1
|
Hikmawanti NPE, Saputri FC, Yanuar A, Jantan I, Ningrum RA, Mun'im A. Insights into the anti-infective effects of Pluchea indica (L.) Less and its bioactive metabolites against various bacteria, fungi, viruses, and parasites. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117387. [PMID: 37944874 DOI: 10.1016/j.jep.2023.117387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/12/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pluchea indica (L.) Less (family Asteraceae) is popularly consumed as a medicinal vegetable and used in ethnomedicine to treat various diseases including gastrointestinal problems such as dysentery and leucorrhoea, which are due to bacterial, fungal or parasitic infections. There have been numerous studies on the antimicrobial effects of the plant due to these ethnomedicine use. AIM OF THIS REVIEW This review is comprehensively discussed the information on the anti-infective properties of P. indica and its secondary metabolites, and highlight the potential of the plant as a new source of anti-infective agents. MATERIALS AND METHODS Scientific databases such as Scopus, Google Scholar, ScienceDirect, PubMed, Wiley Online Library, and ACS Publications were used to gather the relevant information on the ability of P. indica to fight infections, with the leaves and roots receiving most of the attention. RESULTS Anti-bacterial, anti-mycobacterial, anti-malarial, and anti-viral activities have been the most exploited. Most studies were carried out on the crude extracts of the plant and in most studies the bioactive extracts were not standardized or chemically characterized. Several studies have reported the anti-infective activity of several bioactive components of P. indica including caffeoylquinic acids, terpenoid glycosides, thiophenes, and kaempferol. CONCLUSIONS The strong anti-infective effect and underlying mechanisms of the compounds provide insights into the potential of P. indica as a source of new leads for the development of anti-infective agents for use in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Ni Putu Ermi Hikmawanti
- Graduate Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Indonesia, Cluster of Health Sciences Building, Depok, 16424, West Java, Indonesia; Department of Pharmaceutical Biology, Faculty of Pharmacy and Sciences, Universitas Muhammadiyah Prof. DR. HAMKA, East Jakarta, 13460, DKI Jakarta, Indonesia; National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, 16424, Indonesia.
| | - Fadlina Chany Saputri
- Department of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia; National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, 16424, Indonesia.
| | - Arry Yanuar
- Department of Biomedical Computation-Drug Design, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia; National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, 16424, Indonesia.
| | - Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia.
| | - Ratih Asmana Ningrum
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Raya Bogor Street KM.46, Cibinong, Bogor, West Java, 16911, Indonesia; National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, 16424, Indonesia.
| | - Abdul Mun'im
- Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Cluster of Health Sciences Building, Depok, 16424, West Java, Indonesia; National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, 16424, Indonesia.
| |
Collapse
|
2
|
Sianipar NF, Hadisaputri YE, Assidqi K, Salam S, Yusuf M, Destiarani W, Purnamaningsih R, So IG, Takara K, Asikin Y. In silico and in vitro Characterizations of Rodent Tuber (Typhonium flagelliforme) Mutant Plant Isolates against FXR Receptor on MCF-7 Cells. J Oleo Sci 2024; 73:1349-1360. [PMID: 39358218 DOI: 10.5650/jos.ess24020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Typhonium flagelliforme (T. flagelliforme) is an Indonesian rodent tuber plant traditionally used to treat cancer diseases. Although gamma-ray irradiation has been used to increase the content in the chemical compounds of the T. flagelliforme plants with anticancer activity ten times effective, the specific effect of the isolated compounds from the mutant plants has never been reported yet. The potential cytotoxic agents were characterized via nuclear magnetic resonance spectroscopy, infrared spectroscopy, and mass spectrometry as stigmasterol and 7α-hydroxyl stigmasterol; and their anticancer activity was investigated. The in silico biochemical profile of the two compounds were analyzed by molecular docking and molecular dynamics simulation to confirm its interaction with the agonist binding site of Farsenoid X receptor (FXR). Stigmasterol and 7α-hydroxyl stigmasterol can act as a competitive regulator with a high-affinity for the FXR. The results also showed that stigmasterol and 7α-hydroxyl stigmasterol were the most potential and active fraction of the T. flagelliforme mutant plant against the MCF-7 human breast cancer cell line, with IC 50 value 9.13 µM and 12.97 µM, compared with cisplastin as a control about 13.20 µM. These results demonstrate the potential of stigmasterol and 7α-hydroxyl stigmasterol in T. flagelliforme mutant plants to act towards cancer diseases.
