1
|
Cheung ST, Do Y, Kim E, Rella A, Goyarts E, Pernodet N, Wong YH. G Protein-Coupled Receptors in Skin Aging. J Invest Dermatol 2024:S0022-202X(24)01919-5. [PMID: 39186022 DOI: 10.1016/j.jid.2024.06.1288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 08/27/2024]
Abstract
Skin aging is a complex biological process affected by a plethora of intrinsic and extrinsic factors that alter cutaneous functions through the modulations of signaling pathways and responses. Expressed in various cell types and skin tissue layers, G protein-coupled receptors (GPCRs) play a vital role in regulating skin aging. We have cataloged 156 GPCRs expressed in the skin and reviewed their roles in skin aging, such as pigmentation, loss of elasticity, wrinkles, rough texture, and aging-associated skin disorders. By exploring the GPCRs found in the skin, it may be possible to develop new treatment regimens for aging-associated skin conditions using GPCR ligands.
Collapse
Affiliation(s)
- Suet Ting Cheung
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yelim Do
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Eunah Kim
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Antonella Rella
- Research and Development, The Estée Lauder Companies, New York, New York, USA
| | - Earl Goyarts
- Research and Development, The Estée Lauder Companies, New York, New York, USA
| | - Nadine Pernodet
- Research and Development, The Estée Lauder Companies, New York, New York, USA; Estée Lauder Research Laboratories, Melville, New York, USA
| | - Yung Hou Wong
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China; Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China; Center for Aging Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
2
|
Lin S, Liu X, Jiang J, Ge W, Zhang Y, Li F, Tao Q, Liu S, Li M, Chen H. The involvement of keratinocytes in pruritus of chronic inflammatory dermatosis. Exp Dermatol 2024; 33:e15142. [PMID: 39032085 DOI: 10.1111/exd.15142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/22/2024]
Abstract
Frequent itching and incessant scratching are commonly observed in various chronic inflammatory skin conditions, including atopic dermatitis and psoriasis. The persistent and prolonged nature of pruritus can worsen one's quality of life. Keratinocytes (KCs), the predominant cells of the epidermis, have been confirmed to interact with sensory neurons and immune cells and be involved in chronic skin inflammatory diseases associated with pruritus. Initially, KCs and sensory neurons form a unique synapse-like connection within the epidermis, serving as the structural foundation for their interaction. Additionally, several receptors, including toll-like receptors and protease-activated receptor 2, expressed on KCs, become activated in an inflammatory milieu. On the one hand, activated KCs are sources of pro-inflammatory cytokines and neurotrophic factors, such as adenosine triphosphate, thymic stromal lymphopoietin, and nerve growth factor, which directly or indirectly participate in stimulating sensory neurons, thereby contributing to the itch sensations. On the other hand, KCs also function as primary transducers alongside intraepidermal nerve endings, directly initiating pruritic responses. This review summarizes the current literature and highlights the critical role of KCs in the development and persistence of chronic itch in inflammatory skin disorders.
Collapse
Affiliation(s)
- Shiying Lin
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Jiang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqiang Ge
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinlian Zhang
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Li
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Qingxiao Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suwen Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
3
|
Schrammel JC, König M, Frommer M, Andersen KS, Kirsten M, Seifert R, Neumann D, Schirmer B. Histamine H 1- and H 4-receptor expression in human colon-derived cell lines. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3683-3693. [PMID: 37300703 PMCID: PMC10643376 DOI: 10.1007/s00210-023-02565-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
In previous studies, we demonstrated the involvement of H4R in inflammatory bowel disease (IBD) and IBD-associated colon cancer in mice and could ascribe H4R-mediated histamine function to colon epithelial cells. The transferability of obtained data to humans is however lacking. Functional expression of H4R on colon epithelial cells is a prerequisite to pursue the hypothesis of involvement of H4R in carcinogenesis. Thus, we here compared the expression of histamine receptor subtypes in a series of cell lines. Out of these, three colon-derived cell lines displaying different combinations of H1R and H4R expression were submitted to functional analyses. Human hematopoietic HMC-1, HL-60, and U937, lung-derived A549 and Calu-3, and colorectal LoVo, SW 480, Caco-2, HT-29, and HCT116 cells were included in the study. mRNA expression was quantified by RT-qPCR. For functional analyses, Caco-2, HT-29, and HCT116 cells were treated by incubation with 1 - 10 µM histamine in the presence or absence of selective histamine receptor antagonists. Calcium mobilization, cAMP accumulation, and cell proliferation were measured by fluorimetry, mass spectrometry, and real-time bioimpedance measurements, respectively. Histamine receptor expression was heterogeneous in the cell lines tested. In most cell lines, we detected H1R mRNA while H4R mRNAs were found only occasionally. The colon-derived epithelial cell lines LoVo, SW480, and HT-29 expressed H1R mRNA exclusively, while in HCT116 cells H1R and H4R mRNAs and in CaCo-2 H2R mRNA were detectable. Subsequent functional analyses in HT29, Caco-2, and HCT116 cells, however, indicated that only HT-29 responded to histamine stimulation, by means of H1R. For a detailed analysis of histamine receptor function, esp. that of H1R and H4R, in human colon-derived cell lines, the cell lines tested here are not fully convenient unless genetically modified.
