1
|
Yang MY, Qi D, Wang MY, Li DL, Li ZY, He YP, Liu K, Fan HY. Protopanaxadiol synergizes with glucocorticoids to enhance the therapeutic effect in adriamycin-induced nephrotic syndrome. J Steroid Biochem Mol Biol 2025; 245:106628. [PMID: 39448043 DOI: 10.1016/j.jsbmb.2024.106628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024]
Abstract
To date, glucocorticoids remain the mainstay of treatment of nephrotic syndrome (NS). However, serious side effects and development of drug-resistance following long-term use limit the application of glucocorticoids. Protopanaxadiol (PPD) possesses activity of dissociating transactivation from transrepression by glucocorticoid receptor (GR), which may serve as a potential selective GR modulator. However, steroid-like effects of PPD in vivo are unclear and not defined. How to translate PPD into clinical practice remains to be explored. The current study explored the renoprotection and potential mechanism of PPD and its combination with steroid hormones using adriamycin-induced NS rats. Adriamycin was given intravenously to rats to induce nephropathy. The determination of proteinuria, biochemical changes and inflammatory cytokines were performed, and pathological changes were examined by histopathological examination. Immunostaining and PCR were used to analyze the expression of interesting proteins and genes. The results showed that PPD, alone and in combination with prednisone, efficiently alleviate the symptoms of NS, attenuate nephropathy, improve adriamycin-induced podocyte injury by reducing desmin and increasing synaptopodin expression. In addition, the combined treatment reduced the expression of NF-κB protein and mRNA, as well as cytokine levels, and yet increased the expression of GR protein and mRNA. PPD modulated the transactivation of GR, manifested as repressing TAT, PEPCK and ANGPTL4 mRNA expressions mediated by GR. Meanwhile, PPD inhibited elevation of blood glucose and immune organ atrophy induced by prednisone. In summary, PPD increases the therapeutic effect of prednisone in NS while effectively prevents or decreases the appearance of side effects of glucocorticoids.
Collapse
Affiliation(s)
- Ming-Yan Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Dong Qi
- Department of Nephrology, Yu-Huang-Ding Hospital/Qingdao University, Yantai, Shandong 264000, PR China.
| | - Meng-Ying Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Da-Lei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Zhen-Yuan Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Ya-Ping He
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Ke Liu
- Shandong Boyuan Biomedical Co., Ltd, Yantai 264003, PR China
| | - Hua-Ying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
2
|
Li Z, Liu T, Xie W, Wang Z, Gong B, Yang M, He Y, Bai X, Liu K, Xie Z, Fan H. Protopanaxadiol derivative: A plant origin of novel selective glucocorticoid receptor modulator with anti-inflammatory effect. Eur J Pharmacol 2024; 983:176901. [PMID: 39181225 DOI: 10.1016/j.ejphar.2024.176901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/19/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
Constant efforts have been made to move towards maintaining the positive anti-inflammatory functions of glucocorticoids (GCs) while minimizing side effects. The anti-inflammatory effect of GCs is mainly attributed to the inhibition of major inflammatory pathways such as NF-κB through GR transrepression, while its side effects are mainly mediated by transactivation. Here, we investigated the selective glucocorticoid receptor modulator (SGRM)-like properties of a plant-derived compound. In this study, glucocorticoid receptor (GR)-mediated alleviation of inflammation by SP-8 was investigated by a combination of in vitro, in silico, and in vivo approaches. Molecular docking and cellular thermal shift assay suggested that SP-8 bound stably to the active site of GR via hydrogen bonding and hydrophobic interactions. SP-8 activated GR, induced GR nuclear translocation, and inhibited NF-κB pathway activation. Furthermore, SP-8 did not up-regulate the gene and protein expression of PEPCK and TAT in HepG2 cells, and it did not induce fat deposition like GC and has little effect on bone metabolism. Interestingly, SP-8 upregulated GR protein expression and did not cause GR phosphorylation at Ser211 in RAW264.7 cells. This work proved that SP-8 dissociated characteristics of transrepression and transactivation can be separated. In addition, the in vitro and in vivo anti-inflammatory effects of SP-8 were confirmed in LPS-induced RAW 264.7 cells and in a mouse model of DSS-induced ulcerative colitis, respectively. In conclusion, SP-8 might serve as a potential SGRM and might hold great potential for therapeutic use in inflammatory diseases.
Collapse
Affiliation(s)
- Zhenyuan Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, Shandong, PR China
| | - Teng Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, Shandong, PR China
| | - Wenbin Xie
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, Shandong, PR China
| | - Zhixia Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, Shandong, PR China
| | - Baifang Gong
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, Shandong, PR China
| | - Mingyan Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, Shandong, PR China
| | - Yaping He
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, Shandong, PR China
| | - Xinxin Bai
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, Shandong, PR China
| | - Ke Liu
- Shandong Boyuan Biomedical Co., Ltd, Yantai, 264003, PR China
| | - Zeping Xie
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China.
| | - Huaying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, Shandong, PR China.
| |
Collapse
|
3
|
Liang Y, Li Z, Zhang J, Li T, Lv C. Comparison of the Glucocorticoid Receptor Binding and Agonist Activities of Typical Glucocorticoids: Insights into Their Endocrine Disrupting Effects. Chem Biodivers 2024; 21:e202301525. [PMID: 38129310 DOI: 10.1002/cbdv.202301525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Over the past decades, the synthetic glucocorticoids (GCs) have been widely used in clinical practice and animal husbandry. Given the health hazard of these toxic residues in food, it is necessary to explore the detailed interaction mechanisms of typical GCs and their main target glucocorticoid receptor (GR). Hence, this work compared the GR binding and agonist activities of typical GCs. Fluorescence polarization assay showed that these GCs were potent ligands of GR. Their GR binding affinities were in the order of methylprednisolone>betamethasone≈prednisolone>dexamethasone, with IC50 values of 1.67, 2.94, 2.95, and 5.58 nM. Additionally, the limits of detection of dexamethasone, betamethasone, prednisolone, and methylprednisolone were 0.32, 0.14, 0.19, and 0.09 μg/kg in fluorescence polarization assay. Reporter gene assay showed that these GCs induced GR transactivation in a dose-dependent manner, confirming their GR agonist activities. Among which, dexamethasone at the concentration of 100 nM produced a maximal induction of more than 11-fold over the blank control. Molecular docking and molecular dynamics simulations suggested that hydrogen-bonding and hydrophobic interactions played an important role in stabilizing the GC-GR-LBD complexes. In summary, this work might help to understand the GR-mediated endocrine disrupting effects of typical GCs.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Zhuolin Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiezhu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Chengyu Lv
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| |
Collapse
|
4
|
Wei Y, Liu Y, Li G, Guo Y, Zhang B. Effects of quercetin and genistein on egg quality, lipid profiles, and immunity in laying hens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:207-214. [PMID: 37552763 DOI: 10.1002/jsfa.12910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND After the peak laying stage, laying hens become susceptible to lipid accumulation and inflammatory reactions. The objective of this experiment was to examine the impact of quercetin and genistein on egg quality and lipid profiles in laying hens. A total of 240 Hy-Line Brown hens were randomly assigned to three dietary treatments. Each treatment had eight replicates, with ten hens in each replicate, and the hens were aged between 46 and 56 weeks. The test diets consisted of a corn-soybean meal-based basal diet, a basal diet supplemented with 300 mg kg-1 quercetin, and a basal diet supplemented with 300 mg kg-1 quercetin and 40 mg kg-1 genistein. RESULTS Results showed that, separately, supplemental quercetin significantly improved egg quality (eggshell strength, albumen height, and Haugh unit, P < 0.05) and reduced the deposition of abdominal fat (P < 0.05). Our findings also showed that, separately or as a combination, supplemental quercetin and genistein significantly increased eggshell thickness (P < 0.05), decreased the levels of lipids in serum (low-density lipoprotein cholesterol, total cholesterol, total triglycerides, and non-esterified fatty acids, P < 0.05) and significantly increased serum immunoglobulins A and G (P < 0.05), and promoted the expression of splenic immune-related genes (IgA and IL-4, P < 0.05). CONCLUSION This study confirmed that supplemental quercetin and genistein, either separately or in combination, can enhance eggshell thickness, lipid profiles, and immune function in aging hens. Moreover, both quercetin alone and quercetin + genistein exhibited similar abilities to lower lipid levels and improve immune function. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi Wei
- College of Animal Science and Technology, State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yongfa Liu
- College of Animal Science and Technology, State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Guang Li
- College of Animal Science and Technology, State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yuming Guo
- College of Animal Science and Technology, State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Bingkun Zhang
- College of Animal Science and Technology, State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Dodonova SA, Zhidkova EM, Kryukov AA, Valiev TT, Kirsanov KI, Kulikov EP, Budunova IV, Yakubovskaya MG, Lesovaya EA. Synephrine and Its Derivative Compound A: Common and Specific Biological Effects. Int J Mol Sci 2023; 24:17537. [PMID: 38139366 PMCID: PMC10744207 DOI: 10.3390/ijms242417537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
This review is focused on synephrine, the principal phytochemical found in bitter orange and other medicinal plants and widely used as a dietary supplement for weight loss/body fat reduction. We examine different aspects of synephrine biology, delving into its established and potential molecular targets, as well as its mechanisms of action. We present an overview of the origin, chemical composition, receptors, and pharmacological properties of synephrine, including its anti-inflammatory and anti-cancer activity in various in vitro and animal models. Additionally, we conduct a comparative analysis of the molecular targets and effects of synephrine with those of its metabolite, selective glucocorticoid receptor agonist (SEGRA) Compound A (CpdA), which shares a similar chemical structure with synephrine. SEGRAs, including CpdA, have been extensively studied as glucocorticoid receptor activators that have a better benefit/risk profile than glucocorticoids due to their reduced adverse effects. We discuss the potential of synephrine usage as a template for the synthesis of new generation of non-steroidal SEGRAs. The review also provides insights into the safe pharmacological profile of synephrine.
