1
|
Shang H, Sun J, Zheng Z, Sun S, Yan X. Study on the Effect of Quinoa Saponins on Human Colon Cancer HT-29 Cells. Food Sci Nutr 2025; 13:e4669. [PMID: 39803233 PMCID: PMC11717042 DOI: 10.1002/fsn3.4669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/27/2024] [Accepted: 11/30/2024] [Indexed: 01/16/2025] Open
Abstract
Quinoa saponins can inhibit the survival of specific cancer cells. However, there is still a lack of systematic research on the effects of quinoa saponins on colon cancer cells. This experiment confirmed that quinoa saponins prevented human colon cancer HT-29 cells from growing in vitro. The MTT experiment revealed that quinoa saponins significantly decreased the proliferative vitality of HT-29 cells. In comparison to the control group, the proportion of cell number in the G0/G1 phase increased by 22.97% and the rate of apoptosis increased by 22.55% after treating cells with quinoa saponins (40 μg/mL). By regulating the expression of Cyclin D1 and p21, it caused the cell cycle to be blocked in the G0/G1 phase. It also promoted the expression of Caspase3 and Bax while suppressing the expression of Bcl-2, which led to the apoptosis of HT-29 cells. In addition, quinoa saponins caused cells to undergo autophagy by upregulating the expression of LC-3II and Beclin1, while the addition of autophagy inhibitors significantly reduced the inhibitory effect on cell proliferation. Finally, the migration of HT-29 cells was also inhibited by quinoa saponins. After treating cells with quinoa saponins (40 μg/mL), compared with that in the control group, the wound healing rate of cells decreased by 38.21% and the migration ability decreased by 69.48%. The potential mechanism could be connected to increasing E-cadherin expression while decreasing N-cadherin expression. Importantly, all of these changes induced by quinoa saponins were dose dependent. Overall, these findings give a scientific basis for the anticancer mechanism of quinoa saponins.
Collapse
Affiliation(s)
- Haijun Shang
- College of Food and Biological EngineeringHefei University of TechnologyHefeiChina
- Anhui Business and Technology CollegeHefeiChina
| | - Jinwei Sun
- Anhui Business and Technology CollegeHefeiChina
| | - Zhi Zheng
- College of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | | | | |
Collapse
|
2
|
Zhou N, Miao K, Hou L, Liu H, Chen J, Ji Y. Phylotranscriptomic analyses reveal the evolutionary complexity of Paris L. (Melanthiaceae), a morphologically distinctive genus with significant pharmaceutical importance. ANNALS OF BOTANY 2024; 134:1277-1290. [PMID: 39221840 PMCID: PMC11688527 DOI: 10.1093/aob/mcae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/01/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND AIMS Previous phylogenetic studies on the pharmaceutically significant genus Paris (Melanthiaceae) have consistently revealed substantial cytonuclear discordance, yet the underlying mechanism responsible for this phenomenon remains elusive. This study aims to reconstruct a robust nuclear backbone phylogeny and elucidate the potential evolutionarily complex events contributing to previously observed cytonuclear discordance within Paris. METHODS Based on a comprehensive set of nuclear low-copy orthologous genes obtained from transcriptomic data, the intrageneric phylogeny of Paris, along with its phylogenetic relationships to allied genera, were inferred using coalescent and concatenated approaches. The analysis of gene tree discordance and reticulate evolution, in conjunction with an incomplete lineage sorting (ILS) simulation, was conducted to explore potential hybridization and ILS events in the evolutionary history of Paris and assess their contribution to the discordance of gene trees. KEY RESULTS The nuclear phylogeny unequivocally confirmed the monophyly of Paris and its sister relationship with Trillium, while widespread incongruences in gene trees were observed at the majority of internal nodes within Paris. The reticulate evolution analysis identified five instances of hybridization events in Paris, indicating that hybridization events might have occurred recurrently throughout the evolutionary history of Paris. In contrast, the ILS simulations revealed that only two internal nodes within section Euthyra experienced ILS events. CONCLUSIONS Our data suggest that the previously observed cytonuclear discordance in the phylogeny of Paris can primarily be attributed to recurrent hybridization events, with secondary contributions from infrequent ILS events. The recurrent hybridization events in the evolutionary history of Paris not only drove lineage diversification and speciation but also facilitated morphological innovation, and enhanced ecological adaptability. Therefore, artificial hybridization has great potential for breeding medicinal Paris species. These findings significantly contribute to our comprehensive understanding of the evolutionary complexity of this pharmaceutically significant plant lineage, thereby facilitating effective exploitation and conservation efforts.
Collapse
Affiliation(s)
- Nian Zhou
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ke Miao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Luxiao Hou
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jiahui Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yunheng Ji
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
3
|
Miao W, Wang Z, Gao J, Ohno Y. Polyphyllin II inhibits breast cancer cell proliferation via the PI3K/Akt signaling pathway. Mol Med Rep 2024; 30:224. [PMID: 39364737 PMCID: PMC11465422 DOI: 10.3892/mmr.2024.13348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Paridis Rhizoma saponins (PRS) are significant components of Rhizoma Paridis and have inhibitory effects on various tumors, such as bladder, breast, liver and colon cancer. Polyphyllin II (PPII), one of the PRS, has an unclear effect on breast cancer. The present study aimed to explore the effect and mechanism of PPII in breast cancer. A network pharmacology approach was employed to predict the core components and breast cancer‑related targets of PRS. Moreover, a xenograft tumor model was established to determine the anti‑breast cancer effect of PPII in vivo. The viability of MDA‑MB‑231 cells was determined by a Cell Counting Kit‑8 assay. Apoptosis was analyzed using annexin V/PI double staining. Additionally, Transwell and scratch assays were performed to evaluate invasion and migration. The potential mechanism was predicted by Kyoto Encyclopedia of Genes and Genomes enrichment analysis and molecular docking analysis and verified by western blot analysis. The effect of PPII on aerobic glycolysis in breast cancer cells was detected by lactic acid and pyruvate kits and Western blotting of glycolytic rate‑limiting enzymes. Network pharmacology analysis revealed 26 core targets involved in breast cancer and that PPII was the core active component of PRS. The in vivo studies showed that PPII could inhibit the growth of breast cancer in mice. In vitro experiments confirmed that PPII induced cancer cell apoptosis and inhibited invasion and migration. Furthermore, PPII was capable of suppressing the expression of key proteins in the PI3K/Akt signaling pathway, reducing the generation of aerobic glycolytic products, and diminishing the protein expression levels of hexokinase 2 and pyruvate kinase M2. The results indicated that PPII inhibited aerobic glycolysis in breast cancer cells through the PI3K/Akt signaling pathway, thereby inhibiting breast cancer growth.
Collapse
Affiliation(s)
- Weiwei Miao
- Department of Health Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- College of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, P.R. China
| | - Zhixiong Wang
- College of Health Management, Shanghai Jian Qiao University, Shanghai 201306, P.R. China
| | - Jianwen Gao
- College of Health Management, Shanghai Jian Qiao University, Shanghai 201306, P.R. China
| | - Yuko Ohno
- Department of Health Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Seo KJ, Yoon JH, Chung BY, Lee HK, Park WS, Chae HS. Effects of photobiomodulation on colon cancer cell line HT29 according to mitochondria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112966. [PMID: 38970968 DOI: 10.1016/j.jphotobiol.2024.112966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND/AIM Although photobiomodulation therapy (PBMt) is available to alleviate post-operative side effects of malignant diseases, its application is still controversial due to some potential of cancer recurrence and occurrence of a secondary malignancy. We investigated effect of PBMt on mitochondrial function in HT29 colon cancer cells. METHODS HT29 cell proliferation was determined with MTT assay after PBMt. Immunofluorescent staining was performed to determine mitochondrial biogenesis and reactive oxygen species (ROS). Mitochondrial membrane potential was measured with Mitotracker. Western blotting was executed to determine expression of fission, fusion, UCP2, and cyclin B1 and D1 proteins. In vivo study was performed by subcutaneously inoculating cancer cells into nude mice and immunohistochemistry was done to determine expression of FIS1, MFN2, UCP2, and p-AKT. RESULTS The proliferation and migration of HT29 cells reached maximum with PBMt (670 nm, light emitting diode, LED) at 2.0 J/cm2 compared to control (P < 0.05) with more expression of cyclin B1 and cyclin D1 (P < 0.05). Immunofluorescent staining showed that ROS and mitochondrial membrane potential were enhanced after PBMt compared to control. ATP synthesis of mitochondria was also higher in the PBMt group than in the control (P < 0.05). Expression levels of fission and fusion proteins were significantly increased in the PBMt group than in the control (P < 0.05). Electron microscopy revealed that the percentage of mitochondria showing fission was not significantly different between the two groups. Oncometabolites including D-2-hydoxyglutamate in the supernatant of cell culture were higher in the PBMt group than in the control with increased UCP2 expression (P < 0.05). Both tumor size and weight of xenograft in nude mice model were bigger and heavier in the PBMt group than in the control (P < 0.05). Immunohistologically, mitochondrial biogenesis proteins UCP2 and p-AKT in xenograft of nude mice were expressed more in the PBMt group than in the control (P < 0.05). CONCLUSIONS Treatment with PBM using red light LED may induce proliferation and progression of HT29 cancer cells by increasing mitochondrial activity and fission.
Collapse
Affiliation(s)
- Kyung Jin Seo
- Department of Pathology, Uijongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bom Yee Chung
- Department of Internal Medicine, Uijongbu St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hae Kyung Lee
- Department of Laboratory Medicine, Uijongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Won Sang Park
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Hiun Suk Chae
- Department of Internal Medicine, Uijongbu St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Man S, Cui Y, Shi D, Lv P, Ma L, Gao W. Formosanin C inhibits pulmonary metastasis by targeting stearyl CoA desaturase-1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155689. [PMID: 38728921 DOI: 10.1016/j.phymed.2024.155689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Cisplatin (DDP) as the first-line drug has been used in cancer therapy. However, side effects and drug resistance are the challenges of DDP. Disordered lipid metabolism is related to DDP resistance. STUDY DESIGN In this study, formosanin C (FC) as the main compound of Rhizoma Paridis saponins (RPS) inhibits pulmonary metastasis by targeting stearyl CoA desaturase-1. METHODS AND RESULTS RPS prolonged the survival period of mice, reduced pulmonary metastases and alleviated colon toxicity caused by DDP. FC as the main compound of RPS enhanced the anti-tumor and anti-metastatic effects of DDP. FC decreased the mRNA level of SCD1 and the content of lipid droplets (LDs) in lung cancer cells. Molecular dynamics and isothermal titration calorimetry verified the binding stability and spontaneously between FC and SCD1. SiSCD1 reduced the content of LDs in cell lines and increased mitochondria (mtROS), which was consistent with the results of FC treatment. The combination group decreased DNA repair associated protein as well as DDP resistance markers such as ERCC1 and 53bp1, and increased DNA damage marker like γH2AX, which indirectly confirmed the occurrence of mtROS. In addition, FC combination with DDP also affected epithelial-mesenchymal transition-related protein like VIM and CDH1 in vivo experiments, and thereby inhibited pulmonary metastasis. CONCLUSION Our research indicated that the FC as the main compound of RPS targeted the CY2 domain of SCD1, inhibited lipid metabolism in mice, and thereby suppressed cancer metastases. This provided support for use of FC to treat cancer based on lipid metabolism pathway.
Collapse
Affiliation(s)
- Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Yingfang Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Dandan Shi
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Panpan Lv
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
6
|
Sun F, Fang M, Zhang H, Song Q, Li S, Li Y, Jiang S, Yang L. Drp1: Focus on Diseases Triggered by the Mitochondrial Pathway. Cell Biochem Biophys 2024; 82:435-455. [PMID: 38438751 DOI: 10.1007/s12013-024-01245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
Drp1 (Dynamin-Related Protein 1) is a cytoplasmic GTPase protein encoded by the DNM1L gene that influences mitochondrial dynamics by mediating mitochondrial fission processes. Drp1 has been demonstrated to play an important role in a variety of life activities such as cell survival, proliferation, migration, and death. Drp1 has been shown to play different physiological roles under different physiological conditions, such as normal and inflammation. Recently studies have revealed that Drp1 plays a critical role in the occurrence, development, and aggravation of a series of diseases, thereby it serves as a potential therapeutic target for them. In this paper, we review the structure and biological properties of Drp1, summarize the biological processes that occur in the inflammatory response to Drp1, discuss its role in various cancers triggered by the mitochondrial pathway and investigate effective methods for targeting Drp1 in cancer treatment. We also synthesized the phenomena of Drp1 involving in the triggering of other diseases. The results discussed herein contribute to our deeper understanding of mitochondrial kinetic pathway-induced diseases and their therapeutic applications. It is critical for advancing the understanding of the mechanisms of Drp1-induced mitochondrial diseases and preventive therapies.