Collapse
Affiliation(s)
| | - Martin König
- Institute of Pharmacology, Hannover Medical School, 30623, Hannover, Germany
| | - Miriam Frommer
- Institute of Pharmacology, Hannover Medical School, 30623, Hannover, Germany
| | | | - Marla Kirsten
- Institute of Pharmacology, Hannover Medical School, 30623, Hannover, Germany
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, 30623, Hannover, Germany
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, 30623, Hannover, Germany
| | - Bastian Schirmer
- Institute of Pharmacology, Hannover Medical School, 30623, Hannover, Germany.
| |
Collapse
|
4
|
Zhou J, Liang G, Liu L, Feng S, Zheng Z, Wu Y, Chen X, Li X, Wang L, Wang L, Song Z. Single-cell RNA-seq reveals abnormal differentiation of keratinocytes and increased inflammatory differentiated keratinocytes in atopic dermatitis. J Eur Acad Dermatol Venereol 2023; 37:2336-2348. [PMID: 37326015 DOI: 10.1111/jdv.19256] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic and recurrent inflammatory skin disease characterized by severe pruritus and eczematous lesions. Heterogeneity of AD has been reported among different racial groups according to clinical, molecular and genetic differences. OBJECTIVE This study aimed to conduct an in-depth transcriptome analysis of AD in Chinese population. METHODS We performed single-cell RNA sequencing (scRNA-seq) analysis of skin biopsies from five Chinese adult patients with chronic AD and from four healthy controls, combined with multiplexed immunohistochemical analysis in whole-tissue skin biopsies. We explored the functions of IL19 in vitro. RESULTS ScRNA-seq analysis was able to profile a total of 87,853 cells, with keratinocytes (KCs) in AD manifesting highly expressed keratinocyte activation and pro-inflammatory genes. KCs demonstrated a novel IL19+ IGFL1+ subpopulation that increased in AD lesions. Inflammatory cytokines IFNG, IL13, IL26 and IL22 were highly expressed in AD lesions. In vitro, IL19 directly downregulated KRT10 and LOR in HaCaT cells and activated HaCaT cells to produce TSLP. CONCLUSION Abnormal proliferation and differentiation of keratinocytes contribute immensely to the pathogenesis of AD, whereas AD chronic lesions have witnessed significant presence of IL19+ IGFL1+ KCs, which may be involved in the disruption of the skin barrier, the connection and magnification of Th2 and Th17 inflammatory responses, and mediation of skin pruritus. Furthermore, progressive activation of multiple immune axes dominated by Type 2 inflammatory reaction occur in AD chronic lesions.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Gaopeng Liang
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Lu Liu
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Shujing Feng
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhengni Zheng
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yaguang Wu
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaoling Chen
- Institute of Immunology PLA & Department of Immunology, Army Medical University, Chongqing, China
| | - Xiangqian Li
- Institute of Immunology PLA & Department of Immunology, Army Medical University, Chongqing, China
| | - Lina Wang
- Institute of Immunology PLA & Department of Immunology, Army Medical University, Chongqing, China
- Department of Immunology, College of Basic Medicine, Qingdao University, Qingdao, China
- Department of Immunology, College of Basic Medicine, Weifang Medical University, Weifang, China
| | - Li Wang
- Institute of Immunology PLA & Department of Immunology, Army Medical University, Chongqing, China
| | - Zhiqiang Song
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Smolinska S, Antolín-Amérigo D, Popescu FD, Jutel M. Thymic Stromal Lymphopoietin (TSLP), Its Isoforms and the Interplay with the Epithelium in Allergy and Asthma. Int J Mol Sci 2023; 24:12725. [PMID: 37628907 PMCID: PMC10454039 DOI: 10.3390/ijms241612725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine that has emerged as a critical player in the development and progression of allergy and asthma. It is primarily produced by epithelial cells and functions as a potent immune system activator. TSLP acts through interaction with its receptor complex, composed of the TSLP receptor (TSLPR) and interleukin-7 receptor alpha chain (IL-7Rα), activating downstream complex signalling pathways. The TSLP major isoform, known as long-form TSLP (lfTSLP), is upregulated in the airway epithelium of patients with allergic diseases. More research is warranted to explore the precise mechanisms by which short-form TSLP (sfTSLP) regulates immune responses. Understanding the dynamic interplay between TSLP and the dysfunctional epithelium provides insights into the mechanisms underlying allergy and asthma pathogenesis. Targeting TSLP represents an important therapeutic strategy, as it may upstream disrupt the inflammatory cascade and alleviate symptoms associated with allergic inflammation.
Collapse
Affiliation(s)
- Sylwia Smolinska
- Department of Clinical Immunology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Darío Antolín-Amérigo
- Servicio de Alergia, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain;
| | - Florin-Dan Popescu
- Department of Allergology “Nicolae Malaxa” Clinical Hospital, “Carol Davila” University of Medicine and Pharmacy, 022441 Bucharest, Romania;
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
- “ALL-MED” Research Medical Institute, 53-201 Wroclaw, Poland
| |
Collapse
|
6
|
Misery L, Pierre O, Le Gall-Ianotto C, Lebonvallet N, Chernyshov PV, Le Garrec R, Talagas M. Basic mechanisms of itch. J Allergy Clin Immunol 2023; 152:11-23. [PMID: 37201903 DOI: 10.1016/j.jaci.2023.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Pruritus (or itch) is an unpleasant sensation leading to a desire to scratch. In the epidermis, there are selective C or Aδ epidermal nerve endings that are pruriceptors. At their other ends, peripheral neurons form synapses with spinal neurons and interneurons. Many areas in the central nervous system are involved in itch processing. Although itch does not occur solely because of parasitic, allergic, or immunologic diseases, it is usually the consequence of neuroimmune interactions. Histamine is involved in a minority of itchy conditions, and many other mediators play a role: cytokines (eg, IL-4, IL-13, IL-31, IL-33, and thymic stromal lymphopoietin), neurotransmitters (eg, substance P, calcitonin gene-related peptide, vasoactive intestinal peptide, neuropeptide Y, NBNP, endothelin 1, and gastrin-releasing peptide), and neurotrophins (eg, nerve growth factor and brain-derived neurotrophic factor). Moreover, ion channels such as voltage-gated sodium channels, transient receptor potential vanilloid 1, transient receptor ankyrin, and transient receptor potential cation channel subfamily M (melastatin) member 8 play a crucial role. The main markers of nonhistaminergic pruriceptors are PAR-2 and MrgprX2. A notable phenomenon is the sensitization to pruritus, in which regardless of the initial cause of pruritus, there is an increased responsiveness of peripheral and central pruriceptive neurons to their normal or subthreshold afferent input in the context of chronic itch.