Collapse
Affiliation(s)
- Nesti Fronika Sianipar
- Biotechnology Department, Faculty of Engineering, Bina Nusantara University
- Food Biotechnology Research Center, Bina Nusantara University
| | - Yuni Elsa Hadisaputri
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran
- Biological Activity Division, Central Laboratory, Universitas Padjadjaran
| | - Khoirunnisa Assidqi
- Biotechnology Department, Faculty of Engineering, Bina Nusantara University
- Food Biotechnology Research Center, Bina Nusantara University
| | | | - Muhammad Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran
| | - Wanda Destiarani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran
| | | | - Idris Gautama So
- Management Department, Binus Business School, Undergraduate Program, Bina Nusantara University
| | - Kensaku Takara
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus
- The United Graduate School of Agricultural Sciences, Kagoshima University
| | - Yonathan Asikin
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus
- The United Graduate School of Agricultural Sciences, Kagoshima University
| |
Collapse
|
3
|
Sampat GH, Hiremath K, Dodakallanavar J, Patil VS, Harish DR, Biradar P, Mahadevamurthy RK, Barvaliya M, Roy S. Unraveling snake venom phospholipase A 2: an overview of its structure, pharmacology, and inhibitors. Pharmacol Rep 2023; 75:1454-1473. [PMID: 37926795 DOI: 10.1007/s43440-023-00543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Snake bite is a neglected disease that affects millions of people worldwide. WHO reported approximately 5 million people are bitten by various species of snakes each year, resulting in nearly 1 million deaths and an additional three times cases of permanent disability. Snakes utilize the venom mainly for immobilization and digestion of their prey. Snake venom is a composition of proteins and enzymes which is responsible for its diverse pharmacological action. Snake venom phospholipase A2 (SvPLA2) is an enzyme that is present in every snake species in different quantities and is known to produce remarkable functional diversity and pharmacological action like inflammation, necrosis, myonecrosis, hemorrhage, etc. Arachidonic acid, a precursor to eicosanoids, such as prostaglandins and leukotrienes, is released when SvPLA2 catalyzes the hydrolysis of the sn-2 positions of membrane glycerophospholipids, which is responsible for its actions. Polyvalent antivenom produced from horses or lambs is the standard treatment for snake envenomation, although it has many drawbacks. Traditional medical practitioners treat snake bites using plants and other remedies as a sustainable alternative. More than 500 plant species from more than 100 families reported having venom-neutralizing abilities. Plant-derived secondary metabolites have the ability to reduce the venom's adverse consequences. Numerous studies have documented the ability of plant chemicals to inhibit the enzymes found in snake venom. Research in recent years has shown that various small molecules, such as varespladib and methyl varespladib, effectively inhibit the PLA2 toxin. In the present article, we have overviewed the knowledge of snake venom phospholipase A2, its classification, and the mechanism involved in the pathophysiology of cytotoxicity, myonecrosis, anticoagulation, and inflammation clinical application and inhibitors of SvPLA2, along with the list of studies carried out to evaluate the potency of small molecules like varespladib and secondary metabolites from the traditional medicine for their anti-PLA2 effect.
Collapse
Affiliation(s)
- Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Kashinath Hiremath
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Jagadeesh Dodakallanavar
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India.
| | - Prakash Biradar
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India.
| | | | - Manish Barvaliya
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| |
Collapse
|
4
|
Hiremath K, Dodakallanavar J, Sampat GH, Patil VS, Harish DR, Chavan R, Hegde HV, Roy S. Three finger toxins of elapids: structure, function, clinical applications and its inhibitors. Mol Divers 2023:10.1007/s11030-023-10734-3. [PMID: 37749455 DOI: 10.1007/s11030-023-10734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
The WHO lists snakebite as a "neglected tropical disease". In tropical and subtropical areas, envenoming is an important public health issue. This review article describes the structure, function, chemical composition, natural inhibitors, and clinical applications of Elapids' Three Finger Toxins (3FTX) using scientific research data. The primary venomous substance belonging to Elapidae is 3FTX, that targets nAChR. Three parallel β-sheets combine to create 3FTX, which has four or five disulfide bonds. The three primary types of 3FTX are short-chain, long-chain, and nonconventional 3FTX. The functions of 3FTX depend on the specific toxin subtype and the target receptor or ion channel. The well-known effect of 3FTX is probably neurotoxicity because of the severe consequences of muscular paralysis and respiratory failure in snakebite victims. 3FTX have also been studied for their potential clinical applications. α-bungarotoxin has been used as a molecular probe to study the structure and function of nAChRs (Nicotinic Acetylcholine Receptors). Acid-sensing ion channel (ASIC) isoforms 1a and 1b are inhibited by Mambalgins, derived from Black mamba venom, which hinders their function and provide an analgesic effect. α- Cobra toxin is a neurotoxin purified from Chinese cobra (Naja atra) binds to nAChR at the neuronal junction and causes an analgesic effect for moderate to severe pain. Some of the plants and their compounds have been shown to inhibit the activity of 3FTX, and their mechanisms of action are discussed.
Collapse
Affiliation(s)
- Kashinath Hiremath
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Jagadeesh Dodakallanavar
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India.
| | - Rajashekar Chavan
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India.
| | - Harsha V Hegde
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| |
Collapse
|
5
|
Goswami M, Jaswal S, Gupta GD, Kumar Verma S. A Comprehensive Update on Phytochemistry, Analytical Aspects, Medicinal Attributes, Specifications and Stability of Stigmasterol. Steroids 2023; 196:109244. [PMID: 37137454 DOI: 10.1016/j.steroids.2023.109244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Phytosterols are bioactive substances naturally found in plant cell membranes, and their chemical structure is comparable to cholesterol found in mammalian cells. They are widely distributed in plant foods like olive oil, nuts, seeds, and legumes. Amongst the variety of phytosterols, stigmasterol is the vital compound found abundantly in plants. Numerous hormones, including estrogen, progesterone, corticoids and androgen, are synthesized by stigmasterol. Multiple in-vitro and in-vivo investigations have shown that stigmasterol has various biological effects, including antioxidant, anticancer, antidiabetic, respiratory diseases, and lipid-lowering effects. Experimental research on stigmasterol provides indisputable proof that this phytosterol has the potential to be employed in supplements used to treat the illnesses mentioned above. This substance has a high potential, making it a noteworthy medication in the future. Although several researchers have investigated this phytosterol to assess its prospective qualities, it has not yet attained therapeutic levels, necessitating additional clinical studies. This review offers a comprehensive update on stigmasterol, including chemical framework, biosynthesis, synthetic derivatives, extraction and isolation, analytical aspects, pharmacological profile, patent status, clinical trials, stability and specifications as per regulatory bodies.
