1
|
Tammineni ER, Manno C, Oza G, Figueroa L. Skeletal muscle disorders as risk factors for type 2 diabetes. Mol Cell Endocrinol 2025:112466. [PMID: 39848431 DOI: 10.1016/j.mce.2025.112466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/27/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
The incidence and prevalence of muscular disorders and of type 2 diabetes (T2D) is increasing and both represent highly significant healthcare problems, both economically and compromising quality of life. Interestingly, skeletal muscle dysfunction and T2D share some commonalities including dysregulated glucose homeostasis, increased oxidative stress, dyslipidemia, and cytokine alterations. Several lines of evidence have hinted to a relationship between skeletal muscle dysfunction and T2D. For instance, T2D affects skeletal muscle morphology, functionality, and overall health through altered protein metabolism, impaired mitochondrial function, and ultimately cell viability. Conversely, humans suffering from myopathies and their experimental models demonstrated increased incidence of T2D through altered muscle glucose disposal function due to abnormal calcium homeostasis, compromised mitochondrial function, dyslipidemia, increased inflammatory cytokines and fiber size alterations and disproportions. Lifestyle modifications are essential for improving and maintaining mobility and metabolic health in individuals suffering from myopathies along with T2D. In this review, we updated current literature evidence on clinical incidence of T2D in inflammatory, mitochondrial, metabolic myopathies, and muscular dystrophies and further discussed the molecular basis of these skeletal muscle disorders leading to T2D.
Collapse
Affiliation(s)
- Eshwar R Tammineni
- Department of Physiology and Biophysics, Rush University, Chicago, United States.
| | - Carlo Manno
- Department of Physiology and Biophysics, Rush University, Chicago, United States
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Queretaro, Mexico
| | - Lourdes Figueroa
- Department of Physiology and Biophysics, Rush University, Chicago, United States
| |
Collapse
|
2
|
Lalunio H, Stupka N, Goodman CA, Hayes A. The Potential of Targeting APE1/Ref-1 as a Therapeutic Intervention for Duchenne Muscular Dystrophy. Antioxid Redox Signal 2024. [PMID: 39729027 DOI: 10.1089/ars.2024.0620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Significance: Inflammation and oxidative stress play crucial roles in the development and progression of skeletal muscle diseases. This review aims to examine the existing evidence regarding the involvement and inhibition of APE1/Ref-1 (apurinic/apyrimidinic endonuclease 1/redox factor 1) in diseases, then extrapolate this evidence to the context of skeletal muscle and discuss the potential beneficial effects of APE1/Ref-1 inhibition in ameliorating myopathy with a particular focus on dystrophic pathology. Critical Issues: Currently, therapeutic interventions targeting pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor erythroid 2-related factor 2 (NRF2), have shown limited efficacy in both clinical and preclinical settings. Thus, there is a need for a more comprehensive treatment approach. Recent Advances: APE1/Ref-1 is a multifunctional protein that was initially identified as being involved in DNA repair. However, newer research has revealed its additional role as a redox-sensitive regulator of transcription factors, including NF-κB and NRF2. Numerous studies have reported increased expression of APE1/Ref-1 in various disorders and have demonstrated the beneficial effects of inhibiting its redox function using the small molecular inhibitor, APX3330. Although these pathways are similarly dysregulated in neuromuscular disorders, the specific role of APE1/Ref-1 in skeletal muscle remains unclear, with only a limited number of studies noting its presence in this tissue. Future Directions: Further studies investigating the role of APE1/Ref-1 in skeletal muscle and identifying whether APE1/Ref-1 is up- or downregulated in dystrophic skeletal muscle would be required to determine whether upregulating or inhibiting the redox function of APE1/Ref-1 will alleviate chronic inflammation and heightened oxidative stress. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Hannah Lalunio
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Parkville, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, Australia
| | - Nicole Stupka
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Parkville, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, Australia
| | - Craig A Goodman
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, Australia
- Institute of Health and Sport (IHeS), Victoria University, Melbourne, Australia
- Centre for Muscle Research, The University of Melbourne, Parkville, Australia
| | - Alan Hayes
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Parkville, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, Australia
- Institute of Health and Sport (IHeS), Victoria University, Melbourne, Australia
| |
Collapse
|
3
|
de Oliveira D, Luiz GP, Scussel R, Fagundes MI, Galvani NC, Abel JDS, Zaccaron RP, de Bem Silveira G, de Andrade TAM, Lock Silveira PC, Andrez Machado-de-Ávila R. The combined treatment of gold nanoparticles associated with photobiomodulation accelerate the healing of dermonecrotic lesion. J Drug Target 2024; 32:172-185. [PMID: 38155427 DOI: 10.1080/1061186x.2023.2298848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/10/2023] [Indexed: 12/30/2023]
Abstract
Introduction: The search for fast and efficient treatment for dermonecrotic lesions caused by the venom of the spider from the Loxosceles simillis, is a demand in health. Prednisolone is one of the most used drugs, however it has side effects. In this context, addictionally gold nanoparticles (GNPs) have anti-inflammatory, antioxidant, and antibacterial properties. The use of photobiomodulation has show to be efficient in the process of tissue repair. Therefore, the purpose of this study was to investigate the anti-inflammatory effect of photobiomodulation and GNPs associated or not with a low concentration of prednisolone in animal models of dermonecrotic lesion.Methodology: For this, rabbits with venon-induced dermonecrotic lesion were subjected to topical treatment with prednisolone + laser or GNPs + laser or Pred-GNPs + laser. The area of edema, necrosis and erythema were measured. On the last day of treatment, the animals were euthanized to remove the organs for histopathological and biochemical analysis.Results: All treatments combinations were effective in promoting the reduction of necrotic tissue and erythema.Conclusion: With this results, we suggest that the use of laser and nanoparticles, associated or not with prednisolone, should be considered for the treatment of dermonecrotic injury.
Collapse
Affiliation(s)
- Daysiane de Oliveira
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Gabriel Paulino Luiz
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Rahisa Scussel
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Mirian Ivens Fagundes
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Nathália Coral Galvani
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Jessica da Silva Abel
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Rubya Pereira Zaccaron
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Gustavo de Bem Silveira
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Thiago Antônio Moretti de Andrade
- Postgraduate in Biomedical Sciences, University Center of Herminio Ometto Foundation, Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | | |
Collapse
|
4
|
Terrill JR, Bautista APR, Tsioutsias I, Grounds MD, Arthur PG. Oxidised Albumin Levels in Plasma and Skeletal Muscle as Biomarkers of Disease Progression and Treatment Efficacy in Dystrophic mdx Mice. Antioxidants (Basel) 2024; 13:720. [PMID: 38929159 PMCID: PMC11201235 DOI: 10.3390/antiox13060720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Redox modifications to the plasma protein albumin have the potential to be used as biomarkers of disease progression and treatment efficacy in pathologies associated with inflammation and oxidative stress. One such pathology is Duchenne muscular dystrophy (DMD), a fatal childhood disease characterised by severe muscle wasting. We have previously shown in the mdx mouse model of DMD that plasma albumin thiol oxidation is increased; therefore, the first aim of this paper was to establish that albumin thiol oxidation in plasma reflects levels within mdx muscle tissue. We therefore developed a method to measure tissue albumin thiol oxidation. We show that albumin thiol oxidation was increased in both mdx muscle and plasma, with levels correlated with measures of dystropathology. In dystrophic muscle, albumin content was associated with areas of myonecrosis. The second aim was to test the ability of plasma thiol oxidation to track acute changes in dystropathology: we therefore subjected mdx mice to a single treadmill exercise session (known to increase myonecrosis) and took serial blood samples. This acute exercise caused a transient increase in total plasma albumin oxidation and measures of dystropathology. Together, these data support the use of plasma albumin thiol oxidation as a biomarker to track active myonecrosis in DMD.
Collapse
Affiliation(s)
- Jessica R. Terrill
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; (J.R.T.); (A.P.R.B.); (I.T.)
| | - Angelo Patrick R. Bautista
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; (J.R.T.); (A.P.R.B.); (I.T.)
| | - Irene Tsioutsias
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; (J.R.T.); (A.P.R.B.); (I.T.)