Collapse
Affiliation(s)
- Laurent Misery
- Laboratoire Interactions Neurones-Keratinocytes (LINK), University of Brest, Brest, France; Department of Dermatology and Venereology, University Hospital of Brest, Brest, France.
| | - Ophélie Pierre
- Laboratoire Interactions Neurones-Keratinocytes (LINK), University of Brest, Brest, France
| | - Christelle Le Gall-Ianotto
- Laboratoire Interactions Neurones-Keratinocytes (LINK), University of Brest, Brest, France; Department of Dermatology and Venereology, University Hospital of Brest, Brest, France
| | - Nicolas Lebonvallet
- Laboratoire Interactions Neurones-Keratinocytes (LINK), University of Brest, Brest, France
| | - Pavel V Chernyshov
- Department of Dermatology and Venereology, National Medical University, Kiev, Ukraine
| | - Raphaële Le Garrec
- Laboratoire Interactions Neurones-Keratinocytes (LINK), University of Brest, Brest, France
| | - Matthieu Talagas
- Laboratoire Interactions Neurones-Keratinocytes (LINK), University of Brest, Brest, France; Department of Dermatology and Venereology, University Hospital of Brest, Brest, France
| |
Collapse
|
7
|
Hiroyasu S, Barit JVJG, Hiroyasu A, Tsuruta D. Pruritogens in pemphigoid diseases: Possible therapeutic targets for a burdensome symptom. J Dermatol 2023; 50:150-161. [PMID: 36477831 PMCID: PMC10108135 DOI: 10.1111/1346-8138.16652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022]
Abstract
Pruritus is a hallmark feature in pemphigoid diseases, where it can be severe and greatly impact the quality of life of affected patients. Despite being a key symptom, the exact pathophysiological mechanisms involved in pruritus in pemphigoid are yet to be fully elucidated and effective therapies addressing them are limited. This review summarizes the present understanding of pruritus specific to pemphigoid diseases, especially the pruritogens that induce it, and the therapeutic options that have been explored so far. The majority of the available evidence is on bullous pemphigoid and epidermolysis bullosa acquisita. Histamine derived from basophils correlates with pruritus severity, with omalizumab demonstrating promising efficacy in pruritus for bullous pemphigoid. IL-4/-13 contribute to itch in bullous pemphigoid with dupilumab being evaluated in clinical trials. Other pruritogens of interest include substance P, tryptase, and thymic stromal lymphopoetin, with therapies targeting them requiring further investigation. Scratching behaviors contribute directly to blister formation through various mechanisms, such as pathological autoantibody recruitment, T helper cell type 1 polarization, and exposure of intracellular autoantigens. Treatments addressing these pathways may contribute to decreasing disease severity. Additional studies are needed to fully characterize how pruritus is regulated in pemphigoid diseases, to help pave the way to develop novel and effective therapeutics that will not only address pruritic symptoms but also decrease disease severity.
Collapse
Affiliation(s)
- Sho Hiroyasu
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Jay-V James G Barit
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Aoi Hiroyasu
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
8
|
Abstract
Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine that acts on multiple cell lineages, including dendritic cells, T cells, B cells, neutrophils, mast cells, eosinophils and innate lymphoid cells, affecting their maturation, survival and recruitment. It is best known for its role in promoting type 2 immune responses such as in allergic diseases and, in 2021, a monoclonal antibody targeting TSLP was approved for the treatment of severe asthma. However, it is now clear that TSLP has many other important roles in a variety of settings. Indeed, several genetic variants for TSLP are linked to disease severity, and chromosomal alterations in TSLP are common in certain cancers, indicating important roles of TSLP in disease. In this Review, we discuss recent advances in TSLP biology, highlighting how it regulates the tissue environment not only in allergic disease but also in infectious diseases, inflammatory diseases and cancer. Encouragingly, therapies targeting the TSLP pathway are being actively pursued for several diseases.
Collapse
Affiliation(s)
- Risa Ebina-Shibuya
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Warren J Leonard
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Luo J, Zhu Z, Zhai Y, Zeng J, Li L, Wang D, Deng F, Chang B, Zhou J, Sun L. The Role of TSLP in Atopic Dermatitis: From Pathogenetic Molecule to Therapeutical Target. Mediators Inflamm 2023; 2023:7697699. [PMID: 37096155 PMCID: PMC10122597 DOI: 10.1155/2023/7697699] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 04/26/2023] Open
Abstract
Atopic dermatitis (AD) is a kind of chronic skin disease with inflammatory infiltration, characterized by skin barrier dysfunction, immune response dysregulation, and skin dysbiosis. Thymic stromal lymphopoietin (TSLP) acts as a regulator of immune response, positively associated with AD deterioration. Mainly secreted by keratinocytes, TSLP interacts with multiple immune cells (including dendritic cells, T cells, and mast cells), following induction of Th2-oriented immune response during the pathogenesis of AD. This article primarily focuses on the TSLP biological function, the relationship between TSLP and different cell populations, and the AD treatments targeting TSLP.
