1
|
Zhu X, Ren M, Zhang Z, Meng F, Li Z, Qin Y, Fang Y, Zhang M. Isolation and characterization of quinoa antimicrobial peptides and its effect on the microbial diversity of fresh apple juice. Food Chem 2024; 469:142536. [PMID: 39729667 DOI: 10.1016/j.foodchem.2024.142536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/30/2024] [Accepted: 12/14/2024] [Indexed: 12/29/2024]
Abstract
This study developed antimicrobial peptides (AMPs) from quinoa with high antibacterial activity and stability by mixed-bacteria fermentation. Furthermore, among 9 peptide fractions purified by membrane separation and chromatography, F1 could effectively inhibit the growth and propagation of bacterial microorganisms in apple juice. Subsequently, F1 identified LC-MS/MS as 95 peptides, molecular weights 494.25 Da to 1253.55 Da, notably, AGAAPE peptide (556.25 Da), negatively charged (-1), highly hydrophobic (50 %), with significant inhibitory effects on both Escherichia coli and Staphylococcus aureus (MIC 5 mg/mL). The antimicrobial mechanism of AGAAPE was determined to damage membrane through hydrogen-bond and hydrophobic interactions, resulting in leakage of intramembrane substances and inhibition of intracellular ATPase activity. Moreover, AGAAPE was pH resistant (pH 4-12), thermally stable (121 °C, 30 min), resistant to salt ion interference (Na+, Ca2+), and protease hydrolysis resistant (neutral protease, pepsin, trypsin). Overall, identifying AMPs from quinoa provides a promising new approach for fresh juice preservation.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Mengyao Ren
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Zhiwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Fanxing Meng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Zongda Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Yanan Qin
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Yan Fang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.
| |
Collapse
|
2
|
Lei Y, Lyu A, Pan M, Shi Q, Xu H, Li D, Deng M. Control of Postharvest Green Mold in Citrus by the Antimicrobial Peptide BP15 and Its Lipopeptides. J Fungi (Basel) 2024; 10:837. [PMID: 39728333 DOI: 10.3390/jof10120837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
This study examined the efficacy and mechanisms of action of the antimicrobial peptide BP15 and its lipopeptides, HBP15 and LBP15, against Penicillium digitatum, the primary causative agent of green mold in citrus fruits. The findings revealed that all three antimicrobial peptides markedly inhibited the spore germination and mycelial growth of P. digitatum, with minimum inhibitory concentrations (MICs) of 3.12 μM for BP15, HBP15, and LBP15. The peptides induced morphological alterations in hyphae and elevated intracellular Sytox Green (SG) fluorescence signals, which is indicative of increased cell membrane permeability and disruption. This membrane damage was further supported by the heightened extracellular conductivity and the release of intracellular nucleic acid and protein. A gel retardation assay demonstrated that the peptides showed significant DNA binding and retardation effects. Furthermore, the peptides exhibited significantly lower hemolytic activity (p < 0.05) compared to commercial prochloraz in normal mammalian erythrocytes (sheep erythrocytes) at the tested concentrations. Therefore, BP15 and its lipopeptides, HBP15 and LBP15, show potential as effective agents for preventing green mold in citrus fruits.
Collapse
Affiliation(s)
- Yu Lei
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Aiyuan Lyu
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Mengjuan Pan
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Qingxia Shi
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Haowan Xu
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Dong Li
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Mengsheng Deng
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| |
Collapse
|
3
|
Imperlini E, Massaro F, Grifoni A, Maiurano F, Taddei AR, Borocci S, Buonocore F, Porcelli F. Membrane alteration, anti-virulence properties and metabolomic perturbation of a chionodracine-derived antimicrobial peptide, KHS-Cnd, on two bacteria models. Peptides 2024; 182:171311. [PMID: 39426570 DOI: 10.1016/j.peptides.2024.171311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Antarctic fishes, living in an extreme environment and normally exposed to pathogens, are a promising source of antimicrobial peptides (AMPs). These are emerging as next-generation drugs due to their activity against multidrug resistant (MDR) bacteria. To infect hosts, beyond intrinsic/acquired resistance, MDR species also use virulence factors such as protease secretion. Hence, AMPs targeting virulence factors could represent a novel strategy to counteract the antimicrobial resistance (AMR). In this paper, we focused on a mutant peptide, named KHS-Cnd, that was obtained from the scaffold of the chionodracine (Cnd), a natural peptide identified in the icefish Chionodraco hamatus. We studied different effects caused by the peptide interaction with the cell membrane of two model bacteria, E. coli and B. cereus. First, we investigated its membranolytic activity revealing that the peptide action is more evident on E. coli, with a 69 % uptake of the used dye at 3 μM, whereas for B. cereus we found only a 65 % uptake at 6 μM. Successively, we determined the impact of this lysis on total protein concentration in the medium and an increase was estimated for both bacteria (84 % after 1 h for E. coli and 90 % for B. cereus, respectively). Moreover, we evaluated the changes in the proteolytic activity of the supernatant, that is an important aspect of bacterial resistance, showing that there was a significant reduction for both bacteria, although at higher level in the case of E. coli. The membranolytic activity was evidenced also morphologically with TEM analysis and a different alteration was evidenced for the two bacteria. Moreover, NMR metabolomics analysis showed that peptide induces changes in E. coli and B. cereus extracellular metabolites especially at the higher tested concentrations: this metabolic variation could be used as a fingerprinting of the peptide action on bacteria physiology due to its interaction with cell wall. Finally, we determined the KHS-Cnd cytotoxicity on human primary cell lines to verify its selectivity toward bacterial cell membranes and we found low toxicity until a concentration of 5 μM. Considering that the peptide exerts both membranolytic and anti-virulence activity on E. coli at 1.5 μM, we confirmed the interesting potential of this AMP as a new drug to counteract AMR.
Collapse
Affiliation(s)
- Esther Imperlini
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Largo dell'Università snc, Viterbo, Italy
| | - Federica Massaro
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Largo dell'Università snc, Viterbo, Italy
| | - Angelica Grifoni
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Largo dell'Università snc, Viterbo, Italy
| | - Francesco Maiurano
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Largo dell'Università snc, Viterbo, Italy
| | - Anna Rita Taddei
- Center of Large Equipments, Section of Electron Microscopy, University of Tuscia, Largo dell'Universit`a Snc, Viterbo 01100, Italy
| | - Stefano Borocci
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Largo dell'Università snc, Viterbo, Italy; Institute for Biological Systems of Italian National Research Council (ISB-CNR), Secondary Office of Rome-Reaction Mechanisms c/o Department of Chemistry, La Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Francesco Buonocore
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Largo dell'Università snc, Viterbo, Italy.
| | - Fernando Porcelli
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Largo dell'Università snc, Viterbo, Italy
| |
Collapse
|
4
|
Kumar N, Bhagwat P, Singh S, Pillai S. A review on the diversity of antimicrobial peptides and genome mining strategies for their prediction. Biochimie 2024; 227:99-115. [PMID: 38944107 DOI: 10.1016/j.biochi.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/08/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
Antibiotic resistance has become one of the most serious threats to human health in recent years. In response to the increasing microbial resistance to the antibiotics currently available, it is imperative to develop new antibiotics or explore new approaches to combat antibiotic resistance. Antimicrobial peptides (AMPs) have shown considerable promise in this regard, as the microbes develop low or no resistance against them. The discovery and development of AMPs still confront numerous obstacles such as finding a target, developing assays, and identifying hits and leads, which are time-consuming processes, making it difficult to reach the market. However, with the advent of genome mining, new antibiotics could be discovered efficiently using tools such as BAGEL, antiSMASH, RODEO, etc., providing hope for better treatment of diseases in the future. Computational methods used in genome mining automatically detect and annotate biosynthetic gene clusters in genomic data, making it a useful tool in natural product discovery. This review aims to shed light on the history, diversity, and mechanisms of action of AMPs and the data on new AMPs identified by traditional as well as genome mining strategies. It further substantiates the various phases of clinical trials for some AMPs, as well as an overview of genome mining databases and tools built expressly for AMP discovery. In light of the recent advancements, it is evident that targeted genome mining stands as a beacon of hope, offering immense potential to expedite the discovery of novel antimicrobials.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa.
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa.
| | - Suren Singh
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa.
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
5
|
Nocera FP, De Martino L. Methicillin-resistant Staphylococcus pseudintermedius: epidemiological changes, antibiotic resistance, and alternative therapeutic strategies. Vet Res Commun 2024; 48:3505-3515. [PMID: 39167258 PMCID: PMC11538175 DOI: 10.1007/s11259-024-10508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Staphylococcus pseudintermedius is a major opportunistic bacterial pathogen that belongs to the skin and mucosal microbiota of the dog. Since its global emergence around 2006, multidrug - methicillin-resistant S. pseudintermedius (MRSP) clones have become endemic worldwide. MRSP strains pose a significant threat to animal health and make antimicrobial therapy difficult due to their typical multidrug resistance phenotypes. The difficulty to treat MRSP infections using the current antimicrobials licensed for veterinary use has intensified research efforts to develop new treatment strategies and alternative anti-infective approaches to conventional antimicrobial therapy. The present narrative review outlines the latest changes in the epidemiology of MRSP with focus on the geographical distribution variability and antimicrobial resistance profiles in the main MRSP lineages. It also provides an overview of the effectiveness of currently available antimicrobials and the status of anti-infective alternatives to conventional antimicrobials.Recent studies have reported notable changes in the population structure of MRSP, with the emergence of new epidemic lineages, such as ST258, ST123, ST496, and ST551 in European countries and ST45, ST181, ST258, ST496 in non-European countries, which partly or totally replaced those that were initially prevalent, such as ST71 in Europe and ST68 in the US. Due to methicillin resistance often associated with the resistance to a broader number of antimicrobials, treating canine MRSP skin infection is challenging. Several alternative or supplementary treatment options to conventional antibiotics, especially for topical treatment, such as a novel water-soluble hydroxypyridinone-containing iron-chelating 9 kDa polymer (DIBI), antimicrobial peptides (AMPs), nanoparticles, and bacteriophages seem to be particularly interesting from a clinical perspective.
Collapse
Affiliation(s)
- Francesca Paola Nocera
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy.
| | - Luisa De Martino
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
6
|
Liu W, Wang Z, Huang Y, Liu Y, Li R, Wang M, Zhang H, Meng C, Xiao X. Acetylshikonin reduces the spread of antibiotic resistance via plasmid conjugation. Int J Antimicrob Agents 2024; 64:107370. [PMID: 39481662 DOI: 10.1016/j.ijantimicag.2024.107370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/27/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
The plasmid-mediated conjugative transfer of antibiotic resistance genes (ARGs) stands out as the primary driver behind the dissemination of antimicrobial resistance (AMR). Developing effective inhibitors that target conjugative transfer represents an potential strategy for addressing the issue of AMR. Here, we studied the effect of acetylshikonin (ASK), a botanical derivative, on plasmid conjugation. The conjugative transfer of RP4-7 plasmid inter and intra species was notably reduced by ASK. The conjugation process of IncI2 and IncX4 plasmids harbouring the mobile colistin resistance gene (mcr-1), IncX4 and IncX3 plasmids containing the carbapenem resistance gene (blaNDM-5), and IncFI and IncFII plasmids possessing the tetracycline resistance gene [tet(X4)] were also reduced by ASK. Importantly, the conjugative transfer frequency of mcr-1 positive IncI2 plasmid in mouse peritoneal conjugation model and gut conjugation model was reduced by ASK. The mechanism investigation showed that ASK disrupted the functionality of the bacterial cell membrane. Furthermore, the proton motive force (PMF) was dissipated. In addition, ASK blocked the electron transmission in bacteria's electron transport chain (ETC) through disturbing the quinone interaction, resulting in an insufficient energy supply for conjugation. Collectively, ASK is a potential conjugative transfer inhibitor, providing novel strategies to prevent the spread of AMR.