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia;
| | - Miranda D. Grounds
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia;
| | - Peter G. Arthur
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; (J.R.T.); (A.P.R.B.); (I.T.)
| |
Collapse
|
5
|
Lea TA, Panizza PM, Arthur PG, Bakker AJ, Pinniger GJ. Hypochlorous acid exposure impairs skeletal muscle function and Ca 2+ signalling: implications for Duchenne muscular dystrophy pathology. J Physiol 2023; 601:5257-5275. [PMID: 37864413 DOI: 10.1113/jp285263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked disease characterised by severe muscle wasting. The mechanisms underlying the DMD pathology likely involve the interaction between inflammation, oxidative stress and impaired Ca2+ signalling. Hypochlorous acid (HOCl) is a highly reactive oxidant produced endogenously via myeloperoxidase; an enzyme secreted by neutrophils that is significantly elevated in dystrophic muscle. Oxidation of Ca2+ -handling proteins by HOCl may impair Ca2+ signalling. This study aimed to determine the effects of HOCl on skeletal muscle function and its potential contribution to the dystrophic pathology. Extensor digitorum longus (EDL), soleus and interosseous muscles were surgically isolated from anaesthetised C57 (wild-type) and mdx (dystrophic) mice for measurement of ex vivo force production and intracellular Ca2+ concentration. In whole EDL muscle, HOCl (200 μM) significantly decreased maximal force and increased resting muscle tension which was only partially reversible by dithiothreitol. The effects of HOCl (200 μM) on maximal force in slow-twitch soleus were lower than found in the fast-twitch EDL muscle. In single interosseous myofibres, HOCl (10 μM) significantly increased resting intracellular Ca2+ concentration and decreased Ca2+ transient amplitude. These effects of HOCl were reduced by the application of tetracaine, Gd3+ or streptomycin, implicating involvement of ryanodine receptors and transient receptor potential channels. These results demonstrate the potent effects of HOCl on skeletal muscle function potentially mediated by HOCl-induced oxidation to Ca2+ signalling proteins. Hence, HOCl may provide a link between chronic inflammation, oxidative stress and impaired Ca2+ handling that is characteristic of DMD and presents a potential therapeutic target for DMD. KEY POINTS: Duchenne muscular dystrophy is a fatal genetic disease with pathological mechanisms which involve the complex interaction of chronic inflammation, increased reactive oxygen species production and increased cytosolic Ca2+ concentrations. Hypochlorous acid can be endogenously produced by neutrophils via the enzyme myeloperoxidase. Both neutrophil and myeloperoxidase activity are increased in dystrophic mice. This study found that hypochlorous acid decreased muscle force production and increased cytosolic Ca2+ concentrations in isolated muscles from wild-type and dystrophic mice at relatively low concentrations of hypochlorous acid. These results indicate that hypochlorous acid may be key in the Duchenne muscular dystrophy disease pathology and may provide a unifying link between the chronic inflammation, increased reactive oxygen species production and increased cytosolic Ca2+ concentrations observed in Duchenne muscular dystrophy. Hypochlorous acid production may be a potential target for therapeutic treatments of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Thomas A Lea
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Peter M Panizza
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Peter G Arthur
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Anthony J Bakker
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Gavin J Pinniger
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
6
|
De Paepe B. What Nutraceuticals Can Do for Duchenne Muscular Dystrophy: Lessons Learned from Amino Acid Supplementation in Mouse Models. Biomedicines 2023; 11:2033. [PMID: 37509672 PMCID: PMC10377666 DOI: 10.3390/biomedicines11072033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Duchenne muscular dystrophy (DMD), the severest form of muscular dystrophy, is characterized by progressive muscle weakness with fatal outcomes most often before the fourth decade of life. Despite the recent addition of molecular treatments, DMD remains a disease without a cure, and the need persists for the development of supportive therapies aiming to help improve patients' quality of life. This review focuses on the therapeutical potential of amino acid and derivative supplements, summarizing results obtained in preclinical studies in murine disease models. Several promising compounds have emerged, with L-arginine, N-acetylcysteine, and taurine featuring among the most intensively investigated. Their beneficial effects include reduced inflammatory, oxidative, fibrotic, and necrotic damage to skeletal muscle tissues. Improvement of muscle strength and endurance have been reported; however, mild side effects have also surfaced. More explorative, placebo-controlled and long-term clinical trials would need to be conducted in order to identify amino acid formulae that are safe and of true benefit to DMD patients.
Collapse
Affiliation(s)
- Boel De Paepe
- Department of Neurology, Ghent University & Neuromuscular Reference Center, Ghent University Hospital, Route 830, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Terrill JR, Huchet C, Le Guiner C, Lafoux A, Caudal D, Tulangekar A, Bryson-Richardson RJ, Sztal TE, Grounds MD, Arthur PG. Muscle Pathology in Dystrophic Rats and Zebrafish Is Unresponsive to Taurine Treatment, Compared to the mdx Mouse Model for Duchenne Muscular Dystrophy. Metabolites 2023; 13:metabo13020232. [PMID: 36837851 PMCID: PMC9963000 DOI: 10.3390/metabo13020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Inflammation and oxidative stress are strongly implicated in the pathology of Duchenne muscular dystrophy (DMD), and the sulphur-containing amino acid taurine ameliorates both and decreases dystropathology in the mdx mouse model for DMD. We therefore further tested taurine as a therapy using dystrophic DMDmdx rats and dmd zebrafish models for DMD that have a more severe dystropathology. However, taurine treatment had little effect on the indices of dystropathology in both these models. While we and others have previously observed a deficiency in taurine in mdx mice, in the current study we show that the rat and zebrafish models had increased taurine content compared with wild-type, and taurine treatment did not increase muscle taurine levels. We therefore hypothesised that endogenous levels of taurine are a key determinate in potential taurine treatment efficacy. Because of this, we felt it important to measure taurine levels in DMD patient plasma samples and showed that in non-ambulant patients (but not in younger patients) there was a deficiency of taurine. These data suggest that taurine homeostasis varies greatly between species and may be influenced by age and disease progression. The potential for taurine to be an effective therapy may depend on such variables.
Collapse
Affiliation(s)
- Jessica R. Terrill
- School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
- Correspondence:
| | - Corinne Huchet
- TaRGeT Lab, Translational Research for Gene Therapy, INSERM, UMR 1089, Nantes Université, CHU Nantes, 440200 Nantes, France
| | - Caroline Le Guiner
- TaRGeT Lab, Translational Research for Gene Therapy, INSERM, UMR 1089, Nantes Université, CHU Nantes, 440200 Nantes, France
| | - Aude Lafoux
- Therassay Platform, CAPACITES, Nantes Université, 44007 Nantes, France
| | - Dorian Caudal
- Therassay Platform, CAPACITES, Nantes Université, 44007 Nantes, France
| | - Ankita Tulangekar
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | | | - Tamar E. Sztal
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Miranda D. Grounds
- School of Human Sciences, the University of Western Australia, Perth 6009, Australia
| | - Peter G. Arthur
- School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
| |
Collapse
|
8
|
Xianchu L, Changhao C, Beiwang D, Ming L. Protective Effects of Apocynin on Streptozotocin-Induced Diabetic Muscular Atrophy. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1420.1428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Merckx C, Zschüntzsch J, Meyer S, Raedt R, Verschuere H, Schmidt J, De Paepe B, De Bleecker JL. Exploring the Therapeutic Potential of Ectoine in Duchenne Muscular Dystrophy: Comparison with Taurine, a Supplement with Known Beneficial Effects in the mdx Mouse. Int J Mol Sci 2022; 23:ijms23179567. [PMID: 36076964 PMCID: PMC9455265 DOI: 10.3390/ijms23179567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a debilitating muscle disorder that condemns patients to year-long dependency on glucocorticoids. Chronic glucocorticoid use elicits many unfavourable side-effects without offering satisfying clinical improvement, thus, the search for alternative treatments to alleviate muscle inflammation persists. Taurine, an osmolyte with anti-inflammatory effects, mitigated pathological features in the mdx mouse model for DMD but interfered with murine development. In this study, ectoine is evaluated as an alternative for taurine in vitro in CCL-136 cells and in vivo in the mdx mouse. Pre-treating CCL-136 cells with 0.1 mM taurine and 0.1 mM ectoine prior to exposure with 300 U/mL IFN-γ and 20 ng/mL IL-1β partially attenuated cell death, whilst 100 mM taurine reduced MHC-I protein levels. In vivo, histopathological features of the tibialis anterior in mdx mice were mitigated by ectoine, but not by taurine. Osmolyte treatment significantly reduced mRNA levels of inflammatory disease biomarkers, respectively, CCL2 and SPP1 in ectoine-treated mdx mice, and CCL2, HSPA1A, TNF-α and IL-1β in taurine-treated mdx mice. Functional performance was not improved by osmolyte treatment. Furthermore, ectoine-treated mdx mice exhibited reduced body weight. Our results confirmed beneficial effects of taurine in mdx mice and, for the first time, demonstrated similar and differential effects of ectoine.