Collapse
Affiliation(s)
- Fulin Sun
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Min Fang
- Department of Gynaecology, Qingdao Women and Children's Hospital, Qingdao, 266021, Shandong, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Qinghang Song
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Shuang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Shuyao Jiang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Wu Z, Xiao C, Li F, Huang W, You F, Li X. Mitochondrial fusion-fission dynamics and its involvement in colorectal cancer. Mol Oncol 2024; 18:1058-1075. [PMID: 38158734 PMCID: PMC11076987 DOI: 10.1002/1878-0261.13578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/21/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
The incidence and mortality rates of colorectal cancer have elevated its status as a significant public health concern. Recent research has elucidated the crucial role of mitochondrial fusion-fission dynamics in the initiation and progression of colorectal cancer. Elevated mitochondrial fission or fusion activity can contribute to the metabolic reprogramming of tumor cells, thereby activating oncogenic pathways that drive cell proliferation, invasion, migration, and drug resistance. Nevertheless, excessive mitochondrial fission can induce apoptosis, whereas moderate mitochondrial fusion can protect cells from oxidative stress. This imbalance in mitochondrial dynamics can exert dual roles as both promoters and inhibitors of colorectal cancer progression. This review provides an in-depth analysis of the fusion-fission dynamics and the underlying pathological mechanisms in colorectal cancer cells. Additionally, it offers partial insights into the mitochondrial kinetics in colorectal cancer-associated cells, such as immune and endothelial cells. This review is aimed at identifying key molecular events involved in colorectal cancer progression and highlighting the potential of mitochondrial dynamic proteins as emerging targets for pharmacological intervention.
Collapse
Affiliation(s)
- Zihong Wu
- Hospital of Chengdu University of Traditional Chinese MedicineChina
| | - Chong Xiao
- Hospital of Chengdu University of Traditional Chinese MedicineChina
- Oncology Teaching and Research DepartmentChengdu University of Traditional Chinese MedicineChina
| | - Fang Li
- Hospital of Chengdu University of Traditional Chinese MedicineChina
| | - Wenbo Huang
- Hospital of Chengdu University of Traditional Chinese MedicineChina
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese MedicineChina
- Institute of OncologyChengdu University of Traditional Chinese MedicineChina
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese MedicineChina
- Oncology Teaching and Research DepartmentChengdu University of Traditional Chinese MedicineChina
| |
Collapse
|
8
|
Cheng H, Long J, Su J, Chu J, Wang M, Li Q. Mechanism of Paris polyphylla saponin II inducing autophagic to inhibit angiogenesis of cervical cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3179-3194. [PMID: 37906274 DOI: 10.1007/s00210-023-02794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
Paris polyphylla saponin II (PPII) has good biological activity in inhibiting tumor angiogenesis. However, the mechanism of its action is still unclear. This study first observed the inhibitory effect of PPII on cervical cancer cells (Hela) through the establishment of MTT and nude mouse subcutaneous transplantation tumor models. Afterwards, then, we collected Hela cell supernatant for culturing HUVEC cells and treated it with PPII. Observe the invasion, migration, and lumen formation ability of drugs through Transwell, cell scratch test, and angiogenesis experiment. MDC staining was used to observe positive staining in the perinuclear area, AO staining was used to observe acidic areas, and transmission electron microscopy staining was used to observe ultrastructure and autophagy. In addition, the effects of PPII on autophagy- and angiogenesis-related protein expression were detected by Western blotting and quantitative reverse transcriptase polymerase chain reaction. Finally, HUVECs were treated with autophagy inhibitors 3-MA, CQ, and PI3K inhibitor LY294002, respectively. The results showed that the autophagy level of cells treated with PPII was significantly increased. In addition, adding autophagy inhibitors can effectively inhibit angiogenesis in cervical cancer. Further research suggests that PPII induces autophagy in HUVEC cells by regulating the PI3K/AKT/mTOR signaling pathway, thereby affecting angiogenesis and inhibiting Hela cell proliferation, lumen formation, invasion, and migration.
Collapse
Affiliation(s)
- Hui Cheng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei, 230038, China.
- Department of Experimental Center for Scientific Research, Anhui University of Chinese Medicine, Hefei, 230038, China.
| | - Jiao Long
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei, 230038, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jingjing Su
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei, 230038, China
| | - Jing Chu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei, 230038, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Meng Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei, 230038, China
| | - Qinglin Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei, 230038, China.
- Department of Experimental Center for Scientific Research, Anhui University of Chinese Medicine, Hefei, 230038, China.
| |
Collapse
|
9
|
Samia S, Sandeep Chary P, Khan O, Kumar Mehra N. Recent trends and advances in novel formulations as an armament in Bcl-2/Bax targeted breast cancer. Int J Pharm 2024; 653:123889. [PMID: 38346605 DOI: 10.1016/j.ijpharm.2024.123889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
Breast cancer (BC) remains a significant health burden worldwide, necessitating the development of innovative therapeutic strategies. The B-cell lymphoma 2 (Bcl-2) family proteins, Bcl-2 and Bax, play a crucial role in regulating apoptosis and thus are promising targets for BC therapy. We focus on the recent advancements in novel formulations that specifically target Bcl-2/Bax pathway to combat BC. It provides an overview on biological functions of Bcl-2/Bax in apoptosis regulation, emphasizing their significance in pathogenesis and progression of the disease while covering the numerous therapeutic approaches aimed at modulating the Bcl-2/Bax pathway, including small-molecule inhibitors, peptides, gene-based therapies and other repurposed drugs harboured onto cutting-edge technologies and nanocarrier systems employed to enhance the targeted delivery of Bcl-2/Bax inhibitors tumor cells. These advanced formulations aim to improve therapeutic efficacy, minimize off-target effects, and overcome drug resistance, offering promising prospects in its treatment. In conclusion, it illuminates the diverse and evolving landscape of novel formulations as an essential armament in targeting these proteins while bridging and unravelling the obscurity of Bcl-2/Bax pathway-targeted drug delivery systems which are presently in their nascent stages of exploration for BC therapy which can benefit researchers, clinicians, and pharmaceutical scientists.
Collapse
Affiliation(s)
- Shaikh Samia
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Omar Khan
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
10
|
Wang J, Ni BY, Wang J, Han L, Ni X, Wang XM, Cao LC, Sun QH, Han XP, Cui HJ. Research progress of Paris polyphylla in the treatment of digestive tract cancers. Discov Oncol 2024; 15:31. [PMID: 38324023 PMCID: PMC10850040 DOI: 10.1007/s12672-024-00882-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024] Open
Abstract
Cancer has become one of the most important causes of human death. In particular, the 5 year survival rate of patients with digestive tract cancer is low. Although chemotherapy drugs have a certain efficacy, they are highly toxic and prone to chemotherapy resistance. With the advancement of antitumor research, many natural drugs have gradually entered basic clinical research. They have low toxicity, few adverse reactions, and play an important synergistic role in the combined targeted therapy of radiotherapy and chemotherapy. A large number of studies have shown that the active components of Paris polyphylla (PPA), a common natural medicinal plant, can play an antitumor role in a variety of digestive tract cancers. In this paper, the main components of PPA such as polyphyllin, C21 steroids, sterols, and flavonoids, amongst others, are introduced, and the mechanisms of action and research progress of PPA and its active components in the treatment of various digestive tract cancers are reviewed and summarized. The main components of PPA have been thoroughly explored to provide more detailed references and innovative ideas for the further development and utilization of similar natural antitumor drugs.
Collapse
Affiliation(s)
- Jia Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Bao-Yi Ni
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Chaoyang, China
| | - Lei Han
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Xin Ni
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Xin-Miao Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu-Chang Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian-Hui Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin-Pu Han
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hu-Jun Cui
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
11
|
Li R, Wu Y, Li Y, Shuai W, Wang A, Zhu Y, Hu X, Xia Y, Ouyang L, Wang G. Targeted regulated cell death with small molecule compounds in colorectal cancer: Current perspectives of targeted therapy and molecular mechanisms. Eur J Med Chem 2024; 265:116040. [PMID: 38142509 DOI: 10.1016/j.ejmech.2023.116040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023]
Abstract
Colorectal cancer (CRC), a tumor of the digestive system, is characterized by high malignancy and poor prognosis. Currently, targeted therapy of CRC is far away from satisfying. The molecular mechanisms of regulated cell death (RCD) have been clearly elucidated, which can be intervened by drug or genetic modification. Numerous studies have provided substantial evidence linking these mechanisms to the progression and treatment of CRC. The RCD includes apoptosis, autophagy-dependent cell death (ADCD), ferroptosis, necroptosis, and pyroptosis, and immunogenic cell death, etc, which provide potential targets for anti-cancer treatment. For the last several years, small-molecule compounds targeting RCD have been a well concerned therapeutic strategy for CRC. This present review aims to describe the function of small-molecule compounds in the targeted therapy of CRC via targeting apoptosis, ADCD, ferroptosis, necroptosis, immunogenic dell death and pyroptosis, and their mechanisms. In addition, we prospect the application of newly discovered cuproptosis and disulfidptosis in CRC. Our review may provide references for the targeted therapy of CRC using small-molecule compounds targeting RCD, including the potential targets and candidate compounds.
Collapse
Affiliation(s)
- Ru Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yan Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Aoxue Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yumeng Zhu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yong Xia
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China; Department of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China.
| | - Liang Ouyang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Wu Z, Xiao C, Long J, Huang W, You F, Li X. Mitochondrial dynamics and colorectal cancer biology: mechanisms and potential targets. Cell Commun Signal 2024; 22:91. [PMID: 38302953 PMCID: PMC10835948 DOI: 10.1186/s12964-024-01490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Colorectal cancer (CRC) is a significant public health concern, and its development is associated with mitochondrial dysfunction. Mitochondria can adapt to the high metabolic demands of cancer cells owing to their plasticity and dynamic nature. The fusion-fission dynamics of mitochondria play a crucial role in signal transduction and metabolic functions of CRC cells. Enhanced mitochondrial fission promotes the metabolic reprogramming of CRC cells, leading to cell proliferation, metastasis, and chemoresistance. Excessive fission can also trigger mitochondria-mediated apoptosis. In contrast, excessive mitochondrial fusion leads to adenosine triphosphate (ATP) overproduction and abnormal tumor proliferation, whereas moderate fusion protects intestinal epithelial cells from oxidative stress-induced mitochondrial damage, thus preventing colitis-associated cancer (CAC). Therefore, an imbalance in mitochondrial dynamics can either promote or inhibit CRC progression. This review provides an overview of the mechanism underlying mitochondrial fusion-fission dynamics and their impact on CRC biology. This revealed the dual role of mitochondrial fusion-fission dynamics in CRC development and identified potential drug targets. Additionally, this study partially explored mitochondrial dynamics in immune and vascular endothelial cells in the tumor microenvironment, suggesting promising prospects for targeting key fusion/fission effector proteins against CRC.