Collapse
Affiliation(s)
- Wei Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yanhu Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Mianzhi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Haijie Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Chuang Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xia Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| |
Collapse
|
7
|
Ba Z, Wang Y, Yang Y, Ren B, Li B, Ouyang X, Zhang J, Yang T, Liu Y, Zhao Y, Yang P, Wu X, Mao W, Zhong C, Liu H, Zhang Y, Gou S, Ni J. Phosphorylation as an Effective Tool to Improve Stability and Reduce Toxicity of Antimicrobial Peptides. J Med Chem 2024; 67:18807-18827. [PMID: 39383315 DOI: 10.1021/acs.jmedchem.4c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Developing a straightforward and effective strategy to modify antimicrobial peptides (AMPs) is crucial in overcoming the challenges posed by their instability and toxicity. Phosphorylation can reduce toxicity and improve the stability of AMPs. Based on these, we designed a series of peptides and their corresponding phosphorylated forms. The results showed that all phosphorylated peptides displayed reduced toxicity and enhanced stability compared to their unphosphorylated counterparts. Among them, W3BipY8-P stood out as the most promising peptide, exhibiting similar antibacterial activity as its unphosphorylated analog W3BipY8 but with significantly reduced hemolytic activity (19-fold decrease), cytotoxicity (3.3-fold decrease), and an extended serum half-life 6.3 times longer than W3BipY8. W3BipY8-P exerted bactericidal effects by disrupting bacterial membranes. Notably, W3BipY8-P significantly prolonged the survival of bacteria-infected animals while its LD50 was 4.2 times higher than that of W3BipY8. These findings highlight phosphorylation as an effective strategy for improving the antimicrobial properties of AMPs.
Collapse
Affiliation(s)
- Zufang Ba
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yu Wang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yinyin Yang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Bingqian Ren
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Beibei Li
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xu Ouyang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingying Zhang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tingting Yang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yao Liu
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuhuan Zhao
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ping Yang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaoyan Wu
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenbo Mao
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chao Zhong
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College. Beijing 100050, P. R. China
| | - Hui Liu
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College. Beijing 100050, P. R. China
| | - Yun Zhang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College. Beijing 100050, P. R. China
| | - Sanhu Gou
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College. Beijing 100050, P. R. China
| | - Jingman Ni
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College. Beijing 100050, P. R. China
| |
Collapse
|
8
|
Lu C, Wang X, Ye P, Lu Z, Ma J, Luo W, Wang S, Chen X. Antimicrobial Peptides From the Gut Microbiome of the Centenarians: Diversification of Biosynthesis and Youthful Development of Resistance Genes. J Gerontol A Biol Sci Med Sci 2024; 79:glae218. [PMID: 39207726 DOI: 10.1093/gerona/glae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Indexed: 09/04/2024] Open
Abstract
Antimicrobial peptides (AMPs) offer a potential solution to the antibiotic crisis owing to their antimicrobial properties, and the human gut biome may be a source of these peptides. However, the potential AMPs and AMP resistance genes (AMPRGs) of gut microbes in different age groups have not been thoroughly assessed. Here, we investigated the potential development of AMPs and the distribution pattern of AMPRGs in the gut microbiome at different ages by analyzing the intestinal metagenomic data of healthy individuals at different life stages (CG: centenarians group n = 20; OAG: older adults group: n = 15; YG: young group: n = 15). Age-related increases were observed in the potential AMPs within the gut microbiome, with centenarians showing a greater diversity of these peptides. However, the gut microbiome of the CG group had a lower level of AMPRGs compared to that of the OAG group, and it was similar to the level found in the YG group. Additionally, conventional probiotic strains showed a significant positive correlation with certain potential AMPs and were associated with a lower detection of resistance genes. Furthermore, comparing potential AMPs with existing libraries revealed limited similarity, indicating that current machine learning models can identify novel peptides in the gut microbiota. These results indicate that longevity may benefit from the diversity of AMPs and lower resistance genes. Our findings help explain the age advantage of the centenarians and identify the potential for antimicrobial peptide biosynthesis in the human gut microbiome, offering insights into the development of antimicrobial peptide resistance and the screening of probiotic strains.
Collapse
Affiliation(s)
- Chunrong Lu
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
| | - Xiaojun Wang
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
| | - Pengpeng Ye
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
| | - Zhilong Lu
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
| | - Jie Ma
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
| | - Weifei Luo
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
| | - Shuai Wang
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaochun Chen
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
| |
Collapse
|
9
|
Coelho NCS, Portuondo DLF, Lima J, Velásquez AMA, Valente V, Carlos IZ, Cilli EM, Graminha MAS. Peptide Dimerization as a Strategy for the Development of Antileishmanial Compounds. Molecules 2024; 29:5170. [PMID: 39519812 PMCID: PMC11547375 DOI: 10.3390/molecules29215170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Leishmaniasis is recognized as a serious public health problem in Brazil and around the world. The limited availability of drugs for treatment, added to the diversity of side effects and the emergence of resistant strains, shows the importance of research focused on the development of new molecules, thus contributing to treatments. Therefore, this work aimed to identify leishmanicidal compounds using a peptide dimerization strategy, as well as to understand their mechanisms of action. Herein, it was demonstrated that the dimerization of the peptide TSHa, (TSHa)2K, presented higher potency and selectivity than its monomeric form when evaluated against Leishmania mexicana and Leishmania amazonensis. Furthermore, these compounds are capable of inhibiting the parasite cysteine protease, an important target explored for the development of antileishmanial compounds, as well as to selectively interact with the parasite membranes, as demonstrated by flow cytometry, permeabilization, and fluorescence microscopy experiments. Based on this, the identified molecules are candidates for use in in vivo studies with animal models to combat leishmaniasis.
Collapse
Affiliation(s)
- Natália C. S. Coelho
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| | - Deivys L. F. Portuondo
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| | - Jhonatan Lima
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| | - Angela M. A. Velásquez
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| | - Valéria Valente
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| | - Iracilda Z. Carlos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| | - Eduardo M. Cilli
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
| | - Márcia A. S. Graminha
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| |
Collapse
|
10
|
Yang R, Cui L, Xu S, Zhong Y, Xu T, Liu J, Lan Z, Qin S, Guo Y. Membrane-Targeting Amphiphilic Honokiol Derivatives Containing an Oxazole Moiety as Potential Antibacterials against Methicillin-Resistant Staphylococcus aureus. J Med Chem 2024; 67:16858-16872. [PMID: 39259708 DOI: 10.1021/acs.jmedchem.4c01860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Infections with methicillin-resistant Staphylococcus aureus (MRSA) are becoming increasingly serious, making the development of novel antimicrobials urgent. Here, we synthesized some amphiphilic honokiol derivatives bearing an oxazole moiety and investigated their antibacterial and hemolytic activities. Bioactivity evaluation showed that E17 possessed significant in vitro antibacterial activity against S. aureus and MRSA, along with low hemolytic activity. Moreover, E17 exhibited rapid bactericidal properties and was not susceptible to resistance. Mechanistic studies indicated that E17 interacts with phosphatidylglycerol and cardiolipin of bacterial cell membranes, leading to changes in cell membrane permeability and polarization, increased intracellular ROS, and leakage of DNA and proteins, thus accelerating bacterial death. Transcriptome analysis further demonstrated that E17 has membrane-targeting effects, affecting the expression of genes related to cell membranes and ABC transporter proteins. Notably, in vivo activity showed that E17 has prominent anti-MRSA efficacy, comparable to vancomycin, and is expected to be a new anti-MRSA drug candidate.
Collapse
Affiliation(s)
- Ruige Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Liping Cui
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Shengnan Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| | - Yan Zhong
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| | - Ting Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| | - Jifeng Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Zhenwei Lan
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Yong Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| |
Collapse
|
11
|
Qian Y, Yang D, Zhu J, Huang S, Chen S, Zeng J, Xu J, He J, Zhou C. Mimics of Host Defense Peptides Derived from Dendronized Polylysines for Antibacterial and Anticancer Therapy. ACS Macro Lett 2024; 13:1156-1163. [PMID: 39158183 DOI: 10.1021/acsmacrolett.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Bacteria in tumor microenvironments promote carcinogenesis and trigger complications, suggesting the significance of intervening in bacterial growth in cancer treatment. Here, dendrimer-derived mimics (DMs) of host defense peptides (HDPs) were designed for antibacterial and anticancer therapy, which feature a dendronized polylysine core and polycaprolactone arms. DMs displayed not only remarkable activities against Staphylococcus aureus and human lung cancer cells, but also exceptional selectivity. The membranolytic mechanism revealed by morphology analysis explained their low susceptibility to induce resistance. Further, the optimized DM inhibited tumor growth in the subcutaneous tumor model when administered via intraperitoneal injection and exhibited negligible toxicity to tissues. Overall, we combined the superiority of dendrimers and the mechanism from HDPs to design agents with dual antibacterial and anticancer activities that possess great potential for clinical oncology therapy.
Collapse
Affiliation(s)
- Yusheng Qian
- School of Material Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Danjing Yang
- Department of Pathology and Pathophysiology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 500 Zhennan Road, Shanghai 200092, China
| | - Jiaming Zhu
- Department of Pathology and Pathophysiology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 500 Zhennan Road, Shanghai 200092, China
| | - Shuting Huang
- School of Material Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Sijin Chen
- School of Material Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jing Zeng
- Department of Pathology and Pathophysiology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 500 Zhennan Road, Shanghai 200092, China
| | - Jin Xu
- Laboratory Animal Center of Tongji University, Tongji University, 500 Zhennan Road, Shanghai 200092, China
| | - Jing He
- Department of Pathology and Pathophysiology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 500 Zhennan Road, Shanghai 200092, China
| | - Chuncai Zhou
- School of Material Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
12
|
Sun J, Kong P, Shi J, Liu Y. Evaluation of the Antibacterial Potential of Two Short Linear Peptides YI12 and FK13 against Multidrug-Resistant Bacteria. Pathogens 2024; 13:797. [PMID: 39338988 PMCID: PMC11435022 DOI: 10.3390/pathogens13090797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The accelerating spread of antibiotic resistance has significantly weakened the clinical efficacy of existing antibiotics, posing a severe threat to public health. There is an urgent need to develop novel antimicrobial alternatives that can bypass the mechanisms of antibiotic resistance and effectively kill multidrug-resistant (MDR) pathogens. Antimicrobial peptides (AMPs) are one of the most promising candidates to treat MDR pathogenic infections since they display broad-spectrum antimicrobial activities and are less prone to achieve drug resistance. In this study, we investigated the antibacterial capability and mechanisms of two machine learning-driven linear peptide compounds termed YI12 and FK13. We reveal that YI12 and FK13 exhibit broad-spectrum antibacterial properties against clinically significant bacterial pathogens, inducing no or minimal hemolysis in mammalian red blood cells. We further ascertain that YI12 and FK13 are resilient to heat and acid-base conditions, and exhibit susceptibility to hydrolytic enzymes and divalent cations under physiological conditions. Initial mechanistic investigations reveal that YI12 and FK13 compromise bacterial membrane integrity, leading to membrane potential dissipation and excessive reactive oxygen species (ROS) generation. Collectively, our findings highlight the prospective utility of these two cationic amphiphilic peptides as broad-spectrum antibacterial agents.
Collapse
Affiliation(s)
- Jingyi Sun
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Pan Kong
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jingru Shi
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yuan Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
13
|
Bucataru C, Ciobanasu C. Antimicrobial peptides: Opportunities and challenges in overcoming resistance. Microbiol Res 2024; 286:127822. [PMID: 38986182 DOI: 10.1016/j.micres.2024.127822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Antibiotic resistance represents a global health threat, challenging the efficacy of traditional antimicrobial agents and necessitating innovative approaches to combat infectious diseases. Among these alternatives, antimicrobial peptides have emerged as promising candidates against resistant pathogens. Unlike traditional antibiotics with only one target, these peptides can use different mechanisms to destroy bacteria, with low toxicity to mammalian cells compared to many conventional antibiotics. Antimicrobial peptides (AMPs) have encouraging antibacterial properties and are currently employed in the clinical treatment of pathogen infection, cancer, wound healing, cosmetics, or biotechnology. This review summarizes the mechanisms of antimicrobial peptides against bacteria, discusses the mechanisms of drug resistance, the limitations and challenges of AMPs in peptide drug applications for combating drug-resistant bacterial infections, and strategies to enhance their capabilities.