Collapse
Affiliation(s)
- Caroline Merckx
- Department of Neurology, Ghent University and Ghent University Hospital, 9000 Ghent, Belgium
| | - Jana Zschüntzsch
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Stefanie Meyer
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Robrecht Raedt
- 4BRAIN, Department Head and Skin, Ghent University, 9000 Ghent, Belgium
| | - Hanne Verschuere
- Unit of Molecular Signaling and Cell Death, Center for Inflammation Research, Flemish Institute for Biotechnology, 9052 Ghent, Belgium
| | - Jens Schmidt
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Department of Neurology and Pain Treatment, Immanuel Klinik Rüdersdorf, University Hospital of the Brandenburg Medical School Theodor Fontane, 15562 Rüdersdorf bei Berlin, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, 15562 Rüdersdorf bei Berlin, Germany
| | - Boel De Paepe
- Department of Neurology, Ghent University and Ghent University Hospital, 9000 Ghent, Belgium
- Correspondence:
| | - Jan L. De Bleecker
- Department of Neurology, Ghent University and Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
10
|
de Zélicourt A, Fayssoil A, Dakouane-Giudicelli M, De Jesus I, Karoui A, Zarrouki F, Lefebvre F, Mansart A, Launay JM, Piquereau J, Tarragó MG, Bonay M, Forand A, Moog S, Piétri-Rouxel F, Brisebard E, Chini CCS, Kashyap S, Fogarty MJ, Sieck GC, Mericskay M, Chini EN, Gomez AM, Cancela JM, de la Porte S. CD38-NADase is a new major contributor to Duchenne muscular dystrophic phenotype. EMBO Mol Med 2022; 14:e12860. [PMID: 35298089 PMCID: PMC9081905 DOI: 10.15252/emmm.202012860] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 01/14/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive muscle degeneration. Two important deleterious features are a Ca2+ dysregulation linked to Ca2+ influxes associated with ryanodine receptor hyperactivation, and a muscular nicotinamide adenine dinucleotide (NAD+) deficit. Here, we identified that deletion in mdx mice of CD38, a NAD+ glycohydrolase‐producing modulators of Ca2+ signaling, led to a fully restored heart function and structure, with skeletal muscle performance improvements, associated with a reduction in inflammation and senescence markers. Muscle NAD+ levels were also fully restored, while the levels of the two main products of CD38, nicotinamide and ADP‐ribose, were reduced, in heart, diaphragm, and limb. In cardiomyocytes from mdx/CD38−/− mice, the pathological spontaneous Ca2+ activity was reduced, as well as in myotubes from DMD patients treated with isatuximab (SARCLISA®) a monoclonal anti‐CD38 antibody. Finally, treatment of mdx and utrophin–dystrophin‐deficient (mdx/utr−/−) mice with CD38 inhibitors resulted in improved skeletal muscle performances. Thus, we demonstrate that CD38 actively contributes to DMD physiopathology. We propose that a selective anti‐CD38 therapeutic intervention could be highly relevant to develop for DMD patients.
Collapse
Affiliation(s)
- Antoine de Zélicourt
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France.,Institut des Neurosciences Paris-Saclay, CNRS, Université Paris-Saclay, Saclay, France
| | | | | | - Isley De Jesus
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France
| | - Ahmed Karoui
- Signalisation et Physiopathologie Cardiovasculaire, INSERM, UMR-S 1180 - Université Paris-Saclay, Châtenay-Malabry, France
| | - Faouzi Zarrouki
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France
| | - Florence Lefebvre
- Signalisation et Physiopathologie Cardiovasculaire, INSERM, UMR-S 1180 - Université Paris-Saclay, Châtenay-Malabry, France
| | - Arnaud Mansart
- Université Paris-Saclay, UVSQ, Inserm, 2I, Versailles, France
| | - Jean-Marie Launay
- Service de Biochimie, INSERM UMR S942, Hôpital Lariboisière, Paris, France
| | - Jerome Piquereau
- Signalisation et Physiopathologie Cardiovasculaire, INSERM, UMR-S 1180 - Université Paris-Saclay, Châtenay-Malabry, France
| | - Mariana G Tarragó
- Department of Anesthesiology and Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Marcel Bonay
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France
| | - Anne Forand
- Centre de Recherche en Myologie, Faculté de Médecine de la Pitié Salpêtrière, Sorbonne Université-UMRS974-Inserm-Institut de Myologie, Paris, France.,Inovarion, Paris, France
| | - Sophie Moog
- Centre de Recherche en Myologie, Faculté de Médecine de la Pitié Salpêtrière, Sorbonne Université-UMRS974-Inserm-Institut de Myologie, Paris, France.,Inovarion, Paris, France
| | - France Piétri-Rouxel
- Centre de Recherche en Myologie, Faculté de Médecine de la Pitié Salpêtrière, Sorbonne Université-UMRS974-Inserm-Institut de Myologie, Paris, France
| | | | - Claudia C S Chini
- Department of Anesthesiology and Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Sonu Kashyap
- Department of Anesthesiology and Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew J Fogarty
- Department of Anesthesiology and Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Gary C Sieck
- Department of Anesthesiology and Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Mathias Mericskay
- Signalisation et Physiopathologie Cardiovasculaire, INSERM, UMR-S 1180 - Université Paris-Saclay, Châtenay-Malabry, France
| | - Eduardo N Chini
- Department of Anesthesiology and Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Ana Maria Gomez
- Signalisation et Physiopathologie Cardiovasculaire, INSERM, UMR-S 1180 - Université Paris-Saclay, Châtenay-Malabry, France
| | - José-Manuel Cancela
- Institut des Neurosciences Paris-Saclay, CNRS, Université Paris-Saclay, Saclay, France
| | | |
Collapse
|
11
|
The Role of Taurine in Skeletal Muscle Functioning and Its Potential as a Supportive Treatment for Duchenne Muscular Dystrophy. Metabolites 2022; 12:metabo12020193. [PMID: 35208266 PMCID: PMC8879184 DOI: 10.3390/metabo12020193] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Taurine (2-aminoethanesulfonic acid) is required for ensuring proper muscle functioning. Knockout of the taurine transporter in mice results in low taurine concentrations in the muscle and associates with myofiber necrosis and diminished exercise capacity. Interestingly, regulation of taurine and its transporter is altered in the mdx mouse, a model for Duchenne Muscular Dystrophy (DMD). DMD is a genetic disorder characterized by progressive muscle degeneration and weakness due to the absence of dystrophin from the muscle membrane, causing destabilization and contraction-induced muscle cell damage. This review explores the physiological role of taurine in skeletal muscle and the consequences of a disturbed balance in DMD. Its potential as a supportive treatment for DMD is also discussed. In addition to genetic correction, that is currently under development as a curative treatment, taurine supplementation has the potential to reduce muscle inflammation and improve muscle strength in patients.
Collapse
|
12
|
Mantuano P, Boccanegra B, Conte E, De Bellis M, Cirmi S, Sanarica F, Cappellari O, Arduino I, Cutrignelli A, Lopedota AA, Mele A, Denora N, De Luca A. β-Dystroglycan Restoration and Pathology Progression in the Dystrophic mdx Mouse: Outcome and Implication of a Clinically Oriented Study with a Novel Oral Dasatinib Formulation. Biomolecules 2021; 11:1742. [PMID: 34827740 PMCID: PMC8615430 DOI: 10.3390/biom11111742] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 01/17/2023] Open
Abstract
ROS-activated cSrc tyrosine kinase (TK) promotes the degradation of β-dystroglycan (β-DG), a dystrophin-glycoprotein complex component, which may reinforce damaging signals in Duchenne muscular dystrophy (DMD). Therefore, cSrc-TK represents a promising therapeutic target. In mdx mice, a 4-week subcutaneous treatment with dasatinib (DAS), a pan-Src-TKs inhibitor approved as anti-leukemic agent, increased muscle β-DG, with minimal amelioration of morphofunctional indices. To address possible dose/pharmacokinetic (PK) issues, a new oral DAS/hydroxypropyl(HP)-β-cyclodextrin(CD) complex was developed and chronically administered to mdx mice. The aim was to better assess the role of β-DG in pathology progression, meanwhile confirming DAS mechanism of action over the long-term, along with its efficacy and tolerability. The 4-week old mdx mice underwent a 12-week treatment with DAS/HP-β-CD10% dissolved in drinking water, at 10 or 20 mg/kg/day. The outcome was evaluated via in vivo/ex vivo disease-relevant readouts. Oral DAS/HP-β-CD efficiently distributed in mdx mice plasma and tissues in a dose-related fashion. The new DAS formulation confirmed its main upstream mechanism of action, by reducing β-DG phosphorylation and restoring its levels dose-dependently in both diaphragm and gastrocnemius muscle. However, it modestly improved in vivo neuromuscular function, ex vivo muscle force, and histopathology, although the partial recovery of muscle elasticity and the decrease of CK and LDH plasma levels suggest an increased sarcolemmal stability of dystrophic muscles. Our clinically oriented study supports the interest in this new, pediatric-suitable DAS formulation for proper exposure and safety and for enhancing β-DG expression. This latter mechanism is, however, not sufficient by itself to impact on pathology progression. In-depth analyses will be dedicated to elucidating the mechanism limiting DAS effectiveness in dystrophic settings, meanwhile assessing its potential synergy with dystrophin-based molecular therapies.
Collapse
Affiliation(s)
- Paola Mantuano
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Brigida Boccanegra
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Santa Cirmi
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Francesca Sanarica
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Ornella Cappellari
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Ilaria Arduino
- Section of Pharmaceutical Technologies, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (I.A.); (A.C.); (A.A.L.); (N.D.)
| | - Annalisa Cutrignelli
- Section of Pharmaceutical Technologies, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (I.A.); (A.C.); (A.A.L.); (N.D.)
| | - Angela Assunta Lopedota
- Section of Pharmaceutical Technologies, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (I.A.); (A.C.); (A.A.L.); (N.D.)
| | - Antonietta Mele
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Nunzio Denora
- Section of Pharmaceutical Technologies, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (I.A.); (A.C.); (A.A.L.); (N.D.)