Collapse
Affiliation(s)
- Megha Goswami
- Department of Pharmacognosy, ISF College of Pharmacy, Moga-142 001 (Punjab), India
| | - Shalini Jaswal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga-142 001 (Punjab), India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga-142 001 (Punjab), India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga-142 001 (Punjab), India.
| |
Collapse
|
6
|
Current trends in natural products for the treatment and management of dementia: Computational to clinical studies. Neurosci Biobehav Rev 2023; 147:105106. [PMID: 36828163 DOI: 10.1016/j.neubiorev.2023.105106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
The number of preclinical and clinical studies evaluating natural products-based management of dementia has gradually increased, with an exponential rise in 2020 and 2021. Keeping this in mind, we examined current trends from 2016 to 2021 in order to assess the growth potential of natural products in the treatment of dementia. Publicly available literature was collected from various databases like PubMed and Google Scholar. Oxidative stress-related targets, NF-κB pathway, anti-tau aggregation, anti-AChE, and A-β aggregation were found to be common targets and pathways. A retrospective analysis of 33 antidementia natural compounds identified 125 sustainable resources distributed among 65 families, 39 orders, and 7 classes. We found that families such as Berberidaceae, Zingiberaceae, and Fabaceae, as well as orders such as Lamiales, Sapindales, and Myrtales, appear to be important and should be researched further for antidementia compounds. Moreover, some natural products, such as quercetin, curcumin, icariside II, berberine, and resveratrol, have a wide range of applications. Clinical studies and patents support the importance of dietary supplements and natural products, which we will also discuss. Finally, we conclude with the broad scope, future challenges, and opportunities for field researchers.
Collapse
|
7
|
Kamaraj C, Gandhi PR, Ragavendran C, Sugumar V, Kumar RCS, Ranjith R, Priyadharsan A, Cherian T. Sustainable development through the bio-fabrication of ecofriendly ZnO nanoparticles and its approaches to toxicology and environmental protection. BIOMASS CONVERSION AND BIOREFINERY 2022:1-17. [PMID: 36320445 PMCID: PMC9610317 DOI: 10.1007/s13399-022-03445-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Mosquito control is becoming more difficult as a result of the rise in resistance to toxic chemical insecticides. The insecticides of bio-fabrication sources may serve as a convenient alternative to environmentally acceptable methods in the future. The larvicidal and pupicidal activities of bio-fabricated zinc oxide nanoparticles (ZnO NPs) on the different instar larvae and pupae of Anopheles subpictus Grassi (Malaria vector) and Culex quinquefasciatus Say (lymphatic filariasis) were investigated in this study. The results recorded from XRD, FTIR, SEM-EDX, and TEM analyses confirmed the bio-fabrication of ZnO NPs. Such nanoparticles were nearly spherical and agglomerated with a size of 34.21 nm. GC-MS analysis of methanol extract revealed the compound, stigmasterol (C29H48O) as major one. Mosquito larvae and pupae of targeted mosquito were tested against varied concentrations of the bio-fabricated ZnO NPs and methanol extract of Vitex negundo for 24 h. The maximum activity was recorded from ZnO NPs against the larvae and pupae of A. subpictus LC50 which were 1.70 (I), 1.66 (II), 1.93 (III), 2.48 (IV), and 3.63 mg/L (pupa) and C. quinquefasciatus LC50 were 1.95 (I), 2.63 (II), 2.90 (III), 4.32 (IV), and 4.61 mg/L (pupa) respectively. ZnO NPs exhibited strong DPPH radical and FRAP scavengers compared to the aqueous extract of V. negundo. Also, V. negundo leaf methanol extract (VNLME) and ZnO NPs were evaluated for their cytotoxicity on HeLa cells, which exhibited the IC50 values of 72.35 and 43.70μg/mL, respectively. The methylene blue (MB) dye, which is harmful to both aquatic and terrestrial life, was degraded using the biosynthesized ZnO nanoparticles. At 664 nm, 81.2% of the MB dye had degraded after 120 min of exposure to sunlight. Overall, our results revealed that ZnO NPs are the perfect biological agent and economical for the control of malaria, filariasis vectors, antioxidant, HeLa cells, and MB blue dye degradation under sunlight irradiation. Graphical abstract
Collapse
Affiliation(s)
- Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu 603203 India
| | - Pachiyappan Rajiv Gandhi
- Department of Zoology, Division of Nano-biotechnology, Auxilium College (Autonomous), Vellore District, Gandhi Nagar, Tamil Nadu 632 006 India
| | - Chinnasamy Ragavendran
- Department of Cariology, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu India
| | - Vimal Sugumar
- Department of Biochemistry, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu 602105 India
| | - R. C. Satish Kumar
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu 603203 India
| | - Rajendran Ranjith
- Department of Physics, KSR College Engineering Tiruchengode, Namakkal, Tamil Nadu 637215 India
| | - A. Priyadharsan
- Department of Cariology, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu India
| | - Tijo Cherian
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair campus, Brookshabad, Port Blair, Andamans 744112 India
| |
Collapse
|
8
|
Bakrim S, Benkhaira N, Bourais I, Benali T, Lee LH, El Omari N, Sheikh RA, Goh KW, Ming LC, Bouyahya A. Health Benefits and Pharmacological Properties of Stigmasterol. Antioxidants (Basel) 2022; 11:1912. [PMID: 36290632 PMCID: PMC9598710 DOI: 10.3390/antiox11101912] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 07/30/2023] Open
Abstract