Collapse
Affiliation(s)
- Cezara Bucataru
- Alexandru I. Cuza University, Institute of Interdisciplinary Research, Department of Exact and Natural Sciences, Bulevardul Carol I, Nr.11, Iasi 700506, Romania
| | - Corina Ciobanasu
- Alexandru I. Cuza University, Institute of Interdisciplinary Research, Department of Exact and Natural Sciences, Bulevardul Carol I, Nr.11, Iasi 700506, Romania.
| |
Collapse
|
14
|
Wavhal DS, Koszelewski D, Gulko C, Kowalczyk P, Brodzka A, Kramkowski K, Ostaszewski R. Mystery of the Passerini Reaction for the Synthesis of the Antimicrobial Peptidomimetics against Nosocomial Pathogenic Bacteria. Int J Mol Sci 2024; 25:8330. [PMID: 39125898 PMCID: PMC11312933 DOI: 10.3390/ijms25158330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The first example of applying salicylaldehyde derivatives, as well as coumarin with the formyl group at the C8 position in its structure, as carbonyl partners in a three-component Passerini reaction, is presented. As a result of research on the conditions of the Passerini reaction, the important role of the hydroxyl group in the salicylaldehyde used in the course of the multicomponent reaction was revealed. When an aldehyde with an unprotected hydroxyl group is used, only two-component α-hydroxy amide products are obtained. In contrast, the use of acylated aldehyde results in three-component α-acyloxy amide products with high efficiency. The developed protocol gives access to structurally diversified peptidomimetics with good yield. The compounds were also evaluated as antimicrobial agents against selected strains of nosocomial pathogenic bacteria. The structure-activity relationship revealed that inhibitory activity is strongly related to the presence of the trifluoromethyl group (CF3) or the methyl group at the C4 position in an unsaturated lactone ring of the coumarin scaffold. MIC and MBC studies were carried out on eight selected pathogenic bacteria strains (Gram-positive pathogenic Staphylococcus aureus strain (ATCC 23235), as well as on Gram-negative E. coli (K12 (ATCC 25404), R2 (ATCC 39544), R3 (ATCC 11775), and R4 (ATCC 39543)), Acinetobacter baumannii (ATCC 17978), Pseudomonas aeruginosa (ATCC 15442), and Enterobacter cloacae (ATCC 49141) have shown that the tested compounds show a strong bactericidal effect at low concentrations. Among all agents investigated, five exhibit higher antimicrobial activity than those observed for commonly used antibiotics. It should be noted that all the compounds tested showed very high activity against S. aureus, which is the main source of nosocomial infections that cause numerous fatalities. Additionally, the cytotoxicity of sixteen derivatives was measured with the use of the MTT test on BALB/c3T3 mouse fibroblast cell lines. The cytotoxicity studies revealed that the tested substances exert a similar or lower effect on cell proliferation than that observed for commonly used antibiotics within the range of therapeutic doses. A parallel MTT assay using ciprofloxacin, bleomycin, and cloxacillin showed that these antibiotics are more cytotoxic when tested in mammalian cells, and cell viability is in the range of 85.0-89.9%. Furthermore, we have shown that the studied coumarin-based peptidomimetics, depending on their structural characteristics, are nonselective and act efficiently against various Gram-positive and Gram-negative pathogens, which is of great importance for hospitalised patients.
Collapse
Affiliation(s)
- Deepak S. Wavhal
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.S.W.); (D.K.); (C.G.); (A.B.)
| | - Dominik Koszelewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.S.W.); (D.K.); (C.G.); (A.B.)
| | - Cezary Gulko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.S.W.); (D.K.); (C.G.); (A.B.)
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Anna Brodzka
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.S.W.); (D.K.); (C.G.); (A.B.)
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1 Str., 15-089 Białystok, Poland;
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.S.W.); (D.K.); (C.G.); (A.B.)
| |
Collapse
|
15
|
Chen C, Shi J, Wang D, Kong P, Wang Z, Liu Y. Antimicrobial peptides as promising antibiotic adjuvants to combat drug-resistant pathogens. Crit Rev Microbiol 2024; 50:267-284. [PMID: 36890767 DOI: 10.1080/1040841x.2023.2186215] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/19/2022] [Accepted: 10/26/2022] [Indexed: 03/10/2023]
Abstract
The widespread antimicrobial resistance (AMR) calls for the development of new antimicrobial strategies. Antibiotic adjuvant rescues antibiotic activity and increases the life span of the antibiotics, representing a more productive, timely, and cost-effective strategy in fighting drug-resistant pathogens. Antimicrobial peptides (AMPs) from synthetic and natural sources are considered new-generation antibacterial agents. Besides their direct antimicrobial activity, growing evidence shows that some AMPs effectively enhance the activity of conventional antibiotics. The combinations of AMPs and antibiotics display an improved therapeutic effect on antibiotic-resistant bacterial infections and minimize the emergence of resistance. In this review, we discuss the value of AMPs in the age of resistance, including modes of action, limiting evolutionary resistance, and their designing strategies. We summarise the recent advances in combining AMPs and antibiotics against antibiotic-resistant pathogens, as well as their synergistic mechanisms. Lastly, we highlight the challenges and opportunities associated with the use of AMPs as potential antibiotic adjuvants. This will shed new light on the deployment of synergistic combinations to address the AMR crisis.
Collapse
Affiliation(s)
- Chen Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jingru Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dejuan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Pan Kong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
16
|
Cresti L, Cappello G, Pini A. Antimicrobial Peptides towards Clinical Application-A Long History to Be Concluded. Int J Mol Sci 2024; 25:4870. [PMID: 38732089 PMCID: PMC11084544 DOI: 10.3390/ijms25094870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Antimicrobial peptides (AMPs) are molecules with an amphipathic structure that enables them to interact with bacterial membranes. This interaction can lead to membrane crossing and disruption with pore formation, culminating in cell death. They are produced naturally in various organisms, including humans, animals, plants and microorganisms. In higher animals, they are part of the innate immune system, where they counteract infection by bacteria, fungi, viruses and parasites. AMPs can also be designed de novo by bioinformatic approaches or selected from combinatorial libraries, and then produced by chemical or recombinant procedures. Since their discovery, AMPs have aroused interest as potential antibiotics, although few have reached the market due to stability limits or toxicity. Here, we describe the development phase and a number of clinical trials of antimicrobial peptides. We also provide an update on AMPs in the pharmaceutical industry and an overall view of their therapeutic market. Modifications to peptide structures to improve stability in vivo and bioavailability are also described.
Collapse
Affiliation(s)
- Laura Cresti
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy; (G.C.); (A.P.)
| | - Giovanni Cappello
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy; (G.C.); (A.P.)
| | - Alessandro Pini
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy; (G.C.); (A.P.)
- SetLance srl, Via Fiorentina 1, 53100 Siena, Italy
- Laboratory of Clinical Pathology, Santa Maria alle Scotte University Hospital, 53100 Siena, Italy
| |
Collapse
|
17
|
Yao T, Sun F, Zhu B, Han S, Zhang H, Meng C, Gao Z, Cui Y. Oral Administration of Antimicrobial Peptide NZ2114 Through the Microalgal Bait Tetraselmis subcordiformis (Wille) Butcher for Improving the Immunity and Gut Health in Turbot (Scophthalmus maximus L.). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:230-242. [PMID: 38502428 DOI: 10.1007/s10126-024-10289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/09/2024] [Indexed: 03/21/2024]
Abstract
Antibiotics are widely used in aquaculture to treat the bacterial diseases. However, the improper use of antibiotics could lead to environmental pollution and development of resistance. As a safe and eco-friendly alternative, antimicrobial peptides (AMPs) are commonly explored as therapeutic agents. In this study, a mutant strain of Tetraselmis subcordiformis containing AMP NZ2114 was developed and used as an oral drug delivery system to reduce the use of antibiotics in turbot (Scophthalmus maximus) aquaculture. The gut, kidney, and liver immune-related genes and their effects on gut digestion and bacterial communities in turbot fed with NZ2114 were evaluated in an 11-day feeding experiment. The results showed that compared with the group fed with wild-type T. subcordiformis, the group fed with T. subcordiformis transformants containing NZ2114 was revealed with decreased levels of both pro-inflammatory factors (TNF-α and IL-1β), inhibitory effect on Staphylococcus aureus, Vibrio parahaemolyticus, and Vibrio splendidus demonstrated by the in vitro simulation experiments, and increased richness and diversity of the gut microbiota of turbot. In conclusion, our study provided a novel, beneficial, and low-cost method for controlling bacteria in turbot culture through the oral drug delivery systems.
Collapse
Affiliation(s)
- Ting Yao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Fengjie Sun
- School of Science and Technology, Georgia Gwinnett College, 1000 University Center Lane, Lawrenceville, GA, 30043, USA
| | - Bingkui Zhu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Subing Han
- College of Life Sciences, Yantai University, Yantai, 264000, Shandong, China
| | - Hao Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Chunxiao Meng
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China.
| | - Yulin Cui
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China.
| |
Collapse
|
18
|
Karapetian M, Alimbarashvili E, Vishnepolsky B, Gabrielian A, Rosenthal A, Hurt DE, Tartakovsky M, Mchedlishvili M, Arsenadze D, Pirtskhalava M, Zaalishvili G. Evaluation of the synergistic potential and mechanisms of action for de novo designed cationic antimicrobial peptides. Heliyon 2024; 10:e27852. [PMID: 38560672 PMCID: PMC10979160 DOI: 10.1016/j.heliyon.2024.e27852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Antimicrobial peptides (AMPs) have emerged as promising candidates in combating antimicrobial resistance - a growing issue in healthcare. However, to develop AMPs into effective therapeutics, a thorough analysis and extensive investigations are essential. In this study, we employed an in silico approach to design cationic AMPs de novo, followed by their experimental testing. The antibacterial potential of de novo designed cationic AMPs, along with their synergistic properties in combination with conventional antibiotics was examined. Furthermore, the effects of bacterial inoculum density and metabolic state on the antibacterial activity of AMPs were evaluated. Finally, the impact of several potent AMPs on E. coli cell envelope and genomic DNA integrity was determined. Collectively, this comprehensive analysis provides insights into the unique characteristics of cationic AMPs.
Collapse
Affiliation(s)
- Margarita Karapetian
- Laboratory of Chromatin Biology, Institute of Cellular and Molecular Biology, Agricultural University of Georgia, 240 David Aghmashenebeli Alley, 0159, Tbilisi, Georgia
| | - Evgenia Alimbarashvili
- Laboratory of Chromatin Biology, Institute of Cellular and Molecular Biology, Agricultural University of Georgia, 240 David Aghmashenebeli Alley, 0159, Tbilisi, Georgia
- Ivane Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia
| | - Boris Vishnepolsky
- Ivane Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia
| | - Andrei Gabrielian
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alex Rosenthal
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Darrell E. Hurt
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael Tartakovsky
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mariam Mchedlishvili
- Laboratory of Chromatin Biology, Institute of Cellular and Molecular Biology, Agricultural University of Georgia, 240 David Aghmashenebeli Alley, 0159, Tbilisi, Georgia
| | - Davit Arsenadze
- Laboratory of Chromatin Biology, Institute of Cellular and Molecular Biology, Agricultural University of Georgia, 240 David Aghmashenebeli Alley, 0159, Tbilisi, Georgia
| | - Malak Pirtskhalava
- Ivane Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia
| | - Giorgi Zaalishvili
- Laboratory of Chromatin Biology, Institute of Cellular and Molecular Biology, Agricultural University of Georgia, 240 David Aghmashenebeli Alley, 0159, Tbilisi, Georgia
- Ivane Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia
| |
Collapse
|
19
|
Li C, Zhou Z, Wang W, Zhao Y, Yin X, Meng Y, Zhao P, Wang M, Liu X, Wang X, Wang S, Ren B, Zhang L, Xia X. Development of Antibacterial Peptides with Membrane Disruption and Folate Pathway Inhibitory Activities against Methicillin-Resistant Staphylococcus aureus. J Med Chem 2024; 67:1044-1060. [PMID: 38173250 DOI: 10.1021/acs.jmedchem.3c01360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Antimicrobial peptides (AMPs) offer an opportunity to overcome multidrug resistance. Here, novel peptides were designed based on AMP fragments derived from sea cucumber hemolytic lectin to enhance anti-methicillin-resistant Staphylococcus aureus (MRSA) activity with less side effects. Two designed peptides, CGS19 (LARVARRVIRFIRRAW-NH2) and CGS20 (RRRLARRLIFFIRRAW-NH2), exhibited strong antibacterial activities against clinically isolated MRSA with MICs of 3-6 μM, but no obvious cytotoxicity was observed. Consistently, CGS19 and CGS20 exerted rapid bactericidal activity and effectively induced 5.9 and 5.8 log reduction of MRSA counts in mouse subeschar, respectively. Further, CGS19 and CGS20 kill bacteria not only through disturbing membrane integrity but also by binding formate-tetrahydrofolate ligase, a key enzyme in the folate metabolism pathway, thereby inhibiting the folate pathway of MRSA. CGS19 and CGS20 are promising lead candidates for drug development against MRSA infection. The dual mechanisms on the identical peptide sequence or scaffold might be an underappreciated manner of treating life-threatening pathogens.
