1
|
Shi M, Yang J, Liu Y, Zhao H, Li M, Yang D, Xie Q. Huanglian Wendan Decoction Improves Insomnia in Rats by Regulating BDNF/TrkB Signaling Pathway Through Gut Microbiota-Mediated SCFAs and Affecting Microglia Polarization. Mol Neurobiol 2025; 62:1047-1066. [PMID: 38954253 DOI: 10.1007/s12035-024-04330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Insomnia is a typical type of sleep disorder. Huanglian Wendan Decoction (HWD) is a traditional Chinese medicine (TCM) with the effects of regulating Qi, drying dampness and resolving phlegm, calming the mind, and relieving irritation. This study aims to investigate the effect of HWD on insomnia in rats and its mechanism. Para-chlorophenylalanine (PCPA)-induced insomnia in rats was used for in vivo experiments and then treated with HWD. Behavioral tests, Western blot, real-time PCR, immunofluorescent staining, 16S rRNA sequencing were conducted. The content of SCFAs was determined by GC-MS. Acetic acid-pretreated rat hippocampal nerve cells were used for in vitro experiments. The results showed that HWD significantly improved the learning memory ability, decreased sleep latency, and prolonged sleep duration in insomniac rats. HWD reduced TNF-α and IL-6 levels and increased IL-10 and Foxp3 levels. HWD also promoted the polarization of macrophages from M1 pro-inflammatory phenotype to M2 anti-inflammatory phenotype. In addition, HWD increased the expression levels of BDNF and TrkB in the hippocampus. Administration of the TrkB receptor agonist 7,8-dihydroxyflavone (7,8-DHF) confirmed the mechanism by which HWD activates BDNF/TrkB signaling to ameliorate insomnia. Furthermore, HWD restored gut microbiota richness and diversity and promoted short-chain fatty acid (SCFA) production in insomniac rats. In vitro experiments confirmed that the acetic acid-treated SCFA group could activate the BDNF/TrkB signaling pathway in neuronal cells, further promoting neuronal cell growth. In conclusion, HWD alleviated insomnia by maintaining gut microbiota homeostasis, promoting SCFA production, reducing neuroinflammatory response and microglia activation, and activating BDNF/TrkB signaling pathway.
Collapse
Affiliation(s)
- Min Shi
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan, China
| | - Jie Yang
- Traditional Chinese Medicine Department, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, 610000, Sichuan, China
| | - Ying Liu
- Department of Cardiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Huan Zhao
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan, China
| | - Man Li
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan, China
| | - Dongdong Yang
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan, China.
| | - Quan Xie
- Department of Rehabilitation, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
2
|
Raise-Abdullahi P, Rezvani M, Yousefi F, Rahmani S, Meamar M, Raeis-Abdollahi E, Vafaei AA, Rashidipour H, Rashidy-Pour A. Natural polyphenols as therapeutic candidates for mitigating neuropsychiatric symptoms in post-traumatic stress disorder: Evidence from preclinical studies. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111230. [PMID: 39722290 DOI: 10.1016/j.pnpbp.2024.111230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/02/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a challenging mental health condition that affects millions of people worldwide after they experience traumatic events. The current medications often do not fully address the wide range of PTSD symptoms or the underlying brain mechanisms, prompting the need to explore new treatments. Polyphenols, which are natural compounds found in many plant-based foods, have gained interest due to their brain-protective, anti-inflammatory, and antioxidant benefits. This review looks at how polyphenols might help treat PTSD by influencing important brain pathways related to the disorder. We explored how polyphenols affect the stress-response system, fear-related memories, brain chemicals, and inflammation. Specifically, we discuss how compounds like resveratrol, curcumin, green tea extract, and quercetin can balance stress hormones, help reduce fear memories, regulate brain chemicals, and decrease brain inflammation. Studies with animals have provided insights into how these compounds might work to ease PTSD symptoms. Based on the preclinical studies, the present review suggests that polyphenols could be a valuable addition or alternative to current PTSD treatments. However, more research is needed to confirm these findings and to determine the best ways to use polyphenols in treating PTSD.
Collapse
Affiliation(s)
| | - Mehrnaz Rezvani
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Yousefi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Sadaf Rahmani
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Morvarid Meamar
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Clinical Research Development Unit, Kowsar Educational Research and Therapeutic Hospital, Semnan University of Medical Sciences, Semnan, Iran
| | - Ehsan Raeis-Abdollahi
- Applied Physiology Research Center, Qom Medical Sciences, Islamic Azad University, Qom, Iran; Department of Basic Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamed Rashidipour
- College of International Education, Dalian Medical University, Dalian, China
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
3
|
Liu L, Li R, Wu L, Guan Y, Miao M, Wang Y, Li C, Wu C, Lu G, Hu X, Sun L. (2R,6R)-hydroxynorketamine alleviates PTSD-like endophenotypes by regulating the PI3K/AKT signaling pathway in rats. Pharmacol Biochem Behav 2024; 245:173891. [PMID: 39369910 DOI: 10.1016/j.pbb.2024.173891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/08/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Patients diagnosed with post-traumatic stress disorder (PTSD) mainly exhibit enduring adverse emotions, heightening susceptibility to suicidal thoughts and behaviors. Notably, metabolites of ketamine, particularly (2R,6R)-hydroxyketamine (HNK), have demonstrated favorable antidepressant properties. However, the precise mechanism through which HNK exerts its therapeutic effects on negative emotional symptoms in PTSD patients should be fully elucidated. METHODS In this investigation, a model involving a single prolonged stress and plantar shock (SPS&S) was utilized, followed by the administration of (2R, 6R)-HNK into the lateral ventricle subsequent to the recovery phase. The evaluation of PTSD-related behaviors was conducted through the open field test (OFT), elevated plus maze test (EMPT), and forced swim test (FST). The expression of phosphatidylinositol 3-kinase (PI3K)/phosphokinase B (AKT) signaling pathway in rat brain regions was analyzed using molecular biology experiments. RESULTS SPS&S rats displayed adverse emotional behaviors characterized by depression and anxiety. Treatment with (2R, 6R)-HNK enhanced exploratory behavior and reversed negative emotional behaviors. This intervention mitigated disruptions in the expression levels of PI3K/AKT signaling pathway-associated proteins in the HIP and PFC, without influencing PI3K/AKT signaling in the AMY of SPS&S rats. CONCLUSION Traumatic stress can trigger negative emotional reactions in rats, potentially involving the PI3K/AKT signaling pathway in the HIP, PFC, and AMY. The (2R, 6R)-HNK compounds have demonstrated the potential to mitigate adverse emotions in rats subjected to the SPS&S paradigm. This effect may be attributed to the modulation of the PI3K/AKT signaling pathway in the HIP, and PFC, with a particularly notable impact observed in the HIP region.
Collapse
Affiliation(s)
- Lifen Liu
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Rui Li
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Lanxia Wu
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Yubo Guan
- School of Clinical Medicine, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Miao Miao
- School of Clinical Medicine, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Yuxuan Wang
- School of Clinical Medicine, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Changjiang Li
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Chunyan Wu
- Department of Neurology, Affiliated Hospital of Shandong Second Medical University, Weifang, PR China
| | - Guohua Lu
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Xinyu Hu
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China.
| | - Lin Sun
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China; Department of Neurosurgery, Shanting District People's Hospital, Beijing Road, New Town, Zaozhuang, Shandong 277200, PR China; Management Committee of Shanting Economic Development Zone, No.37, Fuqian Road, Zaozhuang, Shandong 277200, PR China.
| |
Collapse
|
4
|
Hu J, Li H, Wang X, Cheng H, Zhu G, Yang S. Novel mechanisms of Anshen Dingzhi prescription against PTSD: Inhibiting DCC to modulate synaptic function and inflammatory responses. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118425. [PMID: 38848974 DOI: 10.1016/j.jep.2024.118425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anshen Dingzhi prescription (ADP), documented in "Yi Xue Xin Wu", is a famous prescription for treating panic-related mental disorders such as post-traumatic stress disorder (PTSD). However, the underlying mechanism remains unclear. AIM OF THE STUDY This study aimed to investigate the mechanisms by which ADP intervened in PTSD-like behaviors. METHODS A mouse model of single prolonged stress (SPS) was established to evaluate the ameliorative effects and mechanisms of ADP on PTSD. Behavioral tests were used to assess PTSD-like behaviors in mice; transmission electron microscopy was used to observe changes in the ultrastructure of hippocampal synapses, and western blot, immunofluorescence, and ELISA were used to detect the expression of hippocampal deleted in colorectal cancer (DCC) and downstream Ras-related C3 botulinum toxin substrate 1 (Rac1) - P21-activated kinase 1 (PAK1) signal, as well as levels of synaptic proteins and inflammatory factors. Molecular docking technology simulated the binding of potential brain-penetrating components of ADP to DCC. RESULTS SPS induced PTSD-like behaviors in mice and increased expression of hippocampal netrin-1 (NT-1) and DCC on the 14th day post-modeling, with concurrent elevation in serum NT-1 levels. Simultaneously, SPS also decreased p-Rac1 level and increased p-PAK1 level, the down-stream molecules of DCC. Lentiviral overexpression of DCC induced or exacerbated PTSD-like behaviors in control and SPS mice, respectively, whereas neutralization antibody against NT-1 reduced DCC activation and ameliorated PTSD-like behaviors in SPS mice. Interestingly, downstream Rac1-PAK1 signal was altered according to DCC expression. Moreover, DCC overexpression down-regulated N-methyl-d-aspartate (NMDA) receptor 2A (GluN2A) and postsynaptic density 95 (PSD95), up-regulated NMDA receptor 2B (GluN2B) and increased neuroinflammatory responses. Administration of ADP (36.8 mg/kg) improved PTSD-like behaviors in the SPS mice, suppressed hippocampal DCC, and downstream Rac1-PAK1 signal, upregulated GluN2A and PSD95, downregulated GluN2B, and reduced levels of inflammatory factors NOD-like receptor protein 3 (NLRP3), nuclear factor kappa-B (NF-κB) and interleukin-6 (IL-6). Importantly, DCC overexpression could also reduce the ameliorative effect of ADP on PTSD. Additionally, DCC demonstrated a favorable molecular docking pattern with the potential brain-penetrating components of ADP, further suggesting DCC as a potential target of ADP. CONCLUSION Our data indicate that DCC is a key target for the regulation of synaptic function and inflammatory response in the onset of PTSD, and ADP likely reduces DCC to prevent PTSD via modulating downstream Rac1-PAK1 pathway. This study provides a novel mechanism for the onset of PTSD and warrants the clinical application of ADP.