Collapse
Affiliation(s)
- Svetlana A. Dodonova
- Research Institute of Experimental Medicine, Department of Pathophysiology, Kursk State Medical University, 305041 Kursk, Russia; (S.A.D.); (A.A.K.)
| | - Ekaterina M. Zhidkova
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
| | - Alexey A. Kryukov
- Research Institute of Experimental Medicine, Department of Pathophysiology, Kursk State Medical University, 305041 Kursk, Russia; (S.A.D.); (A.A.K.)
| | - Timur T. Valiev
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
| | - Kirill I. Kirsanov
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
| | - Evgeny P. Kulikov
- Laboratory of Single Cell Biology, Russian University of People’s Friendship (RUDN) University, 117198 Moscow, Russia;
| | - Irina V. Budunova
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA;
| | - Marianna G. Yakubovskaya
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
| | - Ekaterina A. Lesovaya
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
- Laboratory of Single Cell Biology, Russian University of People’s Friendship (RUDN) University, 117198 Moscow, Russia;
| |
Collapse
|
6
|
Yang M, Mao L, Yang X, Xu X, Tang C, Wei W, Chen J. Ginsenoside compound K exerts anti-inflammatory effects through transcriptional activation and transcriptional inhibition of glucocorticoid receptor in rheumatoid arthritis fibroblast-like synoviocytes. Int Immunopharmacol 2023; 125:111080. [PMID: 37883815 DOI: 10.1016/j.intimp.2023.111080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Ginsenoside compound K (GCK) has anti-inflammatory and immunoregulatory effects, and glucocorticoid receptor (GR) has been considered as its potential target. But the mechanism by which GCK exerts its anti-inflammatory effects after GR activation remains unclear. In this study, molecular docking, isothermal titration calorimetry, siRNA of GR and GRA458T mutation were used to confirm the anti-inflammatory mechanism of GCK targeting GR in fibroblast-like synoviocytes (FLS). The results showed that the key binding sites of GR and GCK were identified as ASN564, MET560 and ASN638, with binding levels at the μm level. In addition, the inhibitory effect of GCK on the proliferation of FLS and the secretion of inflammatory cytokines (IL-6, IL-8, and IL-1β) were mediated by transcriptional activation of GR, but on the migration, invasion, and TNF-α secretion of FLS were mediated by transcriptional inhibition of GR. These actions exert anti-inflammatory effects through indirect and direct inhibition of NF-κB transcriptional activity, respectively. In conclusion, this study elucidates that GCK can directly bind to and activate GR. Furthermore, after activation, GR mediates the anti-inflammatory effects of GCK through two mechanisms: transcriptional activation and transcriptional inhibition.
Collapse
Affiliation(s)
- Mei Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Lijuan Mao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Xingyue Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Xiujin Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Caihong Tang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China.
| | - Jingyu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China.
| |
Collapse
|
7
|
Zou H, Yu J, Li Z, Liu Y, Wang T, Li T, Lv C, Zhang J. In vitro, in vivo, and in silico evaluation of the glucocorticoid receptor antagonist activity of 3,6-dibromocarbazole. Food Chem Toxicol 2023; 180:114048. [PMID: 37734465 DOI: 10.1016/j.fct.2023.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
3,6-Dibromocarbazole is a novel environmental contaminant which is currently detected in several environmental media worldwide. This work aims to investigate the anti-glucocorticoid potency and endocrine disrupting effects of 3,6-dibromocarbazole. In vitro experiments indicated that 3,6-dibromocarbazole possessed glucocorticoid receptor (GR) antagonistic activity and inhibited dexamethasone-induced GR nuclear translocation. 3,6-Dibromocarbazole reduced the expression levels of glucocorticoid responsive genes including glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK), fatty acid synthase (FAS), and tyrosine aminotransferase (TAT), and further disrupted the protein expression of two key enzymes PEPCK and FAS in gluconeogenesis. In vivo experiments showed that 3,6-dibromocarbazole induced abnormal development of zebrafish embryos and disrupted the major neurohormones involved in activation of hypothalamic-pituitary-adrenocortical (HPA) axis in zebrafish larvae. The results of molecular docking and molecular dynamics simulation contributed to explain the antagonistic effect of 3,6-dibromocarbazole. Taken together, this work identified 3,6-dibromocarbazole as a GR antagonist, which might exert endocrine disrupting effects by interfering the pathway of gluconeogenesis.
Collapse
Affiliation(s)
- Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jia Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Zhuolin Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yao Liu
- College of Food and Bioengineering, Qiqihar University, Qiqihar, 161006, China
| | - Tuoyi Wang
- College of Food and Bioengineering, Qiqihar University, Qiqihar, 161006, China
| | - Tiezhu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Chengyu Lv
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
8
|
Mao L, Wei W, Chen J. Biased regulation of glucocorticoid receptors signaling. Biomed Pharmacother 2023; 165:115145. [PMID: 37454592 DOI: 10.1016/j.biopha.2023.115145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Glucocorticoids (GCs), steroid hormones that depend on glucocorticoid receptor (GR) binding for their action, are essential for regulating numerous homeostatic functions in the body.GR signals are biased, that is, GR signals are various in different tissue cells, disease states and ligands. This biased regulation of GR signaling appears to depend on ligand-induced metameric regulation, protein post-translational modifications, assembly at response elements, context-specific assembly (recruitment of co-regulators) and intercellular differences. Based on the bias regulation of GR, selective GR agonists and modulators (SEGRAMs) were developed to bias therapeutic outcomes toward expected outcomes (e.g., anti-inflammation and immunoregulation) by influencing GR-mediated gene expression. This paper provides a review of the bias regulation and mechanism of GR and the research progress of drugs.