Collapse
Affiliation(s)
- Chunlei Li
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Department of Pharmacy, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ziyi Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Weitao Wang
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Yanqiu Zhao
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Xin Yin
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Yiwei Meng
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Peipei Zhao
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Mengmeng Wang
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinye Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shenlin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuekui Xia
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| |
Collapse
|
20
|
Vargová Z, Olejníková P, Kuzderová G, Rendošová M, Havlíčková J, Gyepes R, Vilková M. Silver(I) complexes with amino acid and dipeptide ligands - Chemical and antimicrobial relevant comparison (mini review). Bioorg Chem 2023; 141:106907. [PMID: 37844541 DOI: 10.1016/j.bioorg.2023.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Diseases caused by various microorganisms accompany humans (as well as animals) throughout their whole lives. After germs penetration to the body, the incubation period and infection developing, an infection can cause mild or severe symptoms, not infrequently even death. The immune system naturally defends itself against pathogens with various mechanisms. One of them is the synthesis of antimicrobial peptides. In the case of serious and severe infections, it is currently possible to help the natural immunity by administration of antimicrobial drugs (AMB) with good success since their discovery at the beginning of the last century. However, their excessive use leads to the development of pathogenic microorganisms' resistance to AMB drugs. Based on this, it is necessary to constantly develop new classes of AMB drugs that will be effective against pathogens, even resistant ones. The field of bioinorganic chemistry, similarly to other biological, chemical, or pharmaceutical sciences, discovers various options and approaches for antimicrobial treatment, from the development of new drugs to drug delivery systems. One of the approaches is the design and preparation of potential drugs based on metal ions and antimicrobial peptides. Various metal ions and amino acid or peptide ligands are used for this purpose. In this mini review, we focused on a reliable comparison of the chemical structure and biological properties of selected silver(I) complexes based on amino acids and dipeptides.
Collapse
Affiliation(s)
- Zuzana Vargová
- Institute of Chemistry, Pavol Jozef Šafárik University, Moyzesova 11, Košice 041 54, Slovakia.
| | - Petra Olejníková
- Department of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Gabriela Kuzderová
- Institute of Chemistry, Pavol Jozef Šafárik University, Moyzesova 11, Košice 041 54, Slovakia
| | - Michaela Rendošová
- Institute of Chemistry, Pavol Jozef Šafárik University, Moyzesova 11, Košice 041 54, Slovakia
| | - Jana Havlíčková
- Institute of Chemistry, Charles University, Hlavova 2030, Prague 128 00, Czechia
| | - Róbert Gyepes
- Institute of Chemistry, Charles University, Hlavova 2030, Prague 128 00, Czechia
| | - Mária Vilková
- Institute of Chemistry, Pavol Jozef Šafárik University, Moyzesova 11, Košice 041 54, Slovakia
| |
Collapse
|
21
|
Yu Q, Cai Q, Liang W, Zhong K, Liu J, Li H, Chen Y, Li H, Fang S, Zhong R, Liu S, Lin S. Design of phenothiazine-based cationic amphiphilic derivatives incorporating arginine residues: Potential membrane-active broad-spectrum antimicrobials combating pathogenic bacteria in vitro and in vivo. Eur J Med Chem 2023; 260:115733. [PMID: 37643545 DOI: 10.1016/j.ejmech.2023.115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Multidrug-resistant bacteria infections pose an increasingly serious threat to human health, and the development of antimicrobials is far from meeting the clinical demand. It is urgent to discover and develop novel antibiotics to combat bacterial resistance. Currently, the development of membrane active antimicrobial agents is an attractive strategy to cope with antimicrobial resistance issues. In this study, the synthesis and biological evaluation of cationic amphiphilic phenothiazine-based derivatives were reported. Among them, the most promising compound 30 bearing a n-heptyl group and two arginine residues displayed potent bactericidal activity against both Gram-positive (MICs = 1.56 μg/mL) and Gram-negative bacteria (MICs = 3.125-6.25 μg/mL). Compound 30 showed low hemolysis activity (HC50 = 281.4 ± 1.6 μg/mL) and low cytotoxicity (CC50 > 50 μg/mL) toward mammalian cells, as well as excellent salt resistance. Compound 30 rapidly killed bacteria by acting on the bacterial cell membrane and appeared less prone to resistance. Importantly, compound 30 showed potent in vivo efficacy in a murine model of bacterial keratitis. Hence, the results suggested compound 30 has a promising prospect as a broad-spectrum antibacterial agent for the treatment of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Qian Yu
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qiongna Cai
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wanxin Liang
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Kewen Zhong
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiayong Liu
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Haizhou Li
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yongzhi Chen
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hongxia Li
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shanfang Fang
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Rongcui Zhong
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shouping Liu
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Shuimu Lin
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
22
|
Browne K, Kuppusamy R, Walsh WR, Black DS, Willcox MDP, Kumar N, Chen R. Antimicrobial Peptidomimetics Prevent the Development of Resistance against Gentamicin and Ciprofloxacin in Staphylococcus and Pseudomonas Bacteria. Int J Mol Sci 2023; 24:14966. [PMID: 37834415 PMCID: PMC10573972 DOI: 10.3390/ijms241914966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Bacteria readily acquire resistance to traditional antibiotics, resulting in pan-resistant strains with no available treatment. Antimicrobial resistance is a global challenge and without the development of effective antimicrobials, the foundation of modern medicine is at risk. Combination therapies such as antibiotic-antibiotic and antibiotic-adjuvant combinations are strategies used to combat antibiotic resistance. Current research focuses on antimicrobial peptidomimetics as adjuvant compounds, due to their promising activity against antibiotic-resistant bacteria. Here, for the first time we demonstrate that antibiotic-peptidomimetic combinations mitigate the development of antibiotic resistance in Staphylococcus aureus and Pseudomonas aeruginosa. When ciprofloxacin and gentamicin were passaged individually at sub-inhibitory concentrations for 10 days, the minimum inhibitory concentrations (MICs) increased up to 32-fold and 128-fold for S. aureus and P. aeruginosa, respectively. In contrast, when antibiotics were passaged in combination with peptidomimetics (Melimine, Mel4, RK758), the MICs of both antibiotics and peptidomimetics remained constant, indicating these combinations were able to mitigate the development of antibiotic-resistance. Furthermore, antibiotic-peptidomimetic combinations demonstrated synergistic activity against both Gram-positive and Gram-negative bacteria, reducing the concentration needed for bactericidal activity. This has significant potential clinical applications-including preventing the spread of antibiotic-resistant strains in hospitals and communities, reviving ineffective antibiotics, and lowering the toxicity of antimicrobial chemotherapy.
Collapse
Affiliation(s)
- Katrina Browne
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Prince of Wales Hospital, University of New South Wales (UNSW), Randwick 2031, Australia
| | - Rajesh Kuppusamy
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia
- School of Optometry and Vision Science, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia
| | - William R. Walsh
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Prince of Wales Hospital, University of New South Wales (UNSW), Randwick 2031, Australia
| | - David StC Black
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia
| | - Mark D. P. Willcox
- School of Optometry and Vision Science, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia
| | - Naresh Kumar
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia
| | - Renxun Chen
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia
| |
Collapse
|
23
|
Chen EHL, Wang CH, Liao YT, Chan FY, Kanaoka Y, Uchihashi T, Kato K, Lai L, Chang YW, Ho MC, Chen RPY. Visualizing the membrane disruption action of antimicrobial peptides by cryo-electron tomography. Nat Commun 2023; 14:5464. [PMID: 37673860 PMCID: PMC10482868 DOI: 10.1038/s41467-023-41156-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
The abuse of antibiotics has led to the emergence of multidrug-resistant microbial pathogens, presenting a pressing challenge in global healthcare. Membrane-disrupting antimicrobial peptides (AMPs) combat so-called superbugs via mechanisms different than conventional antibiotics and have good application prospects in medicine, agriculture, and the food industry. However, the mechanism-of-action of AMPs has not been fully characterized at the cellular level due to a lack of high-resolution imaging technologies that can capture cellular-membrane disruption events in the hydrated state. Previously, we reported PepD2M, a de novo-designed AMP with potent and wide-spectrum bactericidal and fungicidal activity. In this study, we use cryo-electron tomography (cryo-ET) and high-speed atomic force microscopy (HS-AFM) to directly visualize the pepD2M-induced disruption of the outer and inner membranes of the Gram-negative bacterium Escherichia coli, and compared with a well-known pore-forming peptide, melittin. Our high-resolution cryo-ET images reveal how pepD2M disrupts the E. coli membrane using a carpet/detergent-like mechanism. Our studies reveal the direct membrane-disrupting consequence of AMPs on the bacterial membrane by cryo-ET, and this information provides critical insights into the mechanisms of this class of antimicrobial agents.
Collapse
Affiliation(s)
- Eric H-L Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Ting Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Feng-Yueh Chan
- Department of Physics, Nagoya University, Nagoya, 464-8602, Japan
| | - Yui Kanaoka
- Department of Physics, Nagoya University, Nagoya, 464-8602, Japan
| | - Takayuki Uchihashi
- Department of Physics, Nagoya University, Nagoya, 464-8602, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 464-8602, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Longsheng Lai
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6059, USA
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6059, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
| | - Rita P-Y Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
24
|
Cresti L, Cappello G, Vailati S, Melloni E, Brunetti J, Falciani C, Bracci L, Pini A. In Vivo Efficacy and Toxicity of an Antimicrobial Peptide in a Model of Endotoxin-Induced Pulmonary Inflammation. Int J Mol Sci 2023; 24:ijms24097967. [PMID: 37175674 PMCID: PMC10178222 DOI: 10.3390/ijms24097967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
SET-M33 is a synthetic peptide that is being developed as a new antibiotic against major Gram-negative bacteria. Here we report two in vivo studies to assess the toxicity and efficacy of the peptide in a murine model of pulmonary inflammation. First, we present the toxicity study in which SET-M33 was administered to CD-1 mice by snout inhalation exposure for 1 h/day for 7 days at doses of 5 and 20 mg/kg/day. The results showed adverse clinical signs and effects on body weight at the higher dose, as well as some treatment-related histopathology findings (lungs and bronchi, nose/turbinates, larynx and tracheal bifurcation). On this basis, the no observable adverse effect level (NOAEL) was considered to be 5 mg/kg/day. We then report an efficacy study of the peptide in an endotoxin (LPS)-induced pulmonary inflammation model. Intratracheal administration of SET-M33 at 0.5, 2 and 5 mg/kg significantly inhibited BAL neutrophil cell counts after an LPS challenge. A significant reduction in pro-inflammatory cytokines, KC, MIP-1α, IP-10, MCP-1 and TNF-α was also recorded after SET-M33 administration.