Stigmasterol is an unsaturated phytosterol belonging to the class of tetracyclic triterpenes. It is one of the most common plant sterols, found in a variety of natural sources, including vegetable fats or oils from many plants. Currently, stigmasterol has been examined via in vitro and in vivo assays and molecular docking for its various biological activities on different metabolic disorders. The findings indicate potent pharmacological effects such as anticancer, anti-osteoarthritis, anti-inflammatory, anti-diabetic, immunomodulatory, antiparasitic, antifungal, antibacterial, antioxidant, and neuroprotective properties. Indeed, stigmasterol from plants and algae is a promising molecule in the development of drugs for cancer therapy by triggering intracellular signaling pathways in numerous cancers. It acts on the Akt/mTOR and JAK/STAT pathways in ovarian and gastric cancers. In addition, stigmasterol markedly disrupted angiogenesis in human cholangiocarcinoma by tumor necrosis factor-α (TNF-α) and vascular endothelial growth factor receptor-2 (VEGFR-2) signaling down-regulation. The association of stigmasterol and sorafenib promoted caspase-3 activity and down-regulated levels of the anti-apoptotic protein Bcl-2 in breast cancer. Antioxidant activities ensuring lipid peroxidation and DNA damage lowering conferred to stigmasterol chemoprotective activities in skin cancer. Reactive oxygen species (ROS) regulation also contributes to the neuroprotective effects of stigmasterol, as well as dopamine depletion and acetylcholinesterase inhibition. The anti-inflammatory properties of phytosterols involve the production of anti-inflammatory cytokines, the decrease in inflammatory mediator release, and the inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Stigmasterol exerts anti-diabetic effects by reducing fasting glucose, serum insulin levels, and oral glucose tolerance. Other findings showed the antiparasitic activities of this molecule against certain strains of parasites such as Trypanosoma congolense (in vivo) and on promastigotes and amastigotes of the Leishmania major (in vitro). Some stigmasterol-rich plants were able to inhibit Candida albicans, virusei, and tropicalis at low doses. Accordingly, this review outlines key insights into the pharmacological abilities of stigmasterol and the specific mechanisms of action underlying some of these effects. Additionally, further investigation regarding pharmacodynamics, pharmacokinetics, and toxicology is recommended.
Collapse
Affiliation(s)
- Saad Bakrim
- Molecular Engineering, Biotechnologies and Innovation Team, Geo-Bio-Environment Engineering and Innovation Laboratory, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Nesrine Benkhaira
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Department of Biology, Faculty of Sciences and Techniques, University Sidi Mohamed Ben Abdellah, Fez 1975, Morocco
| | - Ilhame Bourais
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Ryan A. Sheikh
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| |
Collapse
|
9
|
Puzari U, Fernandes PA, Mukherjee AK. Pharmacological re-assessment of traditional medicinal plants-derived inhibitors as antidotes against snakebite envenoming: A critical review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115208. [PMID: 35314419 DOI: 10.1016/j.jep.2022.115208] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional healers have used medicinal plants to treat snakebite envenomation worldwide; however, mostly without scientific validation. There have been many studies on the therapeutic potential of the natural products against snake envenomation. AIM OF THE STUDY This review has highlighted snake venom inhibitory activity of bioactive compounds and peptides from plants that have found a traditional use in treating snakebite envenomation. We have systematically reviewed the scenario of different phases of natural snake venom inhibitors characterization covering a period from 1994 until the present and critically analysed the lacuna of the studies if any, and further scope for their translation from bench to bedside. MATERIALS AND METHODS The medicinal plant-derived compounds used against snakebite therapy were reviewed from the available literature in public databases (Scopus, MEDLINE) from 1994 till 2020. The search words used were 'natural inhibitors against snakebite,' 'natural products as therapeutics against snakebite,' 'natural products as antidote against snake envenomation,' ' snake venom toxin natural inhibitors,' 'snake venom herbal inhibitors'. However, the scope of this review does not include computational (in silico) predictions without any wet laboratory validation and snake venom inhibitory activity of the crude plant extracts. In addition, we have also predicted the ADMET properties of the identified snake venom inhibitors to highlight their valuable pharmacokinetics for future clinical studies. RESULTS The therapeutic application of plant-derived natural inhibitors to treat snakebite envenomation as an auxiliary to antivenom therapy has been gaining significant momentum. Pharmacological reassessment of the natural compounds derived from traditional medicinal plants has demonstrated inhibition of the principal toxic enzymes of snake venoms at various extents to curb the lethal and/or deleterious effects of venomous snakebite. Nevertheless, such molecules are yet to be commercialized for clinical application in the treatment of snakebite. There are many obstacles in the marketability of the plant-derived natural products as snake envenomation antidote and strategies must be explored for the translation of these compounds from drug candidates to their clinical application. CONCLUSION In order to minimize the adverse implications of snake envenomation, strategies must be developed for the smooth transition of these plant-derived small molecule inhibitors from bench to bedside. In this article we have presented an inclusive review and have critically analysed natural products for their therapeutic potential against snake envenomation, and have proposed a road map for use of natural products as antidote against snakebite.