Collapse
Affiliation(s)
- Jialiang Luo
- Department of Dermatology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengyumeng Zhu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yumeng Zhai
- Department of Dermatology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junxiang Zeng
- Department of Bioinformation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Di Wang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Fan Deng
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Bo Chang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ledong Sun
- Department of Dermatology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Szöllősi AG, Oláh A, Lisztes E, Griger Z, Tóth BI. Pruritus: A Sensory Symptom Generated in Cutaneous Immuno-Neuronal Crosstalk. Front Pharmacol 2022; 13:745658. [PMID: 35321329 PMCID: PMC8937025 DOI: 10.3389/fphar.2022.745658] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
Pruritus or itch generated in the skin is one of the most widespread symptoms associated with various dermatological and systemic (immunological) conditions. Although many details about the molecular mechanisms of the development of both acute and chronic itch were uncovered in the last 2 decades, our understanding is still incomplete and the clinical management of pruritic conditions is one of the biggest challenges in daily dermatological practice. Recent research revealed molecular interactions between pruriceptive sensory neurons and surrounding cutaneous cell types including keratinocytes, as well as resident and transient cells of innate and adaptive immunity. Especially in inflammatory conditions, these cutaneous cells can produce various mediators, which can contribute to the excitation of pruriceptive sensory fibers resulting in itch sensation. There also exists significant communication in the opposite direction: sensory neurons can release mediators that maintain an inflamed, pruritic tissue-environment. In this review, we summarize the current knowledge about the sensory transduction of pruritus detailing the local intercellular interactions that generate itch. We especially emphasize the role of various pruritic mediators in the bidirectional crosstalk between cutaneous non-neuronal cells and sensory fibers. We also list various dermatoses and immunological conditions associated with itch, and discuss the potential immune-neuronal interactions promoting the development of pruritus in the particular diseases. These data may unveil putative new targets for antipruritic pharmacological interventions.
Collapse
Affiliation(s)
- Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Erika Lisztes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Griger
- Division of Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs István Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Balázs István Tóth,
| |
Collapse
|
11
|
Role of Epithelium-Derived Cytokines in Atopic Dermatitis and Psoriasis: Evidence and Therapeutic Perspectives. Biomolecules 2021; 11:biom11121843. [PMID: 34944487 PMCID: PMC8699296 DOI: 10.3390/biom11121843] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Atopic dermatitis and psoriasis are two of the most common chronic skin conditions. Current target therapies represent viable and safe solutions for the most severe cases of these two dermatoses but, presently, several limitations exist in terms of efficacy and side effects. A new class of products, epithelium-derived cytokines (TSLP, IL-25, IL-33), show an increasing potential for use in target therapy for these patients, and demonstrate a direct link between a generalized inflammatory and oxidative stress status and the human skin. A review was conducted to better understand their role in the aforementioned conditions. Of these three molecules, TSLP led has been most often considered in studies regarding target therapies, and most of the results in the literature are related to this cytokine. These three cytokines share common stimuli and are linked to each other in both acute and chronic phases of these diseases, and have been challenged as target therapies or biomarkers of disease activity. The results lead to the conclusion that epithelium-derived cytokines could represent a therapeutic opportunity for these patients, especially in itch control. Furthermore, they might work better when paired together with currently available therapies or in combination with in-development treatments. Further studies are needed in order to verify the efficacy and safety of the biologic treatments currently under development.
Collapse
|
12
|
Wilzopolski J, Kietzmann M, Mishra SK, Stark H, Bäumer W, Rossbach K. TRPV1 and TRPA1 Channels Are Both Involved Downstream of Histamine-Induced Itch. Biomolecules 2021; 11:1166. [PMID: 34439832 PMCID: PMC8391774 DOI: 10.3390/biom11081166] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 01/17/2023] Open
Abstract
Two histamine receptor subtypes (HR), namely H1R and H4R, are involved in the transmission of histamine-induced itch as key components. Although exact downstream signaling mechanisms are still elusive, transient receptor potential (TRP) ion channels play important roles in the sensation of histaminergic and non-histaminergic itch. The aim of this study was to investigate the involvement of TRPV1 and TRPA1 channels in the transmission of histaminergic itch. The potential of TRPV1 and TRPA1 inhibitors to modulate H1R- and H4R-induced signal transmission was tested in a scratching assay in mice in vivo as well as via Ca2+ imaging of murine sensory dorsal root ganglia (DRG) neurons in vitro. TRPV1 inhibition led to a reduction of H1R- and H4R- induced itch, whereas TRPA1 inhibition reduced H4R- but not H1R-induced itch. TRPV1 and TRPA1 inhibition resulted in a reduced Ca2+ influx into sensory neurons in vitro. In conclusion, these results indicate that both channels, TRPV1 and TRPA1, are involved in the transmission of histamine-induced pruritus.
Collapse
Affiliation(s)
- Jenny Wilzopolski
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (M.K.); (K.R.)
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (S.K.M.); (W.B.)