Collapse
Affiliation(s)
- Lijuan Mao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Cooperative Innovation Center for Anti-inflammatory Immune Drugs, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Cooperative Innovation Center for Anti-inflammatory Immune Drugs, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| | - Jingyu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Cooperative Innovation Center for Anti-inflammatory Immune Drugs, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
9
|
Liang Y, Jiang Q, Zou H, Zhao J, Zhang J, Ren L. Withaferin A: A potential selective glucocorticoid receptor modulator with anti-inflammatory effect. Food Chem Toxicol 2023; 179:113949. [PMID: 37467946 DOI: 10.1016/j.fct.2023.113949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/03/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Glucocorticoids have been widely applied to various clinical treatment, however some serious side effects may occur during the treatment. It is widely known that glucocorticoids produce a marked effect through binding to glucocorticoid receptor (GR). As withaferin A can provide multiple health benefits, this work aims to confirm withaferin A as a potential selective GR modulator with anti-inflammatory effect. Fluorescence polarization assay confirmed that withaferin A could steadily bind to GR with an IC50 value of 203.80 ± 0.36 μM. Meanwhile, glucocorticoid receptor translocation of withaferin A was measured by nuclear fractionation assay. Dual luciferase reporter assay showed that withaferin A did not activate GR transcription. Furthermore, withaferin A decreased the GR-related protein expression with less side effects. The result of molecular docking showed that hydrogen-bonding and hydrophobic interactions contributed to the binding of withaferin A with GR. In addition, the GR-withaferin A complex maintained a stable binding throughout the dynamics simulation process. Enzyme-linked immunosorbent assay showed that withaferin A inhibited the production of cytokines, confirming its anti-inflammatory effect. These findings indicate that withaferin A is a potential selective GR modulator and this work may provide a research basis for developing dietary supplements and nutraceuticals against inflammation.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
10
|
Zare F, Solhjoo A, Sadeghpour H, Sakhteman A, Dehshahri A. Structure-based virtual screening, molecular docking, molecular dynamics simulation and MM/PBSA calculations towards identification of steroidal and non-steroidal selective glucocorticoid receptor modulators. J Biomol Struct Dyn 2023; 41:7640-7650. [PMID: 36134594 DOI: 10.1080/07391102.2022.2123392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
Glucocorticoids have been used in the treatment of many diseases including inflammatory and autoimmune diseases. Despite the wide therapeutic effects of synthetic glucocorticoids, the use of these compounds has been limited due to side effects such as osteoporosis, immunodeficiency, and hyperglycaemia. To this end, extensive studies have been performed to discover new glucocorticoid modulators with the aim of increasing affinity for the receptor and thus less side effects. In the present work, structure-based virtual screening was used for the identification of novel potent compounds with glucocorticoid effects. The molecules derived from ZINC database were screened on account of structural similarity with some glucocorticoid agonists as the template. Subsequently, molecular docking was performed on 200 selected compounds to obtain the best steroidal and non-steroidal conformations. Three compounds, namely ZINC_000002083318, ZINC_000253697499 and ZINC_000003845653, were selected with the binding energies of -11.5, -10.5, and -9.5 kcal/mol, respectively. Molecular dynamic simulations on superior structures were accomplished with the glucocorticoid receptor. Additionally, root mean square deviations, root mean square fluctuation, radius of gyration, hydrogen bonds, and binding-free energy analysis showed the binding stability of the proposed compounds compared to budesonide as an approved drug. The results demonstrated that all the compounds had suitable binding stability compared to budesonide, while ZINC_000002083318 showed a tighter binding energy compared to the other compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fateme Zare
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Solhjoo
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Sadeghpour
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Sakhteman
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Buonaiuto R, Neola G, Cecere SC, Caltavituro A, Cefaliello A, Pietroluongo E, De Placido P, Giuliano M, Arpino G, De Angelis C. Glucocorticoid Receptor and Ovarian Cancer: From Biology to Therapeutic Intervention. Biomolecules 2023; 13:biom13040653. [PMID: 37189400 DOI: 10.3390/biom13040653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Ovarian cancer (OC) is the leading cause of death from gynecological malignancies worldwide. Fortunately, recent advances in OC biology and the discovery of novel therapeutic targets have led to the development of novel therapeutic agents that may improve the outcome of OC patients. The glucocorticoid receptor (GR) is a ligand-dependent transcriptional factor known for its role in body stress reactions, energy homeostasis and immune regulation. Notably, evidence suggests that GR may play a relevant role in tumor progression and may affect treatment response. In cell culture models, administration of low levels of glucocorticoids (GCs) suppresses OC growth and metastasis. Conversely, high GR expression has been associated with poor prognostic features and long-term outcomes in patients with OC. Moreover, both preclinical and clinical data have shown that GR activation impairs the effectiveness of chemotherapy by inducing the apoptotic pathways and cell differentiation. In this narrative review, we summarize data related to the function and role of GR in OC. To this aim, we reorganized the controversial and fragmented data regarding GR activity in OC and herein describe its potential use as a prognostic and predictive biomarker. Moreover, we explored the interplay between GR and BRCA expression and reviewed the latest therapeutic strategies such as non-selective GR antagonists and selective GR modulators to enhance chemotherapy sensitivity, and to finally provide new treatment options in OC patients.
Collapse
Affiliation(s)
- Roberto Buonaiuto
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppe Neola
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Sabrina Chiara Cecere
- Oncologia Clinica Sperimentale Uro-Ginecologica, Istituto Nazionale Tumori IRCCS Fondazione G Pascale, 80131 Naples, Italy
| | - Aldo Caltavituro
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Amedeo Cefaliello
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Erica Pietroluongo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Pietro De Placido
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Grazia Arpino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
12
|
Ren L, Luo H, Zhao J, Huang S, Zhang J, Shao C. An integrated in vitro/in silico approach to assess the anti-androgenic potency of isobavachin. Food Chem Toxicol 2023; 176:113764. [PMID: 37019376 DOI: 10.1016/j.fct.2023.113764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
Isobavachin is a dietary flavanone with multiple biological activities. Our previous research has confirmed the estrogenicity of isobavachin, and this work aims to assess the anti-androgenic potency of isobavachin by an integrated in vitro and in silico approach. Isobavachin can limit the proliferation of prostate cancer cells by inducing a distinct G1 cell-cycle arrest. In addition, isobavachin also significantly represses the transcription of androgen receptor (AR)-downstream targets such as prostate specific antigen. Mechanistically, we demonstrated that isobavachin can disrupt the nuclear translocation of AR and promote its proteasomal degradation. The results of computer simulations showed that isobavachin can stably bind to AR, and the amino acid residue Gln711 may play a critical role in AR binding of both AR agonists and antagonists. In conclusion, this work has identified isobavachin as a novel AR antagonist.
Collapse
Affiliation(s)
- Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haoge Luo
- College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Shuqing Huang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Chen Shao
- College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
13
|
Liang Y, Jiang Q, Gong Y, Yu Y, Zou H, Zhao J, Zhang T, Zhang J. In vitro and in silico assessment of endocrine disrupting effects of food contaminants through pregnane X receptor. Food Chem Toxicol 2023; 175:113711. [PMID: 36893891 DOI: 10.1016/j.fct.2023.113711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
As a promiscuous xenobiotic receptor, pregnane X receptor (PXR) has been confirmed to participate in numerous physiological process. In addition to the conventional estrogen/androgen receptor, PXR also serves as an alternative target for environmental chemical contaminants. In this work, the PXR-mediated endocrine disrupting effects of typical food contaminants were explored. Firstly, the time-resolved fluorescence resonance energy transfer assays confirmed the PXR binding affinities of 2,2',4,4',5,5'-hexachlorobiphenyl, bis(2-ethylhexyl) phthalate, dibutyl phthalate, chlorpyrifos, bisphenol A, and zearalenone, with IC50 values ranging from 1.88 to 4284.00 nM. Then their PXR agonist activities were assessed by PXR-mediated CYP3A4 reporter gene assays. Subsequently, the regulation of gene expressions of PXR and its targets CYP3A4, UGT1A1, and MDR1 by these compounds was further investigated. Intriguingly, all the tested compounds interfered with these gene expressions, confirming their endocrine disrupting effects via PXR-mediated signaling. The compound-PXR-LBD binding interactions were explored by molecular docking and molecular dynamics simulations to unravel the structural basis of their PXR binding capacities. The weak intermolecular interactions are key players in stabilizing these compound-PXR-LBD complexes. During the simulation process, 2,2',4,4',5,5'-hexachlorobiphenyl remained stable while the other 5 compounds underwent relatively severe disturbances. In conclusion, these food contaminants might exhibit endocrine disrupting effects via PXR.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yifan Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
14
|
Zhao J, Shi S, Zhang X, Liu Y, Yuan M, Cheng G, Wang Y. Confusoside, a dihydrochalcone glucoside, prevents acetaminophen-induced liver injury by modulating the Nrf2/NF-κB/caspase signaling pathway. Food Funct 2023; 14:2432-2443. [PMID: 36786681 DOI: 10.1039/d2fo03497b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dihydrochalcones are important bioactive ingredients in plants. Anneslea fragrans is an edible and medicinal plant, and its leaves are rich in dihydrochalcones. Confusoside (CF) is the most abundant dihydrochalcone in A. fragrans leaves, which is traditionally used in the treatment of liver diseases. The aim of this study was to investigate the hepatoprotective effect of CF on acetaminophen (APAP)-induced hepatic injury in mice. CF could reduce the levels of AST, ALT, and LDH in the serum and enhance the antioxidant activity by activating the Nrf2 signaling pathway to increase the activities of antioxidant enzymes (SOD and CAT), and the GSH content but decrease the MDA accumulation in liver tissues. Immunofluorescence assay and western blotting analysis showed that CF can regulate Nrf2 into the cell nucleus, thereby promoting the expression of downstream antioxidant-related proteins, including NQO1 and HO-1. In addition, CF could inhibit the liver inflammatory response by suppressing the activation of the NF-κB signaling pathway to reduce the expressions of TNF-α, IL-1β, IL-6, and NO. Molecular docking results showed that there was good binding between the CF and Keap1-Nrf2 protein. Western blotting and TUNEL analysis also revealed CF-inhibited cell apoptosis-related protein expression (Bcl2 and caspase-3/9 proteins). Thus, the CF from A. fragrans leaves could be served as an alternative hepaprotective agent for the treatment and prevention of APAP-induced liver injury.