Collapse
Affiliation(s)
- Zihong Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Chong Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
- Oncology Teaching and Research Department of Chengdu, University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jing Long
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Wenbo Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
- Oncology Teaching and Research Department of Chengdu, University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
13
|
Roy S, Das A, Bairagi A, Das D, Jha A, Srivastava AK, Chatterjee N. Mitochondria act as a key regulatory factor in cancer progression: Current concepts on mutations, mitochondrial dynamics, and therapeutic approach. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108490. [PMID: 38460864 DOI: 10.1016/j.mrrev.2024.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
The diversified impacts of mitochondrial function vs. dysfunction have been observed in almost all disease conditions including cancers. Mitochondria play crucial roles in cellular homeostasis and integrity, however, mitochondrial dysfunctions influenced by alterations in the mtDNA can disrupt cellular balance. Many external stimuli or cellular defects that cause cellular integrity abnormalities, also impact mitochondrial functions. Imbalances in mitochondrial activity can initiate and lead to accumulations of genetic mutations and can promote the processes of tumorigenesis, progression, and survival. This comprehensive review summarizes epigenetic and genetic alterations that affect the functionality of the mitochondria, with considerations of cellular metabolism, and as influenced by ethnicity. We have also reviewed recent insights regarding mitochondrial dynamics, miRNAs, exosomes that play pivotal roles in cancer promotion, and the impact of mitochondrial dynamics on immune cell mechanisms. The review also summarizes recent therapeutic approaches targeting mitochondria in anti-cancer treatment strategies.
Collapse
Affiliation(s)
- Sraddhya Roy
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Ananya Das
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Aparajita Bairagi
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Debangshi Das
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Ashna Jha
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Amit Kumar Srivastava
- CSIR-IICB Translational Research Unit Of Excellence, CN-6, Salt Lake, Sector - V, Kolkata 700091, India
| | - Nabanita Chatterjee
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India.
| |
Collapse
|
14
|
Zhang Q, Chang S, Yang Y, Xi C, Dong Y, Liu L, He Y, Liu Y, Cai B, Liu T. Endophyte-inoculated rhizomes of Paris polyphylla improve polyphyllin biosynthesis and yield: a transcriptomic analysis of the underlying mechanism. Front Microbiol 2023; 14:1261140. [PMID: 38029197 PMCID: PMC10643526 DOI: 10.3389/fmicb.2023.1261140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Polyphyllin from Paris polyphylla var. yunnanensis exhibits anti-inflammatory, analgesic, antibacterial, and antiviral properties. However, the current production of polyphyllin can barely meet market demand. To improve the content of polyphyllin produced by P. polyphylla, two endophyte strains, Bacillus cereus LgD2 and Fusarium oxysporum TPB, were isolated from Paris fargesii Franch. and inoculated in the roots of P. polyphylla. Both symbiotic strains significantly promoted the accumulation of saponins in P. polyphylla. Methods The content of polyphyllin in rhizomes of P. polyphylla treated with TPB with LgD2 strain was determined using High Performance Liquid Chromatography and the expressed genes were analyzed by RNA-seq. Gene Ontology and Kyoto Encyclopedia of Genes annotations were performed on the differentially expressed genes, a clustering tree of UDP-glycosyltransferase (UGT) and cytochrome P450 (CYP450) gene families was constructed, and UGT and CYP450 involved in the biosynthesis of polyphyllin were predicted using weighted correlation network analysis (WGCNA). Results RNA-seq and qRT-PCR analyses showed that endophytic inoculation did not promote polyphyllin accumulation by enhancing the upstream terpene biosynthesis pathway, but probably by up-regulating the downstream CYP450 and UGT genes associated with polyphyllin biosynthesis. Genomes enrichment analyses of differentially expressed genes indicated that inoculation with LgD2 and TPB played a positive role in promoting the defense against pathogenic bacteria, enhancing the biosynthesis of carbohydrates, attenuating the process of nitrogen metabolism, and maintaining the equilibrium of the redox reaction homeostasis, potentially indirectly enhancing the polyphyllin yield of P. polyphylla. By combining differentially expressed genes screening, WGCNA, and phylogenetic tree analyses, 17 CYP450 and 2 UGT candidate genes involved in the biosynthesis of polyphyllin I, polyphyllin II, polyphyllin VII, polyphyllin D, and polyphyllin H were identified. These results suggest that endophytes probably effectively promote the accumulation of polyphyllin by regulating key downstream genes in biosynthetic pathways. Discussion This study provides a new approach for investigating the regulatory mechanisms of endophytes that promote the production and accumulation of polyphyllin in P. polyphylla, providing a basis for further elucidating the mechanisms of plant-endophyte interactions.
Collapse
Affiliation(s)
- Qing Zhang
- National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Sheng Chang
- Center of Yunnan Zhongyan Industry Co., Ltd., Kunming, China
| | - Ying Yang
- Center of Yunnan Zhongyan Industry Co., Ltd., Kunming, China
| | - Congfang Xi
- National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yumei Dong
- National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Lufeng Liu
- National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yunchao He
- Lushui City Katma Township People's Government Agricultural and Rural Integrated Service Center, Lushui, Yunnan, China
| | - Yu Liu
- Shenzhen TCM Hospital, Shenzhen, China
| | - Bo Cai
- Center of Yunnan Zhongyan Industry Co., Ltd., Kunming, China
| | - Tao Liu
- National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
15
|
Li HL, Yan CP, Qi JS, Zhang S, Guo DQ, Gu WC, Wu YM, Wu Y, Zhou N. Analysis of the heavy metal contents' effect on steroidal saponins and the anti-breast cancer activity of Paris polyphylla var. yunnanensis. Front Pharmacol 2023; 14:1277395. [PMID: 37954839 PMCID: PMC10637373 DOI: 10.3389/fphar.2023.1277395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Background: P. polyphylla var. yunnanensis, as a near-threatened and ethnic medicine in China, used to be a key ingredient in traditional Chinese medicine in treatment of traumatic injuries, sore throat, snakebites, and convulsions for thousands of years. However, there were no reports on the inverse relationship between the contents of heavy metals and saponins and its anti-breast cancer pharmacological activity in P. polyphylla var. yunnanensis. Methods: The present study aimed to reveal the characteristics of heavy metal contents and saponins and its anti-breast cancer pharmacological activity and their interrelationships in P. polyphylla var. yunnanensis from different production areas. The contents of heavy metal and steroidal saponins in P. polyphylla var. yunnanensis were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and the high-performance liquid chromatography technique, respectively. The Pearson correlation was used to study the correlation between saponins and heavy metals. 4T1 mouse mammary tumor cells were selected and cultivated for antitumor studies in vitro. Cell Counting Kit-8 (CCK-8) assay, Hoechst staining, and flow cytometry analysis were used for the examination of the proliferation and apoptosis of 4T1 tumor cells. Mouse breast cancer 4T1 cells were subcutaneously injected into BALB/c mice to construct a tumor model to explore the in vivo inhibitory effect on breast cancer. TUNEL assay and immunohistochemistry were used for the examination of the effect of P. polyphylla var. yunnanensis from different origins on cancer cell proliferation and apoptosis induction in 4T1 tumor mice. Results: Heavy metal contents were highly correlated with the content of steroidal saponins. The overall content of 10 metals in the three producing origins was of the order C3 >C2 >C1. The total content of eight steroidal saponins in the extracts of P. polyphylla var. yunnanensis from three different origins was C1 >C2 >C3. The Pearson correlation study showed that in all of the heavy metals, the contents of Cd and Ba were positively correlated with the main steroidal saponins in P. polyphylla var. yunnanensis, while Al, Cr, Cu, Fe, Zn, As, Hg, and Pb showed a negative correlation. In vitro experiments showed that the extracts of P. polyphylla var. yunnanensis from three origins could inhibit the proliferation and induce cell apoptosis of 4T1 cells in a concentration- and time-dependent manner, especially in the C1 origin. In vivo experiments showed that the extract of P. polyphylla var. yunnanensis from the three origins could inhibit the growth of tumors and induce the apoptosis of tumor cells. In the three origins, C1 origin had the lowest total heavy metal level but the highest total steroidal saponin level. Therefore, it showed a better effect in reducing the expression of the human epidermal growth factor receptor 2 (HER2) and Kiel 67 (Ki67) and increasing the expression of p53 in tumor tissues compared to the other origins. In conclusion, in the three origins, C1 origin exhibits antitumor pharmacological effects in vivo and in vitro which are better than those in the other origins. Conclusion: In this study, we found that with the increase of the heavy metal content, the content of steroid saponins and anti-breast cancer activity decreased. The results showed that the high content of the total heavy metals may not be conducive to the accumulation of steroidal saponins in P. polyphylla var. yunnanensis and lead to the low anti-breast cancer activity. The results of this study suggest that the content of heavy metals should be controlled in the artificial cultivation process of P. polyphylla var. yunnanensis.
Collapse
Affiliation(s)
- Hai-Ling Li
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Cui-Ping Yan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Taizhou Institute for Drug Control, Taizhou, China
| | - Jun-Sheng Qi
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Shuo Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, China
| | - Dong-Qin Guo
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Wen-Chao Gu
- College of Pharmacy, Dali University, Dali, China
| | - Ying-Mei Wu
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yu Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, China
| | - Nong Zhou
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
16
|
Hu J, Lu Y, Zheng S, Tian Y, Li T, Tang H, Yang Z, Liu Y. Steroid and triterpenoid saponins from the rhizomes of Paris polyphylla var. stenophylla. Chin J Nat Med 2023; 21:789-800. [PMID: 37879796 DOI: 10.1016/s1875-5364(23)60486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Indexed: 10/27/2023]
Abstract
Five new saponins, including three steroid saponins, paristenoids A-C (1-3), and two triterpenoid saponins, paristenoids D-E (4-5), along with four known ones (6-9) were isolated from the rhizomes of Paris polyphylla var. stenophylla. The structures of the isolated compounds were identified mainly by detailed spectroscopic analysis, including extensive 1D and 2D NMR, MS, as well as chemical methods. Compound 3 is a new cyclocholestanol-type steroidal saponin with a rare 6/6/6/5/5 fused-rings cholestanol skeleton, and this skeleton has been first found from the genus Paris. The cytotoxicities of the isolated compounds against three human three glioma cell lines (U87MG, U251MG and SHG44) were evaluated, and compound 7 displayed certain inhibitory effect with IC50 values of 15.22 ± 1.73, 18.87 ± 1.81 and 17.64 ± 1.69 μmol·L-1, respectively.
Collapse
Affiliation(s)
- Jinming Hu
- Department of Chinese Medical and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Yunyang Lu
- Department of Chinese Medical and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Shuxian Zheng
- Department of Chinese Medical and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Yunyuan Tian
- Department of Chinese Medical and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Tianyi Li
- Department of Chinese Medical and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Haifeng Tang
- Department of Chinese Medical and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an 710032, China.
| | - Zhao Yang
- Department of Military Medical Psychology, Air Force Military Medical University, Xi'an 710032, China.
| | - Yang Liu
- Department of Chinese Medical and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an 710032, China.
| |
Collapse
|
17
|
Emami A, Ghafouri H, Sariri R. Polyphyllin D-Loaded Solid Lipid Nanoparticles for Breast Cancer: Synthesis, Characterization, In Vitro, and in Vivo Studies. Int J Pharm 2023; 639:122976. [PMID: 37088118 DOI: 10.1016/j.ijpharm.2023.122976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Polyphyllin D (PD), a steroidal saponin in Paris polyphylla, induces apoptosis via the intrinsic apoptotic pathway in different cancer types. However, emerging evidence has shown that the primary issue with PD is its structure's hemolysis and cytotoxicity. This study aimed to develop and optimize PD-loaded SLN formulation and evaluate its efficacy in breast cancer cell lines. Apoptosis, as the mechanism of cell death, was confirmed by flow cytometry following Annexin V/propidium iodide staining and western blot analysis. In in vivo studies, tumor inhibitory efficacy was compared with different doses of PD-loaded SLN on 4T1-implanted BALB/c mice. The half-maximal inhibitory concentration (IC50) of PD- loaded SLN was calculated to be 33.25 and 35.74 μg/mL for MCF7 and MDA-MB-231 cells, respectively. Flow cytometry analysis further confirmed a significant increase in apoptosis after treatment with PD- loaded SLN. When both cell lines were treated with PD-loaded SLN, Bcl2 and HSP70 proteins were down regulated, while Bax, Bad, P53, Apaf-1, p-p53 and Noxa proteins were upregulated. This effect was also confirmed by test performed on BALB/c mice in vivo. Based on results, PD-loaded SLN may be a promising breast cancer treatment, without recognizable side effects.