Collapse
Affiliation(s)
- Jiamin Hu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Haipeng Li
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Xuncui Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Hongliang Cheng
- The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230061, China.
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Shaojie Yang
- The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230061, China.
| |
Collapse
|
5
|
Chen D, Wang J, Cao J, Zhu G. cAMP-PKA signaling pathway and anxiety: Where do we go next? Cell Signal 2024; 122:111311. [PMID: 39059755 DOI: 10.1016/j.cellsig.2024.111311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Cyclic adenosine monophosphate (cAMP) is an intracellular second messenger that is derived from the conversion of adenosine triphosphate catalysed by adenylyl cyclase (AC). Protein kinase A (PKA), the main effector of cAMP, is a dimeric protein kinase consisting of two catalytic subunits and two regulatory subunits. When cAMP binds to the regulatory subunits of PKA, it leads to the dissociation and activation of PKA, which allows the catalytic subunit of PKA to phosphorylate target proteins, thereby regulating various physiological functions and metabolic processes in cellular function. Recent researches also implicate the involvement of cAMP-PKA signaling in the pathologenesis of anxiety disorder. However, there are still debates on the prevention and treatment of anxiety disorders from this signaling pathway. To review the function of cAMP-PKA signaling in anxiety disorder, we searched the publications with the keywords including "cAMP", "PKA" and "Anxiety" from Pubmed, Embase, Web of Science and CNKI databases. The results showed that the number of publications on cAMP-PKA pathway in anxiety disorder tended to increase. Bioinformatics results displayed a close association between the cAMP-PKA pathway and the occurrence of anxiety. Mechanistically, cAMP-PKA signaling could influence brain-derived neurotrophic factor and neuropeptide Y and participate in the regulation of anxiety. cAMP-PKA signaling could also oppose the dysfunctions of gamma-aminobutyric acid (GABA), intestinal flora, hypothalamic-pituitary-adrenal axis, neuroinflammation, and signaling proteins (MAPK and AMPK) in anxiety. In addition, chemical agents with the ability to activate cAMP-PKA signaling demonstrated therapy potential against anxiety disorders. This review emphasizes the central roles of cAMP-PKA signaling in anxiety and the targets of the cAMP-PKA pathway would be potential candidates for treatment of anxiety. Nevertheless, more laboratory investigations to improve the therapeutic effect and reduce the adverse effect, and continuous clinical research will warrant the drug development.
Collapse
Affiliation(s)
- Daokang Chen
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jingji Wang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China.
| | - Jian Cao
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
6
|
Wang J, Wang X, Yang J, Zhen Y, Ban W, Zhu G. Molecular profiling of a rat model of vascular dementia: Evidences from proteomics, metabolomics and experimental validations. Brain Res 2024; 1846:149254. [PMID: 39341485 DOI: 10.1016/j.brainres.2024.149254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Decrease of cerebral blood flow is the primary cause of vascular dementia (VD), but its pathophysiological mechanisms are still not known. This study aims to profile the molecular changes of a rat model of VD induced by bilateral common carotid artery ligation. The Morris water maze and new object recognition tasks were used to test the cognitive function of rats. Hematoxylin and Eosin (HE) staining was used to detect pathological changes in the hippocampus. After confirming the model, proteomics was used to detect differentially expressed proteins in the hippocampus, and metabolomics was used to detect differential metabolites in rat serum. Thereafter, bioinformatics were used to integrate and analyze the potential molecular profile. The results showed that compared with the sham control group, the spatial and recognition memory of the rats were significantly reduced, and pathological changes were observed in the hippocampal CA1 region of the model group. Proteomic analysis suggested 206 differentially expressed proteins in the hippocampus of VD rats, with 117 proteins upregulated and 89 downregulated. Protein-protein interaction network analysis suggested that those differentially expressed proteins might play crucial roles in lipid metabolism, cell adhesion, intracellular transport, and signal transduction. Metabolomics analysis identified 103 differential metabolites, and comparison with the human metabolome database revealed 22 common metabolites, which predicted 265 potential targets. Afterwards, by intersecting the predicted results from metabolomics with the differentially expressed proteins from proteomics, we identified five potential targets, namely ACE, GABBR1, Rock1, Abcc1 and Mapk10. Furthermore, western blotting confirmed that compared with control group, hippocampal GABBR1 and Rock1 were enhanced in the model group. Together, this study showed the molecular profile of VD rats through a combination of proteomics, metabolomics, and experimental confirmation methods, offering crucial molecular targets for the diagnosis and treatment of VD.
Collapse
Affiliation(s)
- Jingji Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China; Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China
| | - Xueqing Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jun Yang
- The First Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230031, China.
| | - Yilan Zhen
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wenming Ban
- Taihe County Hospital of Traditional Chinese Medicine, Fuyang 236600, China
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
7
|
Yang S, Hu J, Chen Y, Zhang Z, Wang J, Zhu G. DCC, a potential target for controlling fear memory extinction and hippocampal LTP in male mice receiving single prolonged stress. Neurobiol Stress 2024; 32:100666. [PMID: 39224830 PMCID: PMC11366904 DOI: 10.1016/j.ynstr.2024.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/29/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a severe stress-dependent psychiatric disorder characterized by impairment of fear memory extinction; however, biological markers to determine impaired fear memory extinction in PTSD remain unclear. In male mice with PTSD-like behaviors elicited by single prolonged stress (SPS), 19 differentially expressed proteins in the hippocampus were identified compared with controls. Among them, a biological macromolecular protein named deleted in colorectal cancer (DCC) was highly upregulated. Specific overexpression of DCC in the hippocampus induced similar impairment of long-term potentiation (LTP) and fear memory extinction as observed in SPS mice. The impairment of fear memory extinction in SPS mice was improved by inhibiting the function of hippocampal DCC using a neutralizing antibody. Mechanistic studies have shown that knocking down or inhibiting μ-calpain in hippocampal neurons increased DCC expression and induced impairment of fear memory extinction. Additionally, SPS-triggered impairment of hippocampal LTP and fear memory extinction could be rescued through activation of the Rac1-Pak1 signaling pathway. Our study provides evidence that calpain-mediated regulation of DCC controls hippocampal LTP and fear memory extinction in SPS mice, which likely through activation of the Rac1-Pak1 signaling pathway.
Collapse
Affiliation(s)
- Shaojie Yang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Shouchun Road 300, Hefei, 230061, China
| | - Jiamin Hu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Longzhihu Road 350, Hefei, 230012, China
| | - Yuzhuang Chen
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Longzhihu Road 350, Hefei, 230012, China
| | - Zhengrong Zhang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Longzhihu Road 350, Hefei, 230012, China
| | - Jingji Wang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Shouchun Road 300, Hefei, 230061, China
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Longzhihu Road 350, Hefei, 230012, China
| |
Collapse
|
8
|
Bai S, Ying ZM, Ying JK, Zhang QY, Lv YH, Wu ZM. Inhibition of 5-HT alleviates PTSD-like behaviors and promotes hippocampal neuroplasticity by modulating hippocampal autophagy in rats. J Neurophysiol 2024; 132:979-990. [PMID: 39110517 DOI: 10.1152/jn.00291.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 09/12/2024] Open
Abstract
5-Hydroxytryptamine (5-HT) plays a substantial role in mitigating depression and anxiety. However, the potential effects of 5-HT against posttraumatic stress disorder (PTSD) and its underlying mechanisms remain unclear. Elevated plus maze test evaluates anxiety-related behaviors, and the open field test is used to assess overall activity levels and anxiety. Inflammatory cytokine levels were determined using ELISA. The levels of 5-HT and dopamine were measured using HPLC. mRNA and protein levels were examined by PCR and Western blot, respectively. Rats exposed to single prolonged stress (SPS) exhibited typical PTSD-like phenotypes, with decreased levels of 5-HT in the hippocampus and significant reductions in its downstream targets, brain-derived neurotrophic factor (BDNF) and TrkB. In addition, it was discovered that the autophagy signaling pathway might be involved in regulating hippocampal BDNF in rats exposed to SPS. Subsequent treatment with an intracerebral injection of sh-SERT significantly inhibited anxiety and cognitive dysfunction in rats. Moreover, sh-SERT treatment was observed to substantially reverse the increase in autophagy signaling protein expression and consequently improve the expression of BDNF and TrkB proteins, which had been reduced. The current study demonstrates that sh-SERT exhibits significant anti-PTSD effects, potentially mediated in part through the reduction of cellular autophagy to enhance hippocampal synaptic plasticity.NEW & NOTEWORTHY The study demonstrated that sh-SERT exhibits significant anti-posttraumatic stress disorder (PTSD) effects, potentially mediated in part through the reduction of cellular autophagy to enhance hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Shi Bai
- Department of Anatomy, School of Medicine, Taizhou University, Jiaojiang, China
| | - Zhong-Ming Ying
- Department of Neurology, Taizhou Integrated Traditional Chinese and Western Medicine Hospital, Wenling, China
| | - Jia-Kang Ying
- Department of Clinical Medicine, School of Medicine, Taizhou University, Jiaojiang, China
| | - Qin-Ying Zhang
- Department of Clinical Medicine, School of Medicine, Taizhou University, Jiaojiang, China
| | - Yu-Hang Lv
- Department of Clinical Medicine, School of Medicine, Taizhou University, Jiaojiang, China
| | - Zhong-Min Wu
- Department of Anatomy, School of Medicine, Taizhou University, Jiaojiang, China
| |
Collapse
|
9
|
Liu X, Ding Y, Jiang C, Xin Y, Ma X, Xu M, Wang Q, Hou B, Li Y, Zhang S, Shao B. Astragaloside IV mediates radiation-induced neuronal damage through activation of BDNF-TrkB signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155803. [PMID: 38876008 DOI: 10.1016/j.phymed.2024.155803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Electromagnetic radiation is relevant to human life, and radiation can trigger neurodegenerative diseases by altering the function of the central nervous system through oxidative stress, mitochondrial dysfunction, and protein degradation. Astragaloside IV (AS-IV) is anti-oxidative, anti-apoptotic, activates the BDNF-TrkB pathway and enhances synaptic plasticity in radiated mice, which can exert its neuroprotection. However, the exact molecular mechanisms are still unclear. PURPOSE This study investigated whether AS-IV could play a neuroprotective role by regulating BDNF-TrkB pathway in radiation damage and its underlying molecular mechanisms. METHODS Transgenic mice (Thy1-YFP line H) were injected with AS-IV (40 mg/kg/day body weight) by intraperitoneal injection daily for 4 weeks, followed by X-rays. PC12 cells and primary cortical neurons were also exposed to UVA after 24 h of AS-IV treatment (25 μg/ml and 50 μg/ml) in vitro. The impact of radiation on learning and cognitive functions was visualized in the Morris water maze assay. Subsequently, Immunofluorescence and Golgi-Cox staining analyses were utilized to investigate the structural damage of neuronal dendrites and the density of dendritic spines. Transmission electron microscopy was performed to examine how the radiation affected the ultrastructure of neurons. Finally, western blotting analysis and Quantitative RT-PCR were used to evaluate the expression levels and locations of proteins in vitro and in vivo. RESULTS Radiation induced BDNF-TrkB signaling dysregulation and decreased the levels of neuron-related functional genes (Ngf, Bdnf, Gap-43, Ras, Psd-95, Arc, Creb, c-Fos), PSD-95 and F-actin, which subsequently led to damage of neuronal ultrastructure and dendrites, loss of dendritic spines, and decreased dendritic complexity index, contributing to spatial learning and memory deficits. These abnormalities were prevented by AS-IV treatment. In addition, TrkB receptor antagonists antagonized these neuroprotective actions of AS-IV. 7,8-dihydroxyflavone and AS-IV had neuroprotective effects after radiation. CONCLUSION AS-IV inhibits morphological damage of neurons and cognitive dysfunction in mice after radiation exposure, resulting in a neuroprotective effect, which were mediated by activating the BDNF-TrkB pathway.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Yanping Ding
- School of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu Province, PR China
| | - Chenxin Jiang
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Yuanyuan Xin
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Xin Ma
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Min Xu
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Qianhao Wang
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Boru Hou
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, PR China
| | - Yingdong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Shengxiang Zhang
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Baoping Shao
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China.