Collapse
Affiliation(s)
- Jinghao Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, Yunnan, China.
| | - Shang Shi
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, Yunnan, China.
| | - Xiaoyu Zhang
- The faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yaping Liu
- The faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Minglong Yuan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, Yunnan, China. .,School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, Yunnan, China
| | - Guiguang Cheng
- The faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yudan Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, Yunnan, China. .,School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, Yunnan, China
| |
Collapse
|
15
|
Zhao J, Sun Y, Yuan C, Li T, Liang Y, Zou H, Zhang J, Ren L. Quercetin ameliorates hepatic fat accumulation in high-fat diet-induced obese mice via PPARs. Food Funct 2023; 14:1674-1684. [PMID: 36691903 DOI: 10.1039/d2fo03013f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As a natural pigment in food, quercetin possesses multiple biological activities and plays a crucial role in regulating metabolic syndrome. Herein, we aim to explore the potential mechanism of quercetin to ameliorate hepatic fat accumulation. In vivo experiments showed that quercetin significantly relieved inflammation response by decreasing the serum TNF-α and IL-6 levels and also improved high-fat diet-induced hepatic steatosis without other organ injuries. Quercetin can effectively reduce lipid aggregation and down-regulate the protein expression of PCK1 in HepG2 cells induced by oleic acid and palmitic acid, indicating that inhibiting gluconeogenesis leads to hepatic fat accumulation reduction. Furthermore, molecular docking results suggested that quercetin can bind to both PPARα and PPARγ, with an even more potent binding affinity than indeglitazar, a pan-agonist of PPARs. In conclusion, quercetin may regulate gluconeogenesis to ameliorate hepatic fat accumulation via targeting PPARα/γ.
Collapse
Affiliation(s)
- Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yantong Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Cuiping Yuan
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Tiezhu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
16
|
Bean ML, Alkohaif RA, Anbari A, Fedraw CP, Ghantasala V, Gojcaj F, Hanein P, Harris MR, Kim D, Proffett DLD, Husseini MH, James EA, O'Rourke BM, Sareini LH, Livezey MR. Computational approaches to identify a novel binding site of BHPI on estrogen receptor alpha. Steroids 2022; 186:109075. [PMID: 35792153 DOI: 10.1016/j.steroids.2022.109075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/15/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022]
Abstract
3,3-bis(4-hydroxyphenyl)-7-methyl-1,3,dihydro-2H-indol-2-one (BHPI) is a biomodulator of Estrogen Receptor alpha (ERα) that targets ERα positive cancer cells by activating the unfolded protein response (UPR). BHPI induces strong and sustained activation of this pathway, eventually resulting in necrotic cell death. While much is known about how BHPI triggers the UPR leading to necrotic cell death, it is not known how BHPI binds to its putative molecular target, ERα. In an effort to identify the binding site of BHPI on ERα, molecular docking studies in AutoDock Vina were utilized. Unexpectedly, BHPI was found to dock more frequently and with significantly better binding affinity to a newly described surface pocket on the ERα ligand-binding domain, compared to the ligand-binding pocket. This work uncovers a novel binding site for small molecules on ERα that is not targeted by classical ligands, such as estrogen and tamoxifen, and may allow for the design of additional anti-cancer drugs that work in distinct ways.
Collapse
Affiliation(s)
- Monica L Bean
- University of Detroit Mercy. 4001 W. McNichols Rd, Detroit, MI 48221, US; Meharry Medical College. 1005 Dr DB Todd Jr Blvd, Nashville, TN 37208, US
| | - Reham A Alkohaif
- University of Detroit Mercy. 4001 W. McNichols Rd, Detroit, MI 48221, US
| | - Ahed Anbari
- University of Detroit Mercy. 4001 W. McNichols Rd, Detroit, MI 48221, US
| | - Caela P Fedraw
- University of Detroit Mercy. 4001 W. McNichols Rd, Detroit, MI 48221, US
| | - Vishnu Ghantasala
- University of Detroit Mercy. 4001 W. McNichols Rd, Detroit, MI 48221, US
| | - Florina Gojcaj
- University of Detroit Mercy. 4001 W. McNichols Rd, Detroit, MI 48221, US
| | - Philopateer Hanein
- University of Detroit Mercy. 4001 W. McNichols Rd, Detroit, MI 48221, US
| | - Myles R Harris
- University of Detroit Mercy. 4001 W. McNichols Rd, Detroit, MI 48221, US
| | - Dennis Kim
- University of Detroit Mercy. 4001 W. McNichols Rd, Detroit, MI 48221, US
| | | | - Mahdi H Husseini
- University of Detroit Mercy. 4001 W. McNichols Rd, Detroit, MI 48221, US
| | - Elizabeth A James
- University of Detroit Mercy. 4001 W. McNichols Rd, Detroit, MI 48221, US; Xavier University of Louisiana. 1 Drexel Dr, New Orleans, LA 70125, US
| | - Brendan M O'Rourke
- University of Detroit Mercy. 4001 W. McNichols Rd, Detroit, MI 48221, US
| | - Laila H Sareini
- University of Detroit Mercy. 4001 W. McNichols Rd, Detroit, MI 48221, US
| | - Mara R Livezey
- University of Detroit Mercy. 4001 W. McNichols Rd, Detroit, MI 48221, US.
| |
Collapse
|
17
|
Komane M, Avenant C, Louw-du Toit R, Africander DJ, Hapgood JP. Differential off-target glucocorticoid activity of progestins used in endocrine therapy. Steroids 2022; 182:108998. [PMID: 35271867 PMCID: PMC9081821 DOI: 10.1016/j.steroids.2022.108998] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/08/2022] [Accepted: 02/28/2022] [Indexed: 02/02/2023]
Abstract
The glucocorticoid receptor (GR) regulates transcription of genes involved in multiple processes. Medroxyprogesterone acetate (MPA), widely used in the injectable contraceptive Depo-MPA (DMPA), has off-target effects via the GR, which may result in side-effects in endocrine therapy. However, very little is known about the GR activity of other progestins used in endocrine therapy. This study compared GR activities for several progestins, using whole cell binding, dose-response, and GR phosphorylation assays, in both a cell line model and peripheral blood mononuclear cells (PBMCs). MPA, etonogestrel (ETG) and nestorone (NES) exhibit greater relative binding affinities for the GR than levonorgestrel (LNG) and norethisterone/norethindrone (NET) and are partial GR agonists for transactivation but agonists for transrepression on synthetic promoters in COS-1 cells. MPA is a potent agonist for endogenous GR-regulated GILZ and IL6 genes in PBMCs. While ETG and NES also display agonist activity on IL6, they have little effect on GILZ. In contrast, LNG and NET exhibit little to no activity in transactivation models, while both exhibit some transrepressive activity but are generally less potent and/or efficacious than MPA. Antagonist and phosphorylation assays confirmed that MPA and NES act via the GR on endogenous genes in PBMCs. Our results suggest GR-mediated dose-dependent and gene-specific transcriptional side-effects are likely to occur at physiologically relevant concentrations in vivo for MPA, may possibly occur selectively for ETG and NES, but are unlikely to occur for LNG and NET. This suggests that these progestins will exhibit differential side-effects in endocrine therapy via the GR.
Collapse
Affiliation(s)
- Maleshigo Komane
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - Chanel Avenant
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - Renate Louw-du Toit
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Donita J Africander
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Janet P Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
| |
Collapse
|
18
|
Caramori G, Nucera F, Mumby S, Lo Bello F, Adcock IM. Corticosteroid resistance in asthma: Cellular and molecular mechanisms. Mol Aspects Med 2022; 85:100969. [PMID: 34090658 DOI: 10.1016/j.mam.2021.100969] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
Inhaled glucocorticoids (GCs) are drugs widely used as treatment for asthma patients. They prevent the recruitment and activation of lung immune and inflammatory cells and, moreover, have profound effects on airway structural cells to reverse the effects of disease on airway inflammation. GCs bind to a specific receptor, the glucocorticoid receptor (GR), which is a member of the nuclear receptor superfamily and modulates pro- and anti-inflammatory gene transcription through a number of distinct and complementary mechanisms. Targets genes include many pro-inflammatory mediators such as chemokines, cytokines, growth factors and their receptors. Inhaled GCs are very effective for most asthma patients with little, if any, systemic side effects depending upon the dose. However, some patients show poor asthma control even after the administration of high doses of topical or even systemic GCs. Several mechanisms relating to inflammation have been considered to be responsible for the onset of the relative GC resistance observed in these patients. In these patients, the side-effect profile of GCs prevent continued use of high doses and new drugs are needed. Targeting the defective pathways associated with GC function in these patients may also reactivate GC responsiveness.
Collapse
Affiliation(s)
- Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy.
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- National Heart and Lung Institute, Imperial College London and the NIHR Imperial Biomedical Research Centre, London, UK
| | - Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London and the NIHR Imperial Biomedical Research Centre, London, UK.
| |
Collapse
|
19
|
Zou H, Ye H, Zhang J, Ren L. Recent advances in nuclear receptors-mediated health benefits of blueberry. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154063. [PMID: 35344717 DOI: 10.1016/j.phymed.2022.154063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/06/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Blueberry is rich in bioactive substances and has anti-oxidant, anti-inflammatory, anti-obesity, anti-cancer, neuroprotective, and other activities. Blueberry has been shown to treat diseases by mediating the transcription of nuclear receptors. However, evidence for nuclear receptor-mediated health benefits of blueberry has not been systematically reviewed. PURPOSE This review aims to summarize the nuclear receptor-mediated health benefits of blueberry. METHODS This study reviews all relevant literature published in NCBI PubMed, Scopus, Web of Science, and Google Scholar by January 2022. The relevant literature was extracted from the databases with the following keyword combinations: "biological activities" OR "nuclear receptors" OR "phytochemicals" AND "blueberry" OR "Vaccinium corymbosum" as well as free-text words. RESULTS In vivo and in vitro experimental results and clinical evidence have demonstrated that blueberry has health-promoting effects. Supplementing blueberry is beneficial to the treatment of cancer, the alleviation of metabolic syndrome, and liver protection. Blueberry can regulate the transcription of PPARs, ERs, AR, GR, MR, LXRs, and FXR and mediate the expressions of Akt, CYP 1Al, p53, and Bcl-2. CONCLUSION Blueberry can be targeted to treat various diseases by mediating the transcription of nuclear receptors. Nevertheless, further human research is needed.
Collapse
Affiliation(s)
- Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
20
|
Spies LML, Verhoog NJD, Louw A. Relative contribution of molecular mechanisms to cumulative ligand-mediated downregulation of GRα. Biochem Biophys Res Commun 2022; 602:113-119. [PMID: 35263658 DOI: 10.1016/j.bbrc.2022.02.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/24/2022] [Indexed: 11/02/2022]
Abstract
Central to the pharmacological use of glucocorticoids (GCs) is the availability of the glucocorticoid receptor alpha (GRα). However, chronic GC therapy often results in the ligand-mediated downregulation of the GRα, and the subsequent development of an acquired GC resistance. While studies have demonstrated the dimerization-dependent downregulation of GRα, as well as the molecular mechanisms through which ligand-mediated downregulation occurs, little is known regarding the relative contribution of these molecular mechanisms to the cumulative ligand-mediated downregulation of the receptor, especially within an endogenous system. Thus, to probe this, the current study evaluates the conformational-dependent regulation of GRα protein using mouse embryonic fibroblast (MEF) cells containing either wild type GRα (MEFwt) or the dimerization deficient GRα mutant (MEFdim) and inhibitors of transcription, translation, and proteasomal degradation. Results show that the promotion of GRα dimerization increases the downregulation of the receptor via two main mechanisms, proteasomal degradation of the receptor protein, and downregulation of GRwt mRNA transcripts. In contrast, when receptor dimerization is restricted these two mechanisms play a lesser role and results suggest that stabilization of GRα protein by non-coding RNAs may potentially be the major regulatory mechanism. Together, these findings clarify the relative contribution of the molecular mechanisms involved in ligand-mediated downregulation of GRα and provides pharmacological targets for the development of GRα ligands with a more favourable therapeutic index.
Collapse
Affiliation(s)
- Lee-Maine L Spies
- Department of Biochemistry, Stellenbosch University, Van Der Bijl Street, Stellenbosch, 7600, South Africa.
| | - Nicolette J D Verhoog
- Department of Biochemistry, Stellenbosch University, Van Der Bijl Street, Stellenbosch, 7600, South Africa.
| | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Van Der Bijl Street, Stellenbosch, 7600, South Africa.
| |
Collapse
|
21
|
Lesovaya EA, Chudakova D, Baida G, Zhidkova EM, Kirsanov KI, Yakubovskaya MG, Budunova IV. The long winding road to the safer glucocorticoid receptor (GR) targeting therapies. Oncotarget 2022; 13:408-424. [PMID: 35198100 PMCID: PMC8858080 DOI: 10.18632/oncotarget.28191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Glucocorticoids (Gcs) are widely used to treat inflammatory diseases and hematological malignancies, and despite the introduction of novel anti-inflammatory and anti-cancer biologics, the use of inexpensive and effective Gcs is expected to grow. Unfortunately, chronic treatment with Gcs results in multiple atrophic and metabolic side effects. Thus, the search for safer glucocorticoid receptor (GR)-targeted therapies that preserve therapeutic potential of Gcs but result in fewer adverse effects remains highly relevant. Development of selective GR agonists/modulators (SEGRAM) with reduced side effects, based on the concept of dissociation of GR transactivation and transrepression functions, resulted in limited success, and currently focus has shifted towards partial GR agonists. Additional approach is the identification and inhibition of genes associated with Gcs specific side effects. Others and we recently identified GR target genes REDD1 and FKBP51 as key mediators of Gcs-induced atrophy, and selected and validated candidate molecules for REDD1 blockage including PI3K/Akt/mTOR inhibitors. In this review, we summarized classic and contemporary approaches to safer GR-mediated therapies including unique concept of Gcs combination with REDD1 inhibitors. We discussed protective effects of REDD1 inhibitors against Gcs–induced atrophy in skin and bone and underlined the translational potential of this combination for further development of safer and effective Gcs-based therapies.
Collapse
Affiliation(s)
- Ekaterina A. Lesovaya
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
- Department of Oncology, I.P. Pavlov Ryazan State Medical University, Ryazan, Russia
| | - Daria Chudakova
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Gleb Baida
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Ekaterina M. Zhidkova
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
| | - Kirill I. Kirsanov
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
- Deparment of General Medical Practice, RUDN University, Moscow, Russia
| | - Marianna G. Yakubovskaya
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
| | - Irina V. Budunova
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
22
|
Luan ZL, Zhang C, Ming WH, Huang YZ, Guan YF, Zhang XY. Nuclear receptors in renal health and disease. EBioMedicine 2022; 76:103855. [PMID: 35123268 PMCID: PMC8819107 DOI: 10.1016/j.ebiom.2022.103855] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/31/2021] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
As a major social and economic burden for the healthcare system, kidney diseases contribute to the constant increase of worldwide deaths. A deeper understanding of the underlying mechanisms governing the etiology, development and progression of kidney diseases may help to identify potential therapeutic targets. As a superfamily of ligand-dependent transcription factors, nuclear receptors (NRs) are critical for the maintenance of normal renal function and their dysfunction is associated with a variety of kidney diseases. Increasing evidence suggests that ligands for NRs protect patients from renal ischemia/reperfusion (I/R) injury, drug-induced acute kidney injury (AKI), diabetic nephropathy (DN), renal fibrosis and kidney cancers. In the past decade, some breakthroughs have been made for the translation of NR ligands into clinical use. This review summarizes the current understanding of several important NRs in renal physiology and pathophysiology and discusses recent findings and applications of NR ligands in the management of kidney diseases.
Collapse
Affiliation(s)
- Zhi-Lin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; Dalian Key Laboratory for Nuclear Receptors in Major Metabolic Diseases, Dalian, Liaoning 116044, China
| | - Cong Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Wen-Hua Ming
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Ying-Zhi Huang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - You-Fei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; Dalian Key Laboratory for Nuclear Receptors in Major Metabolic Diseases, Dalian, Liaoning 116044, China.
| | - Xiao-Yan Zhang
- Health Science Center, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
23
|
Identification of 20(S)-Ginsenoside Rh2 as a Potential EGFR Tyrosine Kinase Inhibitor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6119737. [PMID: 35111279 PMCID: PMC8803441 DOI: 10.1155/2022/6119737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/29/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022]
Abstract
As the main active ingredients of Panax ginseng, ginsenosides possess numerous bioactivities. Epidermal growth factor receptor (EGFR) was widely used as a valid target in anticancer therapy. Herein, the EGFR targeting activities of 20(S)-ginsenoside Rh2 (20(S)-Rh2) and the relationship of their structure-activity were investigated. Homogeneous time-resolved fluorescence assay showed that 20(S)-Rh2 significantly inhibited the activity against EGFR kinase. 20(S)-Rh2 was confirmed to effectively inhibited cell proliferation in a dose-dependent manner by MTT assay. Furthermore, quantitative real-time PCR and western blotting analysis revealed that 20(S)-Rh2 inhibited A549 cells growth via the EGFR-MAPK pathway. Meanwhile, 20(S)-Rh2 could promote cell apoptosis, block cell cycle, and reduce cell migration of A549 cells, respectively. In silico, the result suggested that both hydrophobic interactions and hydrogen-bonding interactions could contribute to stabilize their binding. Molecular dynamics simulation showed that the side chain sugar moiety of 20(S)-Rh2 was too flexible to be fixed at the active site of EGFR. Collectively, these findings suggested that 20(S)-Rh2 might serve as a potential EGFR tyrosine kinase inhibitor.
Collapse
|
24
|
Hu X, Pang J, Zhang J, Shen C, Chai X, Wang E, Chen H, Wang X, Duan M, Fu W, Xu L, Kang Y, Li D, Xia H, Hou T. Discovery of Novel GR Ligands toward Druggable GR Antagonist Conformations Identified by MD Simulations and Markov State Model Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102435. [PMID: 34825505 PMCID: PMC8787434 DOI: 10.1002/advs.202102435] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Binding of different ligands to glucocorticoid receptor (GR) may induce different conformational changes and even trigger completely opposite biological functions. To understand the allosteric communication within the GR ligand binding domain, the folding pathway of helix 12 (H12) induced by the binding of the agonist dexamethasone (DEX), antagonist RU486, and modulator AZD9567 are explored by molecular dynamics simulations and Markov state model analysis. The ligands can regulate the volume of the activation function-2 through the residues Phe737 and Gln738. Without ligand or with agonist binding, H12 swings from inward to outward to visit different folding positions. However, the binding of RU486 or AZD9567 perturbs the structural state, and the passive antagonist state appears more stable. Structure-based virtual screening and in vitro bioassays are used to discover novel GR ligands that bias the conformation equilibria toward the passive antagonist state. HP-19 exhibits the best anti-inflammatory activity (IC50 = 0.041 ± 0.011 µm) in nuclear factor-kappa B signaling pathway, which is comparable to that of DEX. HP-19 also does not induce adverse effect-related transactivation functions of GR. The novel ligands discovered here may serve as promising starting points for the development of GR modulators.
Collapse
Affiliation(s)
- Xueping Hu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
- State Key Lab of CAD&CGZhejiang UniversityHangzhouZhejiang310058China
| | - Jinping Pang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Jintu Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Chao Shen
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Xin Chai
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Ercheng Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Haiyi Chen
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Xuwen Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Mojie Duan
- Key Laboratory of magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Center for Magnetic Resonance in WuhanWuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhanHubei430071China
| | - Weitao Fu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Lei Xu
- Institute of Bioinformatics and Medical EngineeringSchool of Electrical and Information EngineeringJiangsu University of TechnologyChangzhou213001China
| | - Yu Kang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Dan Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Hongguang Xia
- Department of Biochemistry and Research Center of Clinical Pharmacy of The First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
- State Key Lab of CAD&CGZhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
25
|
Abstract
Herbal compounds including those already well-established in traditional Chinese medicine have been increasingly tested in the treatment of various diseases. Recent studies have shown that herbal compounds can be of benefit also for pulmonary silicosis as they can diminish changes associated with silica-induced inflammation, fibrosis, and oxidative stress. Due to a lack of effective therapeutic strategies, development of novel approaches which may be introduced particularly in the early stage of the disease, is urgently needed. This review summarizes positive effects of several alternative plant-based drugs in the models of experimental silicosis with a potential for subsequent clinical investigation and use in future.
Collapse
Affiliation(s)
- J Adamcakova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | | |
Collapse
|
26
|
Abstract
Herbal compounds including those already well-established in traditional Chinese medicine have been increasingly tested in the treatment of various diseases. Recent studies have shown that herbal compounds can be of benefit also for pulmonary silicosis as they can diminish changes associated with silica-induced inflammation, fibrosis, and oxidative stress. Due to a lack of effective therapeutic strategies, development of novel approaches which may be introduced particularly in the early stage of the disease, is urgently needed. This review summarizes positive effects of several alternative plant-based drugs in the models of experimental silicosis with a potential for subsequent clinical investigation and use in future.
Collapse
Affiliation(s)
- J ADAMCAKOVA
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - D MOKRA
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| |
Collapse
|
27
|
Liang Y, Zhang T, Zhao J, Li C, Zou H, Li F, Zhang J, Ren L. Glucocorticoid receptor-mediated alleviation of inflammation by berberine: in vitro, in silico and in vivo investigations. Food Funct 2021; 12:11974-11986. [PMID: 34747965 DOI: 10.1039/d1fo01612a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As a natural dietary ingredient, berberine possesses multiple biological activities including anti-inflammatory effects. In this work, glucocorticoid receptor (GR)-mediated alleviation of inflammation by berberine was investigated by a combination of in vitro, in silico, and in vivo approaches. The fluorescence polarization assay showed that berberine bound to GR with an IC50 value of 9.14 ± 0.16 pM. Molecular docking and molecular dynamics simulation suggested that berberine bound stably to the active site of GR via hydrogen bonding and hydrophobic interactions. Berberine induced GR nuclear translocation but did not activate the glucocorticoid response element in HeLa cells. Furthermore, both gene and protein expressions of PEPCK were significantly attenuated by berberine in HepG2 cells. Interestingly, berberine downregulated CBG mRNA and protein levels without up-regulating TAT mRNA and protein levels in HepG2 cells, demonstrating its dissociated characteristics that could separate transrepression from transactivation. In addition, the in vitro and in vivo anti-inflammatory effects of berberine were confirmed in lipopolysaccharide-induced RAW 264.7 cells and in a mouse model of allergic contact dermatitis, respectively. In conclusion, berberine might serve as a potential selective GR modulator.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chenfei Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Fangyu Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
28
|
Liang Y, Zhao J, Zou H, Zhang J, Zhang T. In vitro and in silico evaluation of EGFR targeting activities of curcumin and its derivatives. Food Funct 2021; 12:10667-10675. [PMID: 34604873 DOI: 10.1039/d1fo02002a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As polyphenols from Curcuma longa, curcumin and its derivatives possess numerous bioactivities. Herein, the epidermal growth factor receptor (EGFR) targeting activities of curcumin and its derivatives, as well as their structure-activity relationship were investigated. All of the tested compounds exhibited significant inhibition activities against EGFR kinase in homogeneous time-resolved fluorescence assay. Then their antiproliferative activities against Caco-2 were confirmed. The expressions of EGFR and phospho-EGFR proteins were regulated by curcumin and its derivatives. The 3,5-dione and methoxyl groups exerted significant influence on their electrostatic interactions with EGFR. Both hydrogen bonds and hydrophobic contacts were crucial for their binding with EGFR. Interestingly, their EGFR targeting activities were structure-dependent. The binding stabilities of curcumin and its derivatives were different from each other due to their structural diversity. This work indicated that curcumin and its derivatives were potential tyrosine kinase inhibitors that target EGFR.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
29
|
Anti-inflammatory action of betulin and its potential as a dissociated glucocorticoid receptor modulator. Food Chem Toxicol 2021; 157:112539. [PMID: 34500009 DOI: 10.1016/j.fct.2021.112539] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023]
Abstract
Although the medical application of betulin has been presented in previous studies, the potential mechanism of the anti-inflammatory action of betulin should be further investigated. This work aims to confirm the hypothesis that betulin has dexamethasone-like anti-inflammatory action through glucocorticoid receptor (GR)-mediated pathway. Firstly, the binding ability of betulin with GR was measured by a fluorescence polarization-based competitive binding assay, with the IC50 value of 79.18 ± 0.30 mM. Betulin could bind to GR and then induced GR nuclear translocation, but lacked GR transcriptional activity in HeLa cells. Hence, betulin exhibited the potential to be a dissociated modulator for GR, with the loss of glucocorticoid response element (GRE)-associated side effects. In addition, betulin downregulated GRE-driven protein expression of G6P involved in gluconeogenesis, namely side effect. The results of pro-inflammatory cytokines analysis showed that betulin exerted anti-inflammatory action in vitro. Both of the hydrophobic and hydrogen-bonding interactions stabilized the binding between betulin and GR during the simulation process. In conclusion, betulin might be a potential dissociated GR modulator with a reduced side effect profile yet keeping its anti-inflammatory action.
Collapse
|
30
|
Leng Y, Ren L, Niu S, Zhang T, Zhang J. In vitro and in silico investigations of endocrine disruption induced by metabolites of plasticizers through glucocorticoid receptor. Food Chem Toxicol 2021; 155:112413. [PMID: 34273429 DOI: 10.1016/j.fct.2021.112413] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023]
Abstract
The endocrine disruptive capability of plasticizers to activate nuclear receptors has attracted great interest. This study is aimed to assess the potential glucocorticoid effects of metabolites of plasticizers. The effects of metabolites of plasticizers on the transcriptional activity of glucocorticoid receptor (GR) were investigated using reporter gene assays. All of them failed to exhibit agonistic/antagonistic effects on GR. However, a combination of dexamethasone and monobutyl phthalate (MBP) could synergistically activate GR. MBP combined with dexamethasone also enhanced GR nuclear translocation by Western blot, while mifepristone restrained GR cytoplasmic-to-nuclear translocation. MBP co-treated with dexamethasone resulted in synergistic induction of PEPCK and MKP-1 gene expression by real-time PCR and PEPCK protein level by Western blot. Furthermore, the carboxyl and ester groups of MBP have influences on the charge distribution of MBP, leading to change of electrostatic interactions between MBP and GR by calculations on electronic properties. Both hydrophobic and hydrogen bonding interactions play a crucial role in the stabilization between MBP and GR conducted by molecular docking and dynamics simulation. This work confirms that GR could remain stable upon binding to MBP. In conclusion, dexamethasone and MBP could synergistically activate GR, resulting in synergetic enhancement of subsequent GR-mediated endocrine disrupting effect.
Collapse
Affiliation(s)
- Yue Leng
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Shu Niu
- College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
31
|
Zhao J, Zhang T, Liang Y, Zou H, Zhang J. Inhibitory activities of 20(R, S)-protopanaxatriol against epidermal growth factor receptor tyrosine kinase. Food Chem Toxicol 2021; 155:112411. [PMID: 34271119 DOI: 10.1016/j.fct.2021.112411] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022]
Abstract
As major metabolites of protopanaxatriol-type ginsenosides, 20(R, S)-protopanaxatriol [20(R, S)-PPT] display multiple bioactivities. This work aimed to investigate the inhibitory activities of 20(R, S)-PPT against epidermal growth factor receptor tyrosine kinase and the potential mechanism. 20(R, S)-PPT inhibited the proliferation of HepG2 cells in a dose-dependent manner and blocked cell cycle progression at G1/G0 phase. Then 20(R, S)-PPT were found to influence the protein expressions involved in epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) signaling pathway. Molecular docking suggested that 20(R, S)-PPT could bind to the active sites of all target proteins in EGFR-MAPK pathway. It is worth noting that 20(R, S)-PPT showed stronger binding capacities with EGFR, compared with other proteins. Hence, this work further investigated the binding interactions and binding stabilities between 20(R, S)-PPT and EGFR. Both hydrophobic interactions and hydrogen bonds contributed to the 20(R, S)-PPT-EGFR binding. In addition, the in vitro inhibitory activities of 20(R, S)-PPT against EGFR tyrosine kinase were observed in a homogeneous time-resolved fluorescence assay, with the IC50 values of 24.10 ± 0.17 and 33.19 ± 0.19 μM respectively. Taken together with the above results, both of 20(R)-PPT and 20(S)-PPT might serve as potential EGFR tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
32
|
Leng Y, Sun Y, Lv C, Li Z, Yuan C, Zhang J, Li T, Wang Y. Characterization of β-Sitosterol for Potential Selective GR Modulation. Protein Pept Lett 2021; 28:276-281. [PMID: 32798371 DOI: 10.2174/0929866527666200813204833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although glucocorticoids (GCs) are characterized as powerful agents to treat inflammatory afflictions, they are accompanied by metabolic side effects which limit their usage. β-Sitosterol, as a minor component found in extraction of vegetable oil, was reported to have anti-inflammatory effects in RAW 264.7 cells. OBJECTIVE To test whether β-sitosterol has an effect to dissociate transrepression from transactivation as a selective novel GR binder, this work evaluated the dissociated characteristics of β-sitosterol. METHODS The probable binding interaction between β-sitosterol and GR was explored by molecular docking. The GR transcriptional activity of β-sitosterol was assessed in the reporter gene assay. The ability of β-sitosterol to modulate the transactivation and transrepression of GR was evaluated by real-time quantitative PCR analysis. RESULTS AND DISCUSSION In the present study, β-sitosterol treatment cannot induce GR-mediated transactivation. β-Sitosterol exerted a potential to inhibited the expression of GR target transrepressed gene without activating the expression of GR transactivation dependent gene. Molecular docking demonstrated that β-Sitosterol was able to bind the ligand binding domain of GR but unable to induce GR activation. CONCLUSION This work offers evidence that β-sitosterol may serve as a selective GR modulator.
Collapse
Affiliation(s)
- Yue Leng
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yonghai Sun
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chengyu Lv
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
| | - Zhuolin Li
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
| | - Cuiping Yuan
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
| | - Jie Zhang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
| | - Tiezhu Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yongjun Wang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
| |
Collapse
|
33
|
Zhang J, Zhao J, Sun Y, Liang Y, Zhao J, Zou H, Zhang T, Ren L. GR-mediated anti-inflammation of α-boswellic acid: Insights from in vitro and in silico studies. Food Chem Toxicol 2021; 155:112379. [PMID: 34197882 DOI: 10.1016/j.fct.2021.112379] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Although multiple bioactivities of α-boswellic acid have been reported, the molecular mechanism of its anti-inflammatory action is not yet clear. Hence, glucocorticoid receptor (GR)-mediated anti-inflammation of α-boswellic acid was investigated in this work. Fluorescence polarization assay suggested that α-boswellic acid bound to GR with IC50 value of 658.00 ± 0.21 μM. Upon binding to α-boswellic acid, GR translocated from cytoplasm into nucleus of HeLa cells, facilitating sequential transcriptional regulation of GR-related genes. Luciferase reporter assay suggested that α-boswellic acid lacked GR transcriptional activity, indicating its potential as a dissociative GR ligand. Interestingly, α-boswellic acid selectively modulated the anti-inflammatory gene CBG (marker for GR transrepression), while leaving the "side-effect" gene TAT (marker for GR transactivation) unaffected in HepG2 cells. Furthermore, α-boswellic acid inhibited lipopolysaccharide-stimulated cytokines production in U937 macrophages, confirming its anti-inflammation property in vitro. Molecular docking showed that both hydrogen-bonding and hydrophobic interactions helped to stabilize α-boswellic acid-GR binding. Their binding stability was further confirmed in a 70-ns dynamics simulation. In summary, α-boswellic acid could bind to and translocate GR but did not induce glucocorticoid response element-mediated transcription. Since α-boswellic acid showed the dissociated characteristic that separated transrepression from transactivation, it might be a selective GR modulator against inflammatory disorders.
Collapse
Affiliation(s)
- Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jiarui Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yantong Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
34
|
Leng Y, Sun Y, Huang W, Lv C, Cui J, Li T, Wang Y. Identification of dicyclohexyl phthalate as a glucocorticoid receptor antagonist by molecular docking and multiple in vitro methods. Mol Biol Rep 2021; 48:3145-3154. [PMID: 33881729 DOI: 10.1007/s11033-021-06303-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
The potential activities of phthalate esters (PAEs) that interfere with the endocrine system have been focused recently. However, information on modulating the glucocorticoid receptor (GR) of PAEs is scarce. Our aim was to evaluate the agonistic / antagonistic properties of PAEs on human GR. Luciferase reporter gene assay revealed that the tested chemicals displayed no agonistic effects but dicyclohexyl phthalate (DCHP) exerted antagonistic activity in a dose-responsive manner for GR in HeLa cells. The effects of DCHP on dexamethasone (DEX)-induced GR nuclear translocation and gene expression of glucocorticoid-responsive gene expression (G6Pase, PEPCK, FAS, GILZ and MKP-1), as well as protein expression of G6Pase and PEPCK were further examined by RT-qPCR and western blot analysis. DCHP antagonized DEX-induced GR nuclear translocation and suppressed gene expression in both mRNA and protein levels. Furthermore, the results of molecular docking and molecular dynamics simulation showed that DCHP could bind to GR and exhibited potential regulation on this target protein. Collectively, we demonstrate that DCHP may act as a GR antagonist in vitro and is considered to exert endocrine effects via human GR.
Collapse
Affiliation(s)
- Yue Leng
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yonghai Sun
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Wei Huang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, China
| | - Chengyu Lv
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, China
| | - Jingyan Cui
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, China
| | - Tiezhu Li
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China. .,Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, China.
| | - Yongjun Wang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, China.
| |
Collapse
|
35
|
Liang Y, Zhang T, Sun Y, Diao M, Zhang J, Ren L. Multi-spectroscopic and molecular modeling studies on the interactions of serum albumin with 20(S, R)-protopanaxadiol and 20(S, R)-protopanaxatriol that inhibit HCT-116 cells proliferation. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Liang Y, Zhang T, Jing S, Zuo P, Li T, Wang Y, Xing S, Zhang J, Wei Z. 20(S)-Ginsenoside Rg3 Inhibits Lung Cancer Cell Proliferation by Targeting EGFR-Mediated Ras/Raf/MEK/ERK Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:753-765. [DOI: 10.1142/s0192415x2150035x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lung cancer is the leading cause of cancer death in the world and classified into non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). As tyrosine kinase inhibitors (TKIs), several triterpenoid saponins can target to epidermal growth factor receptor (EGFR), a widely used molecular therapeutic target, to exhibit remarkable anti-proliferative activities in cancer cells. As one of triterpenoid saponins, 20([Formula: see text])-ginsenoside Rg3 [20([Formula: see text])-Rg3] was confirmed to be an EGFR-TKI in this work. According to the quantitative real-time reverse transcription-PCR (qRT-PCR) and immunoblotting analysis, 20([Formula: see text])-Rg3 was certified to play a key role on EGFR/Ras/Raf/MEK/ERK signal pathway regulation. Our data demonstrated that 20([Formula: see text])-Rg3 might block the cell cycle at the G0/G1 phase by downregulating CDK2, Cyclin A2, and Cyclin E1. Molecular docking suggested that the combination of both hydrophobic and hydrogen-bonding interactions may help stabilizing the 20([Formula: see text])-Rg3-EGFR binding. Furthermore, their binding stability was assessed by molecular dynamics simulation. Taken together, these data provide the evidence that 20([Formula: see text])-Rg3 could prohibit A549 cell proliferation, probably by arresting the cell cycle at the G0/G1 phase via the EGFR/Ras/Raf/MEK/ERK pathway.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Siyuan Jing
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Peng Zuo
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| | - Tiezhu Li
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| | - Yongjun Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| | - Shaochen Xing
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Zhengyi Wei
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| |
Collapse
|
37
|
Zhang J, Liang Y, Ren L, Zhang T. In vitro Anti-Inflammatory Potency of Sanguinarine and Chelerythrine via Interaction with Glucocorticoid Receptor. EFOOD 2021. [DOI: 10.2991/efood.k.210118.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
38
|
Liang Y, Zhang T, Ren L, Jing S, Li Z, Zuo P, Li T, Wang Y, Zhang J, Wei Z. Cucurbitacin IIb induces apoptosis and cell cycle arrest through regulating EGFR/MAPK pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103542. [PMID: 33161110 DOI: 10.1016/j.etap.2020.103542] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/23/2020] [Accepted: 10/30/2020] [Indexed: 05/06/2023]
Abstract
Epidermal growth factor receptor (EGFR) is considered as a valid target in the clinical trials of anticancer therapy and tyrosine kinase inhibitors (TKIs) of EGFR are approved for cancer treatments. In present work, cucurbitacin IIb (CuIIb) was confirmed to exhibit the proliferation inhibitory activity in A549 cells. CuIIb induced apoptosis via STAT3 pathway, which was mitochondria-mediated and caspase-dependent. CuIIb also suppressed the cell cycle and induced G2/M phase cell cycle arrest. CuIIb was capable of suppressing the signal transmitting of the EGFR/mitogen-activated protein kinase (MAPK) pathway which was responsible for the apoptosis and cell cycle arrest. Homogeneous time-resolved fluorescence (HTRF) analysis demonstrated that the kinase activity of EGFR was inhibited by CuIIb. Molecular docking suggested that the CuIIb-EGFR binding fundamentally depends on the contribution of both hydrophobic and hydrogen-bonding interactions. Hence CuIIb may serve as a potential EGFR TKI.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Siyuan Jing
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Zhuolin Li
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Peng Zuo
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Tiezhu Li
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yongjun Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Zhengyi Wei
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
39
|
Zimmerman JAO, Fang M, Doumbia B, Neyman A, Cha JH, Thomas M, Hall B, Wu M, Wilson AM, Pufall MA. Deacylcortivazol-like pyrazole regioisomers reveal a more accommodating expanded binding pocket for the glucocorticoid receptor. RSC Med Chem 2020; 12:203-212. [PMID: 34046609 DOI: 10.1039/d0md00278j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/26/2020] [Indexed: 01/26/2023] Open
Abstract
Glucocorticoids (GCs) are widely used, potent anti-inflammatory and chemotherapeutic drugs. They work by binding to the glucocorticoid receptor (GR), a ligand-activated transcription factor, inducing translocation to the nucleus and regulation of genes that influence a variety of cellular activities. Despite being effective for a broad number of conditions, GC use is limited by severe side effects. To identify ligands that are more selective, we synthesized pairs of regioisomers in the pyrazole ring that probe the expanded binding pocket of GR opened by deacylcortivazol (DAC). Using an Ullmann-type reaction, a deacylcortivazol-like (DAC-like) backbone was modified with five pendant groups at the 1'- and 2'-positions of the pyrazole ring, yielding 9 ligands. Most of the compounds were cytotoxic to leukemia cells, and all required GR expression. Both aliphatic and other aromatic groups substituted at the 2'-position produced ligands with GC activity, with phenyl and 4-fluorophenyl substitutions exhibiting high cellular affinity for the receptor and >5× greater potency than dexamethasone, a commonly used strong GC. Surprisingly, phenyl substitution at the 1'-position produced a high-affinity ligand with ∼10× greater potency than dexamethasone, despite little apparent room in the expanded binding pocket to accommodate 1'-modifications. Other 1'-modifications, however, were markedly less potent. The potency of the 2'-substituted and 1'-substituted DAC-like compounds tracked linearly with cellular affinity but had different slopes, suggesting a different mode of interaction with GR. These data provide evidence that the expanded binding pocket opened by deacylcortivazol is more accommodating that expected, allowing development of new, and possibly selective, GCs by substitution within the pyrazole ring.
Collapse
Affiliation(s)
- Jessica A O Zimmerman
- Department of Biochemistry, Carver College of Medicine, University of Iowa Iowa City IA USA .,Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa Iowa City IA USA
| | - Mimi Fang
- Department of Biochemistry, Carver College of Medicine, University of Iowa Iowa City IA USA
| | - Bintou Doumbia
- Department of Chemistry, Butler University Indianapolis IN USA
| | - Alexis Neyman
- Department of Chemistry, Butler University Indianapolis IN USA
| | - Ji Hyeon Cha
- Department of Chemistry, Butler University Indianapolis IN USA
| | - Michael Thomas
- Department of Chemistry, Butler University Indianapolis IN USA
| | | | - Meng Wu
- Department of Biochemistry, Carver College of Medicine, University of Iowa Iowa City IA USA .,University of Iowa High Throughput Screening (UIHTS) Core USA.,Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa USA
| | - Anne M Wilson
- Department of Chemistry, Butler University Indianapolis IN USA
| | - Miles A Pufall
- Department of Biochemistry, Carver College of Medicine, University of Iowa Iowa City IA USA
| |
Collapse
|
40
|
Leng Y, Sun Y, Huang W, Lv C, Cui J, Li T, Wang Y. Phthalate esters and dexamethasone synergistically activate glucocorticoid receptor. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1581-1588. [PMID: 32998617 DOI: 10.1080/10934529.2020.1826775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
This study was conducted to determine the endocrine-disrupting effects of phthalate esters (PAEs) on the glucocorticoid receptor (GR) signaling. Potential (anti)glucocorticoid activities of six typical PAEs including di (2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP), dibutyl phthalate (DBP), diisobutyl phthalate (DIBP), diethyl phthalate (DEP) and dimethyl phthalate (DMP) were evaluated on human GR using cell viability assessment, reporter gene expression analysis, mRNA analysis, and molecular docking and simulation. For all tested chemicals, co-treatment of DEHP and DINP with dexamethasone (DEX) exhibited a synergistic effect on GR transactivity in the reporter assays. Such co-treatment also synergistically enhanced DEX-induced upregulation of GR mediated gene (PEPCK, FAS and MKP-1) mRNA expression in HepG2 cells and A549 cells. Molecular docking and dynamics simulations showed that hydrophobic interactions may stabilize the binding between molecules and GR. In summary, DEHP and DINP may be involved in synergistic effects via human GR, which highlight the potential endocrine-disrupting activities of PAEs as contaminants.
Collapse
Affiliation(s)
- Yue Leng
- College of Food Science and Engineering, Jilin University, People's Republic of China
| | - Yonghai Sun
- College of Food Science and Engineering, Jilin University, People's Republic of China
| | - Wei Huang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Jilin, People's Republic of China
| | - Chengyu Lv
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Jilin, People's Republic of China
| | - Jingyan Cui
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Jilin, People's Republic of China
| | - Tiezhu Li
- College of Food Science and Engineering, Jilin University, People's Republic of China
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Jilin, People's Republic of China
| | - Yongjun Wang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Jilin, People's Republic of China
| |
Collapse
|
41
|
Jing S, Zou H, Wu Z, Ren L, Zhang T, Zhang J, Wei Z. Cucurbitacins: Bioactivities and synergistic effect with small-molecule drugs. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|