Collapse
Affiliation(s)
- Azadeh Emami
- Department of Biology, Faculty of Basic Sciences, University of Guilan, University Campus 2, Rasht, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran; Department of Marine Science, Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran
| | - Reyhaneh Sariri
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
18
|
Bach TS, La VH, Khoi TX, Nguyen DH, Cuong CB, Nguyen TV. Identification, Phytochemistry and Biological Activities of Paris polyphylla on Hepatocellular Carcinoma. Pak J Biol Sci 2023; 26:203-212. [PMID: 37859552 DOI: 10.3923/pjbs.2023.203.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
<b>Background and Objective:</b> Liver cancer is the common cause of cancer death. <i>Paris polyphylla</i> is used as a traditional folk medicine in Vietnam to treat pneumonia, mastitis, bruises and fractures but no study was available regarding its ability to treat liver cancer or slow its growth. In this study, <i>Paris polyphylla</i> samples were identified and evaluated cytotoxic activity against the liver cancer cells. <b>Materials and Methods:</b> <i>Paris polyphylla</i> species were collected from various areas in Yen Bai, Vietnam, which were identified by comparative morphological method and DNA barcoding for the <i>18S, matK</i> genes and <i>ITS</i> region. <i>Paris polyphylla</i> samples were dried until constant weight, ground into a fine powder and extracted in various solvents. The bioactivity of these extracts were done by the MTT assay. <b>Results:</b> The sequences of <i>18S, matK</i> genes and <i>ITS</i> region were high similarity to sequences of <i>P. polyphylla</i> in the National Center for Biotechnology Information. The N-hexane and ethyl acetate fractions were produced from the methanol extract of <i>P. polyphylla</i>. The TLC results showed that there was a significant difference in the component of n-hexane and ethyl acetate fraction. The N-hexane fraction contains mainly low-polarity and non-polarity substances. While ethyl acetate fraction consists mainly of polar substances. In addition, ethyl acetate fraction was shown the strongest cytotoxic activity on the cancer cell lines HepG2 and Huh7 with the evaluation of IC<sub>50</sub> = 115.11±2.77 μg mL<sup>1</sup> and IC<sub>50</sub> = 148.11±1.78 μg mL<sup>1</sup>. <b>Conclusion:</b> The extract of <i>Paris polyphylla</i> demonstrated strong potential to inhibit the growth of the liver cancer cell line. The ethyl acetate fraction has the highest ability for cytotoxicity on the liver and cell line at a concentration of 200 μg mL<sup>1</sup> through MTT.
Collapse
|
19
|
Ni B, Wang W, Liu M, Xu Y, Zhao J. Paris saponin Ⅰ induce toxicity in zebrafish by up-regulation of p53 pathway and down-regulation of wnt pathway. Toxicon 2023; 228:107094. [PMID: 37003302 DOI: 10.1016/j.toxicon.2023.107094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
Paris saponin I, II, and VII are three important components in Paris polyphylla, which have been widely studied as tumor cytotoxic drugs, but their safety in vivo has not been reported. Therefore, this study evaluated the safety of these three drugs based on the zebrafish model. Firstly, the lethality curves and half lethal rates of the three saponins were determined and the results showed the values of LC50 of Paris saponin I, II, and VII were 122.2, 210.7, 566.2 ng/ml, respectively. And then our data revealed that Paris saponin I, II and VII had definite hepatotoxicity, as shown by their significant reduction in the liver area and fluorescence intensity of zebrafish. Besides, Paris saponin Ⅰ affected the heart rate of zebrafish obviously, suggesting its cardiovascular toxicity. Afterwards, we found Paris saponin Ⅰ and Ⅶ reduced the area and fluorescence intensity of kidney in zebrafish, and had mild nephrotoxicity. And when treated with Paris saponin I, the pathological section of liver tissue in zebrafish showed vacuoles, severe necrosis of hepatocytes, and then the apoptosis of hepatocytes could be observed by TUNEL staining. Eventually, we found that the genes expression of p53, Bax and β-catenin changed significantly in the administration group of Paris saponin I. In general, our study proved Paris saponin Ⅰ was the most toxic of the three saponins, and the most definite toxic target sites were liver and cardiovascular. And it was further inferred that the hepatotoxicity of Paris saponin Ⅰ may be related to the regulation of p53 pathway and Wnt pathway. These results above showed the toxicity of the three saponins in zebrafish, suggesting their safety should be paid more attention in the future.
Collapse
Affiliation(s)
- Boran Ni
- Department of Endocrinology, Guang' Anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Wenping Wang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Manting Liu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuchen Xu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jinxi Zhao
- Section II of Endocrinology & Nephropathy, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
20
|
Zhu M, Sun Y, Bai H, Wang Y, Yang B, Wang Q, Kuang H. Effects of saponins from Chinese herbal medicines on signal transduction pathways in cancer: A review. Front Pharmacol 2023; 14:1159985. [PMID: 37063281 PMCID: PMC10090286 DOI: 10.3389/fphar.2023.1159985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Cancer poses a serious threat to human health, and the search for safe and effective drugs for its treatment has aroused interest and become a long-term goal. Traditional Chinese herbal medicine (TCM), an ancient science with unique anti-cancer advantages, has achieved outstanding results in long-term clinical practice. Accumulating evidence shows that saponins are key bioactive components in TCM and have great research and development applications for their significant role in the treatment of cancer. Saponins are a class of glycosides comprising nonpolar triterpenes or sterols attached to hydrophilic oligosaccharide groups that exert antitumor effects by targeting the NF-κB, PI3Ks-Akt-mTOR, MAPK, Wnt-β-catenin, JAK-STAT3, APMK, p53, and EGFR signaling pathways. Presently, few advances have been made in physiological and pathological studies on the effect of saponins on signal transduction pathways involved in cancer treatment. This paper reviews the phytochemistry and extraction methods of saponins of TCM and their effects on signal transduction pathways in cancer. It aims to provide theoretical support for in-depth studies on the anticancer effects of saponins.
Collapse
Affiliation(s)
- Mingtao Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Haodong Bai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yimeng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Qiuhong Wang, ; Haixue Kuang,
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
- *Correspondence: Qiuhong Wang, ; Haixue Kuang,
| |
Collapse
|
21
|
Kshetrimayum V, Heisnam R, Keithellakpam OS, Radhakrishnanand P, Akula SJ, Mukherjee PK, Sharma N. Paris polyphylla Sm. Induces Reactive Oxygen Species and Caspase 3-Mediated Apoptosis in Colorectal Cancer Cells In Vitro and Potentiates the Therapeutic Significance of Fluorouracil and Cisplatin. PLANTS (BASEL, SWITZERLAND) 2023; 12:1446. [PMID: 37050072 PMCID: PMC10097216 DOI: 10.3390/plants12071446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/19/2023]
Abstract
Paris polyphylla Sm. (Melanthiaceae) is an essential, vulnerable herb with a wide range of traditional applications ranging from fever to cancer in various communities. The use of P. polyphylla in India is limited to traditional healers. Here, we demonstrated that P. polyphylla extract (PPE) has good phenol, flavonoid, saponin, and steroidal saponin content and anti-oxidant activity with IC50 35.12 ± 6.1 μg/mL in DPPH and 19.69 ± 6.7 μg/mL in ABTS. Furthermore, PPE induces cytotoxicity in HCT-116 with IC50 8.72 ± 0.71 μg/mL without significant cytotoxicity inthe normal human colon epithelial cell line, CCD 841 CoN. PPE inhibits the metastatic property and induces apoptosis in HCT-116, as measured by Annexin V/PI, by increasing the production of reactive oxygen species (ROS) and caspase 3 activation. PPE acts synergistically with 5FU and cisplatin in HCT-116 and potentiates their therapeutic significance. Steroidal saponins with anticancer activities were detected in PPE by HR-LCMS. The present study demonstrated that PPE induces apoptosis by increasing ROS and activating caspase 3, which was attributed to steroidal saponins. PPE can be used as a potential natural remedy for colon cancer.
Collapse
Affiliation(s)
- Vimi Kshetrimayum
- Microbial Resources Division, Institute of Bioresources and Sustainable Development Takyelpat, Imphal 795001, India
- School of Biotechnology Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneshwar 751024, India
| | - Rameshwari Heisnam
- Microbial Resources Division, Institute of Bioresources and Sustainable Development Takyelpat, Imphal 795001, India
- School of Biotechnology Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneshwar 751024, India
| | - Ojit Singh Keithellakpam
- Microbial Resources Division, Institute of Bioresources and Sustainable Development Takyelpat, Imphal 795001, India
| | - Pullapanthula Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India
| | - Sai Jyothi Akula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India
| | - Pulok K. Mukherjee
- Microbial Resources Division, Institute of Bioresources and Sustainable Development Takyelpat, Imphal 795001, India
| | - Nanaocha Sharma
- Microbial Resources Division, Institute of Bioresources and Sustainable Development Takyelpat, Imphal 795001, India
| |
Collapse
|
22
|
Sun K, Chen L, Li Y, Huang B, Yan Q, Wu C, Lai Q, Fang Y, Cai J, Liu Y, Chen J, Wang X, Zhu Y, Dong S, Tan J, Li A, Liu S, Zhang Y. METTL14-dependent maturation of pri-miR-17 regulates mitochondrial homeostasis and induces chemoresistance in colorectal cancer. Cell Death Dis 2023; 14:148. [PMID: 36810285 PMCID: PMC9944299 DOI: 10.1038/s41419-023-05670-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
miR-17-5p has been found to be involved in the proliferation and metastasis of colorectal cancer (CRC), and N6-methyladenosine (m6A) modification is the most common RNA modification in eukaryotes. However, whether miR-17-5p contributes to chemotherapy sensitivity in CRC via m6A modification is unclear. In this study, we found that overexpression of miR-17-5p led to less apoptosis and lower drug sensitivity in vitro and in vivo under the 5-fluorouracil (5-FU) treatment, which indicated miR-17-5p led to 5-FU chemotherapy resistance. Bioinformatic analysis suggested that miR-17-5p-mediated chemoresistance was associated with mitochondrial homeostasis. miR-17-5p directly bound to the 3' untranslated region of Mitofusin 2 (MFN2), leading to decreased mitochondrial fusion and enhanced mitochondrial fission and mitophagy. Meanwhile, methyltransferase-like protein 14 (METTL14) was downregulated in CRC, resulting in lower m6A level. Moreover, the low level of METTL14 promoted the expression of pri-miR-17 and miR-17-5p. Further experiments suggested that m6A mRNA methylation initiated by METTL14 inhibits pri-miR-17 mRNA decay via reducing the recognition of YTHDC2 to the "GGACC" binding site. The METTL14/miR-17-5p/MFN2 signaling axis may play a critical role in 5-FU chemoresistance in CRC.
Collapse
Affiliation(s)
- Kangyue Sun
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Chen
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiwen Li
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bing Huang
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qun Yan
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changjie Wu
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiuhua Lai
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxin Fang
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianqun Cai
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongfeng Liu
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junsheng Chen
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinke Wang
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxuan Zhu
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuyu Dong
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jieyu Tan
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China. .,Department of Gastroenterology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China.
| | - Yue Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
23
|
Liu AR, Lv Z, Yan ZW, Wu XY, Yan LR, Sun LP, Yuan Y, Xu Q. Association of mitochondrial homeostasis and dynamic balance with malignant biological behaviors of gastrointestinal cancer. J Transl Med 2023; 21:27. [PMID: 36647167 PMCID: PMC9843870 DOI: 10.1186/s12967-023-03878-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/07/2023] [Indexed: 01/18/2023] Open
Abstract
Mitochondria determine the physiological status of most eukaryotes. Mitochondrial dynamics plays an important role in maintaining mitochondrial homeostasis, and the disorder in mitochondrial dynamics could affect cellular energy metabolism leading to tumorigenesis. In recent years, disrupted mitochondrial dynamics has been found to influence the biological behaviors of gastrointestinal cancer with the potential to be a novel target for its individualized therapy. This review systematically introduced the role of mitochondrial dynamics in maintaining mitochondrial homeostasis, and further elaborated the effects of disrupted mitochondrial dynamics on the cellular biological behaviors of gastrointestinal cancer as well as its association with cancer progression. We aim to provide clues for elucidating the etiology and pathogenesis of gastrointestinal cancer from the perspective of mitochondrial homeostasis and disorder.