- Department of Veterinary Medicine, Institute of Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Manfred Kietzmann
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (M.K.); (K.R.)
| | - Santosh K. Mishra
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (S.K.M.); (W.B.)
| | - Holger Stark
- Institute of Pharmaceutical and Medical Chemistry, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany;
| | - Wolfgang Bäumer
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (S.K.M.); (W.B.)
- Department of Veterinary Medicine, Institute of Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Kristine Rossbach
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (M.K.); (K.R.)
| |
Collapse
|
13
|
Wong LS, Yen YT, Lee CH. The Implications of Pruritogens in the Pathogenesis of Atopic Dermatitis. Int J Mol Sci 2021; 22:7227. [PMID: 34281281 PMCID: PMC8269281 DOI: 10.3390/ijms22137227] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 01/17/2023] Open
Abstract
Atopic dermatitis (AD) is a prototypic inflammatory disease that presents with intense itching. The pathophysiology of AD is multifactorial, involving environmental factors, genetic susceptibility, skin barrier function, and immune responses. A recent understanding of pruritus transmission provides more information about the role of pruritogens in the pathogenesis of AD. There is evidence that pruritogens are not only responsible for eliciting pruritus, but also interact with immune cells and act as inflammatory mediators, which exacerbate the severity of AD. In this review, we discuss the interaction between pruritogens and inflammatory molecules and summarize the targeted therapies for AD.
Collapse
Affiliation(s)
- Lai-San Wong
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Yu-Ta Yen
- Department of Dermatology, Fooying University Hospital, Pingtung 928, Taiwan;
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| |
Collapse
|
14
|
Bang CH, Song JY, Song YM, Lee JH, Park YM, Lee JY. Production of IL-31 in CD45RO +CLA +H4R + T Cells in Atopic Dermatitis. J Clin Med 2021; 10:jcm10091976. [PMID: 34064490 PMCID: PMC8124489 DOI: 10.3390/jcm10091976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 11/16/2022] Open
Abstract
IL-31 is involved in pruritus in atopic dermatitis (AD) and the pathogenesis of AD. However, the mechanism of IL-31 production is not fully understood. We sought to investigate the association between CD45RO+CLA+H4R+ T cells and IL-31 production. Immunofluorescence studies were performed retrospectively on punch-biopsy specimens from five people with AD and three healthy controls. In addition, blood samples were collected prospectively from eight patients with AD and eight healthy controls for sorting CD45RO+CLA+H4R+ T cells. There was no overlap of patients between the biopsy group and the blood sampling group. Sorted cells were stimulated with 4-methylhistamine (4MH), and the level of IL-31 was measured by an enzyme-linked immunosorbent assay. Immunofluorescence showed co-localization of H4R and IL-31 in lesional AD skin but not in normal skin of healthy controls. The proportion of CLA+H4R+ T cells among CD3+CD45RO+ lymphocytes was 18.3 ± 6.2% in patients with AD and 11.2 ± 7.6% in healthy controls. In the AD group, production of IL-31 by CD45RO+CLA+H4R+ T cells increased from 32.4 ± 13.3 pg/mL to 47.5 ± 18.7 pg/mL by 4MH stimulation after 24 h (p < 0.001). However, in the control group, production of IL-31 was 20.1 ± 10.6 pg/mL without and 22.1 ± 9.3 pg/mL with 4MH stimulation (p > 0.05). According to our study, CD45RO+CLA+H4R+ T cells are an important source of IL-31 in AD, and may be a target for treatment of IL-31-induced pruritus.
Collapse
Affiliation(s)
- Chul Hwan Bang
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (C.H.B.); (Y.M.S.); (J.H.L.); (Y.M.P.)
| | - Ji Young Song
- Program of Immunology & Microbiology, Department of Biomedicine & Health Science, Graduate School, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea;
| | - Yu Mee Song
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (C.H.B.); (Y.M.S.); (J.H.L.); (Y.M.P.)
| | - Ji Hyun Lee
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (C.H.B.); (Y.M.S.); (J.H.L.); (Y.M.P.)
| | - Young Min Park
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (C.H.B.); (Y.M.S.); (J.H.L.); (Y.M.P.)
| | - Jun Young Lee
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (C.H.B.); (Y.M.S.); (J.H.L.); (Y.M.P.)