Collapse
Affiliation(s)
- Upasana Puzari
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India
| | - Pedro Alexandrino Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade De Ciências, Universidade do Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India; Institute of Advanced Study in Science and Technology, Guwahati, 781035, Assam, India.
| |
Collapse
|
10
|
Adrião AAX, dos Santos AO, de Lima EJSP, Maciel JB, Paz WHP, da Silva FMA, Pucca MB, Moura-da-Silva AM, Monteiro WM, Sartim MA, Koolen HHF. Plant-Derived Toxin Inhibitors as Potential Candidates to Complement Antivenom Treatment in Snakebite Envenomations. Front Immunol 2022; 13:842576. [PMID: 35615352 PMCID: PMC9126284 DOI: 10.3389/fimmu.2022.842576] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Snakebite envenomations (SBEs) are a neglected medical condition of global importance that mainly affect the tropical and subtropical regions. Clinical manifestations include pain, edema, hemorrhage, tissue necrosis, and neurotoxic signs, and may evolve to functional loss of the affected limb, acute renal and/or respiratory failure, and even death. The standard treatment for snake envenomations is antivenom, which is produced from the hyperimmunization of animals with snake toxins. The inhibition of the effects of SBEs using natural or synthetic compounds has been suggested as a complementary treatment particularly before admission to hospital for antivenom treatment, since these alternative molecules are also able to inhibit toxins. Biodiversity-derived molecules, namely those extracted from medicinal plants, are promising sources of toxin inhibitors that can minimize the deleterious consequences of SBEs. In this review, we systematically synthesize the literature on plant metabolites that can be used as toxin-inhibiting agents, as well as present the potential mechanisms of action of molecules derived from natural sources. These findings aim to further our understanding of the potential of natural products and provide new lead compounds as auxiliary therapies for SBEs.
Collapse
Affiliation(s)
- Asenate A. X. Adrião
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Aline O. dos Santos
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Emilly J. S. P. de Lima
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Jéssica B. Maciel
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| | - Weider H. P. Paz
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
| | - Felipe M. A. da Silva
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
- Multidisciplinary Support Center, Federal University of Amazonas, Manaus, Brazil
| | - Manuela B. Pucca
- Medical School, Federal University of Roraima, Boa Vista, Brazil
| | - Ana M. Moura-da-Silva
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- Laboratory of Immunopathology, Institute Butantan, São Paulo, Brazil
| | - Wuelton M. Monteiro
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| | - Marco A. Sartim
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- University Nilton Lins, Manaus, Brazil
| | - Hector H. F. Koolen
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
| |
Collapse
|
11
|
Ibrahim SRM, Bagalagel AA, Diri RM, Noor AO, Bakhsh HT, Mohamed GA. Phytoconstituents and Pharmacological Activities of Indian Camphorweed (Pluchea indica): A Multi-Potential Medicinal Plant of Nutritional and Ethnomedicinal Importance. Molecules 2022; 27:molecules27082383. [PMID: 35458586 PMCID: PMC9030395 DOI: 10.3390/molecules27082383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023] Open
Abstract
Pluchea indica (L.) Less. (Asteraceae) commonly known as Indian camphorweed, pluchea, or marsh fleabane has gained great importance in various traditional medicines for its nutritional and medicinal benefits. It is utilized to cure several illnesses such as lumbago, kidney stones, leucorrhea, inflammation, gangrenous and atonic ulcer, hemorrhoids, dysentery, eye diseases, itchy skin, acid stomach, dysuria, abdominal pain, scabies, fever, sore muscles, dysentery, diabetes, rheumatism, etc. The plant or its leaves in the form of tea are commonly used for treating diabetes and rheumatism. The plant is a rich source of calcium, vitamin C, dietary fiber, and β-carotene. Various biomolecules have been isolated from P. indica, including thiophenes, terpenes, quinic acids, sterols, lignans, phenolics, and flavonoids. The current review reports detailed information about the phytoconstituents and pharmacological relevance of P. indica and the link to its traditional uses. The reported studies validated the efficacy and safety of P. indica, as well as supported its traditional uses for treating various ailments and promoting health and well-being. Thus, this could encourage the development of this plant into a healthy food supplement or medicine for the prevention and treatment of various diseases. However, further studies on the drug interactions, mechanism of action, pharmacokinetics, toxicology, and metabolism, as well as clinical trials, should be carried out.
Collapse
Affiliation(s)
- Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: ; Tel.: +966-581-183-034
| | - Alaa A. Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (H.T.B.)
| | - Reem M. Diri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (H.T.B.)
| | - Ahmad O. Noor
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (H.T.B.)
| | - Hussain T. Bakhsh
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (H.T.B.)