Collapse
Affiliation(s)
- Laura Cresti
- U.O.C. Clinical Pathology, Azienda Ospedaliera Universitaria Senese, Via M. Bracci, 53100 Siena, Italy
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy
| | - Giovanni Cappello
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy
- SetLance srl, Via Fiorentina 1, 53100 Siena, Italy
| | | | - Elsa Melloni
- Zambon spa, Via A. Meucci 3, 20091 Bresso, Italy
| | - Jlenia Brunetti
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy
| | - Chiara Falciani
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy
| | - Luisa Bracci
- U.O.C. Clinical Pathology, Azienda Ospedaliera Universitaria Senese, Via M. Bracci, 53100 Siena, Italy
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy
| | - Alessandro Pini
- U.O.C. Clinical Pathology, Azienda Ospedaliera Universitaria Senese, Via M. Bracci, 53100 Siena, Italy
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy
| |
Collapse
|
25
|
Sun T, Liu X, Su Y, Wang Z, Cheng B, Dong N, Wang J, Shan A. The efficacy of anti-proteolytic peptide R7I in intestinal inflammation, function, microbiota, and metabolites by multi-omics analysis in murine bacterial enteritis. Bioeng Transl Med 2023; 8:e10446. [PMID: 36925697 PMCID: PMC10013768 DOI: 10.1002/btm2.10446] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022] Open
Abstract
Increased antibiotic resistance poses a major limitation in tackling inflammatory bowel disease and presents a large challenge for global health care. Antimicrobial peptides (AMPs) are a potential class of antimicrobial agents. Here, we have designed the potential oral route for antimicrobial peptide R7I with anti-proteolytic properties to deal with bacterial enteritis in mice. The results revealed that R7I protected the liver and gut from damage caused by inflammation. RNA-Seq analysis indicated that R7I promoted digestion and absorption in the small intestine by upregulating transmembrane transporter activity, lipid and small molecule metabolic processes and other pathways, in addition to upregulating hepatic steroid biosynthesis and fatty acid degradation. For the gut microbiota, Clostridia were significantly reduced in the R7I-treated group, and Odoribacteraceae, an efficient isoalloLCA-synthesizing strain, was the main dominant strain, protecting the gut from potential pathogens. In addition, we further discovered that R7I reduced the accumulation of negative organic acid metabolites. Overall, R7I exerted better therapeutic and immunomodulatory potential in the bacterial enteritis model, greatly reduced the risk of disease onset, and provided a reference for the in vivo application of antimicrobial peptides.
Collapse
Affiliation(s)
- Taotao Sun
- Laboratory of Molecular Nutrition and Immunity, the Institute of Animal NutritionNortheast Agricultural UniversityHarbinChina
| | - Xuesheng Liu
- Laboratory of Molecular Nutrition and Immunity, the Institute of Animal NutritionNortheast Agricultural UniversityHarbinChina
| | - Yunzhe Su
- Laboratory of Molecular Nutrition and Immunity, the Institute of Animal NutritionNortheast Agricultural UniversityHarbinChina
| | - Zihang Wang
- Laboratory of Molecular Nutrition and Immunity, the Institute of Animal NutritionNortheast Agricultural UniversityHarbinChina
| | - Baojing Cheng
- Laboratory of Molecular Nutrition and Immunity, the Institute of Animal NutritionNortheast Agricultural UniversityHarbinChina
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, the Institute of Animal NutritionNortheast Agricultural UniversityHarbinChina
| | - Jiajun Wang
- Laboratory of Molecular Nutrition and Immunity, the Institute of Animal NutritionNortheast Agricultural UniversityHarbinChina
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, the Institute of Animal NutritionNortheast Agricultural UniversityHarbinChina
| |
Collapse
|
26
|
Abstract
The robust innate immune system of the earthworm provides a potential source of natural antimicrobial peptides (AMPs). However, the cost and high rediscovery rate of direct separation and purification limits their discovery. Genome sequencing of numerous earthworm species facilitates the discovery of new antimicrobial peptides. Through predicting potential antimicrobial peptides in the open reading frames of the Eisenia andrei genome and sequence optimization, a novel antimicrobial peptide, named EWAMP-R (RIWWSGGWRRWRW), was identified. EWAMP-R demonstrated good activity against various bacteria, including drug-resistant strains. The antibacterial mechanisms of EWAMP-R were explored through molecular simulation and wet-laboratory experiments. These experiments demonstrated that the bacterial membrane may be one of the targets of EWAMP-R but that there may be different interactions with Gram-negative and Gram-positive bacterial membranes. EWAMP-R can disrupt bacterial membrane integrity; however, at low concentrations, it appears that EWAMP-R may get through the membrane of Escherichia coli instead of damaging it directly, implying the existence of a secondary response. Gene expression studies identified that in E. coli, only the apoptosis-like cell death (ALD) pathway was activated, while in Staphylococcus aureus, the MazEF pathway was also upregulated, limiting the influence of the ALD pathway. The different antimicrobial actions against Gram-positive and -negative bacteria can provide important information on the structure-activity relationship of AMPs and facilitate AMP design with higher specificity. This study identified a new source of antibacterial agents that has the potential to address the increasingly serious issue of antibiotic resistance. IMPORTANCE Drug-resistant bacteria are a great threat to public health and drive the search for new antibacterial agents. The living environment of earthworms necessitates a strong immune system, and therefore, they are potentially a rich resource of novel antibiotics. A novel AMP, EWAMP-R, with high antibacterial activity was found through in silico analysis of the Eisenia andrei genome. Molecular analysis investigating the interactions between EWAMP-R and the cell membrane demonstrated the importance of tryptophan and arginine residues to EWAMP-R activity. Additionally, the different secondary responses found between E. coli and S. aureus were in accordance with a common phenomenon where some antibacterial agents only target specific species of bacteria. These results provided useful molecular information to support further AMP research and design. Our study expands the sources of antimicrobial peptides and also helps to explain the adaptability of earthworms to their environment.
Collapse
|
27
|
Effects of Dimerization, Dendrimerization, and Chirality in p-BthTX-I Peptide Analogs on the Antibacterial Activity and Enzymatic Inhibition of the SARS-CoV-2 PL pro Protein. Pharmaceutics 2023; 15:pharmaceutics15020436. [PMID: 36839758 PMCID: PMC9964244 DOI: 10.3390/pharmaceutics15020436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Recent studies have shown that the peptide [des-Cys11,Lys12,Lys13-(p-BthTX-I)2K] (p-Bth) is a p-BthTX-I analog that shows enhanced antimicrobial activity, stability and hemolytic activity, and is easy to obtain compared to the wild-type sequence. This molecule also inhibits SARS-CoV-2 viral infection in Vero cells, acting on SARS-CoV-2 PLpro enzymatic activity. Thus, the present study aimed to assess the effects of structural modifications to p-Bth, such as dimerization, dendrimerization and chirality, on the antibacterial activity and inhibitory properties of PLpro. The results showed that the dimerization or dendrimerization of p-Bth was essential for antibacterial activity, as the monomeric structure led to a total loss of, or significant reduction in, bacterial activities. The dimers and tetramers obtained using branched lysine proved to be prominent compounds with antibacterial activity against Gram-positive and Gram-negative bacteria. In addition, hemolysis rates were below 10% at the corresponding concentrations. Conversely, the inhibitory activity of the PLpro of SARS-CoV-2 was similar in the monomeric, dimeric and tetrameric forms of p-Bth. Our findings indicate the importance of the dimerization and dendrimerization of this important class of antimicrobial peptides, which shows great potential for antimicrobial and antiviral drug-discovery campaigns.
Collapse
|
28
|
Shen C, Liang H, Guo Z, Zhang M. Members of the histone-derived antimicrobial peptide family from the pearl oyster Pinctada fucata martensii: Inhibition of bacterial growth. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108439. [PMID: 36423807 DOI: 10.1016/j.fsi.2022.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Because it is difficult to isolate standard antimicrobial peptides (AMPs) using traditional biochemical approaches, we designed, synthesized, and evaluated a series of structurally altered histone-derived AMPs (HDAPs) from the pearl oyster Pinctada fucata martensii using molecular cloning approaches. Four histone-homolog genes (PmH2A, PmH2B, PmH3, and PmH4-1) were identified, of which PmH2A and PmH2B had yet to be described. PmH2A and PmH2B were therefore cloned using Rapid Amplification of cDNA Ends (RACE) and characterized. Constitutive PmH2A and PmH2B mRNA expression was detected in all six pearl oyster tissues tested, with comparatively greater transcript abundance in the gonads. Because α-helical content, hydrophilicity index, and the presence of a proline hinge may be the three important factors influencing the antimicrobial efficacy of HDAPs, we synthesized a series of eight N- and C-terminally truncated or amino acid-substituted synthetic candidate HDAP analogs derived from PmH2A, PmH2B, PmH3, and PmH4-1. Only the PmH2A- and PmH4-derived AMPs inhibited bacterial growth. The PmH2A-derived AMPs were α-helical proteins, while the PmH4-derived AMPs were extended strand/random coil proteins. Our results suggested that having an α-helical structure was particularly important for the antibacterial efficacy of the PmH2A-derived peptides; amphipathic structures (hydrophilic index, 0.3 to -0.3) may enhance the antimicrobial function of both the PmH2A- and PmH4-derived peptides. The high antibacterial efficacy of one of the HDAP analogs studied, PmH2A-AMP (5-13) [KLLK]3, indicated that this protein may represent a promising candidate for the treatment of bacterial infections in aquaculture mollusk species. This first study of HDAPs from the pearl oyster P. f. martensii provides new insights into the design and function of highly effective antimicrobial peptides.
Collapse
Affiliation(s)
- Chenghao Shen
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China
| | - Haiying Liang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, Guangdong, 524088, PR China.
| | - Zhijie Guo
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China
| | - Meizhen Zhang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China
| |
Collapse
|
29
|
Saha R, Bhattacharya D, Mukhopadhyay M. Advances in modified antimicrobial peptides as marine antifouling material. Colloids Surf B Biointerfaces 2022; 220:112900. [DOI: 10.1016/j.colsurfb.2022.112900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/19/2022] [Accepted: 10/01/2022] [Indexed: 11/27/2022]
|
30
|
Safety evaluations of a synthetic antimicrobial peptide administered intravenously in rats and dogs. Sci Rep 2022; 12:19294. [PMID: 36369523 PMCID: PMC9652379 DOI: 10.1038/s41598-022-23841-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
The antimicrobial peptide SET-M33 is under study for the development of a new antibiotic against major Gram-negative pathogens. Here we report the toxicological evaluation of SET-M33 administered intravenously to rats and dogs. Dose range finding experiments determined the doses to use in toxicokinetic evaluation, clinical biochemistry analysis, necroscopy and in neurological and respiratory measurements. Clinical laboratory investigations in dogs and rats showed a dose-related increase in creatinine and urea levels, indicating that the kidneys are the target organ. This was also confirmed by necroscopy studies of animal tissues, where signs of degeneration and regeneration were found in kidney when SET-M33 was administered at the highest doses in the two animal species. Neurological toxicity measurements by the Irwin method and respiratory function evaluation in rats did not reveal any toxic effect even at the highest dose. Finally, repeated administration of SET-M33 by short infusion in dogs revealed a no-observed-adverse-effect-level of 0.5 mg/kg/day.