| |
Collapse
|
10
|
Li HP, Cheng HL, Ding K, Zhang Y, Gao F, Zhu G, Zhang Z. New recognition of the heart-brain axis and its implication in the pathogenesis and treatment of PTSD. Eur J Neurosci 2024; 60:4661-4683. [PMID: 39044332 DOI: 10.1111/ejn.16445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/04/2024] [Indexed: 07/25/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a complex psychological disorder provoked by distressing experiences, and it remains without highly effective intervention strategies. The exploration of PTSD's underlying mechanisms is crucial for advancing diagnostic and therapeutic approaches. Current studies primarily explore PTSD through the lens of the central nervous system, investigating concrete molecular alterations in the cerebral area and neural circuit irregularities. However, the body's response to external stressors, particularly the changes in cardiovascular function, is often pronounced, evidenced by notable cardiac dysfunction. Consequently, examining PTSD with a focus on cardiac function is vital for the early prevention and targeted management of the disorder. This review undertakes a comprehensive literature analysis to detail the alterations in brain and heart structures and functions associated with PTSD. It also synthesizes potential mechanisms of heart-brain axis interactions relevant to the development of PTSD. Ultimately, by considering cardiac function, this review proposes novel perspectives for PTSD's prophylaxis and therapy.
Collapse
Affiliation(s)
- Hai-Peng Li
- Anhui University of Chinese Medicine, Hefei, China
| | - Hong-Liang Cheng
- The Affiliated Hospital of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Keke Ding
- Anhui University of Chinese Medicine, Hefei, China
| | - Yang Zhang
- Anhui University of Chinese Medicine, Hefei, China
| | - Fang Gao
- Anhui University of Chinese Medicine, Hefei, China
| | - Guoqi Zhu
- Anhui University of Chinese Medicine, Hefei, China
| | | |
Collapse
|
11
|
Chen L, Zhang Y, Wang Z, Zhang Z, Wang J, Zhu G, Yang S. Activation of GPER1 by G1 prevents PTSD-like behaviors in mice: Illustrating the mechanisms from BDNF/TrkB to mitochondria and synaptic connection. CNS Neurosci Ther 2024; 30:e14855. [PMID: 38992889 PMCID: PMC11239537 DOI: 10.1111/cns.14855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/11/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND G1 is a specific agonist of G protein-coupled estrogen receptor 1 (GPER1), which binds and activates GPER1 to exert various neurological functions. However, the preventive effect of G1 on post-traumatic stress disorder (PTSD) and its mechanisms are unclear. OBJECTIVE To evaluate the protective effect of G1 against synaptic and mitochondrial impairments and to investigate the mechanism of G1 to improve PTSD from brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB) signaling. METHODS This study initially detected GPER1 expression in the hippocampus of single prolonged stress (SPS) mice, utilizing both Western blot and immunofluorescence staining. Subsequently, the effects of G1 on PTSD-like behaviors, synaptic, and mitochondrial functions in SPS mice were investigated. Additionally, the involvement of BDNF/TrkB signaling involved in the protection was further confirmed using GPER1 antagonist and TrkB inhibitor, respectively. RESULTS The expression of GPER1 was reduced in the hippocampus of SPS mice, and G1 treatment given for 14 consecutive days significantly improved PTSD-like behaviors in SPS mice compared with model group. Electrophysiological local field potential (LFP) results showed that G1 administration for 14 consecutive days could reverse the abnormal changes in the gamma oscillation in the CA1 region of SPS mice. Meanwhile, G1 administration for 14 consecutive days could significantly improve the abnormal expression of synaptic proteins, increase the expression of mitochondria-related proteins, increase the number of synapses in the hippocampus, and ameliorate the damage of hippocampal mitochondrial structure in SPS mice. In addition, G15 (GPER1 inhibitor) and ANA-12 (TrkB inhibitor) blocked the ameliorative effects of G1 on PTSD-like behaviors and aberrant expression of hippocampal synaptic and mitochondrial proteins in SPS mice and inhibited the reparative effects of G1 on structural damage to hippocampal mitochondria, respectively. CONCLUSION G1 improved PTSD-like behaviors in SPS mice, possibly by increasing hippocampal GPER1 expression and promoting BDNF/TrkB signaling to repair synaptic and mitochondrial functional impairments. This study would provide critical mechanism for the prevention and treatment of PTSD.
Collapse
Affiliation(s)
- Lixia Chen
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Yang Zhang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Zisheng Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Zhengrong Zhang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Jingji Wang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Shaojie Yang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
12
|
Kong CH, Lee JW, Jeon M, Kang WC, Kim MS, Park K, Bae HJ, Park SJ, Jung SY, Kim SN, Kleinfelter B, Kim JW, Ryu JH. D-Pinitol mitigates post-traumatic stress disorder-like behaviors induced by single prolonged stress in mice through mineralocorticoid receptor antagonism. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110990. [PMID: 38467326 DOI: 10.1016/j.pnpbp.2024.110990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a mental illness that can occur in individuals who have experienced trauma. Current treatments for PTSD, typically serotonin reuptake inhibitors, have limited effectiveness for patients and often cause serious adverse effects. Therefore, a novel class of treatment with better pharmacological profile is necessary. D-Pinitol has been reported to be effective for depression and anxiety disorders, but there are no reports associated with PTSD. In the present study, we investigated the effects of D-pinitol in a mouse model of PTSD induced by a single prolonged stress (SPS) protocol. We examined the therapeutic effects of D-pinitol on emotional and cognitive impairments in the SPS mouse model. We also investigated the effects of D-pinitol on fear memory formation. Mineralocorticoid receptor transactivation assay, Western blot, and quantitative PCR were employed to investigate how D-pinitol exerts its pharmacological activities. D-Pinitol ameliorated PTSD-like behaviors in a SPS mouse model. D-Pinitol also normalized the increased mRNA expression levels and protein levels of the mineralocorticoid receptor in the amygdala. A mineralocorticoid receptor agonist reversed the effects of D-pinitol on fear extinction and recall, and the antagonistic property of D-pinitol against the mineralocorticoid receptor was confirmed in vitro. Our findings suggest that D-pinitol could serve as a potential therapeutic agent for PTSD due to its antagonistic effect on the mineralocorticoid receptor.
Collapse
Affiliation(s)
- Chang Hyeon Kong
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin Woo Lee
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung-si 25451, Republic of Korea
| | - Mijin Jeon
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woo Chang Kang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min Seo Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ho Jung Bae
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung-si 25451, Republic of Korea
| | - Benjamin Kleinfelter
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN 37240, United States of America
| | - Ji-Woon Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee Univeristy, Seoul 02447, Republic of Korea.