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
12
|
Chakkinga Thodi R, Ibrahim JM, Nair AS, Thacheril Sukumaran S. Exploring the potent inhibitor β-stigmasterol from Pittosporum dasycaulon Miq. leaves against snake venom phospholipase A2 protein through in vitro and molecular dynamics behavior approach. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.2021946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Junaida M. Ibrahim
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, India
| | - Achuthsankar S. Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, India
| | | |
Collapse
|
13
|
Liaqat A, Mallhi TH, Khan YH, Khokhar A, Chaman S, Ali M. Anti-Snake Venom Property of Medicinal Plants: A Comprehensive Review of Literature. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e191124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | - Sadia Chaman
- University of Veterinary and Animal Sciences, Pakistan
| | | |
Collapse
|
14
|
Adeyemi S, Larayetan R, Onoja A, Ajayi A, Yahaya A, Ogunmola OO, Adeyi A, Chijioke O. Anti-hemorrhagic activity of ethanol extract of Moringa oleifera leaf on envenomed albino rats. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Nayak AG, Kumar N, Shenoy S, Roche M. Evaluation of the merit of the methanolic extract of Andrographis paniculata to supplement anti-snake venom in reversing secondary hemostatic abnormalities induced by Naja naja venom. 3 Biotech 2021; 11:228. [PMID: 33959471 PMCID: PMC8060375 DOI: 10.1007/s13205-021-02766-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence suggests a sizable involvement of hemotoxins in the morbidity associated with envenomation by the Indian spectacled cobra, Naja naja (N.N). This study investigates the ability of Indian polyvalent anti-snake venom (ASV), methanolic extract of Andrographis paniculata (MAP) and their combination in reversing the hemostatic abnormalities, viz. activated partial thromboplastin time(aPTT), prothrombin time(PT) and thrombin time(TT) in citrated plasma. These parameters were assessed in 2 groups of experiments. Group 1: Without the prior incubation of plasma with venom and Group 2: With prior incubation of plasma with venom for 90 min at 37°C. Venom caused significant (p < 0.001) prolongation in aPTT (175%), PT (49%) and TT (34%) in Group 1 and ASV could completely bring them back to normal. MAP showed a concentration-dependent reversal in aPTT, normalization of PT and prolongation of TT. When low concentration of ASV was supplemented with MAP, their combined effect in normalizing aPTT and PT improved by 37% and 26% respectively when compared to ASV alone. In Group 2, venom caused significant (p < 0.001) prolongation in aPTT (231%), PT (312%) and TT (245%). ASV had limited effect in reversing aPTT (52%), TT (31%) but completely normalized PT. MAP was marginally effective in reversing the prolonged aPTT and PT but caused further prolongation of TT. Combination of ASV and MAP was more effective than ASV alone in reversing venom-induced increase in aPTT (52%) and PT (29%). The study proved that, a drastic reduction of ASV by 70%, could be effectively supplemented by MAP in combating hemostatic abnormalities induced by NN venom.
Collapse
Affiliation(s)
- Akshatha Ganesh Nayak
- Department of Biochemistry, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Maya Roche
- Department of Biochemistry, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Manipal, Karnataka India
| |
Collapse
|
16
|
Adeyi AO, Ajisebiola BS, Adeyi OE, Adekunle O, Akande OB, James AS, Ajayi BO, Yusuf PO, Idowu BA. Moringa oleifera leaf fractions attenuated Naje haje venom-induced cellular dysfunctions via modulation of Nrf2 and inflammatory signalling pathways in rats. Biochem Biophys Rep 2021; 25:100890. [PMID: 33521334 PMCID: PMC7820385 DOI: 10.1016/j.bbrep.2020.100890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/12/2020] [Accepted: 12/18/2020] [Indexed: 12/25/2022] Open
Abstract
Naja haje envenoming could activate multiple pathways linked to haematotoxic, neurological, and antioxidant systems dysfunctions. Moringa oleifera has been used in the management of different snake venom-induced toxicities, but there is no scientific information on its antivenom effects against Naja haje. This study thus, investigated the antivenom activities of different extract partitions of M. oleifera leaves against N. haje envenoming. Forty five male rats were divided into nine groups (n = 5). Groups 2 to 9 were envenomed with 0.025 mg/kg (LD50) of N . haje venom while group 1 was given saline. Group 2 was left untreated, while group 3 was treated with polyvalent antivenom, groups 4, 6 and 8 were treated with 300 mg/kg-1 of N-hexane, ethylacetate and ethanol partitions of M. oleifera, respectively. Groups 5, 7 and 9 were also treated with 600 mgkg-1of the partitions, respectively. Ethanol extract and ethyl acetate partition of M. oleifera significantly improved haematological indices following acute anaemia induced by the venom. Likewise, haemorrhagic, haemolytic and anti-coagulant activities of N. haje venom were best inhibited by ethanol partition. Envenoming significantly down-regulated Nuclear factor erythroid 2-related factor 2 (Nrf2) with the consequent elevation of antioxidant enzymes activities in the serum and brain. Treatment with extract partitions however, elevated Nrf2 levels while normalising antioxidant enzyme activities. Furthermore, there were reduction in levels of pro-inflammatory cytokines (TNF-α and interleukin-1β) in tissues of treated envenomed rats. This study concludes that ethanol partition of M. oleifera was most effective against N. haje venom and could be considered as a potential source for antivenom metabolites.