Collapse
Affiliation(s)
- Ao-ran Liu
- grid.412636.40000 0004 1757 9485Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People’s Republic of China ,grid.412636.40000 0004 1757 9485Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China ,grid.412636.40000 0004 1757 9485Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Zhi Lv
- grid.412636.40000 0004 1757 9485Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People’s Republic of China ,grid.412636.40000 0004 1757 9485Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China ,grid.412636.40000 0004 1757 9485Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Zi-wei Yan
- grid.412636.40000 0004 1757 9485Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People’s Republic of China ,grid.412636.40000 0004 1757 9485Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China ,grid.412636.40000 0004 1757 9485Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Xiao-yang Wu
- grid.412636.40000 0004 1757 9485Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People’s Republic of China ,grid.412636.40000 0004 1757 9485Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China ,grid.412636.40000 0004 1757 9485Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Li-rong Yan
- grid.412636.40000 0004 1757 9485Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People’s Republic of China ,grid.412636.40000 0004 1757 9485Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China ,grid.412636.40000 0004 1757 9485Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Li-ping Sun
- grid.412636.40000 0004 1757 9485Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People’s Republic of China ,grid.412636.40000 0004 1757 9485Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China ,grid.412636.40000 0004 1757 9485Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Yuan Yuan
- grid.412636.40000 0004 1757 9485Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People’s Republic of China ,grid.412636.40000 0004 1757 9485Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China ,grid.412636.40000 0004 1757 9485Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Qian Xu
- grid.412636.40000 0004 1757 9485Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People’s Republic of China ,grid.412636.40000 0004 1757 9485Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China ,grid.412636.40000 0004 1757 9485Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| |
Collapse
|
24
|
The interaction between polyphyllin I and SQLE protein induces hepatotoxicity through SREBP-2/HMGCR/SQLE/LSS pathway. J Pharm Anal 2023; 13:39-54. [PMID: 36820075 PMCID: PMC9937801 DOI: 10.1016/j.jpha.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022] Open
Abstract
Polyphyllin I (PPI) and polyphyllin II (PII) are the main active substances in the Paris polyphylla. However, liver toxicity of these compounds has impeded their clinical application and the potential hepatotoxicity mechanisms remain to be elucidated. In this work, we found that PPI and PII exposure could induce significant hepatotoxicity in human liver cell line L-02 and zebrafish in a dose-dependent manner. The results of the proteomic analysis in L-02 cells and transcriptome in zebrafish indicated that the hepatotoxicity of PPI and PII was associated with the cholesterol biosynthetic pathway disorders, which were alleviated by the cholesterol biosynthesis inhibitor lovastatin. Additionally, 3-hydroxy-3-methy-lglutaryl CoA reductase (HMGCR) and squalene epoxidase (SQLE), the two rate-limiting enzymes in the cholesterol synthesis, selected as the potential targets, were confirmed by the molecular docking, the overexpression, and knockdown of HMGCR or SQLE with siRNA. Finally, the pull-down and surface plasmon resonance technology revealed that PPI could directly bind with SQLE but not with HMGCR. Collectively, these data demonstrated that PPI-induced hepatotoxicity resulted from the direct binding with SQLE protein and impaired the sterol-regulatory element binding protein 2/HMGCR/SQLE/lanosterol synthase pathways, thus disturbing the cholesterol biosynthesis pathway. The findings of this research can contribute to a better understanding of the key role of SQLE as a potential target in drug-induced hepatotoxicity and provide a therapeutic strategy for the prevention of drug toxic effects with similar structures in the future.
Collapse
|
25
|
Li J, Jia J, Zhu W, Chen J, Zheng Q, Li D. Therapeutic effects on cancer of the active ingredients in rhizoma paridis. Front Pharmacol 2023; 14:1095786. [PMID: 36895945 PMCID: PMC9989034 DOI: 10.3389/fphar.2023.1095786] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Cancer is a major threat to human health, with high mortality and a low cure rate, continuously challenging public health worldwide. Extensive clinical application of traditional Chinese medicine (TCM) for patients with poor outcomes of radiotherapy and chemotherapy provides a new direction in anticancer therapy. Anticancer mechanisms of the active ingredients in TCM have also been extensively studied in the medical field. As a type of TCM against cancer, Rhizoma Paridis (Chinese name: Chonglou) has important antitumor effects in clinical application. The main active ingredients of Rhizoma Paridis (e.g., total saponins, polyphyllin I, polyphyllin II, polyphyllin VI, and polyphyllin VII) have shown strong antitumor activities in various cancers, such as breast cancer, lung cancer, colorectal cancer, hepatocellular carcinoma (HCC), and gastric cancer. Rhizoma Paridis also has low concentrations of certain other active ingredients with antitumor effects, such as saponins polyphyllin E, polyphyllin H, Paris polyphylla-22, gracillin, and formosanin-C. Many researchers have studied the anticancer mechanism of Rhizoma Paridis and its active ingredients. This review article describes research progress regarding the molecular mechanism and antitumor effects of the active ingredients in Rhizoma Paridis, suggesting that various active ingredients in Rhizoma Paridis may be potentially therapeutic against cancer.
Collapse
Affiliation(s)
- Jie Li
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Jinhao Jia
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Weiwei Zhu
- Clinical Trial Agency, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Jianfei Chen
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Qiusheng Zheng
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Defang Li
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
26
|
Chen P, Wu S, Dong X, Zhou M, Xu P, Chen B. Formosanin C induces autophagy-mediated apoptosis in multiple myeloma cells through the PI3K/AKT/mTOR signaling pathway. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:977-986. [PMID: 36053135 DOI: 10.1080/16078454.2022.2117126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Multiple myeloma (MM) is an incurable plasma cell malignancy associated with poor survival. Novel therapeutic drugs are urgently needed to improve MM therapy and patient outcomes. This study aimed to investigate the effect of formosanin C (FC), a Chinese medicine monomer, on MM in vitro and disclose the underlying molecular mechanism. METHODS The effect of FC on the viability, proliferation, apoptosis, and autophagy of MM cell lines (NCI-H929 and ARP1) was studied through CCK-8, colony formation, flow cytometry, GFP-LC3, and western blotting assays, respectively. A pharmacological approach and network pharmacology technology were implemented to explore the potential mechanisms of the action of FC on MM cells. RESULTS FC efficiently suppressed the viability and colony-forming capacity, but promoted the number of autophagic vacuoles with GFP-LC3 localization and the percentage of apoptotic cells in MM cells. Additionally, FC significantly increased the levels of the autophagy-related proteins LC3-Ⅱ and Beclin 1, as well as the apoptosis-related proteins Bax and cleaved caspase-3, but blocked the expression of the proapoptotic protein Bcl-2 in the cells; these effects were reversed by an inhibitor of autophagy, 3-methyladenine. What's more, we found that the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway was involved in the FC-mediated inhibition of MM. Pharmacological inhibition of this pathway dramatically relieved FC-triggered excessive expression of autophagy-related proteins and rescued MM cells from FC-induced apoptosis. CONCLUSION Our findings indicate that FC exhibits an anti-MM effect by activating cell autophagy through the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Ping Chen
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,Department of Hematology, Nanjing Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Sungui Wu
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Xiaoqing Dong
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Min Zhou
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Peipei Xu
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
27
|
Jiao Y, Xin M, Xu J, Xiang X, Li X, Jiang J, Jia X. Polyphyllin II induced apoptosis of NSCLC cells by inhibiting autophagy through the mTOR pathway. PHARMACEUTICAL BIOLOGY 2022; 60:1781-1789. [PMID: 36102594 PMCID: PMC9487979 DOI: 10.1080/13880209.2022.2120021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Polyphyllin II (PPII) is a steroidal saponin isolated from Rhizoma Paridis. It exhibits significant antitumor activity such as anti-proliferation and pro-apoptosis in lung cancer. OBJECTIVE To explore whether PPII induce autophagy and the relationship between autophagy and apoptosis in non-small cell lung cancer (NSCLC) cells. MATERIALS AND METHODS The effects of PPII (0, 1, 5, and 10 μM) were elucidated by CCK8 assay, colony formation test, TUNEL staining, MDC method, and mRFP-GFP-LC3 lentivirus transfection in A549 and H1299 cells for 24 h. DMSO-treated cells were selected as control. The protein expression of autophagy (LC3-II, p62), apoptosis (Bcl-2, Bax, caspase-3) and p-mTOR was detected by Western blotting. We explored the relationship between autophagy and apoptosis by autophagy inhibitor CQ (10 μM) and 3-MA (5 mM). RESULTS PPII (0, 1, 5, and 10 μM) inhibited the proliferation and induced apoptosis. The IC50 values of A549 and H1299 cells were 8.26 ± 0.03 and 2.86 ± 0.83 μM. We found that PPII could induce autophagy. PPII promoted the formation of autophagosome, increased the expression of LC3-II/LC3-I (p < 0.05), while decreased p62 and p-mTOR (p < 0.05). Additionally, the co-treatment with autophagy inhibitors promoted the protein expression of c-caspase-3 and rate of Bax/Bcl-2 (p < 0.05), compared with PPII-only treatment group. Therefore, our results indicated that PPII-induced autophagy may be a mechanism to promote cell survival, although it can also induce apoptosis. CONCLUSIONS PPII-induced apoptosis exerts its anticancer activity by inhibiting autophagy, which will hopefully provide a prospective compound for NSCLC treatment.
Collapse
Affiliation(s)
- Yuhan Jiao
- The Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, China
| | - Ming Xin
- The Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, China
| | - Juanjuan Xu
- The Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, China
| | - Xindong Xiang
- The Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, China
| | - Xuan Li
- The Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, China
| | - Jingjing Jiang
- The Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, China
| | - Xiuqin Jia
- The Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, China
| |
Collapse
|
28
|
Chen Y, Zhu L, Hu W, Wang Y, Wen X, Yang J. Simiao Wan modulates the gut microbiota and bile acid metabolism during improving type 2 diabetes mellitus in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154264. [PMID: 35752076 DOI: 10.1016/j.phymed.2022.154264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Gut microbiota coupled with their metabolites (bile acids, BAs) get involved in diabetic pathogenesis. Simiao Wan is a famous traditional Chinese formula consisting on Phellodendron chinense C.K.Schneid. (Rutaceae), Atractylodes lancea (Thunb.) DC. (Asteraceae), Achyranthes bidentata Blume (Amaranthaceae) and Coix lacryma-jobi var. ma-yuen (Rom.Caill.) Stapf (Poaceae), and used to treat gouty arthritis and hyperuricemia for thousands of years. However, the mechanisms underlying its beneficial efficacy on diabetes still needs to be explored. PURPOSE Our study was performed to reveal the effects of the 75% ethanol extraction of Simiao Wan (SMW) on diabetes, gut microbiota and bile acids (BAs) in diabetic mice. METHODS The effects of SMW on diabetes were evaluated in mice treated by high-fat diet (HFD)/streptozotocin (STZ). The 16S rDNA sequencing and BAs metabolomics were performed to assess the changes of BAs profiles and gut microbiota induced by SMW. Western blot and real-time quantitative PCR were conducted to evaluate the possible mechanism of SMW. RESULTS SMW significantly improved insulin resistance and hepatic lipid accumulation in HFD/STZ mice. It remarkably enriched in the bacteria Allobaculum, Clostridium, Akkermansia, Lactobacilus and Bilophila whereas decreased Coprococcus and Halomonas in diabetic mice. Furthermore, the profiles of BAs were also modulated by SMW, indicated by the reduction of conjugated BAs and 12α-OH/non-12α-OH BAs ratio in liver as well as the increase of primary BAs in feces. SMW also activated farnesoid X receptor and inhibited sterol regulatory element-binding protein-1 expression, contributing to its beneficial actions on lipid accumulation in liver. CONCLUSION Our results showed that SMW exerted its beneficial effects on insulin resistance and hepatic lipid accumulation indirectly through regulating profiles of gut microbe and BAs.