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
13
|
Gong Y, Li M, Liu M, Wu X, Li Y, Qin C, Zhang L. Apolipoprotein E4 interferes with lipid metabolism to exacerbate depression-like behaviors in 5xFAD mice. Animal Model Exp Med 2024; 7:347-361. [PMID: 38895818 PMCID: PMC11228103 DOI: 10.1002/ame2.12446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Apolipoprotein E4 (ApoE4) allele is the strongest genetic risk factor for late-onset Alzheimer's disease, and it can aggravate depressive symptoms in non-AD patients. However, the impact of ApoE4 on AD-associated depression-like behaviors and its underlying pathogenic mechanisms remain unclear. METHODS This study developed a 5xFAD mouse model overexpressing human ApoE4 (E4FAD). Behavioral assessments and synaptic function tests were conducted to explore the effects of ApoE4 on cognition and depression in 5xFAD mice. Changes in peripheral and central lipid metabolism, as well as the levels of serotonin (5-HT) and γ-aminobutyric acid (GABA) neurotransmitters in the prefrontal cortex, were examined. In addition, the protein levels of 24-dehydrocholesterol reductase/glycogen synthase kinase-3 beta/mammalian target of rapamycin (DHCR24/GSK3β/mTOR) and postsynaptic density protein 95/calmodulin-dependent protein kinase II/brain-derived neurotrophic factor (PSD95/CaMK-II/BDNF) were measured to investigate the molecular mechanism underlying the effects of ApoE4 on AD mice. RESULTS Compared with 5xFAD mice, E4FAD mice exhibited more severe depression-like behaviors and cognitive impairments. These mice also exhibited increased amyloid-beta deposition in the hippocampus, increased astrocyte numbers, and decreased expression of depression-related neurotransmitters 5-HT and GABA in the prefrontal cortex. Furthermore, lipid metabolism disorders were observed in E4FAD, manifesting as elevated low-density lipoprotein cholesterol and reduced high-density lipoprotein cholesterol in peripheral blood, decreased cholesterol level in the prefrontal cortex, and reduced expression of key enzymes and proteins related to cholesterol synthesis and homeostasis. Abnormal expression of proteins related to the DHCR24/GSK3β/mTOR and PSD95/CaMK-II/BDNF pathways was also observed. CONCLUSION This study found that ApoE4 overexpression exacerbates depression-like behaviors in 5xFAD mice and confirmed that ApoE4 reduces cognitive function in these mice. The mechanism may involve the induction of central and peripheral lipid metabolism disorders. Therefore, modulating ApoE expression or function to restore cellular lipid homeostasis may be a promising therapeutic target for AD comorbid with depression. This study also provided a better animal model for studying AD comorbid with depression.
Collapse
Affiliation(s)
- Yanju Gong
- iNHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and lnnovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PuMC)BeijingChina
| | - Mingfeng Li
- iNHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and lnnovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PuMC)BeijingChina
| | - Min Liu
- iNHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and lnnovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PuMC)BeijingChina
| | - Xinghan Wu
- iNHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and lnnovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PuMC)BeijingChina
| | - Yanhong Li
- iNHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and lnnovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PuMC)BeijingChina
| | - Chuan Qin
- iNHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and lnnovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PuMC)BeijingChina
- Changping National Laboratory (CPNL)BeijingChina
| | - Ling Zhang
- iNHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and lnnovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PuMC)BeijingChina
| |
Collapse
|
14
|
Xie G, Qin Y, Wu N, Han X, Li J. Single-Nucleus Transcriptome Profiling from the Hippocampus of a PTSD Mouse Model and CBD-Treated Cohorts. Genes (Basel) 2024; 15:519. [PMID: 38674453 PMCID: PMC11050643 DOI: 10.3390/genes15040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is the most common psychiatric disorder after a catastrophic event; however, the efficacious treatment options remain insufficient. Increasing evidence suggests that cannabidiol (CBD) exhibits optimal therapeutic effects for treating PTSD. To elucidate the cell-type-specific transcriptomic pathology of PTSD and the mechanisms of CBD against this disease, we conducted single-nucleus RNA sequencing (snRNA-seq) in the hippocampus of PTSD-modeled mice and CBD-treated cohorts. We constructed a mouse model by adding electric foot shocks following exposure to single prolonged stress (SPS+S) and tested the freezing time, anxiety-like behavior, and cognitive behavior. CBD was administrated before every behavioral test. The PTSD-modeled mice displayed behaviors resembling those of PTSD in all behavioral tests, and CBD treatment alleviated all of these PTSD-like behaviors (n = 8/group). Three mice with representative behavioral phenotypes were selected from each group for snRNA-seq 15 days after the SPS+S. We primarily focused on the excitatory neurons (ExNs) and inhibitory neurons (InNs), which accounted for 68.4% of the total cell annotations. A total of 88 differentially upregulated genes and 305 differentially downregulated genes were found in the PTSD mice, which were found to exhibit significant alterations in pathways and biological processes associated with fear response, synaptic communication, protein synthesis, oxidative phosphorylation, and oxidative stress response. A total of 63 overlapping genes in InNs were identified as key genes for CBD in the treatment of PTSD. Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the anti-PTSD effect of CBD was related to the regulation of protein synthesis, oxidative phosphorylation, oxidative stress response, and fear response. Furthermore, gene set enrichment analysis (GSEA) revealed that CBD also enhanced retrograde endocannabinoid signaling in ExNs, which was found to be suppressed in the PTSD group. Our research may provide a potential explanation for the pathogenesis of PTSD and facilitate the discovery of novel therapeutic targets for drug development. Moreover, it may shed light on the therapeutic mechanisms of CBD.
Collapse
Affiliation(s)
| | | | | | - Xiao Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (G.X.); (Y.Q.); (N.W.); (J.L.)
| | | |
Collapse
|
15
|
Zheng Z, Zhou H, Yang L, Zhang L, Guo M. Selective disruption of mTORC1 and mTORC2 in VTA astrocytes induces depression and anxiety-like behaviors in mice. Behav Brain Res 2024; 463:114888. [PMID: 38307148 DOI: 10.1016/j.bbr.2024.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Dysfunction of the mechanistic target of rapamycin (mTOR) signaling pathway is implicated in neuropsychiatric disorders including depression and anxiety. Most studies have been focusing on neurons, and the function of mTOR signaling pathway in astrocytes is less investigated. mTOR forms two distinct complexes, mTORC1 and mTORC2, with key scaffolding protein Raptor and Rictor, respectively. The ventral tegmental area (VTA), a vital component of the brain reward system, is enrolled in regulating both depression and anxiety. In the present study, we aimed to examine the regulation effect of VTA astrocytic mTOR signaling pathway on depression and anxiety. We specifically deleted Raptor or Rictor in VTA astrocytes in mice and performed a series of behavioral tests for depression and anxiety. Deletion of Raptor and Rictor both decreased the immobility time in the tail suspension test and the latency to eat in the novelty suppressed feeding test, and increased the horizontal activity and the movement time in locomotor activity. Deletion of Rictor decreased the number of total arm entries in the elevated plus-maze test and the vertical activity in locomotor activity. These data suggest that VTA astrocytic mTORC1 plays a role in regulating depression-related behaviors and mTORC2 is involved in both depression and anxiety-related behaviors. Our results indicate that VTA astrocytic mTOR signaling pathway might be new targets for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Ziteng Zheng
- Department of Psychology, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China; Medical Research Center, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China
| | - Han Zhou
- Department of Psychology, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China; Medical Research Center, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China
| | - Lu Yang
- Department of Psychology, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China; Medical Research Center, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China
| | - Lanlan Zhang
- Department of Psychology, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China
| | - Ming Guo
- Department of Psychology, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China; Medical Research Center, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China.
| |
Collapse
|
16
|
Wang J, Zhao P, Cheng P, Zhang Z, Yang S, Wang J, Wang X, Zhu G. Exploring the effect of Anshen Dingzhi prescription on hippocampal mitochondrial signals in single prolonged stress mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117713. [PMID: 38181935 DOI: 10.1016/j.jep.2024.117713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
HEADINGS ETHNOPHARMACOLOGICAL RELEVANCE Anshen Dingzhi prescription (ADP), which was first published in the masterpiece of traditional Chinese Medicine in the Qing Dynasty, "Yi Xue Xin Wu" (1732 CE), is documented to interrupt panic-related disorders. However, the mechanism of its action is still not clear. AIM OF THE STUDY This study aims to investigate the effects of ADP on post-traumatic stress disorder (PTSD)-like behaviors and explore the mechanism from perspective of sirtuin1 (SIRT1)-peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α)-dependent mitochondrial function. MATERIALS AND METHODS The changes of SIRT1-PGC-1α signal and mitochondrial function were evaluated in the hippocampus of mice receiving single prolonged stress (SPS). Later, the roles of this signaling pathway played in fear memory generalization and anxiety-like behavior in SPS mice was investigated using two agonists of this signaling pathway. On this basis, the effects of ADP (36.8 mg/kg) with definite therapeutic effects, on mitochondrial function were investigated and further confirmed by a SIRT1 inhibitor. Finally, the possible components of ADP targeting PGC-1α were monitored through bioinformatics. RESULTS Compared with control mice, SIRT1-PGC-1α signal in the hippocampus was impaired in SPS mice, accompanied with dysfunction of mitochondria and abnormal expression of synaptic proteins. The agonists of SIRT1-PGC-1α signal, ZLN005, as well as resveratrol improved the behavioral changes of mice caused by SPS, reversed the decline of proteins in SIRT1-PGC-1α signal, mitochondrial dysfunction, and the abnormal expression of synaptic proteins. The fingerprint was established for the quality control of ADP. At a dose of 36.8 mg/kg, ADP could prevent fear memory generalization and anxiety-like behavior in SPS mice. Mechanically, ADP promoted SIRT1-PGC-1α signal and repaired mitochondrial function. Importantly, SIRT1 inhibitor, selisistat eliminated the ameliorative effects of ADP on behavioral and mitochondrial function. Through molecular docking simulation, the brain-entering components of ADP, including malkangunin, Rg5, fumarine, frutinone A, celabenzine, and inermin had high binding energy with PGC-1α. CONCLUSION Dysfunction of SIRT1-PGC-1α-dependent mitochondrial function is attributed to SPS-triggered fear generalization and anxiety-like behavior, and ADP could improve PTSD-like behaviors likely through activating this signaling pathway.