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| |
Collapse
|
13
|
Mantuano P, Boccanegra B, Bianchini G, Conte E, De Bellis M, Sanarica F, Camerino GM, Pierno S, Cappellari O, Allegretti M, Aramini A, De Luca A. BCAAs and Di-Alanine supplementation in the prevention of skeletal muscle atrophy: preclinical evaluation in a murine model of hind limb unloading. Pharmacol Res 2021; 171:105798. [PMID: 34352400 DOI: 10.1016/j.phrs.2021.105798] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/07/2023]
Abstract
Skeletal muscle atrophy occurs in response to various pathophysiological stimuli, including disuse, aging, and neuromuscular disorders, mainly due to an imbalance of anabolic/catabolic signaling. Branched Chain Amino Acids (BCAAs: leucine, isoleucine, valine) supplements can be beneficial for counteracting muscle atrophy, in virtue of their reported anabolic properties. Here, we carried out a proof-of-concept study to assess the in vivo/ex vivo effects of a 4-week treatment with BCAAs on disuse-induced atrophy, in a murine model of hind limb unloading (HU). BCAAs were formulated in drinking water, alone, or plus two equivalents of L-Alanine (2 ALA) or the dipeptide L-Alanyl-L-Alanine (Di-ALA), to boost BCAAs bioavailability. HU mice were characterized by reduction of body mass, decrease of soleus - SOL - muscle mass and total protein, alteration of postural muscles architecture and fiber size, dysregulation of atrophy-related genes (Atrogin-1, MuRF-1, mTOR, Mstn). In parallel, we provided new robust readouts in the HU murine model, such as impaired in vivo isometric torque and ex vivo SOL muscle contractility and elasticity, as well as altered immune response. An acute pharmacokinetic study confirmed that L-ALA, also as dipeptide, enhanced plasma exposure of BCAAs. Globally, the most sensitive parameters to BCAAs action were muscle atrophy and myofiber cross-sectional area, muscle force and compliance to stress, protein synthesis via mTOR and innate immunity, with the new BCAAs + Di-ALA formulation being the most effective treatment. Our results support the working hypothesis and highlight the importance of developing innovative formulations to optimize BCAAs biodistribution.
Collapse
Affiliation(s)
- Paola Mantuano
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy
| | - Brigida Boccanegra
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy
| | - Gianluca Bianchini
- Research & Early Development, Dompé farmaceutici S.p.A., Via Campo di Pile, s.n.c., 67100 L'Aquila, Italy
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy
| | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy
| | - Francesca Sanarica
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy
| | - Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy
| | - Sabata Pierno
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy
| | - Ornella Cappellari
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy
| | - Marcello Allegretti
- Research & Early Development, Dompé farmaceutici S.p.A., Via Campo di Pile, s.n.c., 67100 L'Aquila, Italy
| | - Andrea Aramini
- Research & Early Development, Dompé farmaceutici S.p.A., Via Campo di Pile, s.n.c., 67100 L'Aquila, Italy.
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy.
| |
Collapse
|
14
|
Rossi R, Falzarano MS, Osman H, Armaroli A, Scotton C, Mantuano P, Boccanegra B, Cappellari O, Schwartz E, Yuryev A, Mercuri E, Bertini E, D'Amico A, Mora M, Johansson C, Al-Khalili Szigyarto C, De Luca A, Ferlini A. Circadian Genes as Exploratory Biomarkers in DMD: Results From Both the mdx Mouse Model and Patients. Front Physiol 2021; 12:678974. [PMID: 34305639 PMCID: PMC8300012 DOI: 10.3389/fphys.2021.678974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/14/2021] [Indexed: 11/21/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a rare genetic disease due to dystrophin gene mutations which cause progressive weakness and muscle wasting. Circadian rhythm coordinates biological processes with the 24-h cycle and it plays a key role in maintaining muscle functions, both in animal models and in humans. We explored expression profiles of circadian circuit master genes both in Duchenne muscular dystrophy skeletal muscle and in its animal model, the mdx mouse. We designed a customized, mouse-specific Fluidic-Card-TaqMan-based assay (Fluid-CIRC) containing thirty-two genes related to circadian rhythm and muscle regeneration and analyzed gastrocnemius and tibialis anterior muscles from both unexercised and exercised mdx mice. Based on this first analysis, we prioritized the 7 most deregulated genes in mdx mice and tested their expression in skeletal muscle biopsies from 10 Duchenne patients. We found that CSNK1E, SIRT1, and MYOG are upregulated in DMD patient biopsies, consistent with the mdx data. We also demonstrated that their proteins are detectable and measurable in the DMD patients’ plasma. We suggest that CSNK1E, SIRT1, and MYOG might represent exploratory circadian biomarkers in DMD.
Collapse
Affiliation(s)
- Rachele Rossi
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,The Dubowitz Neuromuscular Centre, Institute of Child Health, London, United Kingdom
| | - Maria Sofia Falzarano
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Hana Osman
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Annarita Armaroli
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Chiara Scotton
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Paola Mantuano
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Brigida Boccanegra
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Ornella Cappellari
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | | | | | - Eugenio Mercuri
- Pediatric Neurology Unit, Catholic University and Nemo Center, Policlinico Universitario Gemelli, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, IRCCS Bambino Gesu Children's Hospital, Rome, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, IRCCS Bambino Gesu Children's Hospital, Rome, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Camilla Johansson
- School of Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Cristina Al-Khalili Szigyarto
- School of Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden.,Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,The Dubowitz Neuromuscular Centre, Institute of Child Health, London, United Kingdom
| |
Collapse
|
15
|
The Interplay of Mitophagy and Inflammation in Duchenne Muscular Dystrophy. Life (Basel) 2021; 11:life11070648. [PMID: 34357020 PMCID: PMC8307817 DOI: 10.3390/life11070648] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease caused by a pathogenic disruption of the DYSTROPHIN gene that results in non-functional dystrophin protein. DMD patients experience loss of ambulation, cardiac arrhythmia, metabolic syndrome, and respiratory failure. At the molecular level, the lack of dystrophin in the muscle results in myofiber death, fibrotic infiltration, and mitochondrial dysfunction. There is no cure for DMD, although dystrophin-replacement gene therapies and exon-skipping approaches are being pursued in clinical trials. Mitochondrial dysfunction is one of the first cellular changes seen in DMD myofibers, occurring prior to muscle disease onset and progresses with disease severity. This is seen by reduced mitochondrial function, abnormal mitochondrial morphology and impaired mitophagy (degradation of damaged mitochondria). Dysfunctional mitochondria release high levels of reactive oxygen species (ROS), which can activate pro-inflammatory pathways such as IL-1β and IL-6. Impaired mitophagy in DMD results in increased inflammation and further aggravates disease pathology, evidenced by increased muscle damage and increased fibrosis. This review will focus on the critical interplay between mitophagy and inflammation in Duchenne muscular dystrophy as a pathological mechanism, as well as describe both candidate and established therapeutic targets that regulate these pathways.
Collapse
|
16
|
A Systematic Review on the Role of SIRT1 in Duchenne Muscular Dystrophy. Cells 2021; 10:cells10061380. [PMID: 34205021 PMCID: PMC8229470 DOI: 10.3390/cells10061380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a muscular disease characterized by progressive muscle degeneration. Life expectancy is between 30 and 50 years, and death is correlated with cardiac or respiratory complications. Currently, there is no cure, so there is a great interest in new pharmacological targets. Sirtuin1 (SIRT1) seems to be a potential target for DMD. In muscle tissue, SIRT1 exerts anti-inflammatory and antioxidant effects. The aim of this study is to summarize all the findings of in vivo and in vitro literature studies about the potential role of SIRT1 in DMD. A systematic literature search was performed according to PRISMA guidelines. Twenty-three articles satisfied the eligibility criteria. It emerged that SIRT1 inhibition led to muscle fragility, while conversely its activation improved muscle function. Additionally, resveratrol, a SIRT1 activator, has brought beneficial effects to the skeletal, cardiac and respiratory muscles by exerting anti-inflammatory activity that leads to reduced myofiber wasting.
Collapse
|
17
|
Terrill JR, Webb SM, Arthur PG, Hackett MJ. Investigation of the effect of taurine supplementation on muscle taurine content in the mdx mouse model of Duchenne muscular dystrophy using chemically specific synchrotron imaging. Analyst 2021; 145:7242-7251. [PMID: 32893271 DOI: 10.1039/d0an00642d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal genetic muscle wasting disorder, which currently has no cure. Supplementation with the drug taurine has been shown to offer therapeutic benefit in the mdx model for DMD, however the mechanism by which taurine protects dystrophic muscle is not fully understood. Mdx muscle is deficient in taurine, however it is not known if this deficiency occurs in the extracellular space, in other cells present in the tissue (such as immune cells) or in the myofibre itself. Likewise, the tissue location of taurine enrichment in taurine treated mdx muscle is not known. In this study we applied X-ray absorption near edge spectroscopy (XANES) at the sulfur K-edge in an imaging format to determine taurine distribution in muscle tissue. XANES is the only technique currently capable of imaging taurine directly in muscle tissue, at a spatial resolution approaching myocyte cell size (20-50 μm). Using a multi-modal approach of XANES imaging and histology on the same tissue sections, we show that in mdx muscle, it is the myofibres that are deficient in taurine, and taurine supplementation ameliorates this deficiency. Increasing the taurine content of mdx myofibres was associated with a decrease in myofibre damage (as shown by the percentage of intact myofibres) and inflammation. These data will help drive future studies to better elucidate the molecular mechanisms through which taurine protects dystrophic muscle; they also support the continued investigation of taurine as a therapeutic intervention for DMD.