Collapse
|
31
|
10-mer and 9-mer WALK Peptides with Both Antibacterial and Anti-Inflammatory Activities. Antibiotics (Basel) 2022; 11:antibiotics11111588. [PMID: 36358242 PMCID: PMC9686928 DOI: 10.3390/antibiotics11111588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Natural antimicrobial peptides (AMPs) are multifunctional host defense peptides (HDPs) that are valuable for various therapeutic applications. In particular, natural and artificial AMPs with dual antibacterial immunomodulatory functions emerged as promising candidates for the development of therapeutic agents to treat infectious inflammation. In an effort to develop useful AMP variants with short lengths and simple amino acid composition, we devised a de novo design strategy to generate a series of model peptide isomer sequences, named WALK peptides, i.e., tryptophan (W)-containing amphipathic-helical (A) leucine (L)/lysine (K) peptides. Here, we generated two groups of WALK peptide isomers: W2L4K4 (WALK244.01~WALK244.10) and W2L4K3 (WALK243.01~WALK243.09). Most showed apparent antibacterial activities against both Gram-positive and Gram-negative bacteria at a concentration of approximately 4 μg/mL along with varied hemolytic activities against human red blood cells. In addition, some exhibited significant anti-inflammatory activities without any significant cytotoxicity in macrophages. Collectively, these results suggest that the two selected peptides, WALK244.04 and WALK243.04, showed promise for the development of antibacterial and anti-inflammatory agents.
Collapse
|
32
|
Artini M, Imperlini E, Buonocore F, Relucenti M, Porcelli F, Donfrancesco O, Tuccio Guarna Assanti V, Fiscarelli EV, Papa R, Selan L. Anti-Virulence Potential of a Chionodracine-Derived Peptide against Multidrug-Resistant Pseudomonas aeruginosa Clinical Isolates from Cystic Fibrosis Patients. Int J Mol Sci 2022; 23:13494. [PMID: 36362282 PMCID: PMC9657651 DOI: 10.3390/ijms232113494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing several chronic infections resistant to currently available antibiotics. Its pathogenicity is related to the production of different virulence factors such as biofilm and protease secretion. Pseudomonas communities can persist in biofilms that protect bacterial cells from antibiotics. Hence, there is a need for innovative approaches that are able to counteract these virulence factors, which play a pivotal role, especially in chronic infections. In this context, antimicrobial peptides are emerging drugs showing a broad spectrum of antibacterial activity. Here, we tested the anti-virulence activity of a chionodracine-derived peptide (KHS-Cnd) on five P. aeruginosa clinical isolates from cystic fibrosis patients. We demonstrated that KHS-Cnd impaired biofilm development and caused biofilm disaggregation without affecting bacterial viability in nearly all of the tested strains. Ultrastructural morphological analysis showed that the effect of KHS-Cnd on biofilm could be related to a different compactness of the matrix. KHS-Cnd was also able to reduce adhesion to pulmonary cell lines and to impair the invasion of host cells by P. aeruginosa. A cytotoxic effect of KHS-Cnd was observed only at the highest tested concentration. This study highlights the potential of KHS-Cnd as an anti-biofilm and anti-virulence molecule against P. aeruginosa clinical strains.
Collapse
Affiliation(s)
- Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Esther Imperlini
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | - Francesco Buonocore
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | - Michela Relucenti
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via Alfonso Borelli 50, 00161 Rome, Italy
| | - Fernando Porcelli
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | - Orlando Donfrancesco
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via Alfonso Borelli 50, 00161 Rome, Italy
| | - Vanessa Tuccio Guarna Assanti
- Research Unit of Diagnostical and Management Innovations, Children’s Hospital and Institute Research Bambino Gesù, 00165 Rome, Italy
| | - Ersilia Vita Fiscarelli
- Research Unit of Diagnostical and Management Innovations, Children’s Hospital and Institute Research Bambino Gesù, 00165 Rome, Italy
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
33
|
Chen X, Han J, Cai X, Wang S. Antimicrobial peptides: Sustainable application informed by evolutionary constraints. Biotechnol Adv 2022; 60:108012. [PMID: 35752270 DOI: 10.1016/j.biotechadv.2022.108012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/02/2022] [Accepted: 06/19/2022] [Indexed: 01/10/2023]
Abstract
The proliferation and global expansion of multidrug-resistant (MDR) bacteria have deepened the need to develop novel antimicrobials. Antimicrobial peptides (AMPs) are regarded as promising antibacterial agents because of their broad-spectrum antibacterial activity and multifaceted mechanisms of action with non-specific targets. However, if AMPs are to be applied sustainably, knowledge of how they induce resistance in pathogenic bacteria must be mastered to avoid repeating the traditional antibiotic resistance mistakes currently faced. Furthermore, the evolutionary constraints on the acquisition of AMP resistance by microorganisms in the natural environment, such as functional compatibility and fitness trade-offs, inform the translational application of AMPs. Consequently, the shortcut to achieve sustainable utilization of AMPs is to uncover the evolutionary constraints of bacteria on AMP resistance in nature and find the tricks to exploit these constraints, such as applying AMP cocktails to minimize the efficacy of selection for resistance or combining nanomaterials to maximize the costs of AMP resistance. Altogether, this review dissects the benefits, challenges, and opportunities of utilizing AMPs against disease-causing bacteria, and highlights the use of AMP cocktails or nanomaterials to proactively address potential AMP resistance crises in the future.
Collapse
Affiliation(s)
- Xuan Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jinzhi Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
34
|
Kang SJ, Nam SH, Lee BJ. Engineering Approaches for the Development of Antimicrobial Peptide-Based Antibiotics. Antibiotics (Basel) 2022; 11:antibiotics11101338. [PMID: 36289996 PMCID: PMC9599025 DOI: 10.3390/antibiotics11101338] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Antimicrobial peptides (AMPs) have received increasing attention as potential alternatives for future antibiotics because of the rise of multidrug-resistant (MDR) bacteria. AMPs are small cationic peptides with broad-spectrum antibiotic activities and different action mechanisms to those of traditional antibiotics. Despite the desirable advantages of developing peptide-based antimicrobial agents, the clinical applications of AMPs are still limited because of their enzymatic degradation, toxicity, and selectivity. In this review, structural modifications, such as amino acid substitution, stapling, cyclization of peptides, and hybrid AMPs with conventional antibiotics or other peptides, will be presented. Additionally, nanodelivery systems using metals or lipids to deliver AMPs will be discussed based on the structural properties and action mechanisms of AMPs.
Collapse
Affiliation(s)
- Su-Jin Kang
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Korea
| | - So Hee Nam
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
- Correspondence: ; Tel.: +82-2-880-7869
| |
Collapse
|
35
|
Shi J, Chen C, Wang D, Wang Z, Liu Y. The antimicrobial peptide LI14 combats multidrug-resistant bacterial infections. Commun Biol 2022; 5:926. [PMID: 36071151 PMCID: PMC9452538 DOI: 10.1038/s42003-022-03899-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/25/2022] [Indexed: 11/14/2022] Open
Abstract
The prevalence of multidrug-resistant (MDR) pathogens raises public fears of untreatable infections and represents a huge health risk. There is an urgent need to exploit novel antimicrobial agents. Due to the unique mechanisms, antimicrobial peptides (AMPs) with a low probability to achieve resistance are regarded as potential antibiotic alternatives to address this issue. Herein, we develop a panel of synthetic peptide compounds with novel structures based on the database filters technology (DFT), and the lead peptide LI14 shows potent antibacterial activity against all tested drug-resistant bacteria. LI14 exhibits rapid bactericidal activity and excellent anti-biofilm and -persisters activity, simultaneously showing a low propensity to induce resistance. Moreover, LI14 shows tolerance against pH, temperatures, and pepsin treatment, and no detectable toxicity both in vitro and in vivo. Mechanistic studies revealed that LI14 induces membrane damage by targeting bacterial-specific membrane components and dissipates the proton motive force (PMF), thereby resulting in metabolic perturbations and the accumulation of toxic metabolic products. Furthermore, LI14 sensitizes clinically relevant antibiotics against MDR bacteria. In animal models of infection, LI14 or combined with antibiotics are effective against drug-resistant pathogens. These findings suggest that LI14 is a promising antibiotic candidate to tackle MDR bacterial infections. A synthetic peptide LI14 demonstrates potent antibacterial activity against drug-resistant bacteria in vitro and in vivo by inducing membrane damage and disrupting membrane potential leading to metabolic perturbation.
Collapse
Affiliation(s)
- Jingru Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Chen Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Dejuan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China. .,Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
36
|
Li Z, Yang YJ, Qin Z, Li SH, Bai LX, Li JY, Liu XW. Florfenicol-Polyarginine Conjugates Exhibit Promising Antibacterial Activity Against Resistant Strains. Front Chem 2022; 10:921091. [PMID: 35844651 PMCID: PMC9284121 DOI: 10.3389/fchem.2022.921091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
Florfenicol was widely used as antibiotic in the livestock and poultry breeding industry, resulting in a serious problem of drug resistance. In order to solve the resistance of florfenicol, this study designed and synthesized a new series of florfenicol-polyarginine conjugates and tested for antimicrobial activities. Drug-sensitive bacteria, gram-negative bacteria Escherichia coli (E. coli) and gram-positive Staphylococcus aureus (S. aureus), were sensitive to several of the compounds tested. These conjugates also showed excellent activity against drug-resistant strains such as methicillin-resistant S. aureus (MRSA) and florfenicol resistant Escherichia coli strains (2017XJ30, 2019XJ20), one of which as E6 had a minimum inhibitory concentration of 12.5 μmol/L. These conjugates did not allow bacteria to develop resistance and also decreased bacterial growth by membrane depolarization and disruption. Additionally, florfenicol succinate (C1) showed certain activity after coupling with arginine. This suggested that conjugating arginine to florfenicol succinate effectively modulated the properties of prodrugs. These new conjugates may provide useful insights for expanding the pool of antibiotics.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xi-Wang Liu
- *Correspondence: Jian-Yong Li, ; Xi-Wang Liu,
| |
Collapse
|
37
|
Zheng X, Yang N, Mao R, Hao Y, Teng D, Wang J. Pharmacokinetics and Pharmacodynamics of Fungal Defensin NZX Against Staphylococcus aureus-Induced Mouse Peritonitis Model. Front Microbiol 2022; 13:865774. [PMID: 35722282 PMCID: PMC9198545 DOI: 10.3389/fmicb.2022.865774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the most common pathogenic bacteria responsible for causing a life-threatening peritonitis disease. NZX, as a variant of fungal defensin plectasin, displayed potent antibacterial activity against S. aureus. In this study, the antibacterial and resistance characteristics, pharmacokinetics, and pharmacodynamics of NZX against the S. aureus E48 and S. aureus E48-induced mouse peritonitis model were studied, respectively. NZX exhibited a more rapid killing activity to S. aureus (minimal inhibitory concentration, 1 μg/ml) compared with linezolid, ampicillin and daptomycin, and serial passaging of S. aureus E48 for 30 days at 1/2 × MIC, NZX had a lower risk of resistance compared with ampicillin and daptomycin. Also, it displayed a high biocompatibility and tolerance to physiological salt, serum environment, and phagolysosome proteinase environment, except for acid environment in phagolysosome. The murine serum protein-binding rate of NZX was 89.25% measured by ultrafiltration method. Based on the free NZX concentration in serum after tail vein administration, the main pharmacokinetic parameters for T1/2, Cmax, Vd, MRT, and AUC ranged from 0.32 to 0.45 h, 2.85 to 20.55 μg/ml, 1469.10 to 2073.90 ml/kg, 0.32 to 0.56 h, and 1.11 to 8.89 μg.h/ml, respectively. Additionally, the in vivo pharmacodynamics against S. aureus demonstrated that NZX administrated two times by tail vein at 20 mg/kg could rescue all infected mice in the lethal mouse peritonitis model. And NZX treatment (20 mg/kg) significantly reduced CFU counts in the liver, lung, and spleen, especially for intracellular bacteria in the peritoneal fluid, which were similar or superior to those of daptomycin. In vivo efficacies of NZX against total bacteria and intracellular bacteria were significantly correlated with three PK/PD indices of ƒAUC/MIC, ƒCmax/MIC, and ƒT% > MIC analyzed by a sigmoid maximum-effect model. These results showed that NZX may be a potential candidate for treating peritonitis disease caused by intracellular S. aureus.