Collapse
Affiliation(s)
- Juan Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Panpan Zhao
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Ping Cheng
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Zhengrong Zhang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shaojie Yang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China; Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, 230061, China
| | - Jingji Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China; Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, 230061, China
| | - Xuncui Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
17
|
Liu Q, Ding X, Wang Y, Chu H, Guan Y, Li M, Sun K. Artemisinin reduces PTSD-like symptoms, improves synaptic plasticity, and inhibits apoptosis in rats subjected to single prolonged stress. Front Pharmacol 2024; 15:1303123. [PMID: 38379899 PMCID: PMC10876839 DOI: 10.3389/fphar.2024.1303123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Post-Traumatic Stress Disorder (PTSD) is a chronic mental disorder characterized by symptoms of panic and anxiety, depression, impaired cognitive functioning, and difficulty in social interactions. While the effect of the traditional Chinese medicine artemisinin (AR) on PTSD is unknown, its therapeutic benefits have been demonstrated by studies on models of multiple neurological disorders. This study aimed to extend such findings by investigating the effects of AR administration on a rat model of PTSD induced by a regimen of single prolonged stress (SPS). After rats were subjected to the SPS protocol, AR was administered and its impact on PTSD-like behaviors was evaluated. In the present study, rats were subjected to a multitude of behavioral tests to evaluate behaviors related to anxiety, memory function, and social interactions. The expression of hippocampal synaptic plasticity-related proteins was detected using Western blot and immunofluorescence. The ultrastructure of synapses was observed under transmission electron microscopy. The apoptosis of hippocampal neurons was examined with Western blot, TUNEL staining, and HE staining. The results showed that AR administration alleviated the PTSD-like phenotypes in SPS rats, including behavior indicative of anxiety, cognitive deficits, and diminished sociability. AR administration was further observed to improve synaptic plasticity and inhibit neuronal apoptosis in SPS rats. These findings suggest that administering AR after the onset of severe traumatic events may alleviate anxiety, cognitive deficits, and impaired social interaction, improve synaptic plasticity, and diminish neuronal apoptosis. Hence, the present study provides evidence for AR's potential as a multi-target agent in the treatment of PTSD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kuisheng Sun
- School of Laboratory Medicine, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
18
|
Xie P, Chen L, Wang J, Wang X, Yang S, Zhu G. Polysaccharides from Polygonatum cyrtonema Hua prevent post-traumatic stress disorder behaviors in mice: Mechanisms from the perspective of synaptic injury, oxidative stress, and neuroinflammation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117165. [PMID: 37696440 DOI: 10.1016/j.jep.2023.117165] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to traditional Chinese medicine (TCM) theory, post-traumatic stress disorder (PTSD) is a kind of depression syndrome, and its occurrence is related to deficiencies of the heart and kidney. Polygonatum cyrtonema Hua replenishes Qi and blood and tonifies the five zang organs, so it is widely used in TCM as a prescription for the treatment of depression syndrome. The polysaccharides in P. cyrtonema Hua (PSP) are the main active components of the herb, but the effects of PSP on PTSD and the mechanisms remain unclear. AIM OF THE STUDY To investigate the preventive effect of PSP on PTSD-like behaviors and to determine the mechanisms. METHODS We used behavioral tests to evaluate PTSD-like behaviors in mice. Synaptic changes were assessed by transmission electron microscopy. Hematoxylin-eosin staining was used to assess pathological changes to the hippocampus, and immunofluorescence staining was used to observe changes in astrocytes. Serum corticosterone (CORT), cytokine, and hippocampal oxidation-related indicator levels were evaluated by ELISA. We detected the expression levels of synaptic, oxidative, and inflammation-related proteins in the hippocampus by western blotting. RESULTS Single prolonged stress (SPS)-modeled mice exhibited significant PTSD-like phenotypes, including increased fear memory acquisition and anxiety-like behaviors. These behavioral changes were prevented by PSP administration. Compared to controls, SPS modeling increased serum CORT, cytokine, and hippocampal malondialdehyde levels; decreased superoxide dismutase activity; and caused losses in pyramidal neurons, astrocytes, and synapses in the CA1 region. At the molecular level, the expression of brain-derived neurotrophic factor, postsynaptic density protein 95, nuclear factor erythroid 2-related factor 2 (Nrf2), phospho-tyrosine kinase receptor B, activity-regulated cytoskeleton-associated protein, heme oxygenase-1 (HO-1), and GluA1 decreased in SPS mice compared with the control group, while the expression of NOD-like receptor protein 3 (NLRP3), GluN2B, and apoptosis-associated speck-like protein increased in SPS mice. Treatment with PSP counteracted these abnormal changes. Importantly, ML385, an Nrf2 inhibitor, blocked PSP's ability to ameliorate PTSD behaviors and abnormal protein expression. The NLRP3 inhibitor MCC950 reduced the PTSD-like behaviors and normalized protein expression in SPS mice. CONCLUSION PSP prevents SPS-induced PTSD-like behaviors and synaptic damage by regulating oxidative stress and NLRP3-mediated inflammation, probably in an Nrf2/HO-1 signaling pathway-dependent manner.
Collapse
Affiliation(s)
- Pan Xie
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Lixia Chen
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Juan Wang
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Xuncui Wang
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Shaojie Yang
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China; The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230061, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| |
Collapse
|
19
|
Chang R, Zhu S, Peng J, Lang Z, Zhou X, Liao H, Zou J, Zeng P, Tan S. The hippocampal FTO-BDNF-TrkB pathway is required for novel object recognition memory reconsolidation in mice. Transl Psychiatry 2023; 13:349. [PMID: 37963912 PMCID: PMC10645923 DOI: 10.1038/s41398-023-02647-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023] Open
Abstract
Memory reconsolidation refers to the process by which the consolidated memory was restored after reactivation (RA). Memory trace becomes labile after reactivation and inhibition of memory reconsolidation may disrupt or update the original memory trace, which provided a new strategy for the treatment of several psychiatric diseases, such as drug addiction and post-traumatic stress disorder. Fat mass and obesity-associated gene (FTO) is a novel demethylase of N6-methyladenosine (m6A) and it has been intensively involved in learning and memory. However, the role of FTO in memory reconsolidation has not been determined. In the present study, the function of FTO in memory reconsolidation was investigated in the novel object recognition (NOR) model in mice. The results showed that RA of NOR memory increased hippocampal FTO expression in a time-dependent manner, while FTO inhibitor meclofenamic acid (MA) injected immediately, but not 6 h after RA disrupted NOR memory reconsolidation. MA downregulated BDNF expression during NOR memory reconsolidation in the hippocampus, while the TrkB agonist 7,8-Dihydroxyflavone (7,8-DHF) reversed the disruptive effects of MA on NOR memory reconsolidation. Furthermore, overexpression of FTO increased BDNF expression via decreasing mRNA m6A in HT22 cells. Taken together, these results indicate that FTO may up-regulate the BDNF-TrkB pathway to promote NOR memory reconsolidation through m6A modification.
Collapse
Affiliation(s)
- Rui Chang
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Shanshan Zhu
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Jionghong Peng
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhenyi Lang
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Xinyu Zhou
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Hailin Liao
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Ju Zou
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Peng Zeng
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China.
| | - Sijie Tan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
20
|
Chen L, Zhen Y, Wang X, Wang J, Zhu G. Neurovascular glial unit: A target of phytotherapy for cognitive impairments. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155009. [PMID: 37573807 DOI: 10.1016/j.phymed.2023.155009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/29/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Neurovascular glial unit (NVGU) dysfunction has been reported to be an early and critical event in the pathophysiology of Alzheimer's disease (AD) and vascular dementia (VD). Although herbal medicines, with their favorable safety profiles and low adverse effects, have been suggested to be useful for the treatment of cognitive impairment, the potential role of the NVGU as the target of the effects of herbal medicines is still unclear. PURPOSE This review aimed to retrieve evidence from experimental studies of phytopharmaceuticals targeting the NVGU for the treatment of cognitive impairment in AD and VD, and discussed the potential of phytopharmaceuticals to improve cognitive impairment from the perspective of the NVGU. STUDY DESIGN AND METHODS We systematically searched PubMed, Google Scholar, Web of Science, and CNKI. The keywords used for searching information on the NVGU in the treatment of cognitive impairments included "Alzheimer's disease," "Vascular dementia," "Herbal medicines," "Natural products," "Neurovascular," "Adverse reaction," and "Toxicity, etc." We selected studies on the basis of predefined eligibility criteria. RESULTS NVGU mainly consists of endothelial cells, pericytes, astrocytes, microglia, oligodendrocytes, and neurons, and damage to these cells can induce cognitive impairment by impairing the blood-brain barrier (BBB) and cerebral blood flow (CBF) as well as neuronal function. The active components of herbal medicines, including Ginkgo biloba L., Ginseng Radix et Rhizoma, Epimedium Folium, Chuanxiong Rhizoma, Carthami flos, and Acorus tatarinowii Schott, as well as traditional Chinese medicine prescriptions have shown the potential to improve BBB function and increase CBF to prevent cognitive impairment by inhibiting astrocyte and microglia activation, protecting oligodendrocyte myelin function, reducing neuronal apoptosis, and promoting angiogenesis. CONCLUSIONS Herbal medicines demonstrate great potential to prevent cognitive impairment. Multiple components from herbal medicines may function through different signaling pathways to target the NVGU. Future studies using novel drug-carrier or delivery systems targeting the NVGU will certainly facilitate the development of phytopharmaceuticals for AD and VD.