Collapse
Affiliation(s)
- Jessica R Terrill
- School of Molecular Sciences, the University of Western Australia, Perth, Western Australia AUS 6009, Australia
| | | | | | | |
Collapse
|
18
|
The PKA-p38MAPK-NFAT5-Organic Osmolytes Pathway in Duchenne Muscular Dystrophy: From Essential Player in Osmotic Homeostasis, Inflammation and Skeletal Muscle Regeneration to Therapeutic Target. Biomedicines 2021; 9:biomedicines9040350. [PMID: 33808305 PMCID: PMC8066813 DOI: 10.3390/biomedicines9040350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD), the absence of dystrophin from the dystrophin-associated protein complex (DAPC) causes muscle membrane instability, which leads to myofiber necrosis, hampered regeneration, and chronic inflammation. The resulting disabled DAPC-associated cellular pathways have been described both at the molecular and the therapeutical level, with the Toll-like receptor nuclear factor kappa-light-chain-enhancer of activated B cells pathway (NF-ƘB), Janus kinase/signal transducer and activator of transcription proteins, and the transforming growth factor-β pathways receiving the most attention. In this review, we specifically focus on the protein kinase A/ mitogen-activated protein kinase/nuclear factor of activated T-cells 5/organic osmolytes (PKA-p38MAPK-NFAT5-organic osmolytes) pathway. This pathway plays an important role in osmotic homeostasis essential to normal cell physiology via its regulation of the influx/efflux of organic osmolytes. Besides, NFAT5 plays an essential role in cell survival under hyperosmolar conditions, in skeletal muscle regeneration, and in tissue inflammation, closely interacting with the master regulator of inflammation NF-ƘB. We describe the involvement of the PKA-p38MAPK-NFAT5-organic osmolytes pathway in DMD pathophysiology and provide a clear overview of which therapeutic molecules could be of potential benefit to DMD patients. We conclude that modulation of the PKA-p38MAPK-NFAT5-organic osmolytes pathway could be developed as supportive treatment for DMD in conjunction with genetic therapy.
Collapse
|
19
|
A Phase 1/2 Study of Flavocoxid, an Oral NF-κB Inhibitor, in Duchenne Muscular Dystrophy. Brain Sci 2021; 11:brainsci11010115. [PMID: 33467104 PMCID: PMC7830560 DOI: 10.3390/brainsci11010115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Abstract
Flavocoxid is a blended extract containing baicalin and catechin with potent antioxidant and anti-inflammatory properties due to the inhibition of the cyclooxygenase (COX) and 5-lipoxygenase (5-LOX) enzymes, nuclear factor-κB (NF-κB), tumor necrosis factor (TNF)-alpha, and the mitogen-activated protein kinases (MAPKs) pathways. This phase 1/2 study was designed to assess the safety and tolerability of flavocoxid in patients with Duchenne muscular dystrophy (DMD). Thirty-four patients were recruited: 17 were treated with flavocoxid at an oral dose of 250 or 500 mg, according to body weight, for one year; 17 did not receive flavocoxid and served as controls. The treatment was well tolerated and nobody dropped out. Flavocoxid induced a significant reduction in serum interleukin (IL)-1 beta and TNF-alpha only in the group of DMD boys on add-on therapy (flavocoxid added to steroids for at least six months). The decrease in IL-1 beta was higher in younger boys. The serum H2O2 concentrations significantly decreased in patients treated with flavocoxid alone with a secondary reduction of serum glutathione peroxidase (GPx) levels, especially in younger boys. The exploratory outcome measures failed to show significant effects but there was a trend showing that the younger boys who received treatment were faster at performing the Gowers' maneuver, while the older boys who received treatment were faster at doing the 10-m walk test (10MWT). Therefore, a double-blind, placebo-controlled study for at least two/three years is warranted to verify flavocoxid as a steroid substitute or as add-on therapy to steroids.
Collapse
|
20
|
Boccanegra B, Verhaart IEC, Cappellari O, Vroom E, De Luca A. Safety issues and harmful pharmacological interactions of nutritional supplements in Duchenne muscular dystrophy: considerations for Standard of Care and emerging virus outbreaks. Pharmacol Res 2020; 158:104917. [PMID: 32485610 PMCID: PMC7261230 DOI: 10.1016/j.phrs.2020.104917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
Abstract
At the moment, little treatment options are available for Duchenne muscular dystrophy (DMD). The absence of the dystrophin protein leads to a complex cascade of pathogenic events in myofibres, including chronic inflammation and oxidative stress as well as altered metabolism. The attention towards dietary supplements in DMD is rapidly increasing, with the aim to counteract pathology-related alteration in nutrient intake, the consequences of catabolic distress or to enhance the immunological response of patients as nowadays for the COVID-19 pandemic emergency. By definition, supplements do not exert therapeutic actions, although a great confusion may arise in daily life by the improper distinction between supplements and therapeutic compounds. For most supplements, little research has been done and little evidence is available concerning their effects in DMD as well as their preventing actions against infections. Often these are not prescribed by clinicians and patients/caregivers do not discuss the use with their clinical team. Then, little is known about the real extent of supplement use in DMD patients. It is mistakenly assumed that, since compounds are of natural origin, if a supplement is not effective, it will also do no harm. However, supplements can have serious side effects and also have harmful interactions, in terms of reducing efficacy or leading to toxicity, with other therapies. It is therefore pivotal to shed light on this unclear scenario for the sake of patients. This review discusses the supplements mostly used by DMD patients, focusing on their potential toxicity, due to a variety of mechanisms including pharmacodynamic or pharmacokinetic interactions and contaminations, as well as on reports of adverse events. This overview underlines the need for caution in uncontrolled use of dietary supplements in fragile populations such as DMD patients. A culture of appropriate use has to be implemented between clinicians and patients' groups.
Collapse
Affiliation(s)
- Brigida Boccanegra
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Ingrid E C Verhaart
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands; Duchenne Parent Project, the Netherlands
| | - Ornella Cappellari
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Elizabeth Vroom
- Duchenne Parent Project, the Netherlands; World Duchenne Organisation (UPPMD), the Netherlands
| | - Annamaria De Luca
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
21
|
Ergogenic Effect of BCAAs and L-Alanine Supplementation: Proof-of-Concept Study in a Murine Model of Physiological Exercise. Nutrients 2020; 12:nu12082295. [PMID: 32751732 PMCID: PMC7468919 DOI: 10.3390/nu12082295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Branched-chain amino acids (BCAAs: leucine, isoleucine, valine) account for 35% of skeletal muscle essential amino acids (AAs). As such, they must be provided in the diet to support peptide synthesis and inhibit protein breakdown. Although substantial evidence has been collected about the potential usefulness of BCAAs in supporting muscle function and structure, dietary supplements containing BCAAs alone may not be effective in controlling muscle protein turnover, due to the rate-limiting bioavailability of other AAs involved in BCAAs metabolism. Methods: We aimed to evaluate the in vivo/ex vivo effects of a 4-week treatment with an oral formulation containing BCAAs alone (2:1:1) on muscle function, structure, and metabolism in a murine model of physiological exercise, which was compared to three modified formulations combining BCAAs with increasing concentrations of L-Alanine (ALA), an AA controlling BCAAs catabolism. Results: A preliminary pharmacokinetic study confirmed the ability of ALA to boost up BCAAs bioavailability. After 4 weeks, mix 2 (BCAAs + 2ALA) had the best protective effect on mice force and fatigability, as well as on muscle morphology and metabolic indices. Conclusion: Our study corroborates the use of BCAAs + ALA to support muscle health during physiological exercise, underlining how the relative BCAAs/ALA ratio is important to control BCAAs distribution.
Collapse
|
22
|
Cappellari O, Mantuano P, De Luca A. "The Social Network" and Muscular Dystrophies: The Lesson Learnt about the Niche Environment as a Target for Therapeutic Strategies. Cells 2020; 9:cells9071659. [PMID: 32660168 PMCID: PMC7407800 DOI: 10.3390/cells9071659] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
The muscle stem cells niche is essential in neuromuscular disorders. Muscle injury and myofiber death are the main triggers of muscle regeneration via satellite cell activation. However, in degenerative diseases such as muscular dystrophy, regeneration still keep elusive. In these pathologies, stem cell loss occurs over time, and missing signals limiting damaged tissue from activating the regenerative process can be envisaged. It is unclear what comes first: the lack of regeneration due to satellite cell defects, their pool exhaustion for degeneration/regeneration cycles, or the inhibitory mechanisms caused by muscle damage and fibrosis mediators. Herein, Duchenne muscular dystrophy has been taken as a paradigm, as several drugs have been tested at the preclinical and clinical levels, targeting secondary events in the complex pathogenesis derived from lack of dystrophin. We focused on the crucial roles that pro-inflammatory and pro-fibrotic cytokines play in triggering muscle necrosis after damage and stimulating satellite cell activation and self-renewal, along with growth and mechanical factors. These processes contribute to regeneration and niche maintenance. We review the main effects of drugs on regeneration biomarkers to assess whether targeting pathogenic events can help to protect niche homeostasis and enhance regeneration efficiency other than protecting newly formed fibers from further damage.