Collapse
Affiliation(s)
- Xueling Zheng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
38
|
Bhat BA, Mir WR, Sheikh BA, Rather MA, Dar TUH, Mir MA. In vitro and in silico evaluation of antimicrobial properties of Delphinium cashmerianum L., a medicinal herb growing in Kashmir, India. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115046. [PMID: 35167935 DOI: 10.1016/j.jep.2022.115046] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Microorganisms are developing resistance to synthetic drugs. As a result, the search for novel antimicrobial compounds has become an urgent need. Medicinal plants are commonly used as traditional medicine and Delphinium is one of the prominent genus used in the treatment of several diseases. AIM OF THE STUDY The present study aimed to determine the in vitro and in silico antimicrobial activities of petroleum ether, ethyl acetate and methanol extracts from the leaf samples of plant (Delphinium cashmerianum L.) against various bacterial and fungal strains. MATERIAL AND METHODS Three extracts of Delphinium cashmerianum prepared and 88 bioactive compounds were analyzed through LC-MS data with the vast majority of them having therapeutic applications. These extracts have been screened for the antimicrobial activity against various bacterial (Escherichia coli, Micrococcus luteus, Klebsiella pneumoniae, Streptococcus pneumonia, Haemophilus influenzae, Neisseria mucosa) and fungal (Candida albicans, Candida glabrata, Candida paropsilosis) species through in silico molecular docking approach using autodock vina software, molecular dynamic simulation (MDS), in vitro disc diffusion and broth microdilution method for minimum inhibitory concentration (MIC) evaluation. RESULTS Our results demonstrated that all three extracts were active against the whole set of microorganisms. The ethyl acetate extract was the most active against S.pneumonia, K. pneumoniae and C. albicans with a minimum inhibitory concentration (MIC) value of 6.25, 25 and 50 μg/ml, respectively. The petroleum ether and methanol extracts were active against S.pneumonia and N.mucosa with MIC values of 25 and 50 μg/ml. Furthermore, we also performed the in silico virtual screening of all these compounds obtained from LC-MS data analysis against various known drug targets of bacterium and fungi. Upon analysis, we obtained 5 compounds that were efficiently binding to the drug targets. However, after performing exhaustive molecular docking and molecular dynamic simulation (MDS) analysis, it was observed that Daidzein compound is bound to drug targets more efficiently. CONCLUSION The results showed that these plant extracts exhibit antimicrobial activity and ethyl acetate extract proved to exhibit the most effective antibacterial and antifungal properties.
Collapse
Affiliation(s)
- Basharat Ahmad Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India.
| | - Wajahat Rashid Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India.
| | - Bashir Ahmad Sheikh
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India.
| | - Muzafar Ahmad Rather
- Plant Biotechnology and Molecular Biology Lab, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India.
| | - Tanver Ul Hassan Dar
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, India.
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
39
|
Peptide Conjugates Derived from flg15, Pep13, and PIP1 That Are Active against Plant-Pathogenic Bacteria and Trigger Plant Defense Responses. Appl Environ Microbiol 2022; 88:e0057422. [PMID: 35638842 PMCID: PMC9238401 DOI: 10.1128/aem.00574-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Thirty peptide conjugates were designed by combining an antimicrobial peptide (BP16, BP100, BP143, KSL-W, BP387, or BP475) at the N- or C-terminus of a plant defense elicitor peptide (flg15, BP13, Pep13, or PIP1). These conjugates were highly active in vitro against six plant-pathogenic bacteria, especially against Xanthomonas arboricola pv. pruni, Xanthomonas fragariae and Xanthomonas axonopodis pv. vesicatoria. The most active peptides were those incorporating Pep13. The order of the conjugation influenced the antibacterial activity and the hemolysis. Regarding the former, peptide conjugates incorporating the elicitor peptide flg15 or Pep13 at the C-terminus were, in general, more active against Pseudomonas syringae pv. actinidiae and P. syringae pv. syringae, whereas those bearing these elicitor peptides at the N-terminus displayed higher activity against Erwinia. amylovora and the Xanthomonas species. The best peptide conjugates displayed MIC values between 0.8 and 12.5 μM against all the bacteria tested and also had low levels of hemolysis and low phytotoxicity. Analysis of the structural and physicochemical parameters revealed that a positive charge ranging from +5 to +7 and a moderate hydrophobic moment/amphipathic character is required for an optimal biological profile. Interestingly, flg15-BP475 exhibited a dual activity, causing the upregulation of the same genes as flg15 and reducing the severity of bacterial spot in tomato plants with a similar or even higher efficacy than copper oxychloride. Characterization by nuclear magnetic resonance (NMR) of the secondary structure of flg15-BP475 showed that residues 10 to 25 fold into an α-helix. This study establishes trends to design new bifunctional peptides useful against plant diseases caused by plant-pathogenic bacteria. IMPORTANCE The consequences of plant pathogens on crop production together with the lack of effective and environmentally friendly pesticides evidence the need of new agents to control plant diseases. Antimicrobial and plant defense elicitor peptides have emerged as good candidates to tackle this problem. This study focused on combining these two types of peptides into a single conjugate with the aim to potentiate the activity of the individual fragments. Differences in the biological activity of the resulting peptide conjugates were obtained depending on their charge, amphipathicity, and hydrophobicity, as well as on the order of the conjugation of the monomers. This work provided bifunctional peptide conjugates able to inhibit several plant-pathogenic bacteria, to stimulate plant defense responses, and to reduce the severity of bacterial spot in tomato plants. Thus, this study could serve as the basis for the development of new antibacterial/plant defense elicitor peptides to control bacterial plant pathogens.
Collapse
|
40
|
Shao N, Yuan L, Ma P, Zhou M, Xiao X, Cong Z, Wu Y, Xiao G, Fei J, Liu R. Heterochiral β-Peptide Polymers Combating Multidrug-Resistant Cancers Effectively without Inducing Drug Resistance. J Am Chem Soc 2022; 144:7283-7294. [PMID: 35420800 DOI: 10.1021/jacs.2c00452] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Multidrug resistance to chemotherapeutic drugs is one of the major causes for the failure of cancer treatment. Therefore, there is an urgent need to develop anticancer agents that can combat multidrug-resistant cancers effectively and mitigate drug resistance. Here, we report a rational design of anticancer heterochiral β-peptide polymers as synthetic mimics of host defense peptides to combat multidrug-resistant cancers. The optimal polymer shows potent and broad-spectrum anticancer activities against multidrug-resistant cancer cells and is insusceptible to anticancer drug resistance owing to its membrane-damaging mechanism. The in vivo study indicates that the optimal polymer efficiently inhibits the growth and distant transfer of solid tumors and the metastasis and seeding of circulating tumor cells. Moreover, the polymer shows excellent biocompatibility during anticancer treatment on animals. In addition, the β-peptide polymers address those prominent shortcomings of anticancer peptides and have superior stability against proteolysis, easy synthesis in large scale, and low cost. Collectively, the structural diversity and superior anticancer performance of β-peptide polymers imply an effective strategy in designing and finding anticancer agents to combat multidrug-resistant cancers effectively while mitigating drug resistance.
Collapse
Affiliation(s)
- Ning Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ling Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pengcheng Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ximian Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zihao Cong
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yueming Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guohui Xiao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Fei
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
41
|
Jin L, Dong H, Sun D, Wang L, Qu L, Lin S, Yang Q, Zhang X. Biological Functions and Applications of Antimicrobial Peptides. Curr Protein Pept Sci 2022; 23:226-247. [DOI: 10.2174/1389203723666220519155942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Despite antimicrobial resistance, which is attributed to the misuse of broad-spectrum antibiotics,
antibiotics can indiscriminately kill pathogenic and beneficial microorganisms. These events
disrupt the delicate microbial balance in both humans and animals, leading to secondary infections
and other negative effects. Antimicrobial peptides (AMPs) are functional natural biopolymers in
plants and animals. Due to their excellent antimicrobial activities and absence of microbial resistance,
AMPs have attracted enormous research attention. We reviewed the antibacterial, antifungal, antiviral,
antiparasitic, as well as antitumor properties of AMPs and research progress on AMPs. In addition,
we highlighted various recommendations and potential research areas for their progress and
challenges in practical applications.
Collapse
Affiliation(s)
- Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Hao Dong
- College of Life Science and Technology, Jilin Agricultural University, Changchun 130118,
China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Linkai Qu
- College of Life Science and Technology, Jilin Agricultural University, Changchun 130118,
China
| | - Sue Lin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Xingxing Zhang
- Department of Endocrinology
and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
42
|
Qian Y, Deng S, Cong Z, Zhang H, Lu Z, Shao N, Bhatti SA, Zhou C, Cheng J, Gellman SH, Liu R. Secondary Amine Pendant β-Peptide Polymers Displaying Potent Antibacterial Activity and Promising Therapeutic Potential in Treating MRSA-Induced Wound Infections and Keratitis. J Am Chem Soc 2022; 144:1690-1699. [PMID: 35007085 DOI: 10.1021/jacs.1c10659] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interest in developing antibacterial polymers as synthetic mimics of host defense peptides (HPDs) has accelerated in recent years to combat antibiotic-resistant bacterial infections. Positively charged moieties are critical in defining the antibacterial activity and eukaryotic toxicity of HDP mimics. Most examples have utilized primary amines or guanidines as the source of positively charged moieties, inspired by the lysine and arginine residues in HDPs. Here, we explore the impact of amine group variation (primary, secondary, or tertiary amine) on the antibacterial performance of HDP-mimicking β-peptide polymers. Our studies show that a secondary ammonium is superior to either a primary ammonium or a tertiary ammonium as the cationic moiety in antibacterial β-peptide polymers. The optimal polymer, a homopolymer bearing secondary amino groups, displays potent antibacterial activity and the highest selectivity (low hemolysis and cytotoxicity). The optimal polymer displays potent activity against antibiotic-resistant bacteria and high therapeutic efficacy in treating MRSA-induced wound infections and keratitis as well as low acute dermal toxicity and low corneal epithelial cytotoxicity. This work suggests that secondary amines may be broadly useful in the design of antibacterial polymers.
Collapse
Affiliation(s)
- Yuxin Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuai Deng
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zihao Cong
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haodong Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ziyi Lu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ning Shao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Sonia Abid Bhatti
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
43
|
Zhu Y, Hao W, Wang X, Ouyang J, Deng X, Yu H, Wang Y. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Med Res Rev 2022; 42:1377-1422. [PMID: 34984699 DOI: 10.1002/med.21879] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), are important effector immune defense molecules in multicellular organisms. AMPs exert their antimicrobial activities through several mechanisms; thus far, induction of drug resistance through AMPs has been regarded as unlikely. Therefore, they have great potential as new generation antimicrobial agents. To date, more than 30 AMP-related drugs are in the clinical trial phase. In recent years, studies show that some AMPs and conventional antibiotics have synergistic effects. The combined use of AMPs and antibiotics can kill drug-resistant pathogens, prevent drug resistance, and significantly improve the therapeutic effects of antibiotics. In this review, we discuss the progress in synergistic studies on AMPs and conventional antibiotics. An overview of the current understanding of the functional scope of AMPs, ongoing clinical trials, and challenges in the development processes are also presented.
Collapse
Affiliation(s)
- Yiyun Zhu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Weijing Hao
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xia Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jianhong Ouyang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyi Deng
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Haining Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
44
|
Valdez N, Hughes C, Palmer SO, Sepulveda A, Dean FB, Escamilla Y, Bullard JM, Zhang Y. Rational Design of an Antimicrobial Peptide Based on Structural Insight into the Interaction of Pseudomonas aeruginosa Initiation Factor 1 with Its Cognate 30S Ribosomal Subunit. ACS Infect Dis 2021; 7:3161-3167. [PMID: 34709785 DOI: 10.1021/acsinfecdis.1c00256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial infections continue to represent a major worldwide health hazard following the emergence of drug-resistant pathogenic strains. Pseudomonas aeruginosa is an opportunistic pathogen causing nosocomial infections with increased morbidity and mortality. The increasing antibiotic resistance in P. aeruginosa has led to an unmet need for discovery of new antibiotic candidates. Bacterial protein synthesis is an essential metabolic process and a validated target for antibiotic development; however, the precise structural mechanism in P. aeruginosa remains unknown. In this work, the interaction of P. aeruginosa initiation factor 1 (IF1) with the 30S ribosomal subunit was studied by NMR, which enabled us to construct a structure of IF1-bound 30S complex. A short α-helix in IF1 was found to be critical for IF1 ribosomal binding and function. A peptide derived from this α-helix was tested and displayed a high ability to inhibit bacterial growth. These results provide a clue for rational design of new antimicrobials.