Collapse
Affiliation(s)
| | | | - Olubisi Esther Adeyi
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | - Olarewaju Adekunle
- Department of Pure and Applied Zoology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Olanike Busirat Akande
- Department of Pure and Applied Zoology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Adewale Segun James
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Peter Ofemile Yusuf
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | - Babatunde A. Idowu
- Department of Pure and Applied Zoology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
17
|
Herrera-Acevedo C, Perdomo-Madrigal C, Muratov EN, Scotti L, Scotti MT. Discovery of Alternative Chemotherapy Options for Leishmaniasis through Computational Studies of Asteraceae. ChemMedChem 2021; 16:1234-1245. [PMID: 33336460 DOI: 10.1002/cmdc.202000862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/15/2020] [Indexed: 12/12/2022]
Abstract
Leishmaniasis is a complex disease caused by over 20 Leishmania species that primarily affects populations with poor socioeconomic conditions. Currently available drugs for treating leishmaniasis include amphotericin B, paromomycin, and pentavalent antimonials, which have been associated with several limitations, such as low efficacy, the development of drug resistance, and high toxicity. Natural products are an interesting source of new drug candidates. The Asteraceae family includes more than 23 000 species worldwide. Secondary metabolites that can be found in species from this family have been widely explored as potential new treatments for leishmaniasis. Recently, computational tools have become more popular in medicinal chemistry to establish experimental designs, identify new drugs, and compare the molecular structures and activities of novel compounds. Herein, we review various studies that have used computational tools to examine various compounds identified in the Asteraceae family in the search for potential drug candidates against Leishmania.
Collapse
Affiliation(s)
- Chonny Herrera-Acevedo
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária-Castelo Branco III, Joao Pessoa, PB, Brazil
| | - Camilo Perdomo-Madrigal
- School of Science, Universidad de Ciencias Aplicadas y Ambientales, Calle 222 n° 55-37, Bogotá D.C., Colombia
| | - Eugene N Muratov
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária-Castelo Branco III, Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária-Castelo Branco III, Joao Pessoa, PB, Brazil
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária-Castelo Branco III, Joao Pessoa, PB, Brazil
| |
Collapse
|
18
|
Kamble S, Humbare R, Sarkar J, Kulkarni A. Evaluation of free radical scavenging with in vitro antiproliferative properties of different extracts of pluchea lanceolata (dc.) oliv. and hiern in cancer cell lines. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_252_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
19
|
Baccaurea ramiflora Lour.: a comprehensive review from traditional usage to pharmacological evidence. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00489-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Ajisebiola BS, Rotimi S, Anwar U, Adeyi AO. Neutralization of Bitis arietans venom-induced pathophysiological disorder, biological activities and genetic alterations by Moringa oleifera leaves. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1793780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Solomon Rotimi
- Department of Biochemistry, Covenant University, Ota, Osun State, Nigeria
| | - Ullah Anwar
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | |
Collapse
|
21
|
Adeyi AO, Ajisebiola SB, Adeyi EO, Alimba CG, Okorie UG. Antivenom activity of Moringa oleifera leave against pathophysiological alterations, somatic mutation and biological activities of Naja nigricollis venom. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
22
|
Shi Y, Zhang D, Li S, Xuan X, Zhang L, Li Y, Guo F. Inhibitors of BRD4 protein from the roots of Astilbe grandis stapf ex E.H. Wilson. Nat Prod Res 2019; 35:2044-2050. [PMID: 31437007 DOI: 10.1080/14786419.2019.1655414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A new monoterpene (1) along with eight known compounds were isolated from the roots of Astilbe grandis Stapf ex E.H. Wilson. Their structures were determined by extensive spectroscopic analysis and ECD experiments as (S)-3-(2-hydroxyethyl)-5-(2-methylprop-1-en-1-yl)furan-2(5H)-one (1), caffeic acid (2), mandelic acid (3), sonchifolinin B (4), α-viniferin (5), euscaphic acid (6), cianidanol (7), β-sitosterol (8), and stigmasterol (9), respectively. Compounds 5 and 6 exhibited inhibitory effects against BRD4 protein with IC50 values of 13.20 and 17.39 µM, respectively. In vitro, compounds 5 and 6 showed moderate cytotoxicity to A549 cells, HCC827 cells and Hela cells with IC50 values ranging from 31.98 to 154.90 µM.
Collapse
Affiliation(s)
- Yingying Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Dongdong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Shupei Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Xiuxiu Xuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Liuqiang Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
23
|
Tan MCS, Carranza MS, Linis VC, Malabed RS, Oyong GG. Antioxidant, Cytotoxicity, and Antiophidian Potential of Alstonia macrophylla Bark. ACS OMEGA 2019; 4:9488-9496. [PMID: 31460040 PMCID: PMC6648722 DOI: 10.1021/acsomega.9b00082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/17/2019] [Indexed: 06/10/2023]
Abstract
The objective of this research was to find the possible pharmacognosy of the bark of the Philippine Alstonia macrophylla Wall. ex G.Don (AM). Gas chromatographic-mass spectral (GC-EI-MS) characterization and energy dispersive X-ray spectroscopy (EDX) were performed to detect the bioactive constituents. EDX analysis of AM bark displayed a high content of potassium (3.26%) and calcium (2.96%). Eight constituents were detected in AM crude dichloromethane (DCM) extracts, which consisted of a long-chain unsaturated fatty acid (17:0) and fatty acid esters such as ethyl hexadecanoate and methyl hexadecanoate. Extraction of AM bark using methanol and dimethyl sulfoxide (MeOH/DMSO) solvents resulted in the identification of 17 constituents, principally alkaloids (alstonerine, 34.38%; strictamin, 5.23%; rauvomitin, 4.29%; and brucine, 3.66%) and triterpenoids (γ-sitosterol, 3.85%; lupeol, 3.00%; 24-methylenecycloartanol, 2.81%; campesterol, 2.71%; β-amyrin, 2.30%; and stigmasterol, 2.13%). MeOH/DMSO samples of AM were used in the selected bioassays. The samples exhibited efficient free radical scavenging activity (IC50 = 0.71 mg/mL) and were noncytotoxic to normal HDFn (IC50 > 100 μg/mL) and neoplastic THP-1 cell lines (IC50 = 67.22 μg/mL) while highly degenerative to MCF-7 (IC50 = 6.34 μg/mL), H69PR (IC50 = 7.05 μg/mL), and HT-29 (IC50 = 9.10 μg/mL). Most interestingly, the AM samples inhibited the northern Philippine Cobra's (Naja philippinensis Taylor) venom (IC50 = 297.27 ± 9.33 μg/mL) through a secretory phospholipase A2 assay.
Collapse
Affiliation(s)
- Maria Carmen S. Tan
- Chemistry
Department, Biology Department, and Molecular Science Unit Laboratory
Center for Natural Sciences and Environmental Research, De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines
| | - Mary Stephanie
S. Carranza
- Chemistry
Department, Biology Department, and Molecular Science Unit Laboratory
Center for Natural Sciences and Environmental Research, De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines
| | - Virgilio C. Linis
- Chemistry
Department, Biology Department, and Molecular Science Unit Laboratory
Center for Natural Sciences and Environmental Research, De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines
| | - Raymond S. Malabed
- Chemistry
Department, Biology Department, and Molecular Science Unit Laboratory
Center for Natural Sciences and Environmental Research, De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Glenn G. Oyong
- Chemistry
Department, Biology Department, and Molecular Science Unit Laboratory
Center for Natural Sciences and Environmental Research, De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines
| |
Collapse
|
24
|
Yang Y, Huang S, Wang Y, Gui L, Liu Y, Huang X, Chen G, Tan F, Wang J. Development of EST-SSR markers for Pluchea indica (Asteraceae) and cross-amplification in related species. APPLICATIONS IN PLANT SCIENCES 2018; 6:e01173. [PMID: 30214836 PMCID: PMC6110239 DOI: 10.1002/aps3.1173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/07/2018] [Indexed: 05/11/2023]
Abstract
PREMISE OF THE STUDY Expressed sequence tag-simple sequence repeat (EST-SSR) markers were developed for Pluchea indica, a traditional medicinal species widespread along the tropical coastlines of Asia and northern Australia. METHODS AND RESULTS Based on transcriptome data for P. indica, a total of 40 primer pairs were initially designed and tested, of which 17 were successfully amplified and showed clear polymorphism. For these SSR loci, one to nine alleles per locus were identified. The levels of observed and expected heterozygosity ranged from 0 to 0.9 and 0 to 0.831, respectively. Furthermore, 16, 17, and 12 loci were successfully amplified in three congeneric species, P. eupatorioides, P. pteropoda, and P. sagittalis, respectively. CONCLUSIONS The SSR markers described here may be useful for further investigation of the population genetics of P. indica and related species.
Collapse
Affiliation(s)
- Yi Yang
- Key Laboratory of Tropical Agro‐EnvironmentMinistry of AgricultureSouth China Agricultural UniversityGuangzhou510642GuangdongPeople's Republic of China
- College of Natural Resources and EnvironmentSouth China Agricultural UniversityGuangzhou510642GuangdongPeople's Republic of China
| | - Sixin Huang
- College of AgricultureSouth China Agricultural UniversityGuangzhou510642GuangdongPeople's Republic of China
| | - Yanling Wang
- Key Laboratory of Tropical Agro‐EnvironmentMinistry of AgricultureSouth China Agricultural UniversityGuangzhou510642GuangdongPeople's Republic of China
- College of Natural Resources and EnvironmentSouth China Agricultural UniversityGuangzhou510642GuangdongPeople's Republic of China
| | - Lingjian Gui
- Guangxi Botanical Garden of Medicinal PlantsNanning530023GuangxiPeople's Republic of China
| | - Yiran Liu
- College of AgricultureSouth China Agricultural UniversityGuangzhou510642GuangdongPeople's Republic of China
| | - Xiaomei Huang
- Key Laboratory of Tropical Agro‐EnvironmentMinistry of AgricultureSouth China Agricultural UniversityGuangzhou510642GuangdongPeople's Republic of China
- College of Natural Resources and EnvironmentSouth China Agricultural UniversityGuangzhou510642GuangdongPeople's Republic of China
| | - Guoqingzi Chen
- Key Laboratory of Tropical Agro‐EnvironmentMinistry of AgricultureSouth China Agricultural UniversityGuangzhou510642GuangdongPeople's Republic of China
- College of Natural Resources and EnvironmentSouth China Agricultural UniversityGuangzhou510642GuangdongPeople's Republic of China
| | - Fengxiao Tan
- Key Laboratory of Tropical Agro‐EnvironmentMinistry of AgricultureSouth China Agricultural UniversityGuangzhou510642GuangdongPeople's Republic of China
- College of Natural Resources and EnvironmentSouth China Agricultural UniversityