1
|
Pan X, Tao J, Xing Q, Wang B, Dou M, Zhang Y, Jin S, Wu J. Borneol promotes berberine-induced cardioprotection in a rat model of myocardial ischemia/reperfusion injury via inhibiting P-glycoprotein expression. Eur J Pharmacol 2024; 983:177009. [PMID: 39306269 DOI: 10.1016/j.ejphar.2024.177009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Berberine is reported to protect the heart against ischemia/reperfusion (I/R) injury, although efficacy is limited by low bioavailability. This study aims to determine whether borneol, a classic guiding drug, can enhance the cardioprotection induced by berberine and to clarify the underlying mechanisms involving P-glycoprotein (P-gp) in the heart. Adult male Sprague Dawley rats were gavaged with berberine (200 mg/kg) with or without borneol (100 mg/kg) for 7 consecutive days. A rat model of myocardial I/R injury was established by 30 min left coronary artery occlusion followed with 120 min reperfusion. The arrhythmia score, cardiac enzyme content, and myocardial infarct size were determined following reperfusion. Heart tissues were collected for Western blot and immunofluorescence analyses to measure the protein expression levels of Bcl-2, Bax, and P-gp. The results showed that administration of berberine protected the heart against I/R injury, as demonstrated by lower arrhythmia scores, serum cTnI contents, myocardial infarct size, and cardiomyocytes apoptosis. Moreover, borneol substantially enhanced the cardioprotective effects of berberine. Western blot and immunofluorescence analyses showed that both berberine and I/R injury did not alter P-gp expression in heart. In contrast, borneol combined with berberine significantly reduced P-gp levels by 43.4% (P = 0.0240). Interestingly, treatment with borneol alone decreased P-gp levels, but did not protect against myocardial I/R injury. These findings suggest that borneol, as an adjuvant drug, improved the cardioprotective effects of berberine by inhibiting P-gp expression in heart. Borneol combined with berberine administration provides a new strategy to protect the heart against I/R injury.
Collapse
Affiliation(s)
- Xinxin Pan
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China
| | - Jing Tao
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China; Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Qijing Xing
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China
| | - Baoli Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China
| | - Mengyun Dou
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China
| | - Ye Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China.
| | - Shiyun Jin
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China.
| | - Juan Wu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
2
|
Liu Y, Liu Q, Shang H, Li J, Chai H, Wang K, Guo Z, Luo T, Liu S, Liu Y, Wang X, Zhang H, Wu C, Song SJ, Yang J. Potential application of natural compounds in ischaemic stroke: Focusing on the mechanisms underlying "lysosomocentric" dysfunction of the autophagy-lysosomal pathway. Pharmacol Ther 2024; 263:108721. [PMID: 39284368 DOI: 10.1016/j.pharmthera.2024.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/06/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Ischaemic stroke (IS) is the second leading cause of death and a major cause of disability worldwide. Currently, the clinical management of IS still depends on restoring blood flow via pharmacological thrombolysis or mechanical thrombectomy, with accompanying disadvantages of narrow therapeutic time window and risk of haemorrhagic transformation. Thus, novel pathophysiological mechanisms and targeted therapeutic candidates are urgently needed. The autophagy-lysosomal pathway (ALP), as a dynamic cellular lysosome-based degradative process, has been comprehensively studied in recent decades, including its upstream regulatory mechanisms and its role in mediating neuronal fate after IS. Importantly, increasing evidence has shown that IS can lead to lysosomal dysfunction, such as lysosomal membrane permeabilization, impaired lysosomal acidity, lysosomal storage disorder, and dysfunctional lysosomal ion homeostasis, which are involved in the IS-mediated defects in ALP function. There is tightly regulated crosstalk between transcription factor EB (TFEB), mammalian target of rapamycin (mTOR) and lysosomal function, but their relationship remains to be systematically summarized. Notably, a growing body of evidence emphasizes the benefits of naturally derived compounds in the treatment of IS via modulation of ALP function. However, little is known about the roles of natural compounds as modulators of lysosomes in the treatment of IS. Therefore, in this context, we provide an overview of the current understanding of the mechanisms underlying IS-mediated ALP dysfunction, from a lysosomal perspective. We also provide an update on the effect of natural compounds on IS, according to their chemical structural types, in different experimental stroke models, cerebral regions and cell types, with a primary focus on lysosomes and autophagy initiation. This review aims to highlight the therapeutic potential of natural compounds that target lysosomal and ALP function for IS treatment.
Collapse
Affiliation(s)
- Yueyang Liu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hanxiao Shang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jichong Li
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - He Chai
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Kaixuan Wang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zhenkun Guo
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Tianyu Luo
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shiqi Liu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yan Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xuemei Wang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hangyi Zhang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Chunfu Wu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Jingyu Yang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
3
|
Jin Z, Lan Y, Li J, Wang P, Xiong X. The role of Chinese herbal medicine in the regulation of oxidative stress in treating hypertension: from therapeutics to mechanisms. Chin Med 2024; 19:150. [PMID: 39468572 PMCID: PMC11520704 DOI: 10.1186/s13020-024-01022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Although the pathogenesis of essential hypertension is not clear, a large number of studies have shown that oxidative stress plays an important role in the occurrence and development of hypertension and target organ damage. PURPOSE This paper systematically summarizes the relationship between oxidative stress and hypertension, and explores the potential mechanisms of Chinese herbal medicine (CHM) in the regulation of oxidative stress in hypertension, aiming to establish a scientific basis for the treatment of hypertension with CHM. METHODS To review the efficacy and mechanism by which CHM treat hypertension through targeting oxidative stress, data were searched from PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, the Chinese National Knowledge Infrastructure, the VIP Information Database, the Chinese Biomedical Literature Database, and the Wanfang Database from their inception up to January 2024. NPs were classified and summarized by their mechanisms of action. RESULTS In hypertension, the oxidative stress pathway of the body is abnormally activated, and the antioxidant system is inhibited, leading to the imbalance between the oxidative and antioxidative capacity. Meanwhile, excessive production of reactive oxygen species can lead to endothelial damage and vascular dysfunction, resulting in inflammation and immune response, thereby promoting the development of hypertension and damaging the heart, brain, kidneys, blood vessels, and other target organs. Numerous studies suggested that inhibiting oxidative stress may be the potential therapeutic target for hypertension. In recent years, the clinical advantages of traditional Chinese medicine (TCM) in the treatment of hypertension have gradually attracted attention. TCM, including active ingredients of CHM, single Chinese herb, TCM classic formula and traditional Chinese patent medicine, can not only reduce blood pressure, improve clinical symptoms, but also improve oxidative stress, thus extensively affect vascular endothelium, renin-angiotensin-aldosterone system, sympathetic nervous system, target organ damage, as well as insulin resistance, hyperlipidemia, hyperhomocysteinemia and other pathological mechanisms and hypertension related risk factors. CONCLUSIONS CHM display a beneficial multi-target, multi-component, overall and comprehensive regulation characteristics, and have potential value for clinical application in the treatment of hypertension by regulating the level of oxidative stress.
Collapse
Affiliation(s)
- Zixuan Jin
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Yu Lan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Junying Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xingjiang Xiong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
4
|
Tan Y, Li J, Nie Y, Zheng Z. Novel Approach for Cardioprotection: In Situ Targeting of Metformin via Conductive Hydrogel System. Polymers (Basel) 2024; 16:2226. [PMID: 39125251 PMCID: PMC11314979 DOI: 10.3390/polym16152226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Ischemia/reperfusion (I/R) injury following myocardial infarction is a major cause of cardiomyocyte death and impaired cardiac function. Although clinical data show that metformin is effective in repairing cardiac I/R injury, its efficacy is hindered by non-specific targeting during administration, a short half-life, frequent dosing, and potential adverse effects on the liver and kidneys. In recent years, injectable hydrogels have shown substantial potential in overcoming drug delivery challenges and treating myocardial infarction. To this end, we developed a natural polymer hydrogel system comprising methacryloylated chitosan and methacryloylated gelatin modified with polyaniline conductive derivatives. In vitro studies demonstrated that the optimized hydrogel exhibited excellent injectability, biocompatibility, biodegradability, suitable mechanical properties, and electrical conductivity. Incorporating metformin into this hydrogel significantly extended the administration cycle, mitigated mitochondrial damage, decreased abnormal ROS production, and enhanced cardiomyocyte function. Animal experiments indicated that the metformin/hydrogel system reduced arrhythmia incidence, infarct size, and improved cardiac mitochondrial and overall cardiac function, promoting myocardial repair in I/R injury. Overall, the metformin-loaded conductive hydrogel system effectively mitigates mitochondrial oxidative damage and improves cardiomyocyte function, thereby offering a theoretical foundation for the potential application of metformin in cardioprotection.
Collapse
Affiliation(s)
| | | | - Yali Nie
- Hunan Provincial Key Laboratory of Multi-Omics and Artificial Intelligence of Cardiovascular Diseases & Institute of Cardiovascular Disease & Department of Cardiology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zhi Zheng
- Hunan Provincial Key Laboratory of Multi-Omics and Artificial Intelligence of Cardiovascular Diseases & Institute of Cardiovascular Disease & Department of Cardiology, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
5
|
Luo S, Luo R, Deng G, Huang F, Lei Z. Programmed cell death, from liver Ischemia-Reperfusion injury perspective: An overview. Heliyon 2024; 10:e32480. [PMID: 39040334 PMCID: PMC11260932 DOI: 10.1016/j.heliyon.2024.e32480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 07/24/2024] Open
Abstract
Liver ischemia-reperfusion injury (LIRI) commonly occurs in liver resection, liver transplantation, shock, and other hemorrhagic conditions, resulting in profound local and systemic effects via associated inflammatory responses and hepatic cell death. Hepatocyte death is a significant component of LIRI and its mechanism was previously thought to be limited to apoptosis and necrosis. With the discovery of novel types of programmed cell death (PCD), necroptosis, ferroptosis, pyroptosis, autophagy, NETosis, and parthanatos have been shown to be involved in LIRI. Understanding the mechanisms underlying cell death following LIRI is indispensable to mitigating the widespread effects of LIRI. Here, we review the roles of different PCD and discuss potential therapy in LIRI.
Collapse
Affiliation(s)
- Shaobin Luo
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Rongkun Luo
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
| | - Gang Deng
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
| | - Feizhou Huang
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
| | - Zhao Lei
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
| |
Collapse
|
6
|
Mehboodi D, Shahedi A, Namavar MR, Yadegari M, Vakili M. Effect of berberine on the hippocampal structure, biochemical factors, memory, and blood-brain barrier in rat model of transient global cerebral ischemia. Phytother Res 2024. [PMID: 38950958 DOI: 10.1002/ptr.8234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 07/03/2024]
Abstract
Global cerebral ischemia (GCI) results in damage to the neurons and leads to cognitive impairments. Berberine (BBR) is known for its neuroprotective qualities. This study aimed to investigate the effects of BBR on memory, Blood-brain barrier (BBB) permeability, biochemical factors, and neuronal structure. Sixty-three adult male Wistar rats were divided randomly into Sham (21), GCI (21), and GCI + BBR (21) groups. The GCI + BBR group received 50 mg/kg of BBR for 7 days before and 6 h after 20 min of GCI induction. After 24 h, assessments included hippocampal neuronal structure, catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GPX) levels, memory performance, and BBB permeability. The GCI + BBR group reduced volume loss in the CA1 and its sublayers (oriens, pyramidal, and radiatum) compared to the GCI group (p < 0.0001, p < 0.001, p < 0.01 and p < 0.001, respectively). Additionally, the GCI + BBR group showed higher pyramidal neuron density (p < 0.0001) and number (p < 0.0001) compared to the GCI group. BBR also decreased MDA levels (p < 0.0001) and increased CAT activity (p < 0.0001) in the GCI + BBR group compared to the GCI group, with GPX and SOD activity approaching Sham levels (p < 0.0001, both). BBR demonstrated significant improvements in short and long-term memory compared to the GCI group (p < 0.01, p < 0.0001, respectively). Furthermore, BBB permeability in the GCI + BBR group was significantly reduced compared to the GCI group (p < 0.0001). These findings demonstrated BBR's potential to protect the neurons in the CA1 and BBB structures, enhance antioxidant activity, and alleviate GCI-induced memory impairments.
Collapse
Affiliation(s)
- Dariush Mehboodi
- Department of Anatomical Sciences, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abbas Shahedi
- Department of Anatomical Sciences, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Neuroendocrine Research Center, Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Reza Namavar
- Clinic Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Yadegari
- Department of Anatomical Sciences, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Neuroendocrine Research Center, Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mahmood Vakili
- Health Monitoring Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
7
|
Tseng HC, Wang MH, Fang CH, Lin YW, Soung HS. Neuroprotective Potentials of Berberine in Rotenone-Induced Parkinson's Disease-like Motor Symptoms in Rats. Brain Sci 2024; 14:596. [PMID: 38928596 PMCID: PMC11201892 DOI: 10.3390/brainsci14060596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Rotenone (RTN) induces neurotoxicity and motor dysfunction in rats, mirroring the pathophysiological traits of Parkinson's disease (PD), including striatal oxidative stress, mitochondrial dysfunction, and changes in neural structure. This makes RTN a valuable model for PD research. Berberine (BBR), an isoquinoline alkaloid recognized for its antioxidative, anti-inflammatory, and neuroprotective properties, was evaluated for its ability to counteract RTN-induced impairments. Rats received subcutaneous RTN at 0.5 mg/kg for 21 days, resulting in weight loss and significant motor deficits assessed through open-field, bar catalepsy, beam-crossing, rotarod, and grip strength tests. BBR, administered orally at 30 or 100 mg/kg doses, one hour prior to RTN exposure for the same duration, effectively mitigated many of the RTN-induced motor impairments. Furthermore, BBR treatment reduced RTN-induced nitric oxide (NO) and lipid peroxidation (LPO) levels, bolstered antioxidative capacity, enhanced mitochondrial enzyme activities (e.g., succinate dehydrogenase (SDH), ATPase, and the electron transport chain (ETC)), and diminished striatal neuroinflammation and apoptosis markers. Notably, the co-administration of trigonelline (TGN), an inhibitor of the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway, significantly attenuated BBR's protective effects, indicating that BBR's neuroprotective actions are mediated via the Nrf2 pathway. These results underscore BBR's potential in ameliorating motor impairments akin to PD, suggesting its promise in potentially delaying or managing PD symptoms. Further research is warranted to translate these preclinical findings into clinical settings, enhancing our comprehension of BBR's therapeutic prospects in PD.
Collapse
Affiliation(s)
- Hsiang-Chien Tseng
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Mao-Hsien Wang
- Department of Anesthesia, En Chu Kon Hospital, Sanshia District, New Taipei City 23702, Taiwan
| | - Chih-Hsiang Fang
- Department of Orthopedics, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yi-Wen Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei 10051, Taiwan
| | - Hung-Sheng Soung
- Department of Psychiatry, Yuan-Shan Branch of Taipei Veteran General Hospital, No. 386, Rongguang Rd., Neicheng, Yuanshan Township, Yilan 26604, Taiwan
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
8
|
Li CX, Yue L. The Multifaceted Nature of Macrophages in Cardiovascular Disease. Biomedicines 2024; 12:1317. [PMID: 38927523 PMCID: PMC11201197 DOI: 10.3390/biomedicines12061317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
As the leading cause of mortality worldwide, cardiovascular disease (CVD) represents a variety of heart diseases and vascular disorders, including atherosclerosis, aneurysm, ischemic injury in the heart and brain, arrythmias, and heart failure. Macrophages, a diverse population of immune cells that can promote or suppress inflammation, have been increasingly recognized as a key regulator in various processes in both healthy and disease states. In healthy conditions, these cells promote the proper clearance of cellular debris, dead and dying cells, and provide a strong innate immune barrier to foreign pathogens. However, macrophages can play a detrimental role in the progression of disease as well, particularly those inflammatory in nature. This review will focus on the current knowledge regarding the role of macrophages in cardiovascular diseases.
Collapse
Affiliation(s)
- Cindy X. Li
- Department of Cell Biology, Pat and Jim Calhoun Cardiovascular Center, University of Connecticut Health Center, Farmington, CT 06030, USA;
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Lixia Yue
- Department of Cell Biology, Pat and Jim Calhoun Cardiovascular Center, University of Connecticut Health Center, Farmington, CT 06030, USA;
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
9
|
Wang F, Huang H, Wei X, Tan P, Wang Z, Hu Z. Targeting cell death pathways in intestinal ischemia-reperfusion injury: a comprehensive review. Cell Death Discov 2024; 10:112. [PMID: 38438362 PMCID: PMC10912430 DOI: 10.1038/s41420-024-01891-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
Intestinal ischemia-reperfusion (I/R) is a multifaceted pathological process, and there is a lack of clear treatment for intestinal I/R injury. During intestinal I/R, oxidative stress and inflammation triggered by cells can trigger a variety of cell death mechanisms, including apoptosis, autophagy, pyroptosis, ferroptosis, and necrosis. These cell death processes can send a danger signal for the body to be damaged and prevent intestinal I/R injury. Therefore, identifying key regulatory molecules or markers of these cell death mechanisms when intestinal I/R injury occurs may provide valuable information for the treatment of intestinal I/R injury. This paper reviews the regulatory molecules and potential markers that may be involved in regulating cell death during intestinal I/R and elaborates on the cell death mechanism of intestinal I/R injury at the molecular level to provide a theoretical basis for discovering new molecules or markers regulating cell death during intestinal I/R injury and provides ideas for drug development for the treatment of intestinal I/R injury.
Collapse
Affiliation(s)
- Fei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Huiming Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Xuejiao Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Peng Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Zhuguo Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| |
Collapse
|
10
|
Rahman Z, Shaikh AS, Rao KV, Dandekar MP. Oxyberberine protects middle cerebral artery occlusion triggered cerebral injury through TLR4/NLRP3 pathway in rats. J Chem Neuroanat 2024; 136:102393. [PMID: 38246265 DOI: 10.1016/j.jchemneu.2024.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Cerebral ischemia is a life-threatening health concern that leads to severe neurological complications and fatalities worldwide. Although timely intervention with clot-removing agents curtails serious post-stroke neurological dysfunctions, no effective neuroprotective intervention is available for addressing post-recanalization neuroinflammation. Herein, for the first time we studied the effect of oxyberberine (OBB), a derivative of berberine, on transient middle cerebral artery occlusion (MCAO)-generated neurological consequences in Sprague-Dawley rats. The MCAO-operated rats exhibited significant somatosensory and sensorimotor dysfunctions in adhesive removal, foot fault, paw whisker, and rotarod assays at 1 and 3 days post-surgery. These MCAO-generated neurological deficits were prevented in OBB-treated (50 and 100 mg/kg) rats, and also coincided with a smaller infarct area (in 2,3,5-triphenyl tetrazolium chloride staining) and decreased neuronal death (in cresyl violet staining) in the ipsilateral hemisphere of these animals. The immunostaining of neuronal nuclear protein (NeuN) and glial-fibrillary acidic protein (GFAP) also echoes the neuroprotective nature of OBB. The increased expression of neuroinflammatory and blood-brain barrier tight junction proteins like toll-like receptor 4 (TLR4), TRAF-6, nuclear factor kappa B (NF-κB), pNF-κB, nNOS, ASC, and IKBα in the ipsilateral part of MCAO-operated rats were restored to normal following OBB treatment. We also observed the decline in plasma levels/mRNA transcription of TNF-α, IL-1β, NLRP3, IL-6, and matrix metalloproteinase-9 and increased expression of occludin and claudin in OBB-treated rats. These outcomes imply that OBB may prevent the MCAO-induced neurological consequences and neuroinflammation by interfering with TLR4 and NLRP3 signaling in rats.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Arbaz Sujat Shaikh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - K Venkata Rao
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
11
|
Liu YL, Guo T, Zhang YJ, Tang SC, Zhao XM, He HY, Yu CL, Deng YH. Berberine Alleviates Ischemic Brain Injury by Enhancing Autophagic Flux via Facilitation of TFEB Nuclear Translocation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:231-252. [PMID: 38328828 DOI: 10.1142/s0192415x24500101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Berberine has been demonstrated to alleviate cerebral ischemia/reperfusion injury, but its neuroprotective mechanism has yet to be understood. Studies have indicated that ischemic neuronal damage was frequently driven by autophagic/lysosomal dysfunction, which could be restored by boosting transcription factor EB (TFEB) nuclear translocation. Therefore, this study investigated the pharmacological effects of berberine on TFEB-regulated autophagic/lysosomal signaling in neurons after cerebral stroke. A rat model of ischemic stroke and a neuronal ischemia model in HT22 cells were prepared using middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation (OGD), respectively. Berberine was pre-administered at a dose of 100[Formula: see text]mg/kg/d for three days in rats and 90[Formula: see text][Formula: see text]M in HT22 neurons for 12[Formula: see text]h. 24[Formula: see text]h after MCAO and 2[Formula: see text]h after OGD, the penumbral tissues and OGD neurons were obtained to detect nuclear and cytoplasmic TFEB, and the key proteins in the autophagic/lysosomal pathway were examined using western blot and immunofluorescence, respectively. Meanwhile, neuron survival, infarct volume, and neurological deficits were assessed to evaluate the therapeutic efficacy. The results showed that berberine prominently facilitated TFEB nuclear translocation, as indicated by increased nuclear expression in penumbral neurons as well as in OGD HT22 cells. Consequently, both autophagic activity and lysosomal capacity were simultaneously augmented to alleviate the ischemic injury. However, berberine-conferred neuroprotection could be greatly counteracted by lysosomal inhibitor Bafilomycin A1 (Baf-A1). Meanwhile, autophagy inhibitor 3-Methyladenine (3-MA) also slightly neutralized the pharmacological effect of berberine on ameliorating autophagic/lysosomal dysfunction. Our study suggests that berberine-induced neuroprotection against ischemic stroke is elicited by enhancing autophagic flux via facilitation of TFEB nuclear translocation in neurons.
Collapse
Affiliation(s)
- Yi-Li Liu
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Tao Guo
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yong-Jie Zhang
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Shun-Cong Tang
- Anning First People's Hospital Affiliated to Kunming, University of Science and Technology Kunming 650500, P. R. China
| | - Xiao-Ming Zhao
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Hong-Yun He
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming 650500, P. R. China
- Anning First People's Hospital Affiliated to Kunming, University of Science and Technology Kunming 650500, P. R. China
| | - Chun-Lei Yu
- Anning First People's Hospital Affiliated to Kunming, University of Science and Technology Kunming 650500, P. R. China
| | - Yi-Hao Deng
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
12
|
Min SH, Kang GM, Park JW, Kim MS. Beneficial Effects of Low-Grade Mitochondrial Stress on Metabolic Diseases and Aging. Yonsei Med J 2024; 65:55-69. [PMID: 38288646 PMCID: PMC10827639 DOI: 10.3349/ymj.2023.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024] Open
Abstract
Mitochondria function as platforms for bioenergetics, nutrient metabolism, intracellular signaling, innate immunity regulators, and modulators of stem cell activity. Thus, the decline in mitochondrial functions causes or correlates with diabetes mellitus and many aging-related diseases. Upon stress or damage, the mitochondria elicit a series of adaptive responses to overcome stress and restore their structural integrity and functional homeostasis. These adaptive responses to low-level or transient mitochondrial stress promote health and resilience to upcoming stress. Beneficial effects of low-grade mitochondrial stress, termed mitohormesis, have been observed in various organisms, including mammals. Accumulated evidence indicates that treatments boosting mitohormesis have therapeutic potential in various human diseases accompanied by mitochondrial stress. Here, we review multiple cellular signaling pathways and interorgan communication mechanisms through which mitochondrial stress leads to advantageous outcomes. We also discuss the relevance of mitohormesis in obesity, diabetes, metabolic liver disease, aging, and exercise.
Collapse
Affiliation(s)
- Se Hee Min
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Korea
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea
| | - Gil Myoung Kang
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea
| | - Jae Woo Park
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Korea
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea.
| |
Collapse
|
13
|
Huo CL, Wang B, Zhang X, Sun ZG. Skimmianine attenuates liver ischemia/reperfusion injury by regulating PI3K-AKT signaling pathway-mediated inflammation, apoptosis and oxidative stress. Sci Rep 2023; 13:18232. [PMID: 37880319 PMCID: PMC10600244 DOI: 10.1038/s41598-023-45354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
Liver ischemia/reperfusion (I/R) injury is a common injury after liver transplantation and hepatectomy. Skimmianine (Ski) has antibacterial, antiviral pharmacological effects. However, it is not clear whether Ski has a protective effect against liver I/R injury. In the present study, we established a mouse liver I/R model and an AML12 cell hypoxia-reoxygenation (H/R) model, both pretreated with different concentrations of Ski. Serum transaminase levels, necrotic liver area, cell viability, inflammatory factors, oxidative stress and apoptosis-related levels were measured to assess the protective effect of Ski against liver I/R injury. Western blotting was used to detect apoptosis-related proteins and PI3K-AKT pathway-related proteins. Mice and cells were also treated with PI3K inhibitor LY294002 to assess changes in indicators of liver injury. The results showed that Ski significantly reduced transaminase levels, liver necrosis area, oxidative stress, and apoptosis levels in mice with I/R. Ski also inhibited cell injury and apoptosis after H/R. Moreover, Ski activated phosphorylation of PI3K-AKT pathway-related proteins after liver I/R and cell H/R. Importantly, the PI3K inhibitor LY294002 effectively reversed the alleviation of I/R injury caused by Ski. These results confirm that Ski exerts a protective effect against liver I/R injury through activation of the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Cheng-Long Huo
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26, Chuyuan Avenue, Jingzhou District, Jingzhou, Hubei, China
| | - Bing Wang
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26, Chuyuan Avenue, Jingzhou District, Jingzhou, Hubei, China
| | - Xuewen Zhang
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26, Chuyuan Avenue, Jingzhou District, Jingzhou, Hubei, China
| | - Zhen-Gang Sun
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26, Chuyuan Avenue, Jingzhou District, Jingzhou, Hubei, China.
| |
Collapse
|
14
|
Zhu Y, Li J, Zhang P, Peng B, Li C, Ming Y, Liu H. Berberine protects hepatocyte from hypoxia/reoxygenation-induced injury through inhibiting circDNTTIP2. PeerJ 2023; 11:e16080. [PMID: 37780378 PMCID: PMC10538280 DOI: 10.7717/peerj.16080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Background During hepatic ischemia-reperfusion injury, the excessive release of inflammatory cytokines can activate the intracellular signal transduction cascade to induce hepatocyte injury. Apoptosis is an important way of cell death after I/R injury. Berberine, a common quaternary ammonium alkaloid, has anti-inflammatory, anti-oxidative stress, and anti-apoptotic effects. An increasing number of studies have revealed the importance of non-coding RNAs, including microRNA, long non-coding RNAs and circular RNAs (circRNAs), as regulators of the effects of berberine. Purpose In this study, we investigated the mechanism of berberine against liver ischemia-reperfusion injury in vitro. Study Design and Methods In this study, hypoxia-reoxygenation (H/R)-treated L02 cells were pretreated with berberine to study the role and mechanism of berberine in resisting hepatic ischemia-reperfusion injury. Results The results show that berberine pre-treatment increased the cell viability of H/R-challenged cells, reduced H/R-induced apoptosis and ROS production, reversed H/R-increased on IL-6, IL-1β, TNF-α, and H/R-decreased IL-10 expression. Mechanically, berberine protect hepatocyte from H/R injury, at least partially, through circDNTTIP2. In addition, circDNTTIP2 can bind to the TATA box of caspase3 promoter, thereby promoting caspase 3-related cell apoptosis and the release of inflammatory cytokines. Conclusion This study found that berberine has a protective effect on H/R-induced hepatocyte damage by inhibiting a novel circRNA, circDNTTIP2. This study provides potential treatment strategies and treatment targets for liver ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yi Zhu
- The Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Junhui Li
- The Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Pengpeng Zhang
- The Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Bo Peng
- The Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Cai Li
- The Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Yingzi Ming
- The Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Hong Liu
- The Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| |
Collapse
|
15
|
Zheng T, Jiang T, Huang Z, Ma H, Wang M. Role of traditional Chinese medicine monomers in cerebral ischemia/reperfusion injury:a review of the mechanism. Front Pharmacol 2023; 14:1220862. [PMID: 37654609 PMCID: PMC10467294 DOI: 10.3389/fphar.2023.1220862] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a pathological process wherein reperfusion of an ischemic organ or tissue exacerbates the injury, posing a significant health threat and economic burden to patients and their families. I/R triggers a multitude of physiological and pathological events, such as inflammatory responses, oxidative stress, neuronal cell death, and disruption of the blood-brain barrier (BBB). Hence, the development of effective therapeutic strategies targeting the pathological processes resulting from I/R is crucial for the rehabilitation and long-term enhancement of the quality of life in patients with cerebral ischemia/reperfusion injury (CIRI). Traditional Chinese medicine (TCM) monomers refer to bioactive compounds extracted from Chinese herbal medicine, possessing anti-inflammatory and antioxidative effects, and the ability to modulate programmed cell death (PCD). TCM monomers have emerged as promising candidates for the treatment of CIRI and its subsequent complications. Preclinical studies have demonstrated that TCM monomers can enhance the recovery of neurological function following CIRI by mitigating oxidative stress, suppressing inflammatory responses, reducing neuronal cell death and functional impairment, as well as minimizing cerebral infarction volume. The neuroprotective effects of TCM monomers on CIRI have been extensively investigated, and a comprehensive understanding of their mechanisms can pave the way for novel approaches to I/R treatment. This review aims to update and summarize evidence of the protective effects of TCMs in CIRI, with a focus on their role in modulating oxidative stress, inflammation, PCD, glutamate excitotoxicity, Ca2+ overload, as well as promoting blood-brain barrier repairment and angiogenesis. The main objective is to underscore the significant contribution of TCM monomers in alleviating CIRI.
Collapse
Affiliation(s)
| | | | | | | | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
16
|
Pereira JF, de Sousa Neves JC, Fonteles AA, Bezerra JR, Pires RC, da Silva ATA, Lima FAV, Neves KRT, Oriá RB, de Barros Viana GS, Tavares J, de Sousa Nascimento T, Oliveira AV, Parente ACB, Gomes JMP, de Andrade GM. Palmatine, a natural alkaloid, attenuates memory deficits and neuroinflammation in mice submitted to permanent focal cerebral ischemia. J Neuroimmunol 2023; 381:578131. [PMID: 37413943 DOI: 10.1016/j.jneuroim.2023.578131] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/16/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023]
Abstract
Ischemic stroke is one of the major causes of human morbidity and mortality. The pathophysiology of ischemic stroke involves complex events, including oxidative stress and inflammation, that lead to neuronal loss and cognitive deficits. Palmatine (PAL) is a naturally occurring (Coptidis rhizome) isoquinoline alkaloid that belongs to the class of protoberberines and has a wide spectrum of pharmacological and biological effects. In the present study, we evaluated the impact of Palmatine on neuronal damage, memory deficits, and inflammatory response in mice submitted to permanent focal cerebral ischemia induced by middle cerebral artery (pMCAO) occlusion. The animals were treated with Palmatine (0.2, 2 and 20 mg/kg/day, orally) or vehicle (3% Tween + saline solution) 2 h after pMCAO once daily for 3 days. Cerebral ischemia was confirmed by evaluating the infarct area (TTC staining) and neurological deficit score 24 h after pMCAO. Treatment with palmatine (2 and 20 mg/kg) reduced infarct size and neurological deficits and prevented working and aversive memory deficits in ischemic mice. Palmatine, at a dose of 2 mg/kg, had a similar effect of reducing neuroinflammation 24 h after cerebral ischemia, decreasing TNF-, iNOS, COX-2, and NF- κB immunoreactivities and preventing the activation of microglia and astrocytes. Moreover, palmatine (2 mg/kg) reduced COX-2, iNOS, and IL-1β immunoreactivity 96 h after pMCAO. The neuroprotective properties of palmatine make it an excellent adjuvant treatment for strokes due to its inhibition of neuroinflammation.
Collapse
Affiliation(s)
- Juliana Fernandes Pereira
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil
| | - Juliana Catharina de Sousa Neves
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil
| | - Analu Aragão Fonteles
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil
| | - Jéssica Rabelo Bezerra
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Rayssa Costa Pires
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil
| | - Ana Thais Araújo da Silva
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Francisco Arnaldo Viana Lima
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil
| | - Kelly Rose Tavares Neves
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil
| | - Reinaldo Barreto Oriá
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil
| | - Glauce Socorro de Barros Viana
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Juliete Tavares
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Tyciane de Sousa Nascimento
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Alfaete Vieira Oliveira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Ana Caroline Barros Parente
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Jessica Maria Pessoa Gomes
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Geanne Matos de Andrade
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil.
| |
Collapse
|
17
|
Wang X, Zhang J, Wang S, Song Z, Sun H, Wu F, Lin X, Jin K, Jin X, Wang W, Lin Q, Wang F. Berberine modulates gut microbiota to attenuate cerebral ferroptosis induced by ischemia-reperfusion in mice. Eur J Pharmacol 2023:175782. [PMID: 37245860 DOI: 10.1016/j.ejphar.2023.175782] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
Ferroptosis was reported to be involved in cerebral ischemia-reperfusion injury (CIRI), on which the effects of berberine (BBR) remain unclear. Moreover, based on the critical role of gut microbiota in pleiotropic actions of BBR, we hypothesized that BBR can suppress CIRI-induced ferroptosis by modulating the gut microbiota. In this study, the results showed that BBR obviously attenuated the behavioral deficits of CIRI mice, accompanied with the improved survival rate and neuron damages, as phenocopied by dirty cage experiment. The typical morphological changes in ferroptotic cells and biomarkers of ferroptosis were attenuated in BBR- and its fecal microbiota-treated mice, accompanied by reduced malondialdehyde and reactive oxygen species, and the increased glutathione (GSH). BBR was found to alter the gut microbiota of CIRI mice with decreased abundance of Muribaculaceae, Erysipelotrichaceae, Helicobacteraceae, Streptococcaceae and Tannerellaceae, but elevated Bacteroidaceae and Enterobacteriaceae. KEGG analysis based on the 16S rRNA results indicated that multiple metabolic pathways including ferroptosis and GSH metabolism, were altered by BBR. Oppositely, the antibiotics administration counteracted the protective properties of BBR. Summarily, this study revealed the therapeutic potential of BBR on CIRI via inhibiting neuronal ferroptosis, in which upregulated glutathione peroxidase 1 (GPX1) was possibly involved. Moreover, the BBR-modulated gut microbiota was shown to play the critical role in the underlying mechanism.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jiamin Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Sisi Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhengyang Song
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hongxia Sun
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Fangquan Wu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaohui Lin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Keke Jin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaofeng Jin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Wantie Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Qiongqiong Lin
- Department of Pathology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Fangyan Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
18
|
Boeing T, Reis Lívero FAD, de Souza P, de Almeida DAT, Donadel G, Lourenço ELB, Gasparotto Junior A. Natural Products as Modulators of Mitochondrial Dysfunctions Associated with Cardiovascular Diseases: Advances and Opportunities. J Med Food 2023; 26:279-298. [PMID: 37186894 DOI: 10.1089/jmf.2022.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The mitochondria have an important role in modulating cell cycle progression, cell survival, and apoptosis. In the adult heart, the cardiac mitochondria have a unique spatial arrangement and occupy nearly one-third the volume of a cardiomyocyte, being highly efficient for converting the products of glucose or fatty acid metabolism into adenosine triphosphate (ATP). In cardiomyocytes, the decline of mitochondrial function reduces ATP generation and increases the production of reactive oxygen species, which generates impaired heart function. This is because mitochondria play a key role in maintaining cytosolic calcium concentration and modulation of muscle contraction, as ATP is required to dissociate actin from myosin. Beyond that, mitochondria have a significant role in cardiomyocyte apoptosis because it is evident that patients who have cardiovascular diseases (CVDs) have increased mitochondrial DNA damage to the heart and aorta. Many studies have shown that natural products have mitochondria-modulating effects in cardiac diseases, determining them as potential candidates for new medicines. This review outlines the leading plant secondary metabolites and natural compounds derived from microorganisms as modulators of mitochondrial dysfunctions associated with CVDs.
Collapse
Affiliation(s)
- Thaise Boeing
- Graduate Program in Pharmaceutical Sciences, Chemical-Pharmaceutical Research Nucleus, University of Vale do Itajaí, Itajaí, Brazil
| | - Francislaine Aparecida Dos Reis Lívero
- Laboratory of Pre-Clinical Research of Natural Products, Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama, Brazil
| | - Priscila de Souza
- Graduate Program in Pharmaceutical Sciences, Chemical-Pharmaceutical Research Nucleus, University of Vale do Itajaí, Itajaí, Brazil
| | - Danielle Ayr Tavares de Almeida
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | - Guilherme Donadel
- Laboratory of Pre-Clinical Research of Natural Products, Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama, Brazil
| | - Emerson Luiz Botelho Lourenço
- Laboratory of Pre-Clinical Research of Natural Products, Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| |
Collapse
|
19
|
Au-Yeung KKW, Shang Y, Wijerathne CUB, Madduma Hewage S, Siow YL, O K. Acute Kidney Injury Induces Oxidative Stress and Hepatic Lipid Accumulation through AMPK Signaling Pathway. Antioxidants (Basel) 2023; 12:antiox12040883. [PMID: 37107258 PMCID: PMC10135179 DOI: 10.3390/antiox12040883] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023] Open
Abstract
Acute kidney injury (AKI) often impairs the function of other organs leading to distant organ injury. The liver is the major organ that regulates metabolism and lipid homeostasis in the body. It has been reported that AKI causes liver injury with increased oxidative stress, inflammatory response and steatosis. In the present study, we investigated the mechanisms by which ischemia-reperfusion-induced AKI caused hepatic lipid accumulation. Kidney ischemia (45 min)-reperfusion (24 h) led to a significant increase in plasma creatinine and transaminase in Sprague Dawley rats, indicating kidney and liver injury. Histological and biochemical analyses revealed hepatic lipid accumulation with a significant elevation of triglyceride and cholesterol levels in the liver. This was accompanied by a decreased AMP-activated protein kinase (AMPK) phosphorylation, indicating the reduced activation of AMPK, which is an energy sensor that regulates lipid metabolism. The expression of AMPK-regulated genes that were responsible for fatty acid oxidation (CPTIα, ACOX) was significantly decreased, while the expression of lipogenesis genes (SREPB-1c, ACC1) was significantly elevated. The oxidative stress biomarker malondialdehyde was elevated in the plasma and liver. Incubation of HepG2 cells with an oxidative stress inducer hydrogen peroxide inhibited AMPK phosphorylation and caused cellular lipid accumulation. This was accompanied by decreased expression of genes responsible for fatty acid oxidation and increased expression of genes responsible for lipogenesis. These results suggest that AKI elicits hepatic lipid accumulation through decreased fatty acid metabolism and increased lipogenesis. Oxidative stress may contribute, in part, to the downregulation of the AMPK signaling pathway leading to hepatic lipid accumulation and injury.
Collapse
Affiliation(s)
- Kathy K. W. Au-Yeung
- St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yue Shang
- St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Charith U. B. Wijerathne
- St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Susara Madduma Hewage
- St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Yaw L. Siow
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Agriculture and Agri-Food Canada, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Karmin O
- St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
20
|
Yan R, Gao W, Chen W, Liu Y, Shen L, Dai Y, Xu R, Chang Q, Fu Y, Zhao Y. rTFPI Protects Cardiomyocytes from Hypoxia/Reoxygenation Injury through Inhibiting Autophagy and the Class III PI3K/Beclin-1 Pathway. Cell Biochem Biophys 2023; 81:97-104. [PMID: 36309623 DOI: 10.1007/s12013-022-01113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 10/15/2022] [Indexed: 11/25/2022]
Abstract
Autophagy plays various roles at different stages of ischemia reperfusion (I/R) injury in cardiomyocytes. It has been reported that tissue factor pathway inhibitor (TFPI) has a protective effect on I/R injury. This study aimed to determine the roles of TFPI in autophagy during the I/R injury process in cardiomyocytes and the possible mechanisms. An isolated hypoxia/reoxygenation (H/R) pattern of cardiomyocytes was established by the MIC101 system. The cell viability and oxidative stress of cardiomyocytes were detected by an MTT assay and ROS assay, respectively. The autophagy level was measured by Ad-mCherry-GFP-LC3B and MDC. We detected the expression levels of autophagy-related proteins by western blotting. After 2 h of hypoxia and 12 h of reoxygenation, the cardiomyocyte viability in the H/R group was significantly lower than that in the control group (p < 0.05) than in the H/R group. According to intracellular ROS production, the fluorescence intensity in the H/R group was enhanced compared with that in the negative control group, and it was weaker in the H/R + rTFPI group compared with the H/R group. The level of autophagy and the expression levels of autophagy-related proteins (LC3-II/LC3-I, Beclin-1 and PI3K) were markedly increased in the H/R group compared to the control group (p < 0.05) whereas the levels were markedly decreased in the H/R + rTFPI group compared to the H/R group (p < 0.05). TFPI could relieve cardiomyocyte injury by inhibiting the Class III PI3K/Beclin-1 pathway and oxidative stress; thus, TFPI decreased autophagy and protected cardiomyocytes induced by H/R injury. In conclusion, TFPI may be a new direction for the prevention of myocardial I/R injury.
Collapse
Affiliation(s)
- Runan Yan
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Gao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjia Chen
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Liu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Shen
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Dai
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Xu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qing Chang
- Department of Cardiology, Heilongjiang Provincial Hospital, Harbin, China
| | - Yu Fu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yong Zhao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
21
|
Chen J, Jiang Z, Liu X, Wang K, Fan W, Chen T, Li Z, Lin D. Berberine promotes the viability of random skin flaps via the PI3K/Akt/eNOS signaling pathway. Phytother Res 2023; 37:424-437. [PMID: 36116786 DOI: 10.1002/ptr.7621] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/11/2022]
Abstract
Random skin flaps are often used in reconstruction operations. However, flap necrosis is still a common postoperative complication. Here, we investigated whether berberine (C20 H19 NO5 , BBR), a drug with antioxidant activity, improves the survival rate of random flaps. Fifty-four rats were divided into three groups: control, BBR and BBR + L -NAME groups (L -NAME, L -NG -Nitro-arginine methyl ester). The survival condition and the percentage of survival area of the flaps were evaluated on the seventh day after surgery. After animals were sacrificed, angiogenesis, apoptosis, oxidative stress and inflammation levels were assessed by histological and protein analyses. Our findings suggest that berberine promotes flap survival. The level of angiogenesis increased; the levels of oxidative stress, inflammation and apoptosis decreased; the levels of phosphoinositide 3-kinase (PI3K), phospho-Akt (p-Akt) and phospho-endothelial nitric oxide synthase (p-eNOS) increased in the flap tissue; and L -NAME reversed the effects of berberine on random skin flaps. Statistical analysis showed that the BBR group results differed significantly from those of the control and the BBR + L -NAME groups (p < .05). Our results confirm that berberine is an effective drug for significantly improving the survival rate of random skin flaps by promoting angiogenesis, inhibiting inflammation, attenuating oxidative stress, and reducing apoptosis through the PI3K/Akt/eNOS signaling pathway.
Collapse
Affiliation(s)
- Jianpeng Chen
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhikai Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xuao Liu
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Kaitao Wang
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weijian Fan
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Tingxiang Chen
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhijie Li
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dingsheng Lin
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Ren X, Zhou X. Circ_0000011 promotes cerebral ischemia/reperfusion injury via miR-27a-3p-dependent regulation of NRIP1. Metab Brain Dis 2023; 38:295-306. [PMID: 35925446 DOI: 10.1007/s11011-022-00972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/21/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Cerebral ischemia/reperfusion (I/R) can result in brain function impairments. Circular RNAs (circRNAs) have emerged as vital regulators in cerebral I/R injury. However, the functions of mmu_circ_0000011 in cerebral I/R injury are still unclear. Thus, in this study, we aimed to explore the effect of mmu_circ_0000011 on cerebral I/R injury. METHODS Oxygen-glucose deprivation and reperfusion (OGD/R)-induced HT-22 cells were used to mimic the condition of cerebral I/R injury in vitro. Cell Counting Kit-8 (CCK-8) assay, lactate dehydrogenase (LDH) assay, 5'-ethynyl-2'-deoxyuridine (EdU) assay and flow cytometry analysis were utilized to assess cell viability, LDH release, proliferation and apoptosis, respectively. qRT-PCR and western blot were performed to determined the levels of circ_0000011, miR-27a-3p and NRIP1. Dual-luciferase reporter assay and RNA pull-down assay were utilized to analyze the targeting relation of circ_0000011, miR-27a-3p and NRIP1. RESULTS OGD/R treatment inhibited HT-22 cell viability and promoted LDH release, cell apoptosis and inflammation. Circ_0000011 level was increased in OGD/R-induced HT-22 cells. Silencing of circ_0000011 promoted cell proliferation and inhibited LDH release, apoptosis and inflammation in OGD/R-treated HT-22 cells. For mechanism analysis, circ_0000011 was demonstrated to sponge miR-27a-3p, which directly targeted NRIP1. MiR-27a-3p inhibition or NRIP1 overexpression ameliorated the impacts of circ_0000011 silencing on cell proliferation, LDH release, apoptosis and inflammation in OGD/R-treated HT-22 cells. CONCLUSIONS Circ_0000011 promotes OGD/R-induced HT-22 cell impairments by elevating NRIP1 through sponging miR-27a-3p.
Collapse
Affiliation(s)
- Xiaolin Ren
- Department of neurological function, the First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Xinyu Zhou
- Department of Neurology, the First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China.
- Department of Neurology, the Affiliated Lianyungang Hospital of Xuzhou Medical University, No. 182, Tongguan North Road, Haizhou District, Lianyungang City, Jiangsu, China.
| |
Collapse
|
23
|
Wei Y, Chang L, Zhou X. Can Exosomes Derived from Bone Marrow-Derived Stem Cells Help Heal Intestinal Ischemia/Reperfusion Injury? Dig Dis Sci 2022; 67:4971-4973. [PMID: 35624330 DOI: 10.1007/s10620-022-07552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 01/05/2023]
Affiliation(s)
- Yan Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Xiangyu Zhou
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
24
|
Li X, Cheng Z, Chen X, Yang D, Li H, Deng Y. Purpurogallin improves neurological functions of cerebral ischemia and reperfusion mice by inhibiting endoplasmic reticulum stress and neuroinflammation. Int Immunopharmacol 2022; 111:109057. [PMID: 35964408 DOI: 10.1016/j.intimp.2022.109057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Purpurogallin (PPG) has been testified to have neuroprotective effects. This study intends to probe the neuroprotection of PPG on cerebral ischemia/reperfusion (I/R) injury and its potential mechanism. METHODS C57/B6 mice, BV2 microglia and HT22 hippocampal neurons were used for in-vivo and in-vitro experiments. I/R injury models were constructed using middle cerebral artery occlusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R), respectively. The expression of apoptosis and inflammatory proteins, and endoplasmic reticulum (ER) stress proteins were gauged by Western blotting (WB). The contents of inflammatory cytokines in OGD/R-induced BV2 microglia were testified by enzyme-linked immunosorbent assay (ELISA). Cell counting kit-8 (CCK-8), TUNEL assay and flow cytometry (FCM) were utilized to examine the viability and apoptosis of cells. The neurological, learning and memory functions were evaluated by the modified neurological severity score (mNSS) and water maze experiment. 2, 3, 5-triphenyltetrazole chloride (TTC) staining was utilized to calculate the volume of cerebral infarction and cerebral edema in the peri-infarct area. Apoptosis-related proteins, inflammation-related proteins and ER stress proteins were gauged by WB. ELISA was conducted to verify inflammatory cytokines. RESULTS PPG treatment notably abated the expression of ER stress proteins and inflammatory factors in OGD/R-induced BV2 microglia and boosted HT22 neuron's viability and eased their apoptosis in comparison to the control group. In vivo, PPG treatment signally lessened cerebral infarct area, cerebral edema, and neurological deficit scores in MCAO/R mice. Additionally, PPG caused a dramatic decline in neuronal apoptosis and levels of ER stress proteins and inflammatory factors in the brain's peri-infarct region of MCAO/R mice. Mechanically, PPG blocked the TLR4/NF-κB pathway in OGD/R-induced BV2, HT22 neurons, and the MCAO/R mice. CONCLUSION PPG attenuates brain I/R damage probably by suppressing ER stress and neuroinflammation via inactivation of the TLR4/NF-κB pathway, suggesting that PPG may be a candidate drug for treating cerebral I/R injury.
Collapse
Affiliation(s)
- Xinming Li
- Department of Neurology, The First Hospital of Nanchang, Nanchang, Jiangxi 330006, China.
| | - Zongxin Cheng
- Department of Neurology, The First Hospital of Nanchang, Nanchang, Jiangxi 330006, China
| | - Xiaohong Chen
- Department of Neurology, The First Hospital of Nanchang, Nanchang, Jiangxi 330006, China
| | - Dejiang Yang
- Department of Neurology, The First Hospital of Nanchang, Nanchang, Jiangxi 330006, China
| | - Huanhuan Li
- Department of Neurology, The First Hospital of Nanchang, Nanchang, Jiangxi 330006, China
| | - Youqing Deng
- Department of Neurology, The First Hospital of Nanchang, Nanchang, Jiangxi 330006, China
| |
Collapse
|
25
|
Wang F, Gu L, Wang Y, Sun D, Zhao Y, Meng Q, Yin L, Xu L, Lu X, Peng J, Lin Y, Sun P. MicroRNA-122a aggravates intestinal ischemia/reperfusion injury by promoting pyroptosis via targeting EGFR-NLRP3 signaling pathway. Life Sci 2022; 307:120863. [DOI: 10.1016/j.lfs.2022.120863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022]
|
26
|
Li J, Wu J, Huang J, Cheng Y, Wang D, Liu Z. Uncovering the Effect and Mechanism of Rhizoma Corydalis on Myocardial Infarction Through an Integrated Network Pharmacology Approach and Experimental Verification. Front Pharmacol 2022; 13:927488. [PMID: 35935870 PMCID: PMC9355031 DOI: 10.3389/fphar.2022.927488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Myocardial infarction (MI), characterized by reduced blood flow to the heart, is a coronary artery disorder with the highest morbidity and mortality among cardiovascular diseases. Consequently, there is an urgent need to identify effective drugs to treat MI. Rhizoma Corydalis (RC) is the dry tuber of Corydalis yanhusuo W.T. Wang, and is extensively applied in treating MI clinically in China. Its underlying pharmacological mechanism remains unknown. This study aims to clarify the molecular mechanism of RC on MI by utilizing network pharmacology and experimental verification. Methods: Based on network pharmacology, the potential targets of the RC ingredients and MI-related targets were collected from the databases. Furthermore, core targets of RC on MI were identified by the protein-protein interaction (PPI) network and analyzed with Gene Ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Molecular docking was used to validate the binding affinity between the core targets and the bioactive components. Oxygen-glucose deprivation (OGD) was performed on H9c2 cells to mimic MI in vitro. A Cell Counting Kit-8 assay was used to assess the cardioprotective effect of the active ingredient against OGD. Western blot analysis and RT-qPCR were used to measure the cell apoptosis and inflammation level of H9c2 cells. Results: The network pharmacology obtained 60 bioactive components of RC, 431 potential targets, and 1131 MI-related targets. In total, 126 core targets were screened according to topological analysis. KEGG results showed that RC was closely related to the phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (PKB, also called Akt) signaling pathway. The experimental validation data showed that tetrahydropalmatine (THP) pretreatment preserved cell viability after OGD exposure. THP suppressed cardiomyocyte apoptosis and inflammation induced by OGD, while LY294002 blocked the inhibition effect of THP on OGD-induced H9c2 cell injury. Moreover, the molecular docking results indicated that THP had the strongest binding affinity with Akt over berberine, coptisine, palmatine, and quercetin. Conclusion: THP, the active ingredient of RC, can suppress OGD-induced H9c2 cell injury by activating the PI3K/Akt pathway, which in turn provides a scientific basis for a novel strategy for MI therapy and RC application.
Collapse
Affiliation(s)
- Jingyan Li
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research International, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junxuan Wu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research International, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
- Shunde Hospital of Guangzhou University of Translational Chinese Medicine, Foshan, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Junying Huang
- College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yuanyuan Cheng
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research International, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dawei Wang
- Shunde Hospital of Guangzhou University of Translational Chinese Medicine, Foshan, China
- *Correspondence: Dawei Wang, ; Zhongqiu Liu,
| | - Zhongqiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research International, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Dawei Wang, ; Zhongqiu Liu,
| |
Collapse
|
27
|
Shang J, Li Q, Jiang T, Bi L, Lu Y, Jiao J, Song Q, Yan M, Shabuerjiang L, Wang J, Liu X. Systems pharmacology, proteomics and in vivo studies identification of mechanisms of cerebral ischemia injury amelioration by Huanglian Jiedu Decoction. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115244. [PMID: 35378193 DOI: 10.1016/j.jep.2022.115244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/17/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huanglian Jiedu Decoction (HLJDD) has the effect of clearing heat and detoxifying, and has been considered as an effective prescription for cerebral ischemia (CI) for thousands of years in traditional Chinese medicine (TCM). It can improve the quality of life of patients with ischemic stroke, but its pharmacological mechanism remains unclear. AIM OF THE STUDY The study aimed to explore the pharmacological action and potential mechanism of HLJDD against CI by systems pharmacology, proteomics and in vivo experiments. MATERIALS AND METHODS In this study, databases such as TCMIP V2.0 and Genecards were used to predict compounds, targets and CI related targets, and network topology criteria of protein-protein interaction (PPI) network was used to screen core targets. The Database for Annotation, Visualization and Integrated Discovery database (DAVID) was used to discover biological processes and pathways. In addition, molecular docking was performed between the screened core biological active compounds and targets to verify the binding activity. Finally, proteomics and Western blot were performed on cerebral cortex tissues of middle cerebral artery occlusion (MCAO) model rats with HLJDD intervention to further verify the predicted results. RESULTS 77 compounds and 308 targets of HLJDD were identified, 54 of which were predicted to be associated with cerebral ischemia. PPI network and enrichment results showed that 8 targets, including AKT1, PTGS2 and TLR4, were core targets of HLJDD in CI. And 19 signaling pathways, including Rap1 signaling pathway, cAMP signaling pathway and arachidonic acid metabolism, were identified as key pathways to the therapeutic activity of HLJDD in CI. Combined with proteomics studies, we identified that Rap1 signaling pathway and upstream and downstream targets were the key mechanisms. Molecular biology experiments showed that RAP1A and AKT expression levels were significantly up-regulated in middle cerebral artery occlusion (MCAO) rats treated with HLJDD (P < 0.0001), GRIN1 expression level was significantly down-regulated (P < 0.0001). However, ACTB expression level was slightly down-regulated (P > 0.05), which may be related to the biological function. CONCLUSION This study confirms the pharmacological effect of HLJDD on cerebral ischemia. These results indicate that HLJDD mediates various pathways such as inhibition of apoptosis, regulation of oxygen balance, inhibition of excitatory toxicity and maintenance of basic cell functions to improve CI by regulating Rap1 signaling pathway.
Collapse
Affiliation(s)
- Jinfeng Shang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Qiannan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Tingyue Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Lei Bi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Yinghui Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Jiakang Jiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Qi Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Mingxue Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Lizha Shabuerjiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Jingyi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Xin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China.
| |
Collapse
|
28
|
Li C, Jiang S, Wang H, Wang Y, Han Y, Jiang J. Berberine exerts protective effects on cardiac senescence by regulating the Klotho/SIRT1 signaling pathway. Biomed Pharmacother 2022; 151:113097. [PMID: 35609366 DOI: 10.1016/j.biopha.2022.113097] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 11/15/2022] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid, exerts protective effects on various cardiac injuries, and also extends the lifespan of individuals. However, the cardioprotective effect of BBR on cardiac senescence remains unknown. This study investigated the effects of BBR on cardiac senescence and its underlying mechanism. Senescent H9c2 cells induced by doxorubicin (DOX) and naturally aged rats were used to evaluate the protective effects of BBR on cardiac senescence. The results showed that BBR protected H9c2 cells against DOX-induced senescence. Exogenous Klotho (KL) exerts similar effects to those of BBR. BBR significantly increased in protein expression of KL, while transfection with KL-specific siRNA (siKL) inhibited the protective effect of BBR against senescence. Both BBR and exogenous KL decreased the levels of reactive oxygen species, inhibited apoptosis, and alleviated mitochondrial dysfunction in these cells; and transfection with siKL attenuated these effects of BBR. In naturally aged rats, BBR indeed protected the animals from cardiac aging, at least partially, through lowering the levels of cardiac hypertrophy markers, and increased the expression of KL in cardiac tissue. Additionally, BBR markedly reversed downregulation of sirtuin1 (SIRTI) in the aged heart. In vitro experiments revealed that BBR and exogenous KL also increased the expression of SIRT1, whereas siKL limited this effect of BBR in senescent H9c2 cell. In summary, BBR upregulated KL expression and prevented heart from cardiac senescence through anti-oxidative and anti-apoptotic effects, as well as alleviation of mitochondrial dysfunction. These effects may be mediated via regulation of the Klotho/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Cong Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, 100050 Beijing, China
| | - Shuang Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, 100050 Beijing, China
| | - Hengfei Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, 100050 Beijing, China
| | - Yuhong Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, 100050 Beijing, China.
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, 100050 Beijing, China.
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, 100050 Beijing, China.
| |
Collapse
|
29
|
Shang Y, Zhang Z, Tian J, Li X. Anti-Inflammatory Effects of Natural Products on Cerebral Ischemia. Front Pharmacol 2022; 13:914630. [PMID: 35795571 PMCID: PMC9251309 DOI: 10.3389/fphar.2022.914630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral ischemia with high mortality and morbidity still requires the effectiveness of medical treatments. A growing number of investigations have shown strong links between inflammation and cerebral ischemia. Natural medicine’s treatment methods of cerebral ischemic illness have amassed a wealth of treatment experience and theoretical knowledge. This review summarized recent progress on the disease inflammatory pathways as well as 26 representative natural products that have been routinely utilized to treat cerebral ischemic injury. These natural products have exerted anti-inflammatory effects in cerebral ischemia based on their inflammatory mechanisms, including their inflammatory gene expression patterns and their related different cell types, and the roles of inflammatory mediators in ischemic injury. Overall, the combination of the potential therapeutic interventions of natural products with the inflammatory mechanisms will make them be applicable for cerebral ischemic patients in the future.
Collapse
|
30
|
Wang Z, Chen P, Guo M, Yang X, Song W, Huang F. Physicochemical Characterization of Berberine-loaded Pluronic F127 Polymeric Micelles and In Vivo Evaluation of Hypoglycemic Effect. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09658-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Wang A, Zhao W, Yan K, Huang P, Zhang H, Zhang Z, Zhang D, Ma X. Mechanisms and Efficacy of Traditional Chinese Medicine in Heart Failure. Front Pharmacol 2022; 13:810587. [PMID: 35281941 PMCID: PMC8908244 DOI: 10.3389/fphar.2022.810587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is one of the main public health problems at present. Although some breakthroughs have been made in the treatment of HF, the mortality rate remains very high. However, we should also pay attention to improving the quality of life of patients with HF. Traditional Chinese medicine (TCM) has a long history of being used to treat HF. To demonstrate the clinical effects and mechanisms of TCM, we searched published clinical trial studies and basic studies. The search results showed that adjuvant therapy with TCM might benefit patients with HF, and its mechanism may be related to microvascular circulation, myocardial energy metabolism, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Anzhu Wang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Zhao
- Yidu Central Hospital of Weifang, Weifang, China
| | - Kaituo Yan
- Yidu Central Hospital of Weifang, Weifang, China
| | - Pingping Huang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongwei Zhang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhibo Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dawu Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
32
|
An N, Zhang G, Li Y, Yuan C, Yang F, Zhang L, Gao Y, Xing Y. Promising Antioxidative Effect of Berberine in Cardiovascular Diseases. Front Pharmacol 2022; 13:865353. [PMID: 35321323 PMCID: PMC8936808 DOI: 10.3389/fphar.2022.865353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Berberine (BBR), an important quaternary benzylisoquinoline alkaloid, has been used in Chinese traditional medicine for over 3,000 years. BBR has been shown in both traditional and modern medicine to have a wide range of pharmacological actions, including hypoglycemic, hypolipidemic, anti-obesity, hepatoprotective, anti-inflammatory, and antioxidant activities. The unregulated reaction chain induced by oxidative stress as a crucial mechanism result in myocardial damage, which is involved in the pathogenesis and progression of many cardiovascular diseases (CVDs). Numerous researches have established that BBR protects myocardium and may be beneficial in the treatment of CVDs. Given that the pivotal role of oxidative stress in CVDs, the pharmacological effects of BBR in the treatment and/or management of CVDs have strongly attracted the attention of scholars. Therefore, this review sums up the prevention and treatment mechanisms of BBR in CVDs from in vitro, in vivo, and finally to the clinical field trials timely. We summarized the antioxidant stress of BBR in the management of coronary atherosclerosis and myocardial ischemia/reperfusion; it also analyzes the pathogenesis of oxidative stress in arrhythmia and heart failure and the therapeutic effects of BBR. In short, BBR is a hopeful drug candidate for the treatment of CVDs, which can intervene in the process of CVDs from multiple angles and different aspects. Therefore, if we want to apply it to the clinic on a large scale, more comprehensive, intensive, and detailed researches are needed to be carried out to clarify the molecular mechanism and targets of BBR.
Collapse
Affiliation(s)
- Na An
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guoxia Zhang
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yingjian Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chao Yuan
- Dezhou Second People’s Hospital, Dezhou, China
| | - Fan Yang
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Lijing Zhang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanwei Xing
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
33
|
Shen J, Zhan Y, He Q, Deng Q, Li K, Wen S, Huang W. Remifentanil Promotes PDIA3 Expression by Activating p38MAPK to Inhibit Intestinal Ischemia/Reperfusion-Induced Oxidative and Endoplasmic Reticulum Stress. Front Cell Dev Biol 2022; 10:818513. [PMID: 35155431 PMCID: PMC8826554 DOI: 10.3389/fcell.2022.818513] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Remifentanil protects against intestinal ischemia/reperfusion (I/R) injury; however, its exact mechanism remains to be elucidated. The objective of this study was to investigate the underlying molecular mechanism of remifentanil in intestinal I/R injury in mice.Methods: We evaluated the intestine-protective effect of remifentanil in adult male mice with 45 min superior mesenteric artery occlusion followed by 4 h reperfusion by determining the following: intestinal Chiu’s scores, diamine oxidase, and intestinal fatty acid binding protein in serum; the apoptotic index, lipid peroxidation product malondialdehyde (MDA), and superoxide dismutase (SOD) activity in the intestinal mucosa; and the intestinal mRNA and protein expressions of Bip, CHOP, caspase-12, and cleaved caspase-3, reflecting endoplasmic reticulum (ER) stress. Furthermore, conditional knockout mice, in which the protein disulfide isomerase A3 (PDIA3) gene was deleted from the intestinal epithelium, and SB203580 (a selective p38MAPK inhibitor) were used to determine the role of PDIA3 and p38MAPK in I/R progression and intestinal protection by remifentanil.Results: Our data showed that intestinal I/R induced obvious oxidative stress and endoplasmic reticulum stress–related cell apoptosis, as evidenced by an increase in the intestinal mucosal malondialdehyde, a decrease in the intestinal mucosal SOD, and an increase in the apoptotic index and the mRNA and protein expression of Bip, CHOP, caspase-12, and cleaved caspase-3. Remifentanil significantly improved these changes. Moreover, the deletion of intestinal epithelium PDIA3 blocked the protective effects of remifentanil. SB203580 also abolished the intestinal protection of remifentanil and downregulated the mRNA and protein expression of PDIA3.Conclusion: Remifentanil appears to act via p38MAPK to protect the small intestine from intestinal I/R injury by its PDIA3-mediated antioxidant and anti-ER stress properties.
Collapse
Affiliation(s)
| | | | | | | | | | - Shihong Wen
- *Correspondence: Shihong Wen, ; Wenqi Huang,
| | - Wenqi Huang
- *Correspondence: Shihong Wen, ; Wenqi Huang,
| |
Collapse
|
34
|
Xiao L, Zhang WH, Huang Y, Huang P. Intestinal ischemia‑reperfusion induces the release of IL‑17A to regulate cell inflammation, apoptosis and barrier damage. Exp Ther Med 2021; 23:158. [PMID: 35069839 PMCID: PMC8753980 DOI: 10.3892/etm.2021.11081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/16/2021] [Indexed: 12/01/2022] Open
Abstract
Intestinal ischemia-reperfusion (I/R) injury promotes the release of IL-17A, and previous studies have indicated that TGF-β activated kinase 1 (TAK1) is an important signaling molecule in the regulatory function of IL-17A. The present study aimed to explore the potential effects of IL-17A release in intestinal I/R injury, and to investigate the underlying regulatory mechanisms. Initially, the expression levels of TAK1 and JNK in a hypoxia/reoxygenation model were determined, and the effects of TAK1-knockdown on JNK phosphorylation and the viability, inflammation, apoptosis and barrier function of Caco-2 cells were assessed using Cell Counting Kit-8, reverse transcription-quantitative PCR, TUNEL and transepithelial electrical resistance assays, respectively. Subsequently, an antibody targeting IL-17A was used, and the effects of the IL-17A antibody on the expression levels of TAK1 as well as cell viability, inflammation, apoptosis and barrier function were determined. The results of the present study demonstrated that TAK1-knockdown markedly reduced JNK phosphorylation and improved the levels of cell viability, inflammation, apoptosis and barrier function via the MAPK signaling pathway. In addition, treatment with the IL-17A antibody inhibited the expression of TAK1, and reversed the aforementioned effects of TAK1 on Caco-2 cells. In conclusion, intestinal I/R induces the release of IL-17A to regulate cell viability, inflammation, apoptosis and barrier damage via the TAK1/MAPK signaling pathway.
Collapse
Affiliation(s)
- Li Xiao
- Department of Pediatrics, South Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Wan-Hua Zhang
- Department of Pediatrics, South Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Yin Huang
- Department of Pediatrics, South Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Peng Huang
- Department of Pediatrics, South Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| |
Collapse
|
35
|
Raghu SV, Kudva AK, Rao S, Prasad K, Mudgal J, Baliga MS. Dietary agents in mitigating chemotherapy-related cognitive impairment (chemobrain or chemofog): first review addressing the benefits, gaps, challenges and ways forward. Food Funct 2021; 12:11132-11153. [PMID: 34704580 DOI: 10.1039/d1fo02391h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemobrain or chemofog is one of the important but less investigated side effects, where the cancer survivors treated with chemotherapy develop long-term cognitive impairments, affecting their quality of life. The biological mechanisms triggering the development of chemobrain are largely unknown. However, a literature study suggests the generation of free radicals, oxidative stress, inflammatory cytokines, epigenetic chromatin remodeling, decreased neurogenesis, secretion of brain-derived neurotropic factor (BDNF), dendritic branching, and neurotransmitter release to be the cumulative contributions to the ailment. Unfortunately, there is no means to prevent/mitigate the development and intensity of chemobrain. Given the lack of effective prevention strategies or treatments, preclinical studies have been underway to ascertain the usefulness of natural products in mitigating chemobrain in the recent past. Natural products used in diets have been shown to provide beneficial effects by inhibition of free radicals, oxidative stress, inflammatory processes, and/or concomitant upregulation of various cell survival proteins. For the first time, this review focuses on the published effects of astaxanthin, omega-3 fatty acids, ginsenoside, cotinine, resveratrol, polydatin, catechin, rutin, naringin, curcumin, dehydrozingerone, berberine, C-phycocyanin, the higher fungi Cordyceps militaris, thyme (Thymus vulgaris) and polyherbal formulation Mulmina™ in mitigating cognitive impairments in preclinical models of study, and also addresses their potential neuro-therapeutic mechanisms and applications in preventing/ameliorating chemobrain.