Collapse
Affiliation(s)
- Nicolette Valdez
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Casey Hughes
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Stephanie O. Palmer
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Alyssa Sepulveda
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Frank B. Dean
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Yaritza Escamilla
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - James M. Bullard
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Yonghong Zhang
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| |
Collapse
|
45
|
Zhang Z, Chen D, Lu X, Zhao R, Chen Z, Li M, Xu T, Mao Y, Yang Y, Yang Z. Directed Expression of Tracheal Antimicrobial Peptide as a Treatment for Bovine-Associated Staphylococcus Aureus-Induced Mastitis in Mice. Front Vet Sci 2021; 8:700930. [PMID: 34671659 PMCID: PMC8520960 DOI: 10.3389/fvets.2021.700930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Bovine mastitis is perplexing the dairy industry since the initiation of intensive dairy farming, which has caused a reduction in the productivity of cows and an escalation in costs. The use of antibiotics causes a series of problems, especially the formation of bacterial antimicrobial resistance. However, there are limited antibiotic-free therapeutic strategies that can effectively relieve bacterial infection of bovine mammary glands. Hence, in this study, we constructed a mammary gland tissue-specific expression vector carrying the antimicrobial peptide of bovine-derived tracheal antimicrobial peptide (TAP) and evaluated it in both primary bovine mammary epithelial cells (pBMECs) and mice. The results showed that the vector driven by the β-lactoglobulin gene (BLG) promoter could efficiently direct the expression of TAP in pBMECs and the mammary gland tissue of mice. In addition, significant antibacterial effects were observed in both in vitro and in vivo experiments when introducing this vector to bovine-associated Staphylococcus aureus-treated pBMECs and mice, respectively. This study demonstrated that the mammary gland tissue-specific expression vector could be used to introduce antimicrobial peptide both in in vitro and in vivo and will provide a new therapeutic strategy in the treatment of bovine mastitis.
Collapse
Affiliation(s)
- Zhipeng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Daijie Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ruifeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Mingxun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tianle Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yongjiang Mao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yi Yang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
46
|
Luo Y, Song Y. Mechanism of Antimicrobial Peptides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities. Int J Mol Sci 2021; 22:ijms222111401. [PMID: 34768832 PMCID: PMC8584040 DOI: 10.3390/ijms222111401] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) are regarded as a new generation of antibiotics. Besides antimicrobial activity, AMPs also have antibiofilm, immune-regulatory, and other activities. Exploring the mechanism of action of AMPs may help in the modification and development of AMPs. Many studies were conducted on the mechanism of AMPs. The present review mainly summarizes the research status on the antimicrobial, anti-inflammatory, and antibiofilm properties of AMPs. This study not only describes the mechanism of cell wall action and membrane-targeting action but also includes the transmembrane mechanism of intracellular action and intracellular action targets. It also discusses the dual mechanism of action reported by a large number of investigations. Antibiofilm and anti-inflammatory mechanisms were described based on the formation of biofilms and inflammation. This study aims to provide a comprehensive review of the multiple activities and coordination of AMPs in vivo, and to fully understand AMPs to realize their therapeutic prospect.
Collapse
Affiliation(s)
- Ying Luo
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
| | - Yuzhu Song
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Medical College, Kunming University of Science and Technology, Kunming 650500, China
- Correspondence: ; Tel.: +86-871-65939528
| |
Collapse
|
47
|
Kovalenko N, Howard GK, Swain JA, Hermant Y, Cameron AJ, Cook GM, Ferguson SA, Stubbing LA, Harris PWR, Brimble MA. A Concise Synthetic Strategy Towards the Novel Calcium-dependent Lipopeptide Antibiotic, Malacidin A and Analogues. Front Chem 2021; 9:687875. [PMID: 34422759 PMCID: PMC8372822 DOI: 10.3389/fchem.2021.687875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Malacidin A is a novel calcium-dependent lipopeptide antibiotic with excellent activity against Gram-positive pathogens. Herein, a concise and robust synthetic route toward malacidin A is reported, employing 9-fluorenylmethoxycarbonyl solid-phase peptide synthesis of a linear precursor, including late-stage incorporation of the lipid tail, followed by solution-phase cyclization. The versatility of this synthetic strategy was further demonstrated by synthesis of a diastereomeric variant of malacidin A and a small library of simplified analogues with variation of the lipid moiety.
Collapse
Affiliation(s)
- Nadiia Kovalenko
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Georgina K. Howard
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Jonathan A. Swain
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Yann Hermant
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Alan J. Cameron
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Gregory M. Cook
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Scott A. Ferguson
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Louise A. Stubbing
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Paul W. R. Harris
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
48
|
Bakare OO, Gokul A, Wu R, Niekerk LA, Klein A, Keyster M. Biomedical Relevance of Novel Anticancer Peptides in the Sensitive Treatment of Cancer. Biomolecules 2021; 11:1120. [PMID: 34439786 PMCID: PMC8394746 DOI: 10.3390/biom11081120] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/14/2022] Open
Abstract
The global increase in cancer mortality and economic losses necessitates the cautious quest for therapeutic agents with compensatory advantages over conventional therapies. Anticancer peptides (ACPs) are a subset of host defense peptides, also known as antimicrobial peptides, which have emerged as therapeutic and diagnostic candidates due to several compensatory advantages over the non-specificity of the current treatment regimens. This review aimed to highlight the ravaging incidence of cancer, the use of ACPs in cancer treatment with their mechanisms, ACP discovery and delivery methods, and the limitations for their use. This would create awareness for identifying more ACPs with better specificity, accuracy and sensitivity towards the disease. It would also promote their efficacious utilization in biotechnology, medical sciences and molecular biology to ease the severity of the disease and enable the patients living with these conditions to develop an accommodating lifestyle.
Collapse
Affiliation(s)
- Olalekan Olanrewaju Bakare
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.)
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthaditjhaba 9866, South Africa;
| | - Ruomou Wu
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.)
| | - Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.)
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa;
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.)
| |
Collapse
|
49
|
Oliveras À, Moll L, Riesco-Llach G, Tolosa-Canudas A, Gil-Caballero S, Badosa E, Bonaterra A, Montesinos E, Planas M, Feliu L. D-Amino Acid-Containing Lipopeptides Derived from the Lead Peptide BP100 with Activity against Plant Pathogens. Int J Mol Sci 2021; 22:ijms22126631. [PMID: 34205705 PMCID: PMC8233901 DOI: 10.3390/ijms22126631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/19/2022] Open
Abstract
From a previous collection of lipopeptides derived from BP100, we selected 18 sequences in order to improve their biological profile. In particular, analogues containing a D-amino acid at position 4 were designed, prepared, and tested against plant pathogenic bacteria and fungi. The biological activity of these sequences was compared with that of the corresponding parent lipopeptides with all L-amino acids. In addition, the influence of the length of the hydrophobic chain on the biological activity was evaluated. Interestingly, the incorporation of a D-amino acid into lipopeptides bearing a butanoyl or a hexanoyl chain led to less hemolytic sequences and, in general, that were as active or more active than the corresponding all L-lipopeptides. The best lipopeptides were BP475 and BP485, both incorporating a D-Phe at position 4 and a butanoyl group, with MIC values between 0.8 and 6.2 µM, low hemolysis (0 and 24% at 250 µM, respectively), and low phytotoxicity. Characterization by NMR of the secondary structure of BP475 revealed that the D-Phe at position 4 disrupts the α-helix and that residues 6 to 10 are able to fold in an α-helix. This secondary structure would be responsible for the high antimicrobial activity and low hemolysis of this lipopeptide.
Collapse
Affiliation(s)
- Àngel Oliveras
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17004 Girona, Spain; (À.O.); (G.R.-L.); (A.T.-C.)
| | - Luís Moll
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17004 Girona, Spain; (L.M.); (E.B.); (A.B.); (E.M.)
| | - Gerard Riesco-Llach
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17004 Girona, Spain; (À.O.); (G.R.-L.); (A.T.-C.)
| | - Arnau Tolosa-Canudas
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17004 Girona, Spain; (À.O.); (G.R.-L.); (A.T.-C.)
| | - Sergio Gil-Caballero
- Serveis Tècnics de Recerca (NMR), Universitat de Girona, Parc Científic i Tecnològic de la UdG, Pic de Peguera 15, 17004 Girona, Spain;
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17004 Girona, Spain; (L.M.); (E.B.); (A.B.); (E.M.)
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17004 Girona, Spain; (L.M.); (E.B.); (A.B.); (E.M.)
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17004 Girona, Spain; (L.M.); (E.B.); (A.B.); (E.M.)
| | - Marta Planas
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17004 Girona, Spain; (À.O.); (G.R.-L.); (A.T.-C.)
- Correspondence: (M.P.); (L.F.)
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17004 Girona, Spain; (À.O.); (G.R.-L.); (A.T.-C.)
- Correspondence: (M.P.); (L.F.)
| |
Collapse
|
50
|
Reis PVM, Lima VM, Souza KR, Cardoso GA, Melo-Braga MN, Santos DM, Verly RM, Pimenta AMC, Dos Santos VL, de Lima ME. Synthetic Peptides Derived From Lycosa Erythrognatha Venom: Interaction With Phospholipid Membranes and Activity Against Resistant Bacteria. Front Mol Biosci 2021; 8:680940. [PMID: 34169094 PMCID: PMC8217815 DOI: 10.3389/fmolb.2021.680940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Superbugs are a public health problem, increasing the need of new drugs and strategies to combat them. Our group has previously identified LyeTxI, an antimicrobial peptide isolated from Lycosa erythrognatha spider venom. From LyeTxI, we synthesized and characterized a derived peptide named LyeTxI-b, which has shown significant in vitro and in vivo activity. In this work, we elucidate the interaction of LyeTxI-b with artificial membranes as well as its effects on resistant strains of bacteria in planktonic conditions or biofilms. Isothermal titration calorimetry revealed that LyeTxI-b interacts more rapidly and with higher intensity with artificial vesicles, showing higher affinity to anionic vesicles, when compared to synthetic LyeTxI. In calcein experiments, LyeTxI-b caused greater levels of vesicle cleavage. Both peptides showed antibacterial activity at concentrations of μmol L−1 against 12 different clinically isolated strains, in planktonic conditions, in a concentration-dependent manner. Furthermore, both peptides elicited a dose-dependent production of reactive oxygen species in methicillin-resistant Staphylococcus aureus. In S. aureus biofilm assay, LyeTxI-b was more potent than LyeTxI. However, none of these peptides reduced Escherichia coli biofilms. Our results show LyeTxI-b as a promising drug against clinically resistant strains, being a template for developing new antibiotics.
Collapse
Affiliation(s)
- Pablo V M Reis
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, Brazil.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vinícius M Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Kelton R Souza
- Departamento de Química, FACET, Universidade Federal dos Vales do Jequitinhonha e Mucuri - Campus JK, Diamantina, Brazil
| | - Gabriele A Cardoso
- Departamento de Química, FACET, Universidade Federal dos Vales do Jequitinhonha e Mucuri - Campus JK, Diamantina, Brazil
| | - Marcella N Melo-Braga
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Daniel M Santos
- Departamento de Bioquímica e Biologia Molecular, Campos Centro Oeste. Universidade Federal de São João Del-Rei, Diamantina, Brazil
| | - Rodrigo M Verly
- Departamento de Química, FACET, Universidade Federal dos Vales do Jequitinhonha e Mucuri - Campus JK, Diamantina, Brazil
| | - Adriano M C Pimenta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vera Lúcia Dos Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Maria Elena de Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,Faculdade Santa Casa de Belo Horizonte, Programa de Pós-Graduação em Medicina - Biomedicina, Belo Horizonte, Brazil
| |
Collapse
|