathi
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Hung Nguyen
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Helen Liu
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Julie A. Saugstad
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yalda Zarnegarnia
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ranjan Dutta
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
27
|
Shadrina M, Slominsky P. Modeling Parkinson's Disease: Not Only Rodents? Front Aging Neurosci 2021; 13:695718. [PMID: 34421573 PMCID: PMC8377290 DOI: 10.3389/fnagi.2021.695718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/29/2021] [Indexed: 01/12/2023] Open
Abstract
Parkinson’s disease (PD) is a common chronic progressive multifactorial neurodegenerative disease. In most cases, PD develops as a sporadic idiopathic disease. However, in 10%–15% of all patients, Mendelian inheritance of the disease is observed in an autosomal dominant or autosomal recessive manner. To date, mutations in seven genes have been convincingly confirmed as causative in typical familial forms of PD, i.e., SNCA, LRRK2, VPS35, PRKN, PINK1, GBA, and DJ-1. Family and genome-wide association studies have also identified a number of candidate disease genes and a common genetic variability at 90 loci has been linked to risk for PD. The analysis of the biological function of both proven and candidate genes made it possible to conclude that mitochondrial dysfunction, lysosomal dysfunction, impaired exosomal transport, and immunological processes can play important roles in the development of the pathological process of PD. The mechanisms of initiation of the pathological process and its earliest stages remain unclear. The study of the early stages of the disease (before the first motor symptoms appear) is extremely complicated by the long preclinical period. In addition, at present, the possibility of performing complex biochemical and molecular biological studies familial forms of PD is limited. However, in this case, the analysis of the state of the central nervous system can only be assessed by indirect signs, such as the level of metabolites in the cerebrospinal fluid, peripheral blood, and other biological fluids. One of the potential solutions to this problem is the analysis of disease models, in which it is possible to conduct a detailed in-depth study of all aspects of the pathological process, starting from its earliest stages. Many modeling options are available currently. An analysis of studies published in the 2000s suggests that toxic models in rodents are used in the vast majority of cases. However, interesting and important data for understanding the pathogenesis of PD can be obtained from other in vivo models. Within the framework of this review, we will consider various models of PD that were created using various living organisms, from unicellular yeast (Saccharomyces cerevisiae) and invertebrate (Nematode and Drosophila) forms to various mammalian species.
Collapse
Affiliation(s)
- Maria Shadrina
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Petr Slominsky
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
28
|
Łysyganicz PK, Pooranachandran N, Liu X, Adamson KI, Zielonka K, Elworthy S, van Eeden FJ, Grierson AJ, Malicki JJ. Loss of Deacetylation Enzymes Hdac6 and Sirt2 Promotes Acetylation of Cytoplasmic Tubulin, but Suppresses Axonemal Acetylation in Zebrafish Cilia. Front Cell Dev Biol 2021; 9:676214. [PMID: 34268305 PMCID: PMC8276265 DOI: 10.3389/fcell.2021.676214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/13/2021] [Indexed: 01/26/2023] Open
Abstract
Cilia are evolutionarily highly conserved organelles with important functions in many organs. The extracellular component of the cilium protruding from the plasma membrane comprises an axoneme composed of microtubule doublets, arranged in a 9 + 0 conformation in primary cilia or 9 + 2 in motile cilia. These microtubules facilitate transport of intraflagellar cargoes along the axoneme. They also provide structural stability to the cilium, which may play an important role in sensory cilia, where signals are received from the movement of extracellular fluid. Post-translational modification of microtubules in cilia is a well-studied phenomenon, and acetylation on lysine 40 (K40) of alpha tubulin is prominent in cilia. It is believed that this modification contributes to the stabilization of cilia. Two classes of enzymes, histone acetyltransferases and histone deacetylases, mediate regulation of tubulin acetylation. Here we use a genetic approach, immunocytochemistry and behavioral tests to investigate the function of tubulin deacetylases in cilia in a zebrafish model. By mutating three histone deacetylase genes (Sirt2, Hdac6, and Hdac10), we identify an unforeseen role for Hdac6 and Sirt2 in cilia. As expected, mutation of these genes leads to increased acetylation of cytoplasmic tubulin, however, surprisingly it caused decreased tubulin acetylation in cilia in the developing eye, ear, brain and kidney. Cilia in the ear and eye showed elevated levels of mono-glycylated tubulin suggesting a compensatory mechanism. These changes did not affect the length or morphology of cilia, however, functional defects in balance was observed, suggesting that the level of tubulin acetylation may affect function of the cilium.
Collapse
Affiliation(s)
- Paweł K Łysyganicz
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | | | - Xinming Liu
- The School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Kathryn I Adamson
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Katarzyna Zielonka
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Stone Elworthy
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Fredericus J van Eeden
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Andrew J Grierson
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Jarema J Malicki
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
29
|
Li Z, Cao P, Meng H, Li D, Zhang Y, Li Y, Wang S. Long-term exposure to 2-amino-3-methylimidazo[4,5-f]quinoline can trigger a potential risk of Parkinson's disease. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125230. [PMID: 33548786 DOI: 10.1016/j.jhazmat.2021.125230] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Humans are exposed to heterocyclic amines (HCAs) from a wide range of sources, such as protein-rich thermally processed foods, cigarette smoke, contaminated river water, the atmosphere, soil, and forest fire ash. Although the carcinogenic and mutagenic hazards of HCAs have been widely studied, the potential neurotoxicity of these compounds still needs to be further elucidated. Here, we studied the neurotoxicity of the HCA 2-amino-3-methylimidazole[4,5-f]quinoline (IQ) in vivo by utilizing a zebrafish model. After 35 days of exposure at 8, 80, and 800 ng/mL, zebrafish exploratory behavior and locomotor activity were significantly inhibited, and light/dark preference behaviors were also disturbed. Moreover, the expression of Parkinson's disease (PD)-related genes and proteins, dopamine-related genes, neuroplasticity-related genes, antioxidant enzyme genes and inflammatory cytokine genes in the zebrafish brain was significantly affected. The numbers of NeuN neurons in the midbrain were decreased in exposed zebrafish, while the numbers of apoptotic cells were increased. In summary, our research suggests that IQ is neurotoxic and significantly associated with PD and that long-term exposure to IQ may contribute to PD risk. This risk may be related to IQ-mediated effects on mitochondrial homeostasis and induction of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Zhi Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Peipei Cao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huiling Meng
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Dan Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuhao Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
30
|
Mazzocchi M, Goulding SR, Wyatt SL, Collins LM, Sullivan AM, O'Keeffe GW. LMK235, a small molecule inhibitor of HDAC4/5, protects dopaminergic neurons against neurotoxin- and α-synuclein-induced degeneration in cellular models of Parkinson's disease. Mol Cell Neurosci 2021; 115:103642. [PMID: 34119632 DOI: 10.1016/j.mcn.2021.103642] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 01/24/2023] Open
Abstract
Epigenetic modifications in neurodegenerative disease are under investigation for their roles in disease progression. Alterations in acetylation rates of certain Parkinson's disease (PD)-linked genes have been associated with the pathological progression of this disorder. In light of this, and given the lack of disease-modifying therapies for PD, HDAC inhibitors (HDIs) are under consideration as potential pharmacological agents. The neuroprotective effects of pan-HDACs and some class-specific inhibitors have been tested in in vivo and in vitro models of PD, with varying outcomes. Here we used gene co-expression analysis to identify HDACs that are associated with human dopaminergic (DA) neuron development. We identified HDAC3, HDAC5, HDAC6 and HDAC9 as being highly correlated with the DA markers, SLC6A3 and NR4A2. RT-qPCR revealed that mRNA expression of these HDACs exhibited similar temporal profiles during embryonic mouse midbrain DA (mDA) neuron development. We tested the neuroprotective potential of a number of class-specific small molecule HDIs on human SH-SY5Y cells, using neurite growth as a phenotypic readout of neurotrophic action. Neither the class I-specific HDIs, RGFP109 and RGFP966, nor the HDAC6 inhibitor ACY1215, had significant effects on neurite outgrowth. However, the class IIa HDI, LMK235 (a HDAC4/5 inhibitor), significantly increased histone acetylation and neurite outgrowth. We found that LMK235 increased BMP-Smad-dependent transcription in SH-SY5Y cells and that this was required for its neurite growth-promoting effects on SH-SY5Y cells and on DA neurons in primary cultures of embryonic day (E) 14 rat ventral mesencephalon (VM). These effects were also seen in SH-SY5Y cells transfected with HDAC5 siRNA. Furthermore, LMK235 treatment exerted neuroprotective effects against degeneration induced by the DA neurotoxin 1-methyl-4-phenylpyridinium (MPP+), in both SH-SY5Y cells and cultured DA neurons. Treatment with LMK235 was also neuroprotective against axonal degeneration induced by overexpression of wild-type (WT) or A53T mutant α-synuclein in both SH-SY5Y cells and primary cultures of DA neurons. In summary, these data show the neuroprotective potential of the class IIa HDI, LMK235, in cell models of relevance to PD.
Collapse
Affiliation(s)
- Martina Mazzocchi
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Susan R Goulding
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Sean L Wyatt
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Louise M Collins
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; Department of Physiology, UCC, Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; APC Microbiome Ireland, UCC, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; APC Microbiome Ireland, UCC, Cork, Ireland.
| |
Collapse
|
31
|
Cavone L, McCann T, Drake LK, Aguzzi EA, Oprişoreanu AM, Pedersen E, Sandi S, Selvarajah J, Tsarouchas TM, Wehner D, Keatinge M, Mysiak KS, Henderson BEP, Dobie R, Henderson NC, Becker T, Becker CG. A unique macrophage subpopulation signals directly to progenitor cells to promote regenerative neurogenesis in the zebrafish spinal cord. Dev Cell 2021; 56:1617-1630.e6. [PMID: 34033756 DOI: 10.1016/j.devcel.2021.04.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/15/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022]
Abstract
Central nervous system injury re-initiates neurogenesis in anamniotes (amphibians and fishes), but not in mammals. Activation of the innate immune system promotes regenerative neurogenesis, but it is fundamentally unknown whether this is indirect through the activation of known developmental signaling pathways or whether immune cells directly signal to progenitor cells using mechanisms that are unique to regeneration. Using single-cell RNA-seq of progenitor cells and macrophages, as well as cell-type-specific manipulations, we provide evidence for a direct signaling axis from specific lesion-activated macrophages to spinal progenitor cells to promote regenerative neurogenesis in zebrafish. Mechanistically, TNFa from pro-regenerative macrophages induces Tnfrsf1a-mediated AP-1 activity in progenitors to increase regeneration-promoting expression of hdac1 and neurogenesis. This establishes the principle that macrophages directly communicate to spinal progenitor cells via non-developmental signals after injury, providing potential targets for future interventions in the regeneration-deficient spinal cord of mammals.
Collapse
Affiliation(s)
- Leonardo Cavone
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Tess McCann
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Louisa K Drake
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Erika A Aguzzi
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Ana-Maria Oprişoreanu
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Elisa Pedersen
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Soe Sandi
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Jathurshan Selvarajah
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Themistoklis M Tsarouchas
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Daniel Wehner
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; Max Planck Institute for the Science of Light, Staudtstraße 2, Erlangen 91058, Germany; Max-Planck-Zentrum für Physik und Medizin, Staudtstraße 2, Erlangen 91058, Germany
| | - Marcus Keatinge
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Karolina S Mysiak
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Beth E P Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ross Dobie
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Thomas Becker
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK.