Collapse
Affiliation(s)
- Shamprasad Varija Raghu
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangotri, Karnataka 574199, India
| | - Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangotri, Karnataka 574199, India
| | - Suresh Rao
- Radiation Oncology, Mangalore Institute of Oncology, Mangalore, Karnataka 575002, India
| | - Krishna Prasad
- Medical Oncology, Mangalore Institute of Oncology, Mangalore, Karnataka 575002, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | | |
Collapse
|
36
|
Inhibitory effect of berberine hydrochloride against Candida albicans and the role of the HOG-MAPK pathway. J Antibiot (Tokyo) 2021; 74:807-816. [PMID: 34408288 DOI: 10.1038/s41429-021-00463-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/23/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
Berberine hydrochloride (BH), an active component of Coptis chinensis and other plant taxa, has broad antimicrobial activity and may be useful for the treatment of Candida infections. In this study, the mechanisms underlying the inhibitory effect of BH against Candida albicans were evaluated, with a focus on the high-osmolarity glycerol mitogen-activated protein kinase (HOG-MAPK) pathway, which regulates multiple physiological functions. BH (256 and 64 μg ml-1) significantly increased intracellular glycerol and ROS levels in C. albicans, inhibited germ tube and hyphal formation, and increased chitin and β-1,3-glucan exposure on the cell wall. The inhibitory effect of BH was positively correlated with its concentration, and the inhibitory effect of 256 μg ml-1 BH was greater than that of 4 μg ml-1 fluconazole (FLC). Furthermore, RT-PCR analysis showed that 256 and 64 μg ml-1 BH altered the HOG-MAPK pathway in C. albicans. In particular, the upregulation of the core genes, SLN1, SSK2, HOG1, and PBS2 may affect the expression of key downstream factors related to glycerol synthesis and osmotic pressure (GPD1), ROS accumulation (ATP11 and SOD2), germ tube and hyphal formation (HWP1), and cell wall integrity (CHS3 and GSC1). BH affects multiple biological processes in C. albicans; thus, it can be an effective alternative to conventional azole antifungal agents.
Collapse
|
37
|
Zhao Y, Li Z, Lu E, Sheng Q, Zhao Y. Berberine exerts neuroprotective activities against cerebral ischemia/reperfusion injury through up-regulating PPAR-γ to suppress NF-κB-mediated pyroptosis. Brain Res Bull 2021; 177:22-30. [PMID: 34517069 DOI: 10.1016/j.brainresbull.2021.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Berberine (BBR) is an anti-inflammatory alkaloid compound extracted from herbs. The purpose of this study is to probe the possible effect and the mechanism of BBR against cerebral ischemia/reperfusion (I/R) injury. METHODS In vitro oxygen and glucose deprivation (OGD) model was established on neurons from rat hippocampus, which was then subjected to BBR, IVA337 (PPAR-γ agonist), or GW9662 (PPAR-γ antagonist) treatment, to identify their effects on neuronal pyroptosis. MTT assay was utilized to determine cell survival rates, TUNEL staining for observation of β-tubulin and MAP2 expressions, qRT-PCR for detection of mRNA expression of PPAR-γ, Western blot for assessment of protein expressions of PPAR-γ and pyroptosis-related proteins (AIM2, NLPR3, ASC, cleaved-Caspase-1, GSDMD, and GSDMD-N), and ELISA for examination of IL-18 and IL-1β expressions. RESULTS OGD modeling induced neuron pyroptosis, as evidenced by increased expression levels of pyroptosis-related proteins as well as IL-1β and IL-18, and elevated cell apoptosis rate. In addition, OGD exposure led to PPAR-γ up-regulation and NF-κB activation. Overexpression of PPAR-γ ameliorated cell pyroptosis, while knockdown of PPAR-γ intensified neuron pyroptosis that could be reversed by BBR. Furthermore, either BBR could block the activation of NF-κB signaling pathway through PPAR-γ. CONCLUSION BBR protects rats from cerebral I/R injury by up-regulating PPAR-γ to restrain NF-κB-mediated pyroptosis.
Collapse
Affiliation(s)
- Yingnan Zhao
- Department of Neurology (Six), The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Zengkun Li
- Department of Neurology, Harbin First Hospital, Harbin, Heilongjiang 150001, PR China
| | - Enrong Lu
- Department of Neurology (Six), The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Qi Sheng
- Department of Neurology, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong 518000, PR China
| | - Yu Zhao
- Department of Neurology (Six), The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China.
| |
Collapse
|
38
|
Kojima K, Ichijo H, Naguro I. Molecular functions of ASK family in diseases caused by stress-induced inflammation and apoptosis. J Biochem 2021; 169:395-407. [PMID: 33377973 DOI: 10.1093/jb/mvaa145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
VCells are constantly exposed to various types of stress, and disruption of the proper response leads to a variety of diseases. Among them, inflammation and apoptosis are important examples of critical responses and should be tightly regulated, as inappropriate control of these responses is detrimental to the organism. In several disease states, these responses are abnormally regulated, with adverse effects. Apoptosis signal-regulating kinase (ASK) family members are stress-responsive kinases that regulate inflammation and apoptosis after a variety of stimuli, such as oxidative stress and endoplasmic reticulum stress. In this review, we summarize recent reports on the ASK family in terms of their involvement in inflammatory diseases, focussing on upstream stimuli that regulate ASK family members.
Collapse
Affiliation(s)
- Kazuki Kojima
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
39
|
Wu Y, Chen Q, Wen B, Wu N, He B, Chen J. Berberine Reduces Aβ 42 Deposition and Tau Hyperphosphorylation via Ameliorating Endoplasmic Reticulum Stress. Front Pharmacol 2021; 12:640758. [PMID: 34349640 PMCID: PMC8327086 DOI: 10.3389/fphar.2021.640758] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is tightly related to endoplasmic reticulum stress (ER stress), which aggravates two dominant pathological manifestations of AD: senile plaques and neurofibrillary tangles. Berberine is widely applied in the clinical treatment of many diseases and is reported to have anti-AD effects. In the present study, berberine was shown to ameliorate ER stress and cognitive impairment in APP/PS1 mice. We found ER stress plays a role as a central hub for signal transduction, which was evidenced by the hyperactivation of glycogen synthase kinase 3β (GSK3β) to phosphorylate tau and the activation of PRKR-like endoplasmic reticulum kinase (PERK) subsequently to phosphorylate eukaryotic translation initiation factor-2 α (eIF2α). Also, eIF2α has regulated the expression of beta-site APP cleaving enzyme-1 (BACE1), which cleaves APP into pro-oligomerized amyloid beta 42 (Aβ42), the main component of senile plaques, proven by using siRNA targeting at eIF2α. Mechanically, berberine can reduce GSK3β activity, contributing to the downregulation of tau phosphorylation. Berberine also suppressed Aβ42 production via inhibiting the PERK/eIF2α/BACE1 signaling pathway. Taken together, these findings indicated that berberine had the potential to ameliorate two major pathological manifestations of AD mainly by suppressing ER stress. Our work provided knowledge on the pharmacological intervention of AD and the possible targets for future drug development.
Collapse
Affiliation(s)
- Yue Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Bing Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ninghua Wu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China.,Basic Medical College, Hubei University of Science and Technology, Xianning, China
| | - Benhong He
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Zhao L, Li H, Gao Q, Xu J, Zhu Y, Zhai M, Zhang P, Shen N, Di Y, Wang J, Chen T, Huang M, Sun J, Liu C. Berberine Attenuates Cerebral Ischemia-Reperfusion Injury Induced Neuronal Apoptosis by Down-Regulating the CNPY2 Signaling Pathway. Front Pharmacol 2021; 12:609693. [PMID: 33995012 PMCID: PMC8113774 DOI: 10.3389/fphar.2021.609693] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/31/2021] [Indexed: 12/15/2022] Open
Abstract
Berberine (BBR) has a neuroprotective effect against ischemic stroke, but its specific protective mechanism has not been clearly elaborated. This study explored the effect of BBR on the canopy FGF signaling regulator 2 (CNPY2) signaling pathway in the ischemic penumbra of rats. The model of cerebral ischemia-reperfusion injury (CIRI) was established by the thread embolization method, and BBR was gastrically perfused for 48 h or 24 h before operation and 6 h after operation. The rats were randomly divided into four groups: the Sham group, BBR group, CIRI group, and CIRI + BBR group. After 2 h of ischemia, followed by 24 h of reperfusion, we confirmed the neurologic dysfunction and apoptosis induced by CIRI in rats (p < 0.05). In the ischemic penumbra, the expression levels of CNPY2-regulated endoplasmic reticulum stress-induced apoptosis proteins (CNPY2, glucose-regulated protein 78 (GRP78), double-stranded RNA-activated protein kinase-like ER kinase (PERK), C/EBP homologous protein (CHOP), and Caspase-3) were significantly increased, but these levels were decreased after BBR treatment (p < 0.05). To further verify the inhibitory effect of BBR on CIRI-induced neuronal apoptosis, we added an endoplasmic reticulum-specific agonist and a PERK inhibitor to the treatment. BBR was shown to significantly inhibit the expression of apoptotic proteins induced by endoplasmic reticulum stress agonist, while the PERK inhibitor partially reversed the ability of BBR to inhibit apoptotic protein (p < 0.05). These results confirm that berberine may inhibit CIRI-induced neuronal apoptosis by downregulating the CNPY2 signaling pathway, thereby exerting a neuroprotective effect.
Collapse
Affiliation(s)
- Lina Zhao
- Department of Anaesthesiology, Tianjin Hospital, Tianjin, China
| | - Huanming Li
- Department of Cardiology, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, China
| | - Qian Gao
- Department of Emergency Medicine, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, Tianjin, China
| | - Jin Xu
- Department of Anaesthesiology, Tianjin Hospital, Tianjin, China
| | - Yongjie Zhu
- Department of Pathology, First People's Hospital of Aksu, Xinjiang, China
| | - Meili Zhai
- Department of Anaesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin, China
| | - Peijun Zhang
- Department of Anaesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin, China
| | - Na Shen
- Department of Central Laboratory, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, Tianjin, China
| | - Yanbo Di
- Department of Central Laboratory, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, Tianjin, China
| | - Jinhui Wang
- Department of Anaesthesiology, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, China
| | - Tie Chen
- Department of Anaesthesiology, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, China
| | - Meina Huang
- Department of Anaesthesiology, Wuqing People's Hospital, Tianjin, China
| | - Jinglai Sun
- Department of Biomedical Engineering, Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, China
| | - Chong Liu
- Department of Central Laboratory, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, Tianjin, China.,Department of Anaesthesiology, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, China
| |
Collapse
|
41
|
Jagetia GC. Anticancer Potential of Natural Isoquinoline Alkaloid Berberine. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2021; 000:000-000. [DOI: 10.14218/jerp.2021.00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Adverse Effects of Heat Stress on the Intestinal Integrity and Function of Pigs and the Mitigation Capacity of Dietary Antioxidants: A Review. Animals (Basel) 2021; 11:ani11041135. [PMID: 33921090 PMCID: PMC8071411 DOI: 10.3390/ani11041135] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
Heat stress (HS) significantly affects the performance of pigs by its induced stressors such as inflammation, hypoxia and oxidative stress (OS), which mightily strain the intestinal integrity and function of pigs. As heat stress progresses, several mechanisms in the intestinal epithelium involved in the absorption of nutrients and its protective functions are altered. Changes in these mechanisms are mainly driven by cellular oxidative stress, which promotes disruption of intestinal homeostasis, leading to intestinal permeability, emphasizing intestinal histology and morphology with little possibility of recovering even after exposure to HS. Identification and understanding of these altered mechanisms are crucial for providing appropriate intervention strategies. Therefore, it is this papers' objective to review the important components for intestinal integrity that are negatively affected by HS and its induced stressors. With due consideration to the amelioration of such effects through nutritional intervention, this work will also look into the capability of dietary antioxidants in mitigating such adverse effects and maintaining the intestine's integrity and function upon the pigs' exposure to high environmental temperature.
Collapse
|
43
|
Zhou YQ, Mei W, Tian XB, Tian YK, Liu DQ, Ye DW. The therapeutic potential of Nrf2 inducers in chronic pain: Evidence from preclinical studies. Pharmacol Ther 2021; 225:107846. [PMID: 33819559 DOI: 10.1016/j.pharmthera.2021.107846] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Chronic pain remains an enormous health problem affecting approximatively 30% of the world's population. Opioids as the first line analgesics often leads to undesirable side effects when used long term. Therefore, novel therapeutic targets are urgently needed to the development of more efficacious analgesics. Substantial evidence indicates that excessive reactive oxygen species (ROS) are extremely important to the development of chronic pain. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master transcription factor regulating endogenous antioxidant defense. Emerging evidence suggests that Nrf2 and its downstream effectors are implicated in chronic inflammatory and neuropathic pain. Notably, controversial results have been reported regarding the expression of Nrf2 and its downstream targets in peripheral and central regions involved in pain transmission. However, our recent studies and results from other laboratories demonstrate that Nrf2 inducers exert potent analgesic effects in various murine models of chronic pain. In this review, we summarized and discussed the preclinical evidence demonstrating the therapeutic potential of Nrf2 inducers in chronic pain. These evidence indicates that Nrf2 activation are beneficial in chronic pain mostly by alleviating ROS-associated pathological processes. Overall, Nrf2-based therapy for chronic pain is an area with great promise, but more research regarding its detailed mechanisms is warranted.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xue-Bi Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu-Ke Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Da-Wei Ye
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University; Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
44
|
Shakeri A, Ghanbari M, Tasbandi A, Sahebkar A. Regulation of microRNA-21 expression by natural products in cancer. Phytother Res 2021; 35:3732-3746. [PMID: 33724576 DOI: 10.1002/ptr.7069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Abstract
Natural products have been of much interest in research studies owing to their wide pharmacological applications, chemical diversity, low side effects, and multitarget activities. Examples of these compounds include matrine, sulforaphane, silibinin, curcumin, berberin, resveratrol, and quercetin. Some of the present anticancer drugs, such as taxol, vincristine, vinblastine, and doxorubicin are also derived from natural products. The anti-carcinogenic effects of these products are partly mediated through modulation of microRNA-21 (miR-21) expression. To date, numerous downstream targets of miR-21 have been recognized, which include phosphatase and tensin homolog (PTEN), ras homolog gene family member B (RHOB), phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), programmed cell death 4 (PDCD4), signal transducer and activator of transcription (STAT)-3, and nuclear factor kappa B (NF-κB) pathways. These signaling pathways, their regulation by oncomiR-21 in cancer, and the modulating impact of natural products are the main focus of this review.
Collapse
Affiliation(s)
- Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aida Tasbandi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
45
|
Lyu J, Xie D, Bhatia TN, Leak RK, Hu X, Jiang X. Microglial/Macrophage polarization and function in brain injury and repair after stroke. CNS Neurosci Ther 2021; 27:515-527. [PMID: 33650313 PMCID: PMC8025652 DOI: 10.1111/cns.13620] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Stroke is a leading cause of disability and mortality, with limited treatment options. After stroke injury, microglia and CNS‐resident macrophages are rapidly activated and regulate neuropathological processes to steer the course of functional recovery. To accelerate this recovery, microglia can engulf dying cells and clear irreparably‐damaged tissues, thereby creating a microenvironment that is more suitable for the formation of new neural circuitry. In addition, monocyte‐derived macrophages cross the compromised blood‐brain barrier to infiltrate the injured brain. The specific functions of myeloid lineage cells in brain injury and repair are diverse and dependent on phenotypic polarization statuses. However, it remains to be determined to what degree the CNS‐invading macrophages occupy different functional niches from CNS‐resident microglia. In this review, we describe the physiological characteristics and functions of microglia in the developing and adult brain. We also review (a) the activation and phenotypic polarization of microglia and macrophages after stroke, (b) molecular mechanisms that control polarization status, and (c) the contribution of microglia to brain pathology versus repair. Finally, we summarize current breakthroughs in therapeutic strategies that calibrate microglia/macrophage responses after stroke. The present review summarizes recent advances in microglial research in relation to stroke with emphases on microglial/macrophage phenotypic polarization and function in brain injury and repair. It also reviews the physiological characteristics and functions of microglia in the developing and adult brain, and describes current breakthroughs in therapeutic strategies that calibrate microglia/macrophage responses after stroke.
![]()
Collapse
Affiliation(s)
- Junxuan Lyu
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Di Xie
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Xiaoming Hu
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Xiaoyan Jiang
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| |
Collapse
|
46
|
Xie P, Ren ZK, Lv J, Hu YM, Guan ZZ, Yu WF. Berberine Ameliorates Oxygen-glucose Deprivation/Reperfusion-induced Apoptosis by Inhibiting Endoplasmic Reticulum Stress and Autophagy in PC12 Cells. Curr Med Sci 2021; 40:1047-1056. [PMID: 33428132 DOI: 10.1007/s11596-020-2286-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
This study aimed to elucidate the molecular mechanisms by which berberine protects against cerebral ischemia/reperfusion (I/R) injury. The oxygen-glucose deprivation/reperfusion (OGD/R) PC12 model was established. Cell counting kit-8 (CCK-8) was used to detect the toxicity of berberine and the viability of PC12 cells. Hoechst 33258 staining and flow cytometry were used to observe the nuclear morphology, and changes of apoptosis and reactive oxygen species (ROS), respectively. Western blotting and immunofluorescence assay were employed to detect autophagy-related proteins [microtubule-associated protein 1A/1B-light chain 3 (LC3), P62/SQSTM-1, Beclin-1] and endoplasmic reticulum (ER) stress-related markers [glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), Bcl-2-associated X (Bax) and cleaved caspase-3]. The GFP-RFP-LC3 adenovirus was used to assay the change of autophagic flux. Our results showed that berberine could increase the viability of PC12 cells, decrease the concentrations of ROS after OGD/R treatment, and suppress OGD/R-induced ER stress and autophagy. Moreover, the results revealed the involvement of the mammalian target of rapamycin (mTOR) pathway in the induction of autophagy, and berberine could activate the phosphorylation of mTOR and thus mitigate autophagy. In conclusion, our study suggested that berberine may protect against OGD/R-induced apoptosis by regulating ER stress and autophagy, and it holds promises in the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Peng Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China.,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guiyang, 550004, China
| | - Zhen-Kui Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China.,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guiyang, 550004, China.,Department of Laboratory Medicine, the Second People's Hospital of Guizhou Province, Guiyang, 550002, China
| | - Ju Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China.,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guiyang, 550004, China
| | - Yu-Mei Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China.,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guiyang, 550004, China
| | - Zhi-Zhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guiyang, 550004, China.,Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Wen-Feng Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China. .,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guiyang, 550004, China.
| |
Collapse
|
47
|
Ren X, Wang Z, Guo C. MiR-195-5p Ameliorates Cerebral Ischemia-Reperfusion Injury by Regulating the PTEN-AKT Signaling Pathway. Neuropsychiatr Dis Treat 2021; 17:1231-1242. [PMID: 33958865 PMCID: PMC8093143 DOI: 10.2147/ndt.s297975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/07/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND MiR-195-5p has been shown to play crucial roles in tumor inhibition, but its biological functions in cerebral ischemia-reperfusion (I/R) injury are unclear. METHODS To mimic cerebral I/R injury, mice were induced by transient middle cerebral artery occlusion (MCAO). Human brain microvascular endothelial cells (HBMVECs) were treated with oxygen-glucose deprivation (OGD) to mimic I/R injury in vitro. The expression of miR-195-5p and PTEN was detected by qRT-PCR or Western blot. Cell viability was evaluated by CCK-8 assay. Cell apoptosis was detected by flow cytometer. Cell death was detected using specific lactate dehydrogenase (LDH) cytotoxicity kit. Infarct volume in mice brains was evaluated by TTC staining. Histopathological analysis was performed by HE staining and TUNEL staining. The interaction between miR-195-5p and PTEN was determined by TargetScan and luciferase reporter assay. RESULTS MiR-195-5p was significantly downregulated and PTEN was upregulated during cerebral I/R injury both in vitro and in vivo. Overexpression of miR-195-5p efficiently enhanced cell viability, while reduced LDH release and apoptotic rate of OGD-treated HBMVECs in vitro. MiR-195-5p could negatively regulate the expression of PTEN by directly binding to its 3'-UTR. Overexpression of PTEN obviously attenuated the protective effect of miR-195-5p mimics on cell viability, LDH release and apoptosis in OGD-treated HBMVECs. Meanwhile, overexpression of miR-195-5p increased the expression levels of p-AKT in OGD-treated HBMVECs, while this effect was reversed by overexpression of PTEN. Moreover, overexpression of miR-195-5p efficiently ameliorated brain injury of mice after MCAO treatment in vivo. CONCLUSION Overexpression of miR-195-5p ameliorated cerebral I/R injury by regulating the PTEN-AKT signaling pathway, providing a potential therapeutic target for cerebral I/R injury.
Collapse
Affiliation(s)
- Xiaoli Ren
- Department of Neurology, Tianjin First Central Hospital, Tianjin, 300192, People's Republic of China
| | - Zhiyun Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin, 300192, People's Republic of China
| | - Congfang Guo
- Department of Emergency, Tianjin First Central Hospital, Tianjin, 300192, People's Republic of China
| |
Collapse
|
48
|
Ding R, Wu W, Sun Z, Li Z. AMP-activated protein kinase: An attractive therapeutic target for ischemia-reperfusion injury. Eur J Pharmacol 2020; 888:173484. [DOI: 10.1016/j.ejphar.2020.173484] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/26/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
|
49
|
Wang Y, Chen Y, Zhang X, Lu Y, Chen H. New insights in intestinal oxidative stress damage and the health intervention effects of nutrients: A review. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104248] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
50
|
Effects and Mechanism of Berberine on the Dexamethasone-Induced Injury of Human Tendon Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8832218. [PMID: 33204294 PMCID: PMC7666623 DOI: 10.1155/2020/8832218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/10/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
Objective To investigate the effects of berberine (Berb) on dexamethasone- (Dex-) induced injury of human tendon cells and its potential mechanism. Methods CCK-8 assay was used to explore the appropriate concentration of Dex-induced injury of tendon cells and the doses of Berb attenuates Dex cytotoxicity; cell wound healing assay was used to detect the effects (P < 0.05) of Berb and Dex on the migration ability of tendon cells; flow cytometry was used to measure cell apoptosis; DCF DA fluorescent probe was used to measure the ROS activity of cells. Western blotting was used to detect the expression of phenotype related factors including smooth muscle actin α (SMA-α), type I collagen (Col I), col III, apoptosis-related factors, caspase-3, cleaved caspase-3, caspase-9, cleaved caspase-9, and PI3K/AKT. Results CCK-8 assay showed that 1-100 μM Dex significantly inhibited the proliferation of tendon cells in a concentration-dependent manner (P < 0.05), where the inhibitory effect of 100 μM Dex was most significant (P < 0.005), and the pretreatment of 150, 200 μM Berb could reverse those inhibitions (all P < 0.05). Compared with the control group, Dex significantly inhibited cell migration (P < 0.05), while Berb pretreatment could enhance cell migration (P < 0.05). Flow cytometry and ROS assay showed that Dex could induce apoptosis and oxidative stress response of tendon cells (all P < 0.05), while Berb could reverse those responses (P < 0.05). Western blot showed that Dex could inhibit the expression of the col I and III as well as α-SMA (all P < 0.05) and enhance the expression of apoptosis-related factors including cleaved caspase-3 and cleaved caspase-9 (all P < 0.05). Besides, Dex could also inhibit the activation of the PI3K/AKT signaling pathway (all P < 0.05), thus affecting cell function, while Berb treatment significantly reversed the expression of those above proteins (all P < 0.05). Conclusion Berb attenuated DEX induced reduction of proliferation and migration, oxidative stress, and apoptosis of tendon cells by activating the PI3K/AKT signaling pathway and regulated the expression of phenotype related biomarkers in tendon cells. However, further studies are still needed to clarify the protective effects of Berb in vivo.
Collapse
|