Collapse
Affiliation(s)
- Yimeng Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian road, Nanjing, China
| | - Lijuan Zhu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian road, Nanjing, China
| | - Wenxin Hu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian road, Nanjing, China
| | - Yuping Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian road, Nanjing, China
| | - Xiaodong Wen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian road, Nanjing, China.
| | - Jie Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian road, Nanjing, China.
| |
Collapse
|
29
|
Zou Y. Naturally occurring steroidal saponins as potential anticancer agents: Current developments and mechanisms of action. Curr Top Med Chem 2022; 22:1442-1456. [PMID: 35352659 DOI: 10.2174/1568026622666220330011047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
Cancer is claimed as a prevalent cause of mortality throughout the world. Conventional chemotherapy plays a pivotal role in the treatment of cancers, but the multidrug resistance has already become one of the major impediments for efficacious cancer therapy, creating a great demand for the development of novel anticancer drugs. Steroidal saponins, abundantly found in nature, possess extensive structural variability, and some naturally occurring steroidal saponins exhibited profound anticancer properties through a variety of pathways. Hence, naturally occurring steroidal saponins are powerful lead compounds/candidates in the development of novel therapeutic agents. This review article described the recent progress in naturally occurring steroidal saponins as potential anticancer agents, and the mechanisms of action were also discussed, covering articles published between 2017 and 2021.
Collapse
Affiliation(s)
- Yulin Zou
- The Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, 443002, Hubei, China
| |
Collapse
|
30
|
Chen HC, Tang HH, Hsu WH, Wu SY, Cheng WH, Wang BY, Su CL. Vulnerability of Triple-Negative Breast Cancer to Saponin Formosanin C-Induced Ferroptosis. Antioxidants (Basel) 2022; 11:antiox11020298. [PMID: 35204181 PMCID: PMC8868405 DOI: 10.3390/antiox11020298] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 01/25/2023] Open
Abstract
Targeting ferritin via autophagy (ferritinophagy) to induce ferroptosis, an iron- and reactive oxygen species (ROS)-dependent cell death, provides novel strategies for cancer therapy. Using a ferroptosis-specific inhibitor and iron chelator, the vulnerability of triple-negative breast cancer (TNBC) MDA-MB-231 cells to ferroptosis was identified and compared to that of luminal A MCF-7 cells. Saponin formosanin C (FC) was revealed as a potent ferroptosis inducer characterized by superior induction in cytosolic and lipid ROS formation as well as GPX4 depletion in MDA-MB-231 cells. The FC-induced ferroptosis was paralleled by downregulation of ferroportin and xCT expressions. Immunoprecipitation and electron microscopy demonstrated the involvement of ferritinophagy in FC-treated MDA-MB-231 cells. The association of FC with ferroptosis was strengthened by the results that observed an enriched pathway with differentially expressed genes from FC-treated cells. FC sensitized cisplatin-induced ferroptosis in MDA-MB-231 cells. Through integrated analysis of differentially expressed genes and pathways using the METABRIC patients’ database, we confirmed that autophagy and ferroptosis were discrepant between TNBC and luminal A and that TNBC was hypersensitive to ferroptosis. Our data suggest a therapeutic strategy by ferroptosis against TNBC, an aggressive subtype with a poor prognosis.
Collapse
Affiliation(s)
- Hsin-Chih Chen
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei 106, Taiwan;
| | - Han-Hsuan Tang
- Graduate Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei 116, Taiwan; (H.-H.T.); (W.-H.H.); (S.-Y.W.); (B.-Y.W.)
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 106, Taiwan
| | - Wei-Hsiang Hsu
- Graduate Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei 116, Taiwan; (H.-H.T.); (W.-H.H.); (S.-Y.W.); (B.-Y.W.)
| | - Shan-Ying Wu
- Graduate Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei 116, Taiwan; (H.-H.T.); (W.-H.H.); (S.-Y.W.); (B.-Y.W.)
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Wen-Hsing Cheng
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Starkville, MS 39762, USA;
| | - Bao-Yuan Wang
- Graduate Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei 116, Taiwan; (H.-H.T.); (W.-H.H.); (S.-Y.W.); (B.-Y.W.)
| | - Chun-Li Su
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei 106, Taiwan;
- Graduate Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei 116, Taiwan; (H.-H.T.); (W.-H.H.); (S.-Y.W.); (B.-Y.W.)
- Correspondence: ; Tel.: +886-2-7749-1436; Fax: +886-2-2931-2904
| |
Collapse
|
31
|
Liu J, Liu Y, Li H, Wei C, Mao A, Liu W, Pan G. Polyphyllin D induces apoptosis and protective autophagy in breast cancer cells through JNK1-Bcl-2 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114591. [PMID: 34481873 DOI: 10.1016/j.jep.2021.114591] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/17/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polyphyllin D (PD), an active component from rhizome of Paris polyphylla Sm, root and rhizome, shows a strong anti-cancer activity in several cancers. However, whether autophagy is involved in PD-induced cell death in breast cancer cells and its molecular mechanism has not yet been elucidated. AIM OF THE STUDY To explore the anti-tumor effects of PD in breast cancer and the underlying mechanisms. MATERIALS AND METHODS PD was isolated from P. polyphylla Sm and confirmed by HPLC and NMR. The role of PD in cell viability, apoptosis, autophagy in breast cancer cells were determined. RESULTS PD shows significant anti-tumor activity by inhibit cell proliferation and induce caspase-dependent apoptosis in breast cancer cells. Moreover, PD treatment could induce autophagy by activation of JNK1/Bcl-2 pathway. Importantly, blocking of autophagy by using autophagy inhibitor 3-methyladenine (3-MA) dramatically increase PD-induced apoptosis as evidence by the increased percentage of apoptotic cell death. The anti-tumor effects of PD also investigated in vivo. The results showed that the combinatory treatment of PD with autophagy inhibitor significantly promote PD-induced apoptosis. CONCLUSION PD could induce caspase-dependent apoptosis and cyto-protectvie autophagy by activation of JNK1/Bcl-2 pathway in breast cancer cells. Combination with an autophagy inhibitor significantly enhance cytotoxic effect of PD and this combination may be a promising candidate for breast cancer therapy.
Collapse
Affiliation(s)
- Jiazhe Liu
- Department of General Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongzhi Liu
- Department of General Surgery, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Zhejiang, China
| | - Hongchang Li
- Department of General Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuangchao Wei
- Department of General Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Anwei Mao
- Department of General Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiyan Liu
- Department of General Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Gaofeng Pan
- Department of General Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
32
|
Durrant DE, Smith EA, Goncharova EI, Sharma N, Alexander PA, Stephen AG, Henrich CJ, Morrison DK. Development of a High-throughput NanoBRET Screening Platform to Identify Modulators of the RAS/RAF Interaction. Mol Cancer Ther 2021; 20:1743-1754. [PMID: 34158349 PMCID: PMC8419108 DOI: 10.1158/1535-7163.mct-21-0175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/24/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023]
Abstract
Activating mutations in RAS are found in approximately 30% of human cancers, resulting in the delivery of a persistent signal to critical downstream effectors that drive tumorigenesis. RAS-driven malignancies respond poorly to conventional cancer treatments and inhibitors that target RAS directly are limited; therefore, the identification of new strategies and/or drugs to disrupt RAS signaling in tumor cells remains a pressing therapeutic need. Taking advantage of the live-cell bioluminescence resonance energy transfer (BRET) methodology, we describe the development of a NanoBRET screening platform to identify compounds that modulate binding between activated KRAS and the CRAF kinase, an essential effector of RAS that initiates ERK cascade signaling. Using this strategy, libraries containing synthetic compounds, targeted inhibitors, purified natural products, and natural product extracts were evaluated. These efforts resulted in the identification of compounds that inhibit RAS/RAF binding and in turn suppress RAS-driven ERK activation, but also compounds that have the deleterious effect of enhancing the interaction to upregulate pathway signaling. Among the inhibitor hits identified, the majority were compounds derived from natural products, including ones reported to alter KRAS nanoclustering (ophiobolin A), to impact RAF function (HSP90 inhibitors and ROS inducers) as well as some with unknown targets and activities. These findings demonstrate the potential for this screening platform in natural product drug discovery and in the development of new therapeutic agents to target dysregulated RAS signaling in human disease states such as cancer.
Collapse
Affiliation(s)
- David E Durrant
- Laboratory of Cell and Developmental Signaling, NCI, Frederick, Maryland
| | - Emily A Smith
- Molecular Targets Program, Center of Cancer Research, NCI, Frederick, Maryland
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Ekaterina I Goncharova
- Molecular Targets Program, Center of Cancer Research, NCI, Frederick, Maryland
- Biomedical Informatics and Data Science Directorate, NCI, Frederick, Maryland
| | - Nirmala Sharma
- Molecular Targets Program, Center of Cancer Research, NCI, Frederick, Maryland
| | - Patrick A Alexander
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Curtis J Henrich
- Molecular Targets Program, Center of Cancer Research, NCI, Frederick, Maryland.
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, NCI, Frederick, Maryland.
| |
Collapse
|
33
|
Combined Application of Macroporous Resins and Preparative High-performance Liquid Chromatography for the Separation of Steroidal Saponins from Stems and Leaves of Paris polyphylla. Chromatographia 2021. [DOI: 10.1007/s10337-021-04073-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Elekofehinti OO, Iwaloye O, Olawale F, Ariyo EO. Saponins in Cancer Treatment: Current Progress and Future Prospects. PATHOPHYSIOLOGY 2021; 28:250-272. [PMID: 35366261 PMCID: PMC8830467 DOI: 10.3390/pathophysiology28020017] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Saponins are steroidal or triterpenoid glycoside that is distinguished by the soap-forming nature. Different saponins have been characterized and purified and are gaining attention in cancer chemotherapy. Saponins possess high structural diversity, which is linked to the anticancer activities. Several studies have reported the role of saponins in cancer and the mechanism of actions, including cell-cycle arrest, antioxidant activity, cellular invasion inhibition, induction of apoptosis and autophagy. Despite the extensive research and significant anticancer effects of saponins, there are currently no known FDA-approved saponin-based anticancer drugs. This can be attributed to a number of limitations, including toxicities and drug-likeness properties. Recent studies have explored options such as combination therapy and drug delivery systems to ensure increased efficacy and decreased toxicity in saponin. This review discusses the current knowledge on different saponins, their anticancer activity and mechanisms of action, as well as promising research within the last two decades and recommendations for future studies.
Collapse
Affiliation(s)
- Olusola Olalekan Elekofehinti
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, PMB 704, Nigeria; (O.I.); (E.O.A.)
| | - Opeyemi Iwaloye
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, PMB 704, Nigeria; (O.I.); (E.O.A.)
| | - Femi Olawale
- Nanogene and Drug Delivery Group, Department of Biochemistry, University of Kwa-Zulu Natal, Durban 4000, South Africa;
- Department of Biochemistry, College of Medicine, University of Lagos, Lagos 101017, Nigeria
| | - Esther Opeyemi Ariyo
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, PMB 704, Nigeria; (O.I.); (E.O.A.)
| |
Collapse
|
35
|
Jin TT, Liu FJ, Jiang Y, Wang L, Lu X, Li P, Li HJ. Molecular-networking-guided discovery of species-specific markers for discriminating five medicinal Paris herbs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153542. [PMID: 33799225 DOI: 10.1016/j.phymed.2021.153542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/24/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Paridis Rhizoma (PR) is a famous traditional herbal medicine. Apart from two officially recorded species, viz. Paris polyphylla Smith var. yunnanensis (Franch.) Hand. - Mazz. (PPY) and P. polyphylla Smith var. chinensis (Franch.) Hara (PPC), there are still many other species used as folk medicine. It is necessary to understand the metabolic differences among Paris species. PURPOSE To establish a strategy that can discover species-specific steroidal saponin markers to distinguish closely-related Paris herbs for quality and safety control. METHODS A new strategy of molecular-networking-guided discovery of species-specific markers was proposed. Firstly, the ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) was applied to obtain the MS and MS/MS data of all samples. Then, molecular networking (MN) was created using MS/MS data to prescreen the steroidal saponins for subsequent analysis. Next, the principal component analysis (PCA) and orthogonal partial least square discriminant analysis (OPLS-DA) models were established to discover potential markers. Finally, the verification, identification and distribution of chemical markers were performed. RESULTS A total of 126 steroidal saponins were screened out from five species using MN. Five species were classified successfully by OPLS-DA model, and 18 species-specific markers were discovered combining the variable importance in the projection (VIP) value, P value (one-way ANOVA) and their relative abundance. These markers could predict the species of Paris herbs correctly. CONCLUSION These results revealed that this new strategy could be an efficient way for chemical discrimination of medicinal herbs with close genetic relationship.
Collapse
Affiliation(s)
- Tong-Tong Jin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Feng-Jie Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Yan Jiang
- College of chemical engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Long Wang
- College of chemical engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xu Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| |
Collapse
|
36
|
Gupta DD, Mishra S, Verma SS, Shekher A, Rai V, Awasthee N, Das TJ, Paul D, Das SK, Tag H, Chandra Gupta S, Hui PK. Evaluation of antioxidant, anti-inflammatory and anticancer activities of diosgenin enriched Paris polyphylla rhizome extract of Indian Himalayan landraces. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113842. [PMID: 33460752 DOI: 10.1016/j.jep.2021.113842] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/27/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional medicinal plants have gained attention as a potential therapeutic agent to combat cancer and inflammation. Diosgenin rich fresh extracts of Paris polyphylla rhizome from Indian Himalaya is traditionally used as wound healing, anti-bleeding, anti-inflammatory and anti-cancer agent by the folk healers. AIM OF THE STUDY Present study was aimed to prepare two types of extracts from Paris polyphylla rhizome of Indian Himalayan landraces - 1. ethanolic extract of Paris polyphylla rhizome (EEPPR) and 2. Diosgenin enriched Paris polyphylla rhizome extract (DPPE), quantification of diosgenin content, and to evaluate their in vitro anti-oxidant, in vivo anti-inflammatory and in vitro cytotoxicity and anti-cancer activities of the DPPE. MATERIALS AND METHODS Diosgenin content of EEPPR was quantified through GC-MS while diosgenin content of DPPE was quantified through HPTLC, and the diosgenin yield from EEPPR and DPPE were compared. In vitro antioxidant activities of DPPE were performed using DPPH, NOD, RP and SOD assay while in vivo anti-inflammatory activity of DPPE were evaluated in dextran induced hind paw edema in rats. In vitro cytotoxicity and anti-cancer activities of DPPE were evaluated in human breast cancer cell lines (MCF-7, MDA-MB-231), cervical cancer cell lines (HeLa) and Hep-2 cell lines. RESULTS EEPPR obtained through cold extraction method using 70% ethanol showed maximum diosgenin content of 17.90% quantified through GC-MS while similar compounds pennogenin (3.29%), 7β-Dehydrodiosgenin (1.90%), 7-Ketodiosgenin acetate (1.14%), and 7 β-hydroxydiosgenin (0.55%) were detected in low concentration, and thus confirmed diosgenin as major and lead phytochemical. However, DPPE obtained through both cold and repeated hot extraction with the same solvent (70% ethanol) showed diosgenin content of 60.29% which is significantly higher (p < 0.001) than the diosgenin content in EEPPR. DPPE demonstrated significant in vitro antioxidant activities by dose-dependently quenched (p < 0.001) SOD free radicals by 76.66%, followed by DPPH (71.43%), NOD (67.35%), and RP (63.74%) at a max concentration of 2 μg/μl of ascorbic acid and test drugs with remarkable IC50 values (p < 0.01). Further, DPPE also showed potent anti-inflammatory activities by dose-dependently suppressed dextran induced paw edema in rats (p < 0.01) from 2 h to 4 h. DPPE suppressed the proliferation of MCF-7, MDA-MB-231, Hep-2 and HeLa cell lines. Maximum activity was observed in MCF-7 cells. The DPPE also induced apoptosis in MCF-7 cell lines as measured by AO/PI and DAPI staining, as well as DNA laddering, cell cycle analysis and phosphatidylserine externalization assay. The growth-inhibitory effect of DPPE on MCF-7 breast cancer cells was further confirmed from the colony-formation assay. DPPE upregulated expression of Bax and downregulated Bcl-2 and survivin mRNA transcripts. CONCLUSION DPPE obtained through both cold and repeated hot extraction using ethanol showed significantly higher content of diosgenin than the diosgenin content detected in EEPPR. However, diosgenin yield of both the extracts (EEPPR & DPPE) clearly confirmed diosgenin as major and lead phytochemical of Paris polyphylla rhizome of Indian Himalayan landraces. Further, DPPE also demonstrated potent in vitro anti-oxidative and in vivo anti-inflammatory activities and showed in vitro cytotoxicity and significant anti-cancer (apoptosis) effects in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Debmalya Das Gupta
- Department of Biotechnology, National Institute of Technology (NIT)-Arunachal Pradesh, Yupia, 791112, Papum Pare, Arunachal Pradesh, India.
| | - Shruti Mishra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Sumit Singh Verma
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Anusmita Shekher
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Vipin Rai
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Nikee Awasthee
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Tridip J Das
- Department of Biotechnology, National Institute of Technology (NIT)-Arunachal Pradesh, Yupia, 791112, Papum Pare, Arunachal Pradesh, India.
| | - Dipayan Paul
- Department of Biotechnology, National Institute of Technology (NIT)-Arunachal Pradesh, Yupia, 791112, Papum Pare, Arunachal Pradesh, India.
| | - Sanjib K Das
- Department of Biotechnology, National Institute of Technology (NIT)-Arunachal Pradesh, Yupia, 791112, Papum Pare, Arunachal Pradesh, India.
| | - Hui Tag
- Pharmacognosy Research Laboratory, Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh, 791112, Arunachal Pradesh, India.
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Pallabi K Hui
- Department of Biotechnology, National Institute of Technology (NIT)-Arunachal Pradesh, Yupia, 791112, Papum Pare, Arunachal Pradesh, India.
| |
Collapse
|
37
|
Guan L, Ju B, Zhao M, Zhu H, Chen L, Wang R, Gao H, Wang Z. Influence of drying process on furostanoside and spirostanoside profiles of Paridis Rhizoma by combination of HPLC, UPLC and UPLC-QTOF-MS/MS analyses. J Pharm Biomed Anal 2021; 197:113932. [PMID: 33618136 DOI: 10.1016/j.jpba.2021.113932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022]
Abstract
Drying method is one of the important factors affecting quality of traditional Chinese medicine. To study the effect of shaded drying and hot air drying on steroidal saponins of Paridis Rhizoma (PR), high performance liquid chromatography (HPLC) analysis was used to investigate the difference of Paris polyphylla var. chinensis (PPC) samples treated by different methods, and then, a rapid and reliable ultra-high performance liquid chromatography (UPLC) method was established to quantitatively analyze the content change of ten steroidal saponins. Hot air drying at 50 ℃ could obviously improve the content of polyphyllin Ⅶ, 17-hydroxygracillin and polyphyllin H, which were major steroidal saponins in PPC. Based on that, the main component changes induced by different drying methods were further analyzed using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS), and the structural identification of varied components revealed that hot air drying could promote the transformation of proto-pennogenyl glycosides to pennogenyl glycosides. This phenomenon was also found in other plants of genus Paris rich in diosgenyl glycosides. The present study provided a useful method for improving quality of PR and valuable information for TCM containing steroidal saponins.
Collapse
Affiliation(s)
- Liangjun Guan
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Boya Ju
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Meng Zhao
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450008, China
| | - Houda Zhu
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450008, China
| | - Liangmian Chen
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rui Wang
- Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Huimin Gao
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zhimin Wang
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
38
|
Revisiting Mitochondria Scored Cancer Progression and Metastasis. Cancers (Basel) 2021; 13:cancers13030432. [PMID: 33498743 PMCID: PMC7865825 DOI: 10.3390/cancers13030432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The indispensible role of mitochondria has been described over a century ago by Otto Warburg which has been serving the fields of cell biology and cancer biology immensely. Mitochondria are the principal site for vital mechanisms which vastly dictate the physiology. The intricacy of mitochondria’s role cancer have been noticed and well addressed in recent times. The underlying mechanisms are surfacing to unveil the nature of mitochondria and its participation in tumor cell motility and metastasis. This addressing may unravel novel therapeutic options. This review summarizes and reweighs the key aspects like underlying and emerging mechanisms which might be useful in designing novel chemotherapy. Abstract The Warburg effect has immensely succored the study of cancer biology, especially in highlighting the role of mitochondria in cancer stemness and their benefaction to the malignancy of oxidative and glycolytic cancer cells. Mitochondrial genetics have represented a focal point in cancer therapeutics due to the involvement of mitochondria in programmed cell death. The mitochondrion has been well established as a switch in cell death decisions. The mitochondrion’s instrumental role in central bioenergetics, calcium homeostasis, and translational regulation has earned it its fame in metastatic dissemination in cancer cells. Here, we revisit and review mechanisms through which mitochondria influence oncogenesis and metastasis by underscoring the oncogenic mitochondrion that is capable of transferring malignant capacities to recipient cells.
Collapse
|
39
|
PP9, a steroidal saponin, induces G2/M arrest and apoptosis in human colorectal cancer cells by inhibiting the PI3K/Akt/GSK3β pathway. Chem Biol Interact 2020; 331:109246. [PMID: 32877639 DOI: 10.1016/j.cbi.2020.109246] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) represents one of the commonest malignancies around the world. PP9, a natural steroidal saponin, was firstly isolated from the rhizomes of Paris polyphylla var. latifolia. However, the therapeutic effects of PP9 on CRC and the underlying molecular mechanism remain undefined. Here, we demonstrated that treatment with PP9 time- and dose-dependently inhibited HT-29 and HCT116 cells without significantly inhibiting normal NCM460 cells. Furthermore, our results indicated that PP9 effectively induced G2/M phase arrest by upregulating p21 and suppressing cdc25C, Cyclin B1 and cdc2. Meanwhile, PP9 upregulated cleaved Caspase 3, cleaved Caspase 9 and cleaved PARP and Bax, while downregulating Bcl-2 to stimulate cell apoptosis. Mechanistically, PP9-suppressed PI3K/Akt/GSK3β signaling, while the PI3K inhibitor LY294002 augmented PP9-mediated apoptosis, G2/M arrest and effects on PI3K/Akt/GSK3β related proteins. Finally, we showed that PP9 (10 mg/kg) significantly reduced tumor growth in nude mouse CRC xenografts, more potently than 5-Fu (20 mg/kg). Jointly, these data firstly demonstrated that PP9 promotes G2/M arrest and apoptotic death in CRC cells through PI3K/Akt/GSK3β signaling suppression, suggesting that PP9 could be considered a new and promising candidate for CRC therapy.
Collapse
|
40
|
Han P, Ren X, Qu X, Meng Y. The Regulatory Mechanisms of Dynamin-Related Protein 1 in Tumor Development and Therapy. Cancer Biother Radiopharm 2020; 36:10-17. [PMID: 32762544 DOI: 10.1089/cbr.2020.3791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background: Various types of tumors are likely to acquire drug resistance over time. Hence, the development of novel therapies to overcome drug resistance is critical. Studies have demonstrated that drug resistance is closely associated with the dynamic regulation of mitochondria in tumor cells. The dynamin-related protein 1 (Drp1) is involved in the regulation of mitochondrial fission and plays an important role in maintaining mitochondrial morphology, function, and distribution. It is a key protein in mitochondrial quality control. Drp1 is a GTPase localized to the cytoplasm and is a potential target in cancer therapy. A variety of drugs targeting Drp1 have shown great promise in reducing the viability and proliferation of cancer cells. The dynamic regulation of Drp1-mediated mitochondria is closely associated with tumor development, and treatment. Aim: In this article, the authors reviewed the occurrence and progression of mitochondrial fission regulated by Drp1, and its influence on cell cycle, autophagy, apoptosis, migration, invasion, the molecular mechanism of tumor stemness, and metabolic reprogramming. Targeted inhibition of Drp1 and mitochondrial fission could reduce or prevent tumor occurrence and progression in a variety of cancers. Drp1 inhibitors could reduce tumor stemness and enhance tumor sensitivity to chemotherapeutic drugs. Conclusion: Research into identifying compounds that could specifically target Drp1 will be valuable for overcoming drug resistance in tumors.
Collapse
Affiliation(s)
- Peiyu Han
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xinlu Ren
- Department of Clinical Medicine, Queen Mary College of Nanchang University, Nanchang, China
| | - Xiuxia Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yiteng Meng
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
41
|
Zhao B, Hui X, Jiao L, Bi L, Wang L, Huang P, Yang W, Yin Y, Jin S, Wang C, Zhang X, Xu L. A TCM Formula YYWY Inhibits Tumor Growth in Non-Small Cell Lung Cancer and Enhances Immune-Response Through Facilitating the Maturation of Dendritic Cells. Front Pharmacol 2020; 11:798. [PMID: 32595493 PMCID: PMC7301756 DOI: 10.3389/fphar.2020.00798] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/15/2020] [Indexed: 01/01/2023] Open
Abstract
In worldwide, lung cancer has a major socio-economic impact and is one of the most common causes of cancer-related deaths. Current therapies for lung cancer are still quite unsatisfactory, urging for alternative new treatments. Traditional Chinese Medicine (TCM) is currently increasingly popular and exhibits a complicated intervention in cancers therapy. In this study, we evaluated the anti-tumor effect and explored the mechanisms of a TCM formula Yangyinwenyang (YYWY) in non-small cell lung cancer (NSCLC) models. YYWY induced the apoptosis of lung cancer cells in vitro. In Lewis NSCLC-bearing mice model, YYWY significantly inhibited the tumor growth. Further, RNA-seq analysis and immunostaining of the tumor tissue implied the critical role of YYWY in the regulation of immune response, especially the dendritic cells (DCs) in the effect of YYWY. Therefore, we focused on DCs, which were the initiator and modulator of the immune response. YYWY facilitated the maturation of DCs through MAPK and NF-κB signaling pathways and promoted the release of the cytokines IFN-γ, interleukin (IL)-1β, IL-2, IL-12, and tumor necrosis factor (TNF)-α by DCs. Moreover, the YYWY-matured DCs enhanced the proliferation of T cells and promoted the differentiation of T cells into T helper Th1 and cytotoxic T cell (CTL). In addition, YYWY increased the ratio of Th1/Th2 (IFN-γ/IL-4 radio). Collectively, our findings clearly suggested that YYWY exerted an anti-tumor effect on NSCLC, at least partially through facilitating the mature DCs to activate the proliferation and differentiation of T cells.
Collapse
Affiliation(s)
- Bei Zhao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodan Hui
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Lijing Jiao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Clinical Immunology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Wang
- A Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Piao Huang
- A Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxiao Yang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yinan Yin
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shenyi Jin
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengyan Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Zhang
- A Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
42
|
Polyphyllosides A–F, six new spirostanol saponins from the stems and leaves of Paris polyphylla var. chinensis. Bioorg Chem 2020; 99:103788. [DOI: 10.1016/j.bioorg.2020.103788] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/24/2020] [Accepted: 03/21/2020] [Indexed: 12/11/2022]
|
43
|
Ma Y, Wang L, Jia R. The role of mitochondrial dynamics in human cancers. Am J Cancer Res 2020; 10:1278-1293. [PMID: 32509379 PMCID: PMC7269774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023] Open
Abstract
Mitochondria are crucial cellular organelles. Under extracellular stimulations, mitochondria undergo constant fusion and fission dynamics to meet different cellular demands. Mitochondrial dynamics is regulated by specialized proteins and lipids. Dysregulated mitochondrial dynamics has been linked to the initiation and progression of diverse human cancers, affecting aspects such as cancer metastasis, drug resistance and cancer stem cell survival, suggesting that targeting mitochondrial dynamics is a potential therapeutic strategy. In the present review, we summarize the molecular mechanisms underlying fusion and fission dynamics and discuss the effects of mitochondrial dynamics on the development of human cancers.
Collapse
Affiliation(s)
- Yawen Ma
- Department of Ophthalmology, Ninth People’s Hospital of Shanghai, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai, China
| | - Lihua Wang
- Department of Ophthalmology, Ninth People’s Hospital of Shanghai, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People’s Hospital of Shanghai, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai, China
| |
Collapse
|
44
|
Fu Z, Jiao Y, Wang J, Zhang Y, Shen M, Reiter RJ, Xi Q, Chen Y. Cardioprotective Role of Melatonin in Acute Myocardial Infarction. Front Physiol 2020; 11:366. [PMID: 32411013 PMCID: PMC7201093 DOI: 10.3389/fphys.2020.00366] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Melatonin is a pleiotropic, indole secreted, and synthesized by the human pineal gland. Melatonin has biological effects including anti-apoptosis, protecting mitochondria, anti-oxidation, anti-inflammation, and stimulating target cells to secrete cytokines. Its protective effect on cardiomyocytes in acute myocardial infarction (AMI) has caused widespread interest in the actions of this molecule. The effects of melatonin against oxidative stress, promoting autophagic repair of cells, regulating immune and inflammatory responses, enhancing mitochondrial function, and relieving endoplasmic reticulum stress, play crucial roles in protecting cardiomyocytes from infarction. Mitochondrial apoptosis and dysfunction are common occurrence in cardiomyocyte injury after myocardial infarction. This review focuses on the targets of melatonin in protecting cardiomyocytes in AMI, the main molecular signaling pathways that melatonin influences in its endogenous protective role in myocardial infarction, and the developmental prospect of melatonin in myocardial infarction treatment.
Collapse
Affiliation(s)
- Zhenhong Fu
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yang Jiao
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jihang Wang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ying Zhang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mingzhi Shen
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, United States
- San Antonio Cellular Therapeutics Institute, Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, United States
| | - Qing Xi
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yundai Chen
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
45
|
Luo H, Xu Y, Sun D, Cheng Y, Sun Z, Gao J, Zhang Y, Wang X. Assessment of the inhibition risk of paris saponins, bioactive compounds from Paris polyphylla, on CYP and UGT enzymes via cocktail inhibition assays. Regul Toxicol Pharmacol 2020; 113:104637. [PMID: 32145316 DOI: 10.1016/j.yrtph.2020.104637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 11/17/2022]
Abstract
Paris saponins, also known as polyphyllins, are natural compounds extracted from Paris polyphylla, which have many pharmacological activities, such as anti-inflammation and anti-cancer. In particular, paris saponin I, II, VII and polyphyllin VI are the components of the quality standard for Paris polyphylla. However, the inhibition risk of polyphyllins on cytochrome P450 (CYP) and UDP-glucuronosyltransferases (UGT) remains unclear. Therefore, this report investigated the potential inhibitory effects of paris saponin I, II, VII and polyphyllin VI on the activities of CYP (CYP1A2, CYP2B1, CYP2C11, CYP2D1, CYP2E1 and CYP3A2) and UGT (UGT1A1, UGT1A3, UGT1A6, PROG and AZTG) through cocktail inhibition assays in vitro. In the study of CYP, polyphyllin VI exhibited weak inhibition on CYP2D1 activity in rat liver microsomes with IC50 value at 45.2 μM, while paris saponin VII weakly inhibited CYP2C11 and CYP2E1 activities with IC50 value at 42.0 and 67.7 μM, respectively. In the study of UGT, none of the four steroidal saponins showed significant inhibition risk. In conclusion, paris saponin I, II, VII and polyphyllin VI have very low potential to cause the possible toxicity and drug interactions involving CYP and UGT enzymes, indicating that they are safe enough to take with drugs.
Collapse
Affiliation(s)
- Han Luo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dongyi Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhenliang Sun
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, China.
| | - Jing Gao
- College of Life Sciences, Northwest University, Xi'an, China
| | - Yuanjin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
46
|
Pang D, Yang C, Li C, Zou Y, Feng B, Li L, Liu W, Luo Q, Chen Z, Huang C. Polyphyllin II inhibits liver cancer cell proliferation, migration and invasion through downregulated cofilin activity and the AKT/NF-κB pathway. Biol Open 2020; 9:bio.046854. [PMID: 31988091 PMCID: PMC7044461 DOI: 10.1242/bio.046854] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The morbidity and mortality of primary liver cancer is one of the highest amongst all cancers. Deficiency of effective treatment and characteristics of cancer metastasis are believed to be responsible for this situation, thus a great demand is required for new agent development. Polyphyllin II (PP2), an important steroidal saponin extracted from Rhizoma Paris, has emerged as a potential anti-cancer agent, but the effects of PP2 in liver cancers and its underlying mechanisms remain unexplored. In our study, we found that PP2 could remarkably suppress the proliferation of two liver cancer cell lines, HepG2 and BEL7402, resulting in significant cell death. Besides, low doses of PP2 have displayed properties that inhibit cellular motility and invasion of liver cancer cells. In addition, we have found that PP2-mediated cofilin activity suppression was implicated in the inhibition of liver cancer cell motility. Decreased expression of two major hydrolytic enzymes (MMP2/MMP9), through the AKT/NF-κB signaling pathway may also be also responsible for this process. Rescue experiments done with either non-phosphorylatable mutant cofilin-1 (S3A) transfection or an activator of the AKT pathway significantly reversed the inhibition effects of PP2 on liver cancer cells. Taken together, we report a potential agent for liver cancer treatment and reveal its underlying mechanisms.
Collapse
Affiliation(s)
- Dejiang Pang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China,Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Chengcheng Yang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Li
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanfeng Zou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China,Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lixia Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China,Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wentao Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China,Authors for correspondence (; )
| | - Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China,Authors for correspondence (; )
| |
Collapse
|
47
|
Pei Y, Zhang Q, Wang Y. Application of Authentication Evaluation Techniques of Ethnobotanical Medicinal Plant Genus Paris: A Review. Crit Rev Anal Chem 2019; 50:405-423. [DOI: 10.1080/10408347.2019.1642734] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- Yifei Pei
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, China
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Qingzhi Zhang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanzhong Wang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
48
|
Wang W, Liu Y, Sun M, Sai N, You L, Dong X, Yin X, Ni J. Hepatocellular Toxicity of Paris Saponins I, II, VI and VII on Two Kinds of Hepatocytes-HL-7702 and HepaRG Cells, and the Underlying Mechanisms. Cells 2019; 8:cells8070690. [PMID: 31324003 PMCID: PMC6678998 DOI: 10.3390/cells8070690] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 01/28/2023] Open
Abstract
Rhizoma paridis is a popularly-used Chinese medicine in clinics, based on the pharmacodynamic properties of its saponin components. The four main saponins in Rhizoma paridis are designated saponins I, II, VI, and VII. At present, much attention is focused on the anticancer effect of Rhizoma paridis which is manifested in its cytotoxicity to various cancer cells. The purpose of this study was to investigate the hepatocellular toxicities of the four saponins in Rhizoma paridis and the relative intensities of their cytotoxic effects. It was found that the four saponins were cytotoxic to two types of hepatocytes-HL-7702 and HepaRG cells. The cytotoxicities of the four saponins to the two cell models were compared. One of the most cytotoxic saponins was Rhizoma paridis saponin I (PSI). This was used to determine the mechanism of hepatocellular toxicity. Results from MTT assays demonstrated that the four saponins induced apoptosis of the two hepatocyte models in a dose-dependent and time-dependent manner. In addition, fluorescent 4′,6-diamidino-2-phenylindole (DAPI) staining was used to observe the morphological changes of HepaRG cells after saponin administration. Further, as the concentration increased, PSI-induced lactate dehydrogenase (LDH) release from HepaRG cells increased gradually. In addition, PSI enhanced the levels of reactive oxygen species (ROS) and blocked the S and G2 phases of the cell cycle in HepaRG cells. A western blot indicated that PSI upregulated the protein expression levels of p53, p21, and Fas. Furthermore, the PSI-induced changes in the p53 protein increased the Bax/bcl-2 ratio, resulting in enhancement of the release of mitochondrial cytochrome c, activation of caspases-3, -8, and -9, poly-ADP ribose polymerase (PARP), and ultimately apoptosis. Increased Fas protein activated caspase-8, which led to the activation of caspase-3 and its downstream PARP protein, resulting in cell apoptosis. These results indicate that PSI induced apoptosis in HepaRG cells through activation of ROS and death receptor pathways. The results obtained in this study suggest that the hepatocellular toxicity of saponins in Rhizoma paridis should be considered during the clinical application of this drug. In addition, they provide a reference for future anti-cancer studies on Rhizoma paridis.
Collapse
Affiliation(s)
- Wenping Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Mingyi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Na Sai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Longtai You
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xiaoxv Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Jian Ni
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|