Collapse
Affiliation(s)
- Lixia Chen
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yilan Zhen
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xuncui Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jingji Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China; The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
21
|
Lv T, Wang M, Zheng HS, Mao JD, Yang F, Yang L, Zhao MG, Liu SB, Zhang K, Liu R, Wu YM. Electroacupuncture alleviates PTSD-like behaviors by modulating hippocampal synaptic plasticity via Wnt/β-catenin signaling pathway. Brain Res Bull 2023; 202:110734. [PMID: 37586426 DOI: 10.1016/j.brainresbull.2023.110734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Abnormalities in hippocampal synaptic plasticity contribute to the pathogenesis of post-traumatic stress disorder (PTSD). The Wnt/β-catenin signaling pathway is critical for the regulation of synaptic plasticity. PTSD symptoms can be alleviated by correcting impaired neural plasticity in the hippocampus (Hipp). Electroacupuncture (EA) has a therapeutic effect by relieving PTSD-like behaviors. However, little is known about whether the Wnt/β-catenin pathway is involved in EA-mediated improvements of PTSD symptoms. In this study, we found that enhanced single prolonged stress (ESPS)-induced PTSD led to abnormal neural plasticity, characterized by the decline of dendritic spines, the expression of postsynaptic density 95 (PSD95), and synaptophysin (Syn) in the stressed Hipp along with the reduction of Wnt3a and β-catenin, and increased GSK-3β. EA significantly alleviated PTSD-like behaviors, as assessed by the open field test, elevated platform maze test and conditioning fear test. This was paralleled by correcting abnormal neural plasticity by promoting the expression of PSD95 and Syn, as well as the number of dendritic spines in the Hipp. Importantly, EA exerted anti-PTSD effects by augmenting the expression levels of Wnt3a and β-catenin, and decreasing that of GSK-3β. The effects mediated by EA were abolished by XAV939, an inhibitor of the Wnt/β-catenin pathway. This suggests that EA relieved ESPS-induced PTSD-like behaviors, which can largely be ascribed to impaired neural plasticity in the Hipp. These findings provide new insights into possible mechanisms linking neural plasticity in the Hipp as potential novel targets for PTSD treatment in EA therapy.
Collapse
Affiliation(s)
- Tao Lv
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China; Department of Acupuncture-moxibustion-massage, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712000, PR China
| | - Min Wang
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - He-Sheng Zheng
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China; Department of Acupuncture-moxibustion-massage, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712000, PR China
| | - Jin-Dong Mao
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Fan Yang
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China; Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, PR China
| | - Le Yang
- Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, PR China
| | - Ming-Gao Zhao
- Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, PR China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Rui Liu
- Department of Rehabilitation Medicine, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, PR China.
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China; Department of Acupuncture-moxibustion-massage, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712000, PR China.
| |
Collapse
|
22
|
Yang S, Zhu G. Phytotherapy of abnormality of fear memory: A narrative review of mechanisms. Fitoterapia 2023; 169:105618. [PMID: 37482307 DOI: 10.1016/j.fitote.2023.105618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
It is generally believed that in post-traumatic stress disorder (PTSD), the high expression of fear memory is mainly determined by amygdala hyperactivity and hippocampus hypoactivity. In this review, we firstly updated the mechanisms of fear memory, and then searched the experimental evidence of phytotherapy for fear memory in the past five years. Based on the summary of those experimental studies, we further discussed the future research strategies of plant medicines, including the study of the mechanism of specific brain regions, the optimal time for the prevention and treatment of fear memory-related diseases such as PTSD, and the development of new drugs with active components of plant medicines. Accordingly, plant medicines play a clear role in improving fear memory abnormalities and have the drug development potential in the treatment of fear-related disorders.
Collapse
Affiliation(s)
- Shaojie Yang
- The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230061, China; Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, Anhui 230012, China.
| |
Collapse
|
23
|
Hu X, Liu L, Wang Z, Sun Y, Li Z, Zhou G, Yue K, Wang L, Lian B, Lu G, Li C, Sun L. The potential role of GSK-3β signaling pathway for amelioration actions of ketamine on the PTSD rodent model. Brain Res Bull 2023; 200:110697. [PMID: 37392896 DOI: 10.1016/j.brainresbull.2023.110697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
RATIONALE Post-traumatic stress disorder (PTSD) is a complex, chronic psychiatric disorder typically triggered by life-threatening events and, as yet, lacks a specialized pharmacological treatment. The potential therapeutic role of ketamine, an N-methyl-D-aspartate receptor antagonist, in mitigating PTSD has been the subject of investigation. OBJECTIVE The aim of this study was to elucidate alterations in the glycogen synthase kinase-3β (GSK-3β) signaling pathway in response to ketamine intervention, using the single prolonged stress (SPS) model of PTSD at a molecular level. METHODS PTSD-like symptoms were simulated using the SPS model. Ketamine (10mg/kg) and GSK-3β antagonist SB216763 (5mg/kg) were then administered intraperitoneally. Stress-related behavior was evaluated through the open field test (OFT) and the elevated plus maze test (EMPT). Additionally, brain activity was analyzed using quantitative electroencephalography (qEEG). Changes in protein and mRNA expressions of glucocorticoid receptor (GR), brain-derived neurotrophic factor (BDNF), GSK-3β, phosphorylated ser-9 GSK-3β (p-GSK-3β), FK506 binding protein 5 (FKBP5), and corticotropin-releasing hormone (CRH) were assessed in the hypothalamus via western blot and qPCR. RESULTS SPS-exposed rats exhibited reduced distance and time spent in the center of the open arms, a pattern divergent from control rats. qEEG readings revealed SPS-induced increases in alpha power, low gamma and high gamma power. Furthermore, SPS triggered an upregulation in the protein and gene expression of GSK-3β, GR, BDNF, p-GSK-3β, and FKBP5, and downregulated CRH expression in the hypothalamus. Ketamine administration following the SPS procedure counteracted these changes by increasing the time spent in the center of the OFT, the distance traversed in the open arms of the EMPT, and mitigating SPS-induced alterations in cerebral cortex oscillations. Moreover, ketamine reduced the protein levels of GSK-3β, GR, p-GSK-3β, and altered the ratio of p-GSK-3β to GSK-3β. Gene expression of GSK-3β, GR, BDNF, and FKBP5 decreased in the SPS-Ket group compared to the SPS-Sal group. CONCLUSIONS Ketamine appeared to remediate the abnormal GSK-3β signaling pathway induced by SPS. These findings collectively suggest that ketamine could be a promising therapeutic agent for PTSD symptoms, working through the modulation of the GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Xinyu Hu
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China.
| | - Lifen Liu
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China.
| | - Zixun Wang
- School of Clinical Medicine, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China.
| | - Yongjing Sun
- School of Clinical Medicine, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China.
| | - Zhi Li
- School of Clinical Medicine, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China.
| | - Guorun Zhou
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China.
| | - Kuitao Yue
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang, 261035, PR China.
| | - Lin Wang
- Clinical Competency Training Center, Medical experiment and training center, Weifang Medical University, 7166# Baotong West Street, Weifang Shandong, 261053, P. R. China.
| | - Bo Lian
- Department of Bioscience and Technology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, China.
| | - Guohua Lu
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China.
| | - Changjiang Li
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China.
| | - Lin Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China.
| |
Collapse
|
24
|
Yang SJ, Wang JJ, Cheng P, Chen LX, Hu JM, Zhu GQ. Ginsenoside Rg1 in neurological diseases: From bench to bedside. Acta Pharmacol Sin 2023; 44:913-930. [PMID: 36380226 PMCID: PMC10104881 DOI: 10.1038/s41401-022-01022-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Ginseng has been used in China as a superior medicinal material for thousands of years that can nourish the five internal organs, calm the mind and benefit wisdom. Due to its anti-inflammatory, antioxidant and neuroprotective activities, one of the active components of ginseng, ginsenoside Rg1, has been extensively investigated in the remedy of brain disorders, especially dementia and depression. In this review, we summarized the research progress on the action mechanisms of Rg1 ameliorating depression-like behaviors, including inhibition of hyperfunction of hypothalamic-pituitary-adrenal (HPA) axis, regulation of synaptic plasticity and gut flora. Rg1 may alleviate Alzheimer's disease in the early phase, as well as in the middle-late phases through repairing dendrite, axon and microglia- and astrocyte-related inflammations. We also proposed that Rg1 could regulate memory state (the imbalance of working and aversive memory) caused by distinct stimuli. These laboratory studies would further the clinical trials on Rg1. From the prospective of drug development, we discussed the limitations of the present investigations and proposed our ideas to increase permeability and bioavailability of Rg1. Taken together, Rg1 has the potential to treat neuropsychiatric disorders, but a future in-depth investigation of the mechanisms is still required. In addition, drug development will benefit from the clinical trials in one specific neuropsychiatric disorder.
Collapse
Affiliation(s)
- Shao-Jie Yang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jing-Ji Wang
- The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, 230061, China.
| | - Ping Cheng
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Li-Xia Chen
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jia-Min Hu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Guo-Qi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
25
|
Chen YS, Zhang SM, Tan W, Zhu Q, Yue CX, Xiang P, Li JQ, Wei Z, Zeng Y. Early 7,8-Dihydroxyflavone Administration Ameliorates Synaptic and Behavioral Deficits in the Young FXS Animal Model by Acting on BDNF-TrkB Pathway. Mol Neurobiol 2023; 60:2539-2552. [PMID: 36680734 DOI: 10.1007/s12035-023-03226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/30/2022] [Indexed: 01/22/2023]
Abstract
Fragile X syndrome (FXS) is the leading inherited form of intellectual disability and the most common cause of autism spectrum disorders. FXS patients exhibit severe syndromic features and behavioral alterations, including anxiety, hyperactivity, impulsivity, and aggression, in addition to cognitive impairment and seizures. At present, there are no effective treatments or cures for FXS. Previously, we have found the divergence of BDNF-TrkB signaling trajectories is associated with spine defects in early postnatal developmental stages of Fmr1 KO mice. Here, young fragile X mice were intraperitoneal injection with 7,8-Dihydroxyflavone (7,8-DHF), a high affinity tropomyosin receptor kinase B (TrkB) agonist. 7,8-DHF ameliorated morphological abnormities in dendritic spine and synaptic structure and rescued synaptic and hippocampus-dependent cognitive dysfunction. These observed improvements of 7,8-DHF involved decreased protein levels of BDNF, p-TrkBY816, p-PLCγ, and p-CaMKII in the hippocampus. In addition, 7,8-DHF intervention in primary hippocampal neurons increased p-TrkBY816 and activated the PLCγ1-CaMKII signaling pathway, leading to improvement of neuronal morphology. This study is the first to account for early life synaptic impairments, neuronal morphological, and cognitive delays in FXS in response to the abnormal BDNF-TrkB pathway. Present studies provide novel evidences about the effective early intervention in FXS mice at developmental stages and a strategy to produce powerful impacts on neural development, synaptic plasticity, and behaviors.