Collapse
|
23
|
Henríquez-Olguín C, Boronat S, Cabello-Verrugio C, Jaimovich E, Hidalgo E, Jensen TE. The Emerging Roles of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2 in Skeletal Muscle Redox Signaling and Metabolism. Antioxid Redox Signal 2019; 31:1371-1410. [PMID: 31588777 PMCID: PMC6859696 DOI: 10.1089/ars.2018.7678] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Skeletal muscle is a crucial tissue to whole-body locomotion and metabolic health. Reactive oxygen species (ROS) have emerged as intracellular messengers participating in both physiological and pathological adaptations in skeletal muscle. A complex interplay between ROS-producing enzymes and antioxidant networks exists in different subcellular compartments of mature skeletal muscle. Recent evidence suggests that nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are a major source of contraction- and insulin-stimulated oxidants production, but they may paradoxically also contribute to muscle insulin resistance and atrophy. Recent Advances: Pharmacological and molecular biological tools, including redox-sensitive probes and transgenic mouse models, have generated novel insights into compartmentalized redox signaling and suggested that NOX2 contributes to redox control of skeletal muscle metabolism. Critical Issues: Major outstanding questions in skeletal muscle include where NOX2 activation occurs under different conditions in health and disease, how NOX2 activation is regulated, how superoxide/hydrogen peroxide generated by NOX2 reaches the cytosol, what the signaling mediators are downstream of NOX2, and the role of NOX2 for different physiological and pathophysiological processes. Future Directions: Future research should utilize and expand the current redox-signaling toolbox to clarify the NOX2-dependent mechanisms in skeletal muscle and determine whether the proposed functions of NOX2 in cells and animal models are conserved into humans.
Collapse
Affiliation(s)
- Carlos Henríquez-Olguín
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Enrique Jaimovich
- Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Sanarica F, Mantuano P, Conte E, Cozzoli A, Capogrosso RF, Giustino A, Cutrignelli A, Cappellari O, Rolland JF, De Bellis M, Denora N, Camerino GM, De Luca A. Proof-of-concept validation of the mechanism of action of Src tyrosine kinase inhibitors in dystrophic mdx mouse muscle: in vivo and in vitro studies. Pharmacol Res 2019; 145:104260. [PMID: 31059789 DOI: 10.1016/j.phrs.2019.104260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/08/2019] [Accepted: 05/01/2019] [Indexed: 12/18/2022]
Abstract
Src tyrosine kinase (TK), a redox-sensitive protein overexpressed in dystrophin-deficient muscles, can contribute to damaging signaling by phosphorylation and degradation of β-dystroglycan (β-DG). We performed a proof-of-concept preclinical study to validate this hypothesis and the benefit-safety ratio of a pharmacological inhibition of Src-TK in Duchenne muscular dystrophy (DMD). Src-TK inhibitors PP2 and dasatinib were administered for 5 weeks to treadmill-exercised mdx mice. The outcome was evaluated in vivo and ex vivo on functional, histological and biochemical disease-related parameters. Considering the importance to maintain a proper myogenic program, the potential cytotoxic effects of both compounds, as well as their cytoprotection against oxidative stress-induced damage, was also assessed in C2C12 cells. In line with the hypothesis, both compounds restored the level of β-DG and reduced its phosphorylated form without changing basal expression of genes of interest, corroborating a mechanism at post-translational level. The histological profile of gastrocnemius muscle was slightly improved as well as the level of plasma biomarkers. However, amelioration of in vivo and ex vivo functional parameters was modest, with PP2 being more effective than dasatinib. Both compounds reached appreciable levels in skeletal muscle and liver, supporting proper animal exposure. Dasatinib exerted a greater concentration-dependent cytotoxic effect on C2C12 cells than the more selective PP2, while being less protective against H2O2 cytotoxicity, even though at concentrations higher than those experienced during in vivo treatments. Our results support the interest of Src-TK as drug target in dystrophinopathies, although further studies are necessary to assess the therapeutic potential of inhibitors in DMD.
Collapse
Affiliation(s)
- F Sanarica
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - P Mantuano
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - E Conte
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - A Cozzoli
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - R F Capogrosso
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy; Department of Chemical, Toxicological and Pharmacological Drug Studies, Catholic University "Our Lady of Good Counsel", Tirana, Albania
| | - A Giustino
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari "Aldo Moro", 70121, Bari, Italy
| | - A Cutrignelli
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - O Cappellari
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester Academic Health Science Centre, UK
| | - J F Rolland
- AXXAM S.p.A., Openzone, 20091, Bresso, Milan, Italy
| | - M De Bellis
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - N Denora
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - G M Camerino
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - A De Luca
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy.
| |
Collapse
|
25
|
Mele A, Mantuano P, De Bellis M, Rana F, Sanarica F, Conte E, Morgese MG, Bove M, Rolland JF, Capogrosso RF, Pierno S, Camerino GM, Trabace L, De Luca A. A long-term treatment with taurine prevents cardiac dysfunction in mdx mice. Transl Res 2019; 204:82-99. [PMID: 30347179 DOI: 10.1016/j.trsl.2018.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/06/2018] [Accepted: 09/25/2018] [Indexed: 01/16/2023]
Abstract
Taurine is an amino acid abundantly present in heart and skeletal muscle. Duchenne muscular dystrophy (DMD) is a genetic disorder in which the absence of dystrophin leads to skeletal muscle wasting and heart failure. An altered taurine metabolism has been described in dystrophic animals and short-term taurine administration exerts promising amelioration of early muscular alterations in the mdx mouse model of DMD. To reinforce the therapeutic and nutraceutical taurine potential in DMD, we evaluated the effects of a long-term treatment on cardiac and skeletal muscle function of mdx mice in a later disease stage. Taurine was administered in drinking water (1 g/kg/day) to wt and mdx mice for 6 months, starting at 6 months of age. Ultrasonography evaluation of heart and hind limb was performed, in parallel with in vivo and ex vivo functional tests and biochemical, histological and gene expression analyses. 12-month-old mdx mice showed a significant worsening of left ventricular function parameters (shortening fraction, ejection fraction, stroke volume), which were significantly counteracted by the taurine treatment. In parallel, histologic signs of damage were reduced by taurine along with the expression of proinflammatory myocardial IL-6. Interestingly, no effects were observed on hind limb volume and percentage of vascularization or on in vivo and ex vivo muscle functional parameters, suggesting a tissue-specific action of taurine in relation to the disease phase. A trend toward increase in taurine was found in heart and quadriceps from treated animals, paralleled by a slight decrease in mdx mice plasma. Our study provides evidences that taurine can prevent late heart dysfunction in mdx mice, further corroborating the interest on this amino acid toward clinical trials.
Collapse
Affiliation(s)
- Antonietta Mele
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, Italy
| | - Paola Mantuano
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, Italy
| | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, Italy
| | - Francesco Rana
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, Italy
| | - Francesca Sanarica
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, Italy
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, Italy
| | - Maria Grazia Morgese
- Department of Experimental and Clinical Medicine, Faculty of Medicine, University of Foggia, Foggia, Italy
| | - Maria Bove
- Department of Experimental and Clinical Medicine, Faculty of Medicine, University of Foggia, Foggia, Italy
| | | | | | - Sabata Pierno
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, Italy
| | - Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, Italy
| | - Luigia Trabace
- Department of Experimental and Clinical Medicine, Faculty of Medicine, University of Foggia, Foggia, Italy
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, Italy.
| |
Collapse
|
26
|
Nutrition in Duchenne muscular dystrophy 16–18 March 2018, Zaandam, the Netherlands. Neuromuscul Disord 2018; 28:680-689. [DOI: 10.1016/j.nmd.2018.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/09/2018] [Indexed: 11/17/2022]
|
27
|
Heydemann A. Skeletal Muscle Metabolism in Duchenne and Becker Muscular Dystrophy-Implications for Therapies. Nutrients 2018; 10:nu10060796. [PMID: 29925809 PMCID: PMC6024668 DOI: 10.3390/nu10060796] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 02/06/2023] Open
Abstract
The interactions between nutrition and metabolism and skeletal muscle have long been known. Muscle is the major metabolic organ—it consumes more calories than other organs—and therefore, there is a clear need to discuss these interactions and provide some direction for future research areas regarding muscle pathologies. In addition, new experiments and manuscripts continually reveal additional highly intricate, reciprocal interactions between metabolism and muscle. These reciprocal interactions include exercise, age, sex, diet, and pathologies including atrophy, hypoxia, obesity, diabetes, and muscle myopathies. Central to this review are the metabolic changes that occur in the skeletal muscle cells of muscular dystrophy patients and mouse models. Many of these metabolic changes are pathogenic (inappropriate body mass changes, mitochondrial dysfunction, reduced adenosine triphosphate (ATP) levels, and increased Ca2+) and others are compensatory (increased phosphorylated AMP activated protein kinase (pAMPK), increased slow fiber numbers, and increased utrophin). Therefore, reversing or enhancing these changes with therapies will aid the patients. The multiple therapeutic targets to reverse or enhance the metabolic pathways will be discussed. Among the therapeutic targets are increasing pAMPK, utrophin, mitochondrial number and slow fiber characteristics, and inhibiting reactive oxygen species. Because new data reveals many additional intricate levels of interactions, new questions are rapidly arising. How does muscular dystrophy alter metabolism, and are the changes compensatory or pathogenic? How does metabolism affect muscular dystrophy? Of course, the most profound question is whether clinicians can therapeutically target nutrition and metabolism for muscular dystrophy patient benefit? Obtaining the answers to these questions will greatly aid patients with muscular dystrophy.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Center for Cardiovascular Research, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
28
|
Mantuano P, Sanarica F, Conte E, Morgese MG, Capogrosso RF, Cozzoli A, Fonzino A, Quaranta A, Rolland JF, De Bellis M, Camerino GM, Trabace L, De Luca A. Effect of a long-term treatment with metformin in dystrophic mdx mice: A reconsideration of its potential clinical interest in Duchenne muscular dystrophy. Biochem Pharmacol 2018; 154:89-103. [PMID: 29684379 DOI: 10.1016/j.bcp.2018.04.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/19/2018] [Indexed: 12/18/2022]
Abstract
The pharmacological stimulation of AMP-activated protein kinase (AMPK) via metabolic enhancers has been proposed as potential therapeutic strategy for Duchenne muscular dystrophy (DMD). Metformin, a widely-prescribed anti-hyperglycemic drug which activates AMPK via mitochondrial respiratory chain, has been recently tested in DMD patients in synergy with nitric oxide (NO)-precursors, with encouraging results. However, preclinical data supporting the use of metformin in DMD are still poor, and its actions on skeletal muscle appear controversial. Therefore, we investigated the effects of a long-term treatment with metformin (200 mg/kg/day in drinking water, for 20 weeks) in the exercised mdx mouse model, characterized by a severe mechanical-metabolic maladaptation. Metformin significantly ameliorated histopathology in mdx gastrocnemius muscle, in parallel reducing TGF-β1 with a recovery score (r.s) of 106%; this was accompanied by a decreased plasma matrix-metalloproteinase-9 (r.s. 43%). In addition, metformin significantly increased mdx diaphragm twitch and tetanic tension ex vivo (r.s. 44% and 36%, respectively), in spite of minor effects on in vivo weakness. However, no clear protective actions on dystrophic muscle metabolism were observed, as shown by the poor metformin effect on AMPK activation measured by western blot, on the expression of mechanical-metabolic response genes analyzed by qPCR, and by the lack of fast-to-slow fiber-type-shift assessed by SDH staining in tibialis anterior muscle. Similar results were obtained in the milder phenotype of sedentary mdx mice. The lack of metabolic effects could be, at least partly, due to metformin inability to increase low mdx muscle levels of l-arginine, l-citrulline and taurine, found by HPLC. Our findings encourage to explore alternative, metabolism-independent mechanisms of action to differently repurpose metformin in DMD, supporting its therapeutic combination with NO-sources.