- Correspondence: ; Tel.: +82-2-2258-6222
| |
Collapse
|
15
|
Wang W, Yu H, Pan Y, Shao S. Combined Treatment With H1 and H4 Receptor Antagonists Improves Th2 Inflammatory Responses in the Nasal Mucosa of Allergic Rhinitis Rats. Am J Rhinol Allergy 2021; 35:809-816. [PMID: 33726554 DOI: 10.1177/19458924211002604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Histamine H1 receptor (H1R) antagonists are the first-line drugs for the treatment of allergic rhinitis (AR) at present. Emerging evidence supports an important role of histamine H4 receptor (H4R) in allergic diseases. However, information regarding the effects of combined treatment with H1 and H4 receptor antagonists in AR is limited. OBJECTIVES We aimed to assess the effects of combined treatment with H1R and H4R antagonists on Th2 inflammatory responses in the nasal mucosa of AR rats. METHODS Sprague Dawley rats were sensitized with ovalbumin and treated with H1R antagonist desloratadine or/and H4R antagonist JNJ7777120. Western blotting was used to assay the phenotypic markers of mature dendritic cells in the nasal mucosa, including major histocompatibility complex class II (MHC-II) and co-stimulatory molecules CD80, CD86 and OX40 ligand (OX40L). Th2 inflammatory cytokines including interleukin-4, 5 and 13 in nasal lavage fluids were determined by using enzyme-linked immunoassay. RESULTS The treatment with desloratadine alone down-regulated the CD86 expression, and decreased the production of Th2 cytokines, but had no impact on the expression of MHC-II, CD80 and OX40L. The administration of NJ7777120 alone reduced the levels of CD86, OX40L and Th2 cytokines, whereas MHC-II and CD80 expression was unaffected. The combination of desloratadine and JNJ7777120 showed more significant synergistic therapeutic effects than monotherapy. CONCLUSION H4R antagonist acted synergistically with H1R antagonist to reduce Th2 inflammatory responses by down-regulating CD86 and OX40L expression in the nasal mucosa of AR rats. The combination with H1R and H4R antagonists might be a new strategy for AR treatment.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Anatomy, School of Medicine, Huzhou University, Huzhou, China
| | - Hongwei Yu
- Department of Histology and Embryology, School of Medicine, Huzhou University, Huzhou, China
| | - Yongliang Pan
- Department of Histology and Embryology, School of Medicine, Huzhou University, Huzhou, China
| | - Shengwen Shao
- Department of Pathogenic Microbiology and Immunology, School of Medicine, Huzhou University, Huzhou, China
| |
Collapse
|
16
|
TSLP as druggable target - a silver-lining for atopic diseases? Pharmacol Ther 2020; 217:107648. [PMID: 32758645 DOI: 10.1016/j.pharmthera.2020.107648] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Atopic diseases refer to common allergic inflammatory diseases such as atopic dermatitis (AD), allergic rhinitis (AR), and allergic asthma (AA). AD often develops in early childhood and may herald the onset of other allergic disorders such as food allergy (FA), AR, and AA. This progression of the disease is also known as the atopic march, and it goes hand in hand with a significantly impaired quality of life as well as a significant economic burden. Atopic diseases usually are considered as T helper type 2 (Th2) cell-mediated inflammatory diseases. Thymic stromal lymphopoietin (TSLP), an epithelium-derived pro-inflammatory cytokine, activates distinct immune and non-immune cells. It has been shown to be a master regulator of type 2 immune responses and atopic diseases. In experimental settings, the inhibition or knockout of TSLP signaling has shown great therapeutic potential. This, in conjunction with the increasing knowledge about the central role of TSLP in the pathogenesis of atopic diseases, has sparked an interest in TSLP as a druggable target. In this review, we will discuss the autocrine and paracrine effects of TSLP, how it regulates the tissue microenvironment and drives atopic diseases, which provide the rationale for the increasing interest in TSLP as a druggable target.
Collapse
|
17
|
Schaper‐Gerhardt K, Rossbach K, Nikolouli E, Werfel T, Gutzmer R, Mommert S. The role of the histamine H 4 receptor in atopic dermatitis and psoriasis. Br J Pharmacol 2020; 177:490-502. [PMID: 30460986 PMCID: PMC7012951 DOI: 10.1111/bph.14550] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/22/2018] [Accepted: 10/28/2018] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) and psoriasis are common skin diseases with a high negative impact on patients' quality of life. Both diseases are mediated by a pro-inflammatory infiltrate consisting of several cell types, such as T-cells, antigen-presenting cells and granulocytes and display disturbed keratinocyte differentiation. Given the fact that histamine levels are also highly elevated in inflamed skin, it is likely that histamine plays a relevant role in disease pathology. However, antagonists blocking histamine H1 receptor or H2 receptors are largely ineffective in reducing chronic symptoms in AD and psoriasis. Over the last years, much research has been undertaken to shed light into the mode of action of the most recently discovered histamine H4 receptor. This research has shown that H4 receptor antagonists display antipruritic and anti-inflammatory effects not only in mouse models but also in first human clinical trials, and therefore, H4 receptors might present a novel therapeutic target. In this review, we summarize the effects of the H4 receptors on different cell types, mouse models and clinical studies in regard to AD and psoriasis respectively. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.
Collapse
Affiliation(s)
- Katrin Schaper‐Gerhardt
- Division of Immunodermatology and Allergy Research, Department of Dermatology and AllergyHannover Medical SchoolHannoverGermany
| | - Kristine Rossbach
- Department of Pharmacology, Toxicology and PharmacyVeterinary School HannoverHannoverGermany
| | - Eirini Nikolouli
- Division of Immunodermatology and Allergy Research, Department of Dermatology and AllergyHannover Medical SchoolHannoverGermany
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and AllergyHannover Medical SchoolHannoverGermany
| | - Ralf Gutzmer
- Division of Immunodermatology and Allergy Research, Department of Dermatology and AllergyHannover Medical SchoolHannoverGermany
| | - Susanne Mommert
- Division of Immunodermatology and Allergy Research, Department of Dermatology and AllergyHannover Medical SchoolHannoverGermany
| |
Collapse
|
18
|
Wang WW, Pan YL, Yu HW, Zhang B, Shao SW. Histamine H4 receptor regulates Th2-cytokine profile through thymic stromal lymphopoietin in allergic rhinitis. Eur Arch Otorhinolaryngol 2019; 276:1655-1661. [DOI: 10.1007/s00405-019-05369-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
|
19
|
A steroid alkaloid derivative 02F04 upregulates thymic stromal lymphopoietin expression slowly and continuously through a novel Gq/11-ROCK-ERK1/2 signaling pathway in mouse keratinocytes. Cell Signal 2019; 57:58-64. [PMID: 30664940 DOI: 10.1016/j.cellsig.2019.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 11/24/2022]
Abstract
Thymic stromal lymphopoietin (TSLP), a master switch of allergic inflammation, plays an important role in the pathogenesis of allergic diseases. Although many compounds upregulate TSLP expression in vivo or in vitro, most of them are pollutants or toxicants. In the previous study, for the first time, we found that a steroid alkaloid derivative 02F04, which has a unique skeletal structure compared with other TSLP-inducing chemicals, significantly induced TSLP production in mouse keratinocytes. However, it is not investigated thoroughly that how 02F04 produces TSLP and why. In this study, we did a detailed investigation on the inducible effect and underlying molecular mechanism of 02F04 on TSLP production. We found that the peak time of TSLP mRNA level induced by 02F04 at 48 h led to a slow and continuous TSLP production in PAM212 cells. Besides, 02F04-induced TSLP production was significantly suppressed by inhibitors of Rho-associated protein kinase (ROCK), guanine nucleotide-binding protein subunit alpha q/11 (Gq/11) and extracellular signal-regulated kinase 1/2 (ERK1/2) at not only protein but also mRNA levels, and by siRNA-mediated knockdown of Gq or G11. This suggested that ROCK, Gq/11 and ERK1/2 signaling pathways were involved in 02F04-induced TSLP production. Increase in the level of p-ERK1/2 induced by 02F04 was suppressed by both inhibitors of ROCK and Gq/11, indicating that ROCK and Gq/11 molecules were located at the upstream of ERK1/2 to regulate 02F04-induced TSLP production. Gq/11 was located at the upstream of ROCK because the specific Gq/11 inhibitor of YM-254890 significantly reduced 02F04-induced actin stress fiber formation. Taken together, 02F04 upregulates a slow and continuous TSLP production through a novel Gq/11-ROCK-ERK1/2 signaling pathway. The thorough understanding the effect and mechanism of 02F04 on TSLP production is expected to supply it as a novel TSLP-regulating compound and a potential new tool for investigating the role of TSLP in allergic disorders.
Collapse
|
20
|
Werfel T, Layton G, Yeadon M, Whitlock L, Osterloh I, Jimenez P, Liu W, Lynch V, Asher A, Tsianakas A, Purkins L. Efficacy and safety of the histamine H 4 receptor antagonist ZPL-3893787 in patients with atopic dermatitis. J Allergy Clin Immunol 2018; 143:1830-1837.e4. [PMID: 30414855 DOI: 10.1016/j.jaci.2018.07.047] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 07/14/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND H4 receptor antagonists are potential novel treatments for inflammatory skin diseases, including atopic dermatitis (AD). OBJECTIVE We sought to study the efficacy and safety of ZPL-3893787 (a selective H4 receptor antagonist) in patients with moderate-to-severe AD. METHODS A randomized, double-blind, placebo-controlled, parallel-group study was conducted to evaluate ZPL-3893787 (30 mg) once-daily oral therapy in adults with moderate-to-severe AD. Patients were randomized (2:1) to ZPL-3893787 (n = 65) or placebo (n = 33) for 8 weeks. Patients had a history of AD for more than 12 months, Eczema Area and Severity Index (EASI) scores of 12 or greater and 48 or less, Investigator's Global Assessment (IGA) scores of 3 or greater, pruritus scores of 5 or greater (0- to 10-point scale), and AD on 10% or greater of body surface area. Efficacy parameters included EASI, IGA, SCORAD, and pruritus assessment. RESULTS Treatment with oral ZPL-3893787 showed a 50% reduction in EASI score compared with 27% for placebo. The placebo-adjusted reduction in EASI score at week 8 was 5.1 (1-sided P = .01). Clear or almost-clear IGA scores were 18.5% with ZPL-3893787 versus 9.1% with placebo. SCORAD scores exhibited 41% reduction with ZPL-3893787 versus 26% with placebo (placebo-adjusted reduction of 10.0, P = .004). There was a 3-point reduction (scale, 1-10) in pruritus with ZPL-3893787, but there was a similar reduction with placebo, resulting in a nonsignificant difference (P = .249). Patient-reported pruritus subscores obtained from SCORAD were reduced with ZPL-3893787 compared with placebo at week 8 (nonsignificant). ZPL-3893787 was well tolerated. CONCLUSION For the first time, these results showed that ZPL-3893787 improved inflammatory skin lesions in patients with AD, confirming H4 receptor antagonism as a novel therapeutic option.
Collapse
Affiliation(s)
- Thomas Werfel
- Klinik für Dermatologie, Allergologie und Venerologie, Medizinische Hochschule Hannover, Hannover, Germany.
| | | | | | | | - Ian Osterloh
- Ostermed, Birmingham Business Park, Birmingham, United Kingdom
| | - Pablo Jimenez
- Ziarco Pharma, Discovery Park, Sandwich, United Kingdom
| | - Wai Liu
- Ziarco Pharma, Discovery Park, Sandwich, United Kingdom
| | | | - Aliya Asher
- MAC Clinical Research, Manchester, United Kingdom
| | | | - Lynn Purkins
- Ziarco Pharma, Discovery Park, Sandwich, United Kingdom
| |
Collapse
|
21
|
Lin TK, Zhong L, Santiago JL. Association between Stress and the HPA Axis in the Atopic Dermatitis. Int J Mol Sci 2017; 18:ijms18102131. [PMID: 29023418 PMCID: PMC5666813 DOI: 10.3390/ijms18102131] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023] Open
Abstract
The hypothalamic–pituitary–adrenal (HPA) axis is one of the body’s neuroendocrine networks that responds to psychological stress (PS). In the skin, there exists a peripheral HPA axis similar to the central axis. Glucocorticoids (GCs) are key effector molecules of the HPA axis and are essential for cutaneous homeostasis. Atopic dermatitis (AD) is a condition typically characterized by a chronic relapsing course that often results in PS. HPA dysfunction is present in AD patients by the decreased response of GCs elevation to stress as compared to those unaffected by AD. Nevertheless, in skin, acute PS activates several metabolic responses that are of immediate benefit to the host. During the acute phase of PS, increased endogenous GCs have been shown to provide benefit rather than by aggravating cutaneous inflammatory dermatoses. However, a chronic T helper cell type 2 (Th2) predominant cytokine profile acts as a negative feedback loop to blunt the HPA axis response in AD. In this article, we reviewed the role of CRF, pro-opiomelanocortin (POMC)-derived peptides, GCs of the HPA, and 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in AD, with a discussion of the pathogenetic mechanisms of inflammation and skin barrier functions, including antimicrobial defense, and their association with PS.
Collapse
Affiliation(s)
- Tzu-Kai Lin
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Lily Zhong
- Citrus Valley Medical Center, West Covina, CA 91790, USA.
| | - Juan Luis Santiago
- Dermatology Service & Translational Research Unit (UIT), Hospital General Universitario de Ciudad Real, Ciudad Real 13005, Spain.
| |
Collapse
|
22
|
Soumelis V. Molecular and cellular discoveries in inflammatory dermatoses. J Eur Acad Dermatol Venereol 2017; 31 Suppl 5:3-7. [PMID: 28805939 DOI: 10.1111/jdv.14373] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/30/2017] [Indexed: 12/14/2022]
Abstract
It was no earlier than 1986 that T helper (Th)1 and Th2 cells were described for the first time, opening the field of lymphocyte diversity and the investigation of the physiopathology of inflammatory diseases such as atopic dermatitis and psoriasis. Since that time, much research has been carried out showing a very complex communication network leading to inflammatory responses. Nowadays, understanding the cellular and molecular components of the inflammatory network and of the different crosstalks not only for groups of diseases but also for the individual patient is mandatory for developing and personalizing treatments. The aim of the present proceeding was to provide an update concerning some of the most recent molecular and cellular discoveries in inflammatory skin diseases and especially of AD.
Collapse
Affiliation(s)
- V Soumelis
- Department of Immunology, INSERM U932, Institut Curie, Paris, France
| |
Collapse
|
23
|
Köchling H, Schaper K, Wilzopolski J, Gutzmer R, Werfel T, Bäumer W, Kietzmann M, Rossbach K. Combined treatment with H1 and H4 receptor antagonists reduces inflammation in a mouse model of atopic dermatitis. J Dermatol Sci 2017; 87:130-137. [PMID: 28495120 DOI: 10.1016/j.jdermsci.2017.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/05/2017] [Accepted: 04/12/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND Histamine 4 receptor (H4R) antagonists are considered as new therapeutics for the treatment of atopic dermatitis (AD) and first clinical trials have already shown promising results. Histamine 1 receptor (H1R) antagonists are traditionally used to treat AD although the evidence for the efficacy is weak. The combined blockade of both, H1R and H4R, might provide synergistic anti-inflammatory. OBJECTIVE The study was performed to test the anti-inflammatory potential of a combined treatment with an H1R and an H4R antagonist in a mouse AD model. METHODS The development of ovalbumin-induced AD-like skin lesions was analysed mice treated with the H1R inverse agonist mepyramine, the H4R antagonist JNJ-39758979 or a combination of both. RESULTS Mice treated with mepyramine plus JNJ-39758979 showed less severe skin lesions, with a diminished influx of inflammatory cells, a reduced epidermal thickening and a lower level of IL-33 in lesional skin. Scratching behaviour was ameliorated in mice treated with the combination. Moreover, total numbers of skin-draining lymph node cells and splenocytes were significantly reduced. Both substances given alone did not elicit this strong anti-inflammatory effect. CONCLUSION H1R and H4R antagonists provide synergistic anti-inflammatory effects in a mouse model of AD. The combined therapy with H1R and H4R antagonists might represent a new strategy for the treatment of AD.
Collapse
Affiliation(s)
- Hanna Köchling
- University of Veterinary Medicine Hannover, Institute for Pharmacology, Toxicology and Pharmacy, Hannover, Germany
| | - Katrin Schaper
- Hannover Medical School, Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover, Germany
| | - Jenny Wilzopolski
- University of Veterinary Medicine Hannover, Institute for Pharmacology, Toxicology and Pharmacy, Hannover, Germany
| | - Ralf Gutzmer
- Hannover Medical School, Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover, Germany
| | - Thomas Werfel
- Hannover Medical School, Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover, Germany
| | - Wolfgang Bäumer
- NC State University, College of Veterinary Medicine, Department of Molecular Biomedical Sciences, Raleigh, USA
| | - Manfred Kietzmann
- University of Veterinary Medicine Hannover, Institute for Pharmacology, Toxicology and Pharmacy, Hannover, Germany
| | - Kristine Rossbach
- University of Veterinary Medicine Hannover, Institute for Pharmacology, Toxicology and Pharmacy, Hannover, Germany.
| |
Collapse
|