| | - Catherina G Becker
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; Euan MacDonald Centre for Motor Neurone Disease Research University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
32
|
Li B, Yang Y, Wang Y, Zhang J, Ding J, Liu X, Jin Y, Lian B, Ling Y, Sun C. Acetylation of NDUFV1 induced by a newly synthesized HDAC6 inhibitor HGC rescues dopaminergic neuron loss in Parkinson models. iScience 2021; 24:102302. [PMID: 33851105 PMCID: PMC8022854 DOI: 10.1016/j.isci.2021.102302] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/23/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022] Open
Abstract
It has been shown that histone deacetylase (HDAC) inhibitors hold considerable therapeutic potentials for treating neurodegeneration-related diseases including Parkinson disease (PD). Here, we synthesized an HDAC inhibitor named as HGC and examined its neuroprotective roles in PD models. Our results showed that HGC protects dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP+)-induced insults. Furthermore, in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD model mice, HGC application rectifies behavioral defects, improves tyrosine hydroxylase-positive neurons in the midbrain, and maintains mitochondrial integrity and functions. Mechanistically, mass spectrometry data revealed that HGC stimulates acetylation modification at lysine 28 of NDUFV1. Inhibition of HDAC6 by HGC is responsible for this acetylation modification. Functional tests showed that, as well as HGC, NDUFV1 exhibits beneficial roles against MPP+ injuries. Moreover, knockdown of NDUFV1 abolishes the neuroprotective roles of HGC. Taken together, our data indicate that HGC has a great therapeutic potential for treating PD and NDUFV1 might be a target for developing drugs against PD. HGC is a potent inhibitor for HDACs, especially HDAC1/6 HGC protects dopaminergic neurons and alleviates PD symptoms in PD models HDAC6/NDUFV1 axis is responsible for transducing its anti-PD activities HGC holds great therapeutic potentials for treating PD
Collapse
Affiliation(s)
- Bing Li
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yinuo Yang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yuejun Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Jing Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Jie Ding
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yan Jin
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong 226019, China
| | - Bolin Lian
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong 226019, China
- Corresponding author
| | - Yong Ling
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
- Corresponding author
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
- Corresponding author
| |
Collapse
|
33
|
Christensen C, Þorsteinsson H, Maier VH, Karlsson KÆ. Multi-parameter Behavioral Phenotyping of the MPP+ Model of Parkinson's Disease in Zebrafish. Front Behav Neurosci 2021; 14:623924. [PMID: 33390914 PMCID: PMC7775599 DOI: 10.3389/fnbeh.2020.623924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) has been modeled in several animal species using the neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its oxidized product 1-methyl-4-phenylpyridinium (MPP+). MPP+ selectively kills dopaminergic neurons in pars compacta of the substantia nigra, inducing parkinsonian symptoms in animals. Typically, neurotoxicity models of PD in zebrafish assess acute drug effects on locomotion. In the present study, we examined the lasting effects of MPP+ exposure and drug treatment in zebrafish larvae. Larvae were incubated in 500 μM MPP+, from 1 to 5 days post fertilization (dpf), followed by 24 h drug-free acclimation. At 6 dpf, the behavior was analyzed for locomotion, thigmotaxis, and sleep. Next, in separate assays we assessed the drug effects of brain injected glial cell-derived neurotrophic factor (GDNF) and 4-phenylbutyrate (PBA), co-incubated with MPP+. We show that MPP+ exposure consistently reduces swim distance, movement frequency, and cumulative time of movement; thus mimicking a parkinsonian phenotype of reduced movement. In contrast, MPP+ exposed larvae demonstrate reduced anxiety-like behavior and exhibit a sleep phenotype inconsistent with human PD: the larvae display longer sleep bouts, less sleep fragmentation, and more sleep. Previously reported rescuing effects of PBA were not replicated in this study. Moreover, whereas GDNF attenuated the sleep phenotype induced by MPP+, PBA augmented it. The current data suggest that MPP+ exposure generates a multifaceted phenotype in zebrafish and highlights that analyzing a narrow window of data can reveal effects that may be inconsistent with longer multi-parameter approaches. It further indicates that the model generally captures motor symptoms more faithfully than non-motor symptoms.
Collapse
Affiliation(s)
| | | | | | - Karl Ægir Karlsson
- 3Z Ehf, Reykjavik, Iceland.,Biomedical Center, University of Iceland, Reykjavik, Iceland.,Department of Engineering, School of Technology, Reykjavik University, Reykjavik, Iceland
| |
Collapse
|
34
|
LoPresti P. HDAC6 in Diseases of Cognition and of Neurons. Cells 2020; 10:E12. [PMID: 33374719 PMCID: PMC7822434 DOI: 10.3390/cells10010012] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Central nervous system (CNS) neurodegenerative diseases are characterized by faulty intracellular transport, cognition, and aggregate regulation. Traditionally, neuroprotection exerted by histone deacetylase (HDAC) inhibitors (HDACi) has been attributed to the ability of this drug class to promote histone acetylation. However, HDAC6 in the healthy CNS functions via distinct mechanisms, due largely to its cytoplasmic localization. Indeed, in healthy neurons, cytoplasmic HDAC6 regulates the acetylation of a variety of non-histone proteins that are linked to separate functions, i.e., intracellular transport, neurotransmitter release, and aggregate formation. These three HDAC6 activities could work independently or in synergy. Of particular interest, HDAC6 targets the synaptic protein Bruchpilot and neurotransmitter release. In pathological conditions, HDAC6 becomes abundant in the nucleus, with deleterious consequences for transcription regulation and synapses. Thus, HDAC6 plays a leading role in neuronal health or dysfunction. Here, we review recent findings and novel conclusions on the role of HDAC6 in neurodegeneration. Selective studies with pan-HDACi are also included. We propose that an early alteration of HDAC6 undermines synaptic transmission, while altering transport and aggregation, eventually leading to neurodegeneration.
Collapse
Affiliation(s)
- Patrizia LoPresti
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, USA
| |
Collapse
|
35
|
Najib NH, Nies YH, Abd Halim SA, Yahaya MF, Das S, Lim WL, Teoh SL. Modeling Parkinson’s Disease in Zebrafish. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:386-399. [DOI: 10.2174/1871527319666200708124117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/10/2020] [Accepted: 06/17/2020] [Indexed: 01/04/2023]
Abstract
Parkinson’s Disease (PD) is one of the most common neurodegenerative disorders that affects
the motor system, and includes cardinal motor symptoms such as resting tremor, cogwheel rigidity,
bradykinesia and postural instability. Its prevalence is increasing worldwide due to the increase in
life span. Although, two centuries since the first description of the disease, no proper cure with regard
to treatment strategies and control of symptoms could be reached. One of the major challenges faced
by the researchers is to have a suitable research model. Rodents are the most common PD models
used, but no single model can replicate the true nature of PD. In this review, we aim to discuss another
animal model, the zebrafish (Danio rerio), which is gaining popularity. Zebrafish brain has all the major
structures found in the mammalian brain, with neurotransmitter systems, and it also possesses a
functional blood-brain barrier similar to humans. From the perspective of PD research, the zebrafish
possesses the ventral diencephalon, which is thought to be homologous to the mammalian substantia
nigra. We summarize the various zebrafish models available to study PD, namely chemical-induced
and genetic models. The zebrafish can complement the use of other animal models for the mechanistic
study of PD and help in the screening of new potential therapeutic compounds.
Collapse
Affiliation(s)
- Nor H.M. Najib
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Yong H. Nies
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Syarifah A.S. Abd Halim
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohamad F. Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Wei L. Lim
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor, Malaysia
| | - Seong L. Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Chaves RS, Guerreiro CS, Cardoso VV, Benoliel MJ, Santos MM. Toxicological assessment of seven unregulated drinking water Disinfection By-products (DBPs) using the zebrafish embryo bioassay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140522. [PMID: 32623170 DOI: 10.1016/j.scitotenv.2020.140522] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 05/05/2023]
Abstract
Disinfection By-products (DBPs) are formed during the chemical treatment of water for human consumption, by the reaction of raw water with chemical agents used in the different steps of the process. Disinfection is one of the most important steps, inactivating pathogens and preventing their regrowth during water distribution. However, it is also involved in DBPs formation due to the use of disinfectant agents, such as chlorine, which reacts with dissolved precursors, such as pharmaceuticals, toxins, pesticides, among others. Given their widespread occurrence, potential human health and (eco) toxicological impacts are of particular interest due to their potential carcinogenicity and various non-carcinogenic effects, such as endocrine disruption. In this study, the developmental toxicity of chemically- different unregulated DBPs was evaluated using zebrafish embryo bioassay. Embryos were exposed to different concentrations of the target DBPs and multiple endpoints, including, mortality, morphological abnormalities and locomotor behavior were assessed at specific developmental stages (24, 48, 72 and 96 hpf). The different families of DBPs tested included nitrosamines, aldehydes, alcohols and ketones. The results show that the effects were compound dependent, with EC10 values varying between 0.04 mg/L (2-ethyl-1-hexanal) to 9.2 mg/L (hexachloroacetone). Globally, several of the tested unregulated DBPs displayed higher toxicity when compared with the available data for some already regulated, such as trihalomethanes (THMs), which highlights the importance of screening the toxicity of still untested and poorly characterized DBPs.
Collapse
Affiliation(s)
- Raquel S Chaves
- Institute of Environmental Health, Faculty of Medicine, University of Lisbon, Lisbon, Portugal; Empresa Portuguesa das Águas Livres, S.A., Direção Laboratórios e de Controlo da Qualidade da Água, Lisbon, Portugal; CIMAR/CIIMAR, LA- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Catarina S Guerreiro
- Institute of Environmental Health, Faculty of Medicine, University of Lisbon, Lisbon, Portugal; Laboratory of Nutrition, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Vítor V Cardoso
- Empresa Portuguesa das Águas Livres, S.A., Direção Laboratórios e de Controlo da Qualidade da Água, Lisbon, Portugal
| | - Maria J Benoliel
- Empresa Portuguesa das Águas Livres, S.A., Direção Laboratórios e de Controlo da Qualidade da Água, Lisbon, Portugal
| | - Miguel M Santos
- CIMAR/CIIMAR, LA- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
37
|
Mazzetti S, De Leonardis M, Gagliardi G, Calogero AM, Basellini MJ, Madaschi L, Costa I, Cacciatore F, Spinello S, Bramerio M, Cilia R, Rolando C, Giaccone G, Pezzoli G, Cappelletti G. Phospho-HDAC6 Gathers Into Protein Aggregates in Parkinson's Disease and Atypical Parkinsonisms. Front Neurosci 2020; 14:624. [PMID: 32655357 PMCID: PMC7324673 DOI: 10.3389/fnins.2020.00624] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 05/19/2020] [Indexed: 01/10/2023] Open
Abstract
HDAC6 is a unique histone deacetylase that targets cytoplasmic non-histone proteins and has a specific ubiquitin-binding activity. Both of these activities are required for HDAC6-mediated formation of aggresomes, which contain misfolded proteins that will ultimately be degraded via autophagy. HDAC6 deacetylase activity is increased following phosphorylation on serine 22 (phospho-HDAC6). In human, HDAC6 localizes in neuronal Lewy bodies in Parkinson’s disease (PD) and in oligodendrocytic Papp–Lantos bodies in multiple system atrophy (MSA). However, the expression of phospho-HDAC6 in post-mortem human brains is currently unexplored. Here, we evaluate and compare the distribution of HDAC6 and its phosphorylated form in human brains obtained from patients affected by three forms of parkinsonism: two synucleinopathies (PD and MSA) and a tauopathy (progressive supranuclear palsy, PSP). We find that both HDAC6 and its phosphorylated form localize with pathological protein aggregates, including α-synuclein-positive Lewy bodies in PD and Papp–Lantos bodies in MSA, and phospho-tau-positive neurofibrillary tangles in PSP. We further find a direct interaction of HDAC6 with α-synuclein with proximity ligation assay (PLA) in neuronal cell of PD patients. Taken together, our findings suggest that both HDAC6 and phospho-HDAC6 regulate the homeostasis of intra-neuronal proteins in parkinsonism.
Collapse
Affiliation(s)
- Samanta Mazzetti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.,Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | - Mara De Leonardis
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Gloria Gagliardi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Alessandra Maria Calogero
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.,Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | | | - Laura Madaschi
- UNITECH NO LIMITS, Università degli Studi di Milano, Milan, Italy
| | - Ilaria Costa
- Imaging TDU, IFOM Foundation, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Francesca Cacciatore
- Unit of Neuropathology and Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sonia Spinello
- Unit of Neuropathology and Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Manuela Bramerio
- S. C. Divisione Oncologia Falck and S. C. Divisione Anatomia Patologica, Ospedale Niguarda Ca' Granda, Milan, Italy
| | - Roberto Cilia
- Parkinson Institute, ASST "G.Pini-CTO," Milan, Italy
| | - Chiara Rolando
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Giorgio Giaccone
- Unit of Neuropathology and Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gianni Pezzoli
- Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy.,Parkinson Institute, ASST "G.Pini-CTO," Milan, Italy
| | - Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.,Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
38
|
The class II histone deacetylases as therapeutic targets for Parkinson's disease. Neuronal Signal 2020; 4:NS20200001. [PMID: 32714601 PMCID: PMC7373248 DOI: 10.1042/ns20200001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterised by specific motor impairments. The neuropathological hallmarks of PD include progressive degeneration of midbrain dopaminergic neurons, and loss of their axonal projections to the striatum. Additionally, there is progressive accumulation and spread of intracellular aggregates of α-synuclein. Although dopamine-replacement pharmacotherapy can treat PD symptoms in the short-term, there is a critical need for the development of disease-modifying therapies based on an understanding of the underlying disease mechanisms. One such mechanism is histone acetylation, which is a common epigenetic modification that alters gene transcription. A number of studies have described alterations in histone acetylation in the brains of PD patients. Moreover, α-synuclein accumulation has been linked to alterations in histone acetylation and pharmacological strategies aimed at modulating histone acetylation are under investigation as novel approaches to disease modification in PD. Currently, such strategies are focused predominantly on pan-inhibition of histone deacetylase (HDAC) enzymes. Inhibition of specific individual HDAC enzymes is a more targeted strategy that may allow for future clinical translation. However, the most appropriate class of HDACs that should be targeted for neuroprotection in PD is still unclear. Recent work has shed new light on the role of class-II HDACs in dopaminergic degeneration. For this reason, here we describe the regulation of histone acetylation, outline the evidence for alterations in histone acetylation in the PD brain, and focus on the roles of class II HDACs and the potential of class-II HDAC inhibition as a therapeutic approach for neuroprotection in PD.
Collapse
|
39
|
Shukla S, Tekwani BL. Histone Deacetylases Inhibitors in Neurodegenerative Diseases, Neuroprotection and Neuronal Differentiation. Front Pharmacol 2020; 11:537. [PMID: 32390854 PMCID: PMC7194116 DOI: 10.3389/fphar.2020.00537] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HADC) are the enzymes that remove acetyl group from lysine residue of histones and non-histone proteins and regulate the process of transcription by binding to transcription factors and regulating fundamental cellular process such as cellular proliferation, differentiation and development. In neurodegenerative diseases, the histone acetylation homeostasis is greatly impaired, shifting towards a state of hypoacetylation. The histone hyperacetylation produced by direct inhibition of HDACs leads to neuroprotective actions. This review attempts to elaborate on role of small molecule inhibitors of HDACs on neuronal differentiation and throws light on the potential of HDAC inhibitors as therapeutic agents for treatment of neurodegenerative diseases. The role of HDACs in neuronal cellular and disease models and their modulation with HDAC inhibitors are also discussed. Significance of these HDAC inhibitors has been reviewed on the process of neuronal differentiation, neurite outgrowth and neuroprotection regarding their potential therapeutic application for treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Surabhi Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, United States
| | - Babu L Tekwani
- Division of Drug Discovery, Department of Infectious Diseases, Southern Research, Birmingham, AL, United States
| |
Collapse
|
40
|
Capela R, Garric J, Castro LFC, Santos MM. Embryo bioassays with aquatic animals for toxicity testing and hazard assessment of emerging pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135740. [PMID: 31838430 DOI: 10.1016/j.scitotenv.2019.135740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
This review article gathers the available information on the use of embryo-tests as high-throughput tools for toxicity screening, hazard assessment and prioritization of new and existing chemical compounds. The approach is contextualized considering the new legal trends for animal experimentation, fostering the 3R policy, with reduction of experimental animals, addressing the potential of embryo-tests as high-throughput toxicity screening and prioritizing tools. Further, the current test guidelines, such as the ones provided by OECD and EPA, focus mainly in a limited number of animal lineages, particularly vertebrates and arthropods. To extrapolate hazard assessment to the ecosystem scale, a larger diversity of taxa should be tested. The use of new experimental animal models in toxicity testing, from a representative set of taxa, was thoroughly revised and discussed in this review. Here, we critically review current tools and the main advantages and drawbacks of different animal models and set researcher priorities.
Collapse
Affiliation(s)
- Ricardo Capela
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; IRSTEA - National Research Institute of Science and Technology for Environment and Agriculture - Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS20244, 69625 Villeurbanne Cedex, Lyon-Villeurbanne, France
| | - Jeanne Garric
- IRSTEA - National Research Institute of Science and Technology for Environment and Agriculture - Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS20244, 69625 Villeurbanne Cedex, Lyon-Villeurbanne, France.
| | - Luís Filipe Costa Castro
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Miguel Machado Santos
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
41
|
Westphal M, Sant P, Hauser AT, Jung M, Driever W. Chemical Genetics Screen Identifies Epigenetic Mechanisms Involved in Dopaminergic and Noradrenergic Neurogenesis in Zebrafish. Front Genet 2020; 11:80. [PMID: 32158467 PMCID: PMC7052299 DOI: 10.3389/fgene.2020.00080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/24/2020] [Indexed: 12/17/2022] Open
Abstract
The cell type diversity and complexity of the nervous system is generated by a network of signaling events, transcription factors, and epigenetic regulators. Signaling and transcriptional control have been easily amenable to forward genetic screens in model organisms like zebrafish. In contrast, epigenetic mechanisms have been somewhat elusive in genetic screens, likely caused by broad action in multiple developmental pathways that masks specific phenotypes, but also by genetic redundancies of epigenetic factors. Here, we performed a screen using small molecule inhibitors of epigenetic mechanisms to reveal contributions to specific aspects of neurogenesis in zebrafish. We chose development of dopaminergic and noradrenergic neurons from neural progenitors as target of epigenetic regulation. We performed the screen in two phases: First, we tested a small molecule inhibitor library that targets a broad range of epigenetic protein classes and mechanisms, using expression of the dopaminergic and noradrenergic marker tyrosine hydroxylase as readout. We identified 10 compounds, including HDAC, Bromodomain and HAT inhibitors, which interfered with dopaminergic and noradrenergic development in larval zebrafish. In the second screening phase, we aimed to identify neurogenesis stages affected by these 10 inhibitors. We analyzed treated embryos for effects on neural stem cells, growth progression of the retina, and apoptosis in neural tissues. In addition, we analyzed effects on islet1 expressing neuronal populations to determine potential selectivity of compounds for transmitter phenotypes. In summary, our targeted screen of epigenetic inhibitors identified specific compounds, which reveal chromatin regulator classes that contribute to dopaminergic and noradrenergic neurogenesis in vivo.
Collapse
Affiliation(s)
- Markus Westphal
- Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University Freiburg, Freiburg, Germany
- CIBSS and BIOSS—Centres for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Pooja Sant
- Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Alexander-Thomas Hauser
- Chemical Epigenetics Group, Institute of Pharmaceutical Sciences, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Manfred Jung
- Chemical Epigenetics Group, Institute of Pharmaceutical Sciences, Albert Ludwigs University Freiburg, Freiburg, Germany
- CIBSS—Centre for Integrative Biological SignallingStudies, University of Freiburg, Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University Freiburg, Freiburg, Germany
- CIBSS and BIOSS—Centres for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
42
|
van Staden C, de Brouwer G, Botha TL, Finger-Baier K, Brand SJ, Wolmarans D. Dopaminergic and serotonergic modulation of social reward appraisal in zebrafish (Danio rerio) under circumstances of motivational conflict: Towards a screening test for anti-compulsive drug action. Behav Brain Res 2020; 379:112393. [PMID: 31785362 DOI: 10.1016/j.bbr.2019.112393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/04/2023]
Abstract
Cognitive flexibility, shown to be impaired in patients presenting with compulsions, is dependent on balanced dopaminergic and serotonergic interaction. Towards the development of a zebrafish (Danio rerio) screening test for anti-compulsive drug action, we manipulated social reward appraisal under different contexts by means of dopaminergic (apomorphine) and serotonergic (escitalopram) intervention. Seven groups of zebrafish (n = 6 per group) were exposed for 24 days (1 h per day) to either control (normal tank water), apomorphine (50 or 100 μg/L), escitalopram (500 or 1000 μg/L) or a combination (A100/E500 or A100/E1000 μg/L). Contextual reward appraisal was assessed over three phases i.e. Phase 1 (contingency association), Phase 2 (dissociative testing), and Phase 3 (re-associative testing). We demonstrate that 1) sight of social conspecifics is an inadequate motivational reinforcer under circumstances of motivational conflict, 2) dopaminergic and serotonergic intervention lessens the importance of an aversive stimulus, increasing the motivational valence of social reward, 3) while serotoninergic intervention maintains reward directed behavior, high-dose dopaminergic intervention bolsters cue-directed responses and 4) high-dose escitalopram reversed apomorphine-induced behavioral inflexibility. The results reported here are supportive of current dopamine-serotonin opponency theories and confirm the zebrafish as a potentially useful species in which to investigate compulsive-like behaviors.
Collapse
Affiliation(s)
- C van Staden
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| | - G de Brouwer
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| | - T L Botha
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - K Finger-Baier
- Department Genes - Circuits - Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - S J Brand
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - D Wolmarans
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
43
|
Shen S, Kozikowski AP. A patent review of histone deacetylase 6 inhibitors in neurodegenerative diseases (2014-2019). Expert Opin Ther Pat 2020; 30:121-136. [PMID: 31865813 PMCID: PMC6950832 DOI: 10.1080/13543776.2019.1708901] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/20/2019] [Indexed: 12/24/2022]
Abstract
Introduction: Histone deacetylase 6 (HDAC6) is unique in comparison with other zinc-dependent HDAC family members. An increasing amount of evidence from clinical and preclinical research demonstrates the potential of HDAC6 inhibition as an effective therapeutic approach for the treatment of cancer, autoimmune diseases, as well as neurological disorders. The recently disclosed crystal structures of HDAC6-ligand complexes offer further means for achieving pharmacophore refinement, thus further accelerating the pace of HDAC6 inhibitor discovery in the last few years.Area covered: This review summarizes the latest clinical status of HDAC6 inhibitors, discusses pharmacological applications of selective HDAC6 inhibitors in neurodegenerative diseases, and describes the patent applications dealing with HDAC6 inhibitors from 2014-2019 that have not been reported in research articles.Expert opinion: Phenylhydroxamate has proven a very useful scaffold in the discovery of potent and selective HDAC6 inhibitors. However, weaknesses of the hydroxamate function such as metabolic instability and mutagenic potential limit its application in the neurological field, where long-term administration is required. The recent invention of oxadiazole-based ligands by pharmaceutical companies may provide a new opportunity to optimize the druglike properties of HDAC6 inhibitors for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sida Shen
- Departments of Chemistry, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, United States
| | | |
Collapse
|
44
|
Osko JD, Porter NJ, Reddy PAN, Xiao YC, Rokka J, Jung M, Hooker JM, Salvino JM, Christianson DW. Exploring Structural Determinants of Inhibitor Affinity and Selectivity in Complexes with Histone Deacetylase 6. J Med Chem 2020; 63:295-308. [PMID: 31793776 PMCID: PMC6952581 DOI: 10.1021/acs.jmedchem.9b01540] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inhibition of histone deacetylase 6 (HDAC6) has emerged as a promising therapeutic strategy for the treatment of cancer, chemotherapy-induced peripheral neuropathy, and neurodegenerative disease. The recent X-ray crystal structure determination of HDAC6 enables an understanding of structural features directing affinity and selectivity in the active site. Here, we present the X-ray crystal structures of five HDAC6-inhibitor complexes that illuminate key molecular features of the inhibitor linker and capping groups that facilitate and differentiate binding to HDAC6. In particular, aromatic and heteroaromatic linkers nestle within an aromatic cleft defined by F583 and F643, and different aromatic linkers direct the capping group toward shallow pockets defined by the L1 loop, the L2 loop, or somewhere in between these pockets. These results expand our understanding of factors contributing to the selective inhibition of HDAC6, particularly regarding interactions that can be targeted in the region of the L2 pocket.
Collapse
Affiliation(s)
- Jeremy D. Osko
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| | - Nicholas J. Porter
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| | | | - You-Cai Xiao
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, United States
| | - Johanna Rokka
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Jacob M. Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Joseph M. Salvino
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, United States
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| |
Collapse
|
45
|
Joseph TP, Jagadeesan N, Sai LY, Lin SL, Sahu S, Schachner M. Adhesion Molecule L1 Agonist Mimetics Protect Against the Pesticide Paraquat-Induced Locomotor Deficits and Biochemical Alterations in Zebrafish. Front Neurosci 2020; 14:458. [PMID: 32547358 PMCID: PMC7270331 DOI: 10.3389/fnins.2020.00458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/15/2020] [Indexed: 02/05/2023] Open
Abstract
Besides several endogenous elements, exogenous factors, including exposure to pesticides, have been recognized as putative factors contributing to the onset and development of neurodegenerative diseases, including Parkinson's disease (PD). Considering the availability, success rate, and limitations associated with the current arsenals to fight PD, there is an unmet need for novel therapeutic interventions. Therefore, based on the previously reported beneficial functions of the L1 cell adhesion molecule, we hypothesized that L1 mimetic compounds may serve to neutralize neurotoxicity triggered by the pesticide paraquat (PQ). In this study, we attempt to use PQ for inducing PD-like pathology and the L1 mimetic compounds phenelzine sulfate (PS) and tacrine (TC) as potential candidates for the amelioration of PD symptoms using zebrafish as a model system. Administration of PQ together with the L1 mimetic compounds PS or TC (250 nM) improved survival of zebrafish larvae, protected them from locomotor deficits, and increased their sensorimotor reflexes. Moreover, application of PQ together with PS (500 nM) or TC (1000 nM) in adult zebrafish counteracted PQ-induced toxicity, maintaining normal locomotor functions and spatial memory in an open field and T-maze task, respectively. Both L1 mimetic compounds prevented reduction in tyrosine hydroxylase and dopamine levels, reduced reactive oxygen species (ROS) generation, protected against impairment of mitochondrial viability, improved the antioxidant enzyme system, and prevented a decrease in ATP levels. Altogether, our findings highlight the beneficial functions of the agonistic L1 mimetics PS and TC by improving several vital cell functions against PQ-triggered neurotoxicity.
Collapse
Affiliation(s)
| | - Nataraj Jagadeesan
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Liu Yang Sai
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Stanley Li Lin
- Department of Cell Biology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, China
| | - Sudhanshu Sahu
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Melitta Schachner
- Center of Neuroscience, Shantou University Medical College, Shantou, China
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- *Correspondence: Melitta Schachner, ;
| |
Collapse
|
46
|
Neuparth T, Lopes AI, Alves N, Oliveira JMA, Santos MM. Does the antidepressant sertraline show chronic effects on aquatic invertebrates at environmentally relevant concentrations? A case study with the keystone amphipod, Gammarus locusta. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109486. [PMID: 31377518 DOI: 10.1016/j.ecoenv.2019.109486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
The increasing use of Sertraline (SER) as antidepressant and its consequent presence in the aquatic environment is raising concern about the chronic effects of this pharmaceutical to aquatic organisms. As the current concentrations of SER in surface waters are typically in the low ng/L range, acute toxicity is unlikely to occur. However, prolonged exposure to low concentrations of SER may lead to sub-lethal effects in aquatic organisms, including alterations in important physiological functions like growth, reproduction, behaviour, and also in key biochemical processes, such as those associated with neurotransmission and redox balance. To test this hypothesis, we selected the amphipod Gammarus locusta, a keystone species used in ecotoxicological hazard assessment. In the present study, juveniles' G. locusta from a permanent laboratory culture were chronically exposed to low concentrations of SER (8-1000 ng/L) in a bioassay that lasted for 48 days, allowing for a life-cycle study including effects on reproduction. At the lowest SER concentrations with environmental relevance (8, 40 and 200 ng/L) we detected no significant changes in key ecological endpoints such as survival, growth, reproduction and movement behaviour, or in any of the biochemical markers analysed. However, at 1000 ng/L SER (a concentration one order of magnitude higher than the levels reported in aquatic environments) females showed a significant increase in movement versus control, whereas no activity changes were observed in males. Overall, these findings indicate that G. locusta females are potentially more susceptible to the chronic effects of SER. Moreover, the current environmental SER concentrations are unlikely to affect amphipod's ecological endpoints because only SER concentrations higher than the levels reported in aquatic environments produced effects on the behaviour of G. locusta females. However, the increasing consumption of SER, highlights the importance of monitoring its chronic risk to the aquatic wildlife.
Collapse
Affiliation(s)
- Teresa Neuparth
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto. Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal.
| | - Ana I Lopes
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto. Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Nelson Alves
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto. Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Jorge M A Oliveira
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Miguel M Santos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto. Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre nº 1021/1055, 4169-007, Porto, Portugal.
| |
Collapse
|
47
|
Qian Y, Ji C, Yue S, Zhao M. Exposure of low-dose fipronil enantioselectively induced anxiety-like behavior associated with DNA methylation changes in embryonic and larval zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:362-371. [PMID: 30909129 DOI: 10.1016/j.envpol.2019.03.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Fipronil, a broad-spectrum chiral insecticide, has been documented to induce significant neurotoxicity to nontarget aquatic species; however, whether its neurotoxicity behaves enantioselectively and what molecular mechanisms correspond to the neurotoxicity remain unanswered. To date, few investigations have focused on the genomic mechanisms responsible for the enantioselective toxicity of chiral pesticides. The epigenetic modifications, especially DNA methylation, caused by the pesticides are also blind spot of the research works. Video tracking showed that R-fipronil exhibited more intense neurotoxicity, as well as the induction of more severe anxiety-like behavior, such as boosted swimming speed and dysregulated photoperiodic locomotion, to embryonic and larval zebrafish compared with S-fipronil. The MeDIP-Seq analysis, combined with Gene Ontology and KEGG, revealed that R-fipronil disrupted five signaling pathways (MAPK, Calcium signaling, Neuroactive ligand-receptor interaction, Purine metabolism, and Endocytosis) to a greater extent than S-fipronil through the hypermethylation of several important neuro-related genes, whereas no significant alterations of global DNA methylation were observed on the two enantiomers. To summarize, our data indicated that the fipronil-conducted enantioselective neurotoxicity likely applied its enantioselectivity by the dysregulation of DNA methylation. Our study also provided novel epigenetic insights into the study of enantioselective biological effects and the relevant underlying mechanisms of chiral insecticide.
Collapse
Affiliation(s)
- Yi Qian
- College of Life Science, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Chenyang Ji
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Siqing Yue
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
48
|
Demin KA, Lakstygal AM, Alekseeva PA, Sysoev M, de Abreu MS, Alpyshov ET, Serikuly N, Wang D, Wang M, Tang Z, Yan D, Strekalova TV, Volgin AD, Amstislavskaya TG, Wang J, Song C, Kalueff AV. The role of intraspecies variation in fish neurobehavioral and neuropharmacological phenotypes in aquatic models. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:44-55. [PMID: 30822702 DOI: 10.1016/j.aquatox.2019.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Intraspecies variation is common in both clinical and animal research of various brain disorders. Relatively well-studied in mammals, intraspecies variation in aquatic fish models and its role in their behavioral and pharmacological responses remain poorly understood. Like humans and mammals, fishes show high variance of behavioral and drug-evoked responses, modulated both genetically and environmentally. The zebrafish (Danio rerio) has emerged as a particularly useful model organism tool to access neurobehavioral and drug-evoked responses. Here, we discuss recent findings and the role of the intraspecies variance in neurobehavioral, pharmacological and toxicological studies utilizing zebrafish and other fish models. We also critically evaluate common sources of intraspecies variation and outline potential strategies to improve data reproducibility and translatability.
Collapse
Affiliation(s)
- Konstantin A Demin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Anton M Lakstygal
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Russian Research Centre of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Polina A Alekseeva
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Maxim Sysoev
- Granov Russian Research Centre of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Murilo S de Abreu
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil
| | | | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | - DongMei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - MengYao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - ZhiChong Tang
- School of Pharmacy, Southwest University, Chongqing, China
| | - DongNi Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Tatyana V Strekalova
- Department of Neuroscience, Maastricht University, Maastricht, Netherlands; Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Andrey D Volgin
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | | | - JiaJia Wang
- Research Institute of Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Cai Song
- Research Institute of Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Ural Federal University, Ekaterinburg, Russia; ZENEREI Research Center, Slidell, LA, USA; Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Granov Russian Research Centre of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.
| |
Collapse
|
49
|
Kozikowski AP, Shen S, Pardo M, Tavares MT, Szarics D, Benoy V, Zimprich CA, Kutil Z, Zhang G, Bařinka C, Robers MB, Van Den Bosch L, Eubanks JH, Jope RS. Brain Penetrable Histone Deacetylase 6 Inhibitor SW-100 Ameliorates Memory and Learning Impairments in a Mouse Model of Fragile X Syndrome. ACS Chem Neurosci 2019; 10:1679-1695. [PMID: 30511829 DOI: 10.1021/acschemneuro.8b00600] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Disease-modifying therapies are needed for Fragile X Syndrome (FXS), as at present there are no effective treatments or cures. Herein, we report on a tetrahydroquinoline-based selective histone deacetylase 6 (HDAC6) inhibitor SW-100, its pharmacological and ADMET properties, and its ability to improve upon memory performance in a mouse model of FXS, Fmr1-/- mice. This small molecule demonstrates good brain penetrance, low-nanomolar potency for the inhibition of HDAC6 (IC50 = 2.3 nM), with at least a thousand-fold selectivity over all other class I, II, and IV HDAC isoforms. Moreover, through its inhibition of the α-tubulin deacetylase domain of HDAC6 (CD2), in cells SW-100 upregulates α-tubulin acetylation with no effect on histone acetylation and selectively restores the impaired acetylated α-tubulin levels in the hippocampus of Fmr1-/- mice. Lastly, SW-100 ameliorates several memory and learning impairments in Fmr1-/- mice, thus modeling the intellectual deficiencies associated with FXS, and hence providing a strong rationale for pursuing HDAC6-based therapies for the treatment of this rare disease.
Collapse
Affiliation(s)
| | - Sida Shen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Marta Pardo
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Maurício T. Tavares
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Dora Szarics
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Veronick Benoy
- Laboratory of Neurobiology, Center for Brain & Disease (VIB) and Leuven Brain Institute (LBI), KU Leuven, B-3000 Leuven, Belgium
| | | | - Zsófia Kutil
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Guiping Zhang
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Cyril Bařinka
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | | | - Ludo Van Den Bosch
- Laboratory of Neurobiology, Center for Brain & Disease (VIB) and Leuven Brain Institute (LBI), KU Leuven, B-3000 Leuven, Belgium
| | - James H. Eubanks
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Richard S. Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| |
Collapse
|
50
|
Pinho BR, Reis SD, Hartley RC, Murphy MP, Oliveira JMA. Mitochondrial superoxide generation induces a parkinsonian phenotype in zebrafish and huntingtin aggregation in human cells. Free Radic Biol Med 2019; 130:318-327. [PMID: 30389496 PMCID: PMC6340810 DOI: 10.1016/j.freeradbiomed.2018.10.446] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 01/21/2023]
Abstract
Superoxide generation by mitochondria respiratory complexes is a major source of reactive oxygen species (ROS) which are capable of initiating redox signaling and oxidative damage. Current understanding of the role of mitochondrial ROS in health and disease has been limited by the lack of experimental strategies to selectively induce mitochondrial superoxide production. The recently-developed mitochondria-targeted redox cycler MitoParaquat (MitoPQ) overcomes this limitation, and has proven effective in vitro and in Drosophila. Here we present an in vivo study of MitoPQ in the vertebrate zebrafish model in the context of Parkinson's disease (PD), and in a human cell model of Huntington's disease (HD). We show that MitoPQ is 100-fold more potent than non-targeted paraquat in both cells and in zebrafish in vivo. Treatment with MitoPQ induced a parkinsonian phenotype in zebrafish larvae, with decreased sensorimotor reflexes, spontaneous movement and brain tyrosine hydroxylase (TH) levels, without detectable effects on heart rate or atrioventricular coordination. Motor phenotypes and TH levels were partly rescued with antioxidant or monoaminergic potentiation strategies. In a HD cell model, MitoPQ promoted mutant huntingtin aggregation without increasing cell death, contrasting with the complex I inhibitor rotenone that increased death in cells expressing either wild-type or mutant huntingtin. These results show that MitoPQ is a valuable tool for cellular and in vivo studies of the role of mitochondrial superoxide generation in redox biology, and as a trigger or co-stressor to model metabolic and neurodegenerative disease phenotypes.
Collapse
Affiliation(s)
- Brígida R Pinho
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Sara D Reis
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Richard C Hartley
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Jorge M A Oliveira
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, WC1E 6BT London, UK.
| |
Collapse
|