Collapse
Affiliation(s)
- Paola Mantuano
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Francesca Sanarica
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Grazia Morgese
- Department of Experimental and Clinical Medicine, Faculty of Medicine, University of Foggia, Foggia, Italy
| | | | - Anna Cozzoli
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Adriano Fonzino
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Angelo Quaranta
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Bari, Italy
| | | | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Luigia Trabace
- Department of Experimental and Clinical Medicine, Faculty of Medicine, University of Foggia, Foggia, Italy
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
29
|
Capogrosso RF, Mantuano P, Uaesoontrachoon K, Cozzoli A, Giustino A, Dow T, Srinivassane S, Filipovic M, Bell C, Vandermeulen J, Massari AM, De Bellis M, Conte E, Pierno S, Camerino GM, Liantonio A, Nagaraju K, De Luca A. Ryanodine channel complex stabilizer compound S48168/ARM210 as a disease modifier in dystrophin-deficient mdx mice: proof-of-concept study and independent validation of efficacy. FASEB J 2018; 32:1025-1043. [PMID: 29097503 PMCID: PMC5888399 DOI: 10.1096/fj.201700182rrr] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022]
Abstract
Muscle fibers lacking dystrophin undergo a long-term alteration of Ca2+ homeostasis, partially caused by a leaky Ca2+ release ryanodine (RyR) channel. S48168/ARM210, an RyR calcium release channel stabilizer (a Rycal compound), is expected to enhance the rebinding of calstabin to the RyR channel complex and possibly alleviate the pathologic Ca2+ leakage in dystrophin-deficient skeletal and cardiac muscle. This study systematically investigated the effect of S48168/ARM210 on the phenotype of mdx mice by means of a first proof-of-concept, short (4 wk), phase 1 treatment, followed by a 12-wk treatment (phase 2) performed in parallel by 2 independent laboratories. The mdx mice were treated with S48168/ARM210 at two different concentrations (50 or 10 mg/kg/d) in their drinking water for 4 and 12 wk, respectively. The mice were subjected to treadmill sessions twice per week (12 m/min for 30 min) to unmask the mild disease. This testing was followed by in vivo forelimb and hindlimb grip strength and fatigability measurement, ex vivo extensor digitorum longus (EDL) and diaphragm (DIA) force contraction measurement and histologic and biochemical analysis. The treatments resulted in functional (grip strength, ex vivo force production in DIA and EDL muscles) as well as histologic improvement after 4 and 12 wk, with no adverse effects. Furthermore, levels of cellular biomarkers of calcium homeostasis increased. Therefore, these data suggest that S48168/ARM210 may be a safe therapeutic option, at the dose levels tested, for the treatment of Duchenne muscular dystrophy (DMD).-Capogrosso, R. F., Mantuano, P., Uaesoontrachoon, K., Cozzoli, A., Giustino, A., Dow, T., Srinivassane, S., Filipovic, M., Bell, C., Vandermeulen, J., Massari, A. M., De Bellis, M., Conte, E., Pierno, S., Camerino, G. M., Liantonio, A., Nagaraju, K., De Luca, A. Ryanodine channel complex stabilizer compound S48168/ARM210 as a disease modifier in dystrophin-deficient mdx mice: proof-of-concept study and independent validation of efficacy.
Collapse
Affiliation(s)
| | - Paola Mantuano
- Pharmacology Unit, Department of Pharmacy–Drug Sciences, University of Bari, Bari, Italy
| | | | - Anna Cozzoli
- Pharmacology Unit, Department of Pharmacy–Drug Sciences, University of Bari, Bari, Italy
| | - Arcangela Giustino
- Pharmacology Unit, Department of Pharmacy–Drug Sciences, University of Bari, Bari, Italy
| | - Todd Dow
- Agada Biosciences Incorporated, Halifax, Nova Scotia, Canada; and
| | | | - Marina Filipovic
- Agada Biosciences Incorporated, Halifax, Nova Scotia, Canada; and
| | - Christina Bell
- Agada Biosciences Incorporated, Halifax, Nova Scotia, Canada; and
| | | | - Ada Maria Massari
- Pharmacology Unit, Department of Pharmacy–Drug Sciences, University of Bari, Bari, Italy
| | - Michela De Bellis
- Pharmacology Unit, Department of Pharmacy–Drug Sciences, University of Bari, Bari, Italy
| | - Elena Conte
- Pharmacology Unit, Department of Pharmacy–Drug Sciences, University of Bari, Bari, Italy
| | - Sabata Pierno
- Pharmacology Unit, Department of Pharmacy–Drug Sciences, University of Bari, Bari, Italy
| | - Giulia Maria Camerino
- Pharmacology Unit, Department of Pharmacy–Drug Sciences, University of Bari, Bari, Italy
| | - Antonella Liantonio
- Pharmacology Unit, Department of Pharmacy–Drug Sciences, University of Bari, Bari, Italy
| | - Kanneboyina Nagaraju
- Agada Biosciences Incorporated, Halifax, Nova Scotia, Canada; and
- Binghamton University, School of Pharmacy and Pharmaceutical Sciences, Binghamton, New York, USA
| | - Annamaria De Luca
- Pharmacology Unit, Department of Pharmacy–Drug Sciences, University of Bari, Bari, Italy
| |
Collapse
|
30
|
De Bellis M, Sanarica F, Carocci A, Lentini G, Pierno S, Rolland JF, Conte Camerino D, De Luca A. Dual Action of Mexiletine and Its Pyrroline Derivatives as Skeletal Muscle Sodium Channel Blockers and Anti-oxidant Compounds: Toward Novel Therapeutic Potential. Front Pharmacol 2018; 8:907. [PMID: 29379434 PMCID: PMC5770958 DOI: 10.3389/fphar.2017.00907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022] Open
Abstract
Mexiletine (Mex) has been recently appointed as an orphan-drug in myotonic-syndromes, being a potent use-dependent blocker of skeletal-muscle sodium channels (NaV1.4). Available evidences about a potential anti-oxidant effect of Mex and its tetramethyl-pyrroline-derivatives in vivo, suggest the possibility to further enlarge the therapeutic potential of Mex-like compounds in myopathies in which alteration of excitation-contraction coupling is paralleled by oxidative stress. In line with this and based on our previous structure-activity-relationship studies, we synthesized new compounds with a tetramethyl-pyrroline-ring on the amino-group of both Mex (VM11) and of its potent use-dependent isopropyl-derivative (CI16). The compounds were tested for their ability to block native NaV1.4 and to exert cyto-protective effects against oxidative-stress injury in myoblasts. Voltage-clamp-recordings on adult myofibers were performed to assess the tonic and use-dependent block of peak sodium-currents (INa) by VM11 and CI16, as well as Mex, VM11 and CI16 were 3 and 6-fold more potent than Mex in producing a tonic-block of peak sodium-currents (INa), respectively. Interestingly, CI16 showed a 40-fold increase of potency with respect to Mex during high-frequency stimulation (10-Hz), resulting the strongest use-dependent Mex-like compound so far. The derivatives also behaved as inactivated channel blockers, however the voltage dependent block was modest. The experimental data fitted with the molecular-modeling simulation based on previously proposed interaction of main pharmacophores with NaV1.4 binding-site. CI16 and VM11 were then compared to Mex and its isopropyl derivative (Me5) for the ability to protect C2C12-cells from H2O2-cytotoxicity in the concentration range effective on Nav1.4. Mex and Me5 showed a moderate cyto-protective effect in the presence of H2O2, Importantly, CI16 and VM11 showed a remarkable cyto-protection at concentrations effective for use-dependent block of NaV1.4. This effect was comparable to that of selected anti-oxidant drugs proved to exert protective effect in preclinical models of progressive myopathies such as muscular dystrophies. Then, the tetramethyl-pyrroline compounds have increased therapeutic profile as sodium channel blockers and an interesting cyto-protective activity. The overall profile enlarges therapeutic potential from channelopathies to myopathies in which alteration of excitation-contraction coupling is paralleled by oxidative-stress, i.e., muscular dystrophies.
Collapse
Affiliation(s)
- Michela De Bellis
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Francesca Sanarica
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Alessia Carocci
- Unit of Medicinal Chemistry, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Lentini
- Unit of Medicinal Chemistry, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Sabata Pierno
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | | | - Diana Conte Camerino
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Annamaria De Luca
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
31
|
Tempol Supplementation Restores Diaphragm Force and Metabolic Enzyme Activities in mdx Mice. Antioxidants (Basel) 2017; 6:antiox6040101. [PMID: 29210997 PMCID: PMC5745511 DOI: 10.3390/antiox6040101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/19/2017] [Accepted: 11/28/2017] [Indexed: 12/29/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by striated muscle weakness, cardiomyopathy, and respiratory failure. Since oxidative stress is recognized as a secondary pathology in DMD, the efficacy of antioxidant intervention, using the superoxide scavenger tempol, was examined on functional and biochemical status of dystrophin-deficient diaphragm muscle. Diaphragm muscle function was assessed, ex vivo, in adult male wild-type and dystrophin-deficient mdx mice, with and without a 14-day antioxidant intervention. The enzymatic activities of muscle citrate synthase, phosphofructokinase, and lactate dehydrogenase were assessed using spectrophotometric assays. Dystrophic diaphragm displayed mechanical dysfunction and altered biochemical status. Chronic tempol supplementation in the drinking water increased diaphragm functional capacity and citrate synthase and lactate dehydrogenase enzymatic activities, restoring all values to wild-type levels. Chronic supplementation with tempol recovers force-generating capacity and metabolic enzyme activity in mdx diaphragm. These findings may have relevance in the search for therapeutic strategies in neuromuscular disease.
Collapse
|
32
|
Insights into the Pathogenic Secondary Symptoms Caused by the Primary Loss of Dystrophin. J Funct Morphol Kinesiol 2017. [DOI: 10.3390/jfmk2040044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
33
|
Khalil RM, Abdo WS, Saad A, Khedr EG. Muscle proteolytic system modulation through the effect of taurine on mice bearing muscular atrophy. Mol Cell Biochem 2017; 444:161-168. [DOI: 10.1007/s11010-017-3240-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/24/2017] [Indexed: 10/18/2022]
|
34
|
Terrill JR, Pinniger GJ, Nair KV, Grounds MD, Arthur PG. Beneficial effects of high dose taurine treatment in juvenile dystrophic mdx mice are offset by growth restriction. PLoS One 2017; 12:e0187317. [PMID: 29095865 PMCID: PMC5667875 DOI: 10.1371/journal.pone.0187317] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/17/2017] [Indexed: 11/28/2022] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a fatal muscle wasting disease manifested in young boys, for which there is no current cure. We have shown that the amino acid taurine is safe and effective at preventing dystropathology in the mdx mouse model for DMD. This study aimed to establish if treating growing mdx mice with a higher dose of taurine was more effective at improving strength and reducing inflammation and oxidative stress. Mice were treated with a dose of taurine estimated to be 16 g/kg/day, in drinking water from 1-6 weeks of age, after which in vivo and ex vivo muscle strength was assessed, as were measures of inflammation, oxidative stress and taurine metabolism. While the dose did decrease inflammation and protein oxidation in dystrophic muscles, there was no improvement in muscle strength (in contrast with benefits observed with the lower dose) and growth of the young mice was significantly restricted. We present novel data that a high taurine dose increases the cysteine content of both mdx liver and plasma, a possible result of down regulation of the taurine synthesis pathway in the liver (which functions to dispose of excess cysteine, which is toxic). These data caution that a high dose of taurine can have adverse effects and may be less efficacious than lower taurine doses. Therefore, monitoring of taurine dosage needs to be considered in future pre-clinical trials, in anticipation of using taurine as a clinical therapy for growing DMD boys (and other conditions).
Collapse
Affiliation(s)
- Jessica R. Terrill
- School of Molecular Sciences, the University of Western Australia, Perth, Western Australia, Australia
| | - Gavin J. Pinniger
- School of Human Sciences, the University of Western Australia, Perth, Western Australia, Australia
| | - Keshav V. Nair
- School of Human Sciences, the University of Western Australia, Perth, Western Australia, Australia
| | - Miranda D. Grounds
- School of Human Sciences, the University of Western Australia, Perth, Western Australia, Australia
| | - Peter G. Arthur
- School of Molecular Sciences, the University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
35
|
Proteome analysis in dystrophic mdx mouse muscle reveals a drastic alteration of key metabolic and contractile proteins after chronic exercise and the potential modulation by anti-oxidant compounds. J Proteomics 2017; 170:43-58. [PMID: 28966053 DOI: 10.1016/j.jprot.2017.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 11/21/2022]
Abstract
Weakness and fatigability are typical features of Duchenne muscular dystrophy patients and are aggravated in dystrophic mdx mice by chronic treadmill exercise. In the present study, we describe, the pattern of differentially abundant spots that is associated to the worsening of dystrophy phenotype induced by chronic exercise. Our proteomic analysis pointed out 34 protein spots with different abundance between sedentary and exercised mdx mice. These proteins belong mostly to glucose metabolism, energy production and sarcomere structure categories. Interestingly exercise induced an increase of typical fast twitch fiber proteins (Troponin T fast skeletal muscle, Troponin I fast skeletal muscle and Myozenin-1) combined with an increase of several glycolytic enzymes. Concerning energy transfer, Adenylate kinase, showed a marked decrease when compared with non-exercised mdx. The decline of this enzyme correlates with increased Creatin kinase enzyme, suggesting that a compensatory energy metabolism mechanism could be activated in mdx mouse skeletal muscle following exercise. In addition, we analysed muscles from exercised mdx mice treated with two natural anti-oxidant compounds, apocynin and taurine, that in our previous study, were proved to be beneficial on some pathology related parameters, and we showed that these compounds can counteract exercise-induced changes in the abundance of several proteins. SIGNIFICANCE Mdx mouse model of Duchenne muscular dystrophy shows a phenotype of the disorder milder than in human sufferers. This phenotype can be worsened by a different protocols of chronic exercise. These protocols can mimic the muscle progressive damage observed in humans, can allow studying the effects of inadequate training on dystrophic muscles and have been largely used to assess the ability of a drug to reduce the damage induced by exercise. In this study, we describe for the first time, the pattern of protein variation associated with the worsening of dystrophy phenotype induced by chronic exercise. Our proteomic analysis pointed out 34 protein spots with different amount between sedentary and exercised mdx mice. These proteins belong mostly to glucose metabolism, energy production and sarcomere structure categories and their variation indicates that mdx exercised muscle are not able to carry out the metabolic changes associated to fast-to-slow transition typically observed in aerobically trained muscle.
Collapse
|
36
|
Natural products with anti-inflammatory and immunomodulatory activities against autoimmune myocarditis. Pharmacol Res 2017; 124:34-42. [PMID: 28757189 DOI: 10.1016/j.phrs.2017.07.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022]
Abstract
Myocarditis is an inflammatory disease of the myocardium associated with immune dysfunction which may frequently lead to the development of dilated cardiomyopathy. Experimental autoimmune myocarditis is an animal model which mimics myocarditis in order to allow assessment of the therapeutic effects of different molecules on this disease. We aimed to review the inflammatory and immunological mechanisms involved in the pathogenesis of the myocarditis and finding natural products and phytochemicals with anti-myocarditis activities based on studies of cardiac myosin-induced experimental autoimmune myocarditis in rodents. A number of natural molecules (e.g. apigenin, berberine and quercetin) along with some plant extracts were found to be effective in alleviating experimental autoimmune myocarditis. Upregulation of Th1-type cytokines and elevation of the Th2-type cytokines (IL-4 and IL-10), mitigation of oxidative stress, modulation of mitogen-activated protein kinase signaling pathways and increasing Sarco-endoplasmic reticulum Ca2+-ATPase levels are among the most important anti-myocarditis mechanisms for the retrieved molecules and extracts. Interestingly, there are structural similarities between the anti-EAM compounds, suggesting the presence of similar pharmacophore and enzymatic targets for these molecules. Naturally occurring molecules discussed in the present article are potential anti-myocarditis drugs and future additional animal studies and clinical trials would shed more light on their effectiveness in the treatment of myocarditis and prevention of dilated cardiomyopathy.
Collapse
|
37
|
|