Collapse
Affiliation(s)
- Yu-Shan Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, 430065, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Si-Ming Zhang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, 430065, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Qiong Zhu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, 430065, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Chao-Xiong Yue
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, 430065, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Peng Xiang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, 430065, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jin-Quan Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, 430065, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Zhen Wei
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, 430065, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yan Zeng
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, 430065, China.
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
26
|
On making (and turning adaptive to) maladaptive aversive memories in laboratory rodents. Neurosci Biobehav Rev 2023; 147:105101. [PMID: 36804263 DOI: 10.1016/j.neubiorev.2023.105101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Fear conditioning and avoidance tasks usually elicit adaptive aversive memories. Traumatic memories are more intense, generalized, inflexible, and resistant to attenuation via extinction- and reconsolidation-based strategies. Inducing and assessing these dysfunctional, maladaptive features in the laboratory are crucial to interrogating posttraumatic stress disorder's neurobiology and exploring innovative treatments. Here we analyze over 350 studies addressing this question in adult rats and mice. There is a growing interest in modeling several qualitative and quantitative memory changes by exposing already stressed animals to freezing- and avoidance-related tests or using a relatively high aversive training magnitude. Other options combine aversive/fearful tasks with post-acquisition or post-retrieval administration of one or more drugs provoking neurochemical or epigenetic alterations reported in the trauma aftermath. It is potentially instructive to integrate these procedures and incorporate the measurement of autonomic and endocrine parameters. Factors to consider when defining the organismic and procedural variables, partially neglected aspects (sex-dependent differences and recent vs. remote data comparison) and suggestions for future research (identifying reliable individual risk and treatment-response predictors) are discussed.
Collapse
|
27
|
Li J, Tong L, Schock BC, Ji LL. Post-traumatic Stress Disorder: Focus on Neuroinflammation. Mol Neurobiol 2023; 60:3963-3978. [PMID: 37004607 DOI: 10.1007/s12035-023-03320-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/09/2023] [Indexed: 04/04/2023]
Abstract
Post-traumatic stress disorder (PTSD), gaining increasing attention, is a multifaceted psychiatric disorder that occurs following a stressful or traumatic event or series of events. Recently, several studies showed a close relationship between PTSD and neuroinflammation. Neuroinflammation, a defense response of the nervous system, is associated with the activation of neuroimmune cells such as microglia and astrocytes and with changes in inflammatory markers. In this review, we first analyzed the relationship between neuroinflammation and PTSD: the effect of stress-derived activation of the hypothalamic-pituitary-adrenal (HPA) axis on the main immune cells in the brain and the effect of stimulated immune cells in the brain on the HPA axis. We then summarize the alteration of inflammatory markers in brain regions related to PTSD. Astrocytes are neural parenchymal cells that protect neurons by regulating the ionic microenvironment around neurons. Microglia are macrophages of the brain that coordinate the immunological response. Recent studies on these two cell types provided new insight into neuroinflammation in PTSD. These contribute to promoting comprehension of neuroinflammation, which plays a pivotal role in the pathogenesis of PTSD.
Collapse
Affiliation(s)
- Jimeng Li
- Department of 2nd Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Lei Tong
- Department of Anatomy, College of Basic Sciences, China Medical University, Shenyang, Liaoning, China
| | - Bettina C Schock
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast Faculty of Medicine Health and Life Sciences, Belfast, UK
| | - Li-Li Ji
- Department of Anatomy, College of Basic Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
28
|
Rawlings-Mortimer F, Lazari A, Tisca C, Tachrount M, Martins-Bach AB, Miller KL, Lerch JP, Johansen-Berg H. 7,8-dihydroxyflavone enhances long-term spatial memory and alters brain volume in wildtype mice. Front Syst Neurosci 2023; 17:1134594. [PMID: 37008453 PMCID: PMC10057119 DOI: 10.3389/fnsys.2023.1134594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/21/2023] [Indexed: 03/17/2023] Open
Abstract
Introduction: 7,8-dihydroxyflavone (7,8-DHF) is a low molecular weight compound that can cross the blood brain barrier and has been implicated in numerous functions and behaviours. It is thought to have neuroprotective capability and has been shown to alleviate symptoms in a wide range of diseases.Methods: 7,8-DHF was administered systemically to wildtype mice during Morris water maze training. Long-term spatial memory was assessed 28 days later. Ex-vivo T2-weighted (T2w) imaging was undertaken on a subset of these mice to assess brain-wide changes in volume.Results: We found that systemic 7,8-DHF administration during the training period enhanced spatial memory 28 days later. Volumetric changes were observed in numerous brain regions associated with a broad range of functions including cognition, sensory, and motor processing.Discussion: Our findings give the first whole brain overview of long-term anatomical changes following 7,8-DHF administration providing valuable information for assessing and understanding the widespread effects this drug has been shown to have in behaviour and disease.
Collapse
|
29
|
7,8-Dihydroxiflavone protects retinal ganglion cells and promotes axonal regeneration through TrkB signaling pathway followed by AKT and ERK activation. Neurosci Res 2023:S0168-0102(23)00050-0. [PMID: 36854354 DOI: 10.1016/j.neures.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
The aim of this study was to investigate the effects of 7,8-dihydroxyflavone (7,8-DHF) in protecting retinal ganglion cells (RGCs) and promoting axonal regeneration, and to explore its potential molecular mechanisms. We used three-dimensional retinal culture system and optic nerve crush (ONC) rat models in this study. The pro-axonal regenerative effect of 7,8-DHF was determined with light microscopy observation and immunofluorescence staining of Thy1.1 and GAP43. The RGC protective function of 7,8-DHF was detected by RBPMS immunofluorescent staining and TUNEL staining. The inhibition effect of 7,8-DHF on astrocyte activation was measured using GFAP immunofluorescence and Western blotting. The protein levels of p-TrkB, p-AKT and p-ERK was examined by Western blotting and immunohistochemistry. Our results revealed that 7,8-DHF significantly promoted the average density and length of regenerated neurites and suppressed the apoptosis of GCL cells in three-dimensional culture system and significantly increased the number of RBPMS-positive cells and inhibited the GFAP expression and apoptosis of GCL cells in ONC rats. Our results also revealed that 7,8-DHF activates TrkB, AKT and ERK proteins in vivo, however, these activations can be inhibited byANA-12. In conclusion, 7,8-DHF protects RGCs and promotes axonal regeneration through the TrkB signaling pathway followed by AKT and ERK activation.
Collapse
|
30
|
Ji M, Zhang Z, Gao F, Yang S, Wang J, Wang X, Zhu G. Curculigoside rescues hippocampal synaptic deficits elicited by PTSD through activating cAMP-PKA signaling. Phytother Res 2023; 37:759-773. [PMID: 36200803 DOI: 10.1002/ptr.7658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/26/2022] [Accepted: 08/12/2022] [Indexed: 02/17/2023]
Abstract
Chronic traumatic stress results in various psychiatric disorders, especially posttraumatic stress disorder (PTSD). Previous study demonstrated that curculigoside (CUR) a component of Rhizoma Curculiginis prevented fear extinction and stress-induced depression-like behaviors. However, its effects on PTSD and the mechanisms are still not completely clear. In this study, we observed typical PTSD-like phenotypes, synaptic deficit, and reduction of BDNF/TrkB signaling pathway in mice receiving modified single prolonged stress and electrical stimulation (SPS&S). By contrast, systemic administration of CUR blocked PTSD-like phenotypes and synaptic deficits, including reduction of BDNF/TrkB signaling pathway, GluA1 and Arc expression. Importantly, CUR reversed the impairment of PKA signaling pathway elicited by PTSD. We further confirmed that the effects of CUR on synaptic function were through PKA signaling pathway, as H-89, an inhibitor of PKA blocked the effect of CUR on behavioral changes and BDNF/TrkB signaling pathway. Thereafter, we verified that CUR on synaptic function were through PKA pathway using direct intracerebral injection of CUR and H-89. Direct intracerebral injection of CUR activated PKA/CREB/BDNF/TrkB, which was blocked by H-89. Additionally, the docking results showed high binding energies of CUR with A2AR, AC, PRKACA, and PRKAR1A, which might indicate that CUR functions through regulating PKA signaling pathway. In conclusion, CUR prevented the behavioral changes and hippocampal synaptic deficits elicited by PTSD through activating cAMP-PKA signaling.
Collapse
Affiliation(s)
- Manman Ji
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Zhengrong Zhang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Feng Gao
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Shaojie Yang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Juan Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Xuncui Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
31
|
Gao F, Wang J, Yang S, Ji M, Zhu G. Fear extinction induced by activation of PKA ameliorates anxiety-like behavior in PTSD mice. Neuropharmacology 2023; 222:109306. [PMID: 36341808 DOI: 10.1016/j.neuropharm.2022.109306] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Prolonged exposure (PE) therapy aiming to promote fear extinction is a useful treatment for post-traumatic stress disorder (PTSD). However, the mechanisms underlying fear extinction and effective methods used to promote fear extinction in PTSD are still lacking. In this study, we displayed dysfunctions of cyclic adenosine 3,5-monophosphate (cAMP)-protein kinase A (PKA), protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and calcium signaling in peripheral serum of PTSD patients using bioinformatics analysis. Later, we confirmed the dysfunctions of cAMP-PKA, AKT/mTOR and calcium signaling in the hippocampus of PTSD mice. Moreover, the reduction of calpain1 in the hippocampus enhanced fear memory acquisition. Single activation of PKA by systemic application of rolipram (ROL) or meglumine cyclic adenylate (M-cAMP) before re-exposure promoted fear extinction and improved anxiety-like behavior in PTSD mice. Moreover, systemic application of ROL before re-exposure improved hippocampal brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB) signaling and calpain1/AKT/mTOR signaling. Interestingly, the effects of activation of PKA could be partially blocked by TrkB antagonist, ANA-12 and mTOR inhibitor, RAPA. Finally, intranasal administration of ROL could also adjust the abnormality of fear memory and improve anxiety-like behaviors in PTSD mice. Collectively, activation of PKA could promote fear extinction, which correlated with the reduction of anxiety-like behavior. The mechanisms were related to the BDNF/TrkB and calpain1/AKT/mTOR signaling pathways. PKA activation might be a useful complementary therapy for PE in the symptom elimination of PTSD.
Collapse
Affiliation(s)
- Feng Gao
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Juan Wang
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shaojie Yang
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Manman Ji
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
32
|
Li Y, Du Y, Wang C, Lu G, Sun H, Kong Y, Wang W, Lian B, Li C, Wang L, Zhang X, Sun L. (2R,6R)-hydroxynorketamine acts through GluA1-induced synaptic plasticity to alleviate PTSD-like effects in rat models. Neurobiol Stress 2022; 21:100503. [PMID: 36532380 PMCID: PMC9755068 DOI: 10.1016/j.ynstr.2022.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating mental disorder with high morbidity and great social and economic relevance. However, extant pharmacotherapies of PTSD require long-term use to maintain effectiveness and have enormous side effects. The glutamatergic system, especially the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), is an important target of current research on the mechanism of PTSD. Postsynaptic AMPAR function and expression are known to be increased by (2R, 6R)-hydronorketamine (HNK), the primary metabolite of ketamine. However, whether (2R,6R)-HNK alleviates PTSD-like effects via AMPAR upregulation is yet to be known. In the present study, rats were exposed to single prolonged stress and electric foot shock (SPS&S). Afterwards, gradient concentrations of (2R,6R)-HNK (20, 50, and 100 μM) were administered by intracerebroventricular (i.c.v.) injection. Open field, elevated plus maze, freezing behavior, and forced swimming tests were used to examine PTSD-like symptoms. In addition, the protein levels of GluA1, BDNF and PSD-95 were analyzed using western blotting and immunofluorescence, and the synaptic ultrastructure of the prefrontal cortex (PFC) was observed by transmission electron microscopy. We found that (2R,6R)-HNK changed SPS&S-induced behavioral expression, such as increasing autonomous activity and residence time in the open arm and decreasing immobility time. Likewise, (2R,6R)-HNK (50 μM) increased GluA1, BDNF, and PSD-95 protein expression in the PFC. Changes in synaptic ultrastructure induced by SPS&S were reversed by administration of (2R,6R)-HNK. Overall, we find that (2R,6R)-HNK can ameliorate SPS&S-induced fear avoidance in rats, as well as rat cognates of anxiety and depression. This may be related to GluA1-mediated synaptic plasticity in the PFC.
Collapse
Affiliation(s)
- Yu Li
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - YaLin Du
- School of Clinical Medicine, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - Chen Wang
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - GuoHua Lu
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - HongWei Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - YuJia Kong
- School of Public Health, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - WeiWen Wang
- Institute of Psychology of the Chinese Academy of Sciences, PR China
| | - Bo Lian
- Department of Bioscience and Technology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - ChangJiang Li
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - Ling Wang
- Weifang Medical University, Clinical Competency Training Center Medical Experiment and Training Center, PR China
| | - XianQiang Zhang
- Peking University Sixth Hospital/Institute of Mental Health and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Lin Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| |
Collapse
|
33
|
Bazzari AH, Bazzari FH. BDNF Therapeutic Mechanisms in Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23158417. [PMID: 35955546 PMCID: PMC9368938 DOI: 10.3390/ijms23158417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the adult brain and functions as both a primary neurotrophic signal and a neuromodulator. It serves essential roles in neuronal development, maintenance, transmission, and plasticity, thereby influencing aging, cognition, and behavior. Accumulating evidence associates reduced central and peripheral BDNF levels with various neuropsychiatric disorders, supporting its potential utilization as a biomarker of central pathologies. Subsequently, extensive research has been conducted to evaluate restoring, or otherwise augmenting, BDNF transmission as a potential therapeutic approach. Promising results were indeed observed for genetic BDNF upregulation or exogenous administration using a multitude of murine models of neurological and psychiatric diseases. However, varying mechanisms have been proposed to underlie the observed therapeutic effects, and many findings indicate the engagement of disease-specific and other non-specific mechanisms. This is because BDNF essentially affects all aspects of neuronal cellular function through tropomyosin receptor kinase B (TrkB) receptor signaling, the disruptions of which vary between brain regions across different pathologies leading to diversified consequences on cognition and behavior. Herein, we review the neurophysiology of BDNF transmission and signaling and classify the converging and diverging molecular mechanisms underlying its therapeutic potentials in neuropsychiatric disorders. These include neuroprotection, synaptic maintenance, immunomodulation, plasticity facilitation, secondary neuromodulation, and preservation of neurovascular unit integrity and cellular viability. Lastly, we discuss several findings suggesting BDNF as a common mediator of the therapeutic actions of centrally acting pharmacological agents used in the treatment of neurological and psychiatric illness.
Collapse
Affiliation(s)
- Amjad H. Bazzari
- Faculty of Medicine, Arab American University, 13 Zababdeh, Jenin 240, Palestine
- Correspondence:
| | - Firas H. Bazzari
- Faculty of Pharmacy, Arab American University, 13 Zababdeh, Jenin 240, Palestine;
| |
Collapse
|
34
|
Hua T, Shi H, Zhu M, Chen C, Su Y, Wen S, Zhang X, Chen J, Huang Q, Wang H. Glioma‑neuronal interactions in tumor progression: Mechanism, therapeutic strategies and perspectives (Review). Int J Oncol 2022; 61:104. [PMID: 35856439 PMCID: PMC9339490 DOI: 10.3892/ijo.2022.5394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/30/2022] [Indexed: 11/06/2022] Open
Abstract
An increasing body of evidence has become available to reveal the synaptic and functional integration of glioma into the brain network, facilitating tumor progression. The novel discovery of glioma-neuronal interactions has fundamentally challenged our understanding of this refractory disease. The present review aimed to provide an overview of how the neuronal activities function through synapses, neurotransmitters, ion channels, gap junctions, tumor microtubes and neuronal molecules to establish communications with glioma, as well as a simplified explanation of the reciprocal effects of crosstalk on neuronal pathophysiology. In addition, the current state of therapeutic avenues targeting critical factors involved in glioma-euronal interactions is discussed and an overview of clinical trial data for further investigation is provided. Finally, newly emerging technologies, including immunomodulation, a neural stem cell-based delivery system, optogenetics techniques and co-culture of neuron organoids and glioma, are proposed, which may pave a way towards gaining deeper insight into both the mechanisms associated with neuron- and glioma-communicating networks and the development of therapeutic strategies to target this currently lethal brain tumor.
Collapse
Affiliation(s)
- Tianzhen Hua
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Huanxiao Shi
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Mengmei Zhu
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Yandong Su
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Shengjia Wen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Xu Zhang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Qilin Huang
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Hongxiang Wang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
35
|
Yang S, Qu Y, Wang J, Gao F, Ji M, Xie P, Zhu A, Tan B, Wang X, Zhu G. Anshen Dingzhi prescription in the treatment of PTSD in mice: Investigation of the underlying mechanism from the perspective of hippocampal synaptic function. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154139. [PMID: 35523115 DOI: 10.1016/j.phymed.2022.154139] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Anshen Dingzhi prescription (ADP) is an important prescription for the treatment of mental diseases in traditional Chinese medicine and is widely used to treat neuropsychiatric disorders. PURPOSE To explore the ameliorative effect of ADP on post-traumatic stress disorder (PTSD)-like behaviors in mice and determine the underlying mechanism. METHODS The constituents of ADP were analyzed by UPLC-Q-TOF/MS. The PTSD-like behaviors of mice subjected to single prolonged stress (SPS) were evaluated using behavioral tests. Potential pathological changes in the hippocampus were assessed by hematoxylin and eosin (H&E) staining. Western blotting and immunohistochemistry (IHC) were employed to detect the expression of proteins involved in relevant signaling pathways. RESULTS Five quality control markers (ginsenoside Rg1, ginsenoside Rb1, tenuifolin, poricoic acid B, and α-asarone) were detected in the ADP solution. The ginsenoside Rg1 content in ADP was found to be 0.114 mg/g. Mice subjected to SPS showed obvious fear generalization and anxiety-like behaviors. ADP treatment prevented the behavioral changes caused by exposure to SPS. Compared with control animals, the number of normal pyramidal cells in the hippocampal CA1 region of mice exposed to SPS was decreased and the number of degenerating pyramidal cells was increased; however, ADP administration could counteract these effects. Furthermore, the protein expression of BDNF, p-TrkB, μ-calpain, PSD95, GluN2A, GluA1, p-AKT, p-mTOR, and ARC was decreased, while that of PTEN and GluN2B was increased in the hippocampus of mice subjected to SPS compared with that in control animals; however, these changes in protein expression were reversed following ADP treatment. Importantly, the ameliorative effect of ADP on PTSD-like behaviors and synaptic protein expression were inhibited by rapamycin administration. CONCLUSIONS ADP administration improves PTSD-like behaviors in mice and this effect may be mediated through an mTOR-dependent improvement in synaptic function in the hippocampus.
Collapse
Affiliation(s)
- Shaojie Yang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Yan Qu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Juan Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Feng Gao
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Manman Ji
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Pan Xie
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Aisong Zhu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Xuncui Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China.
| |
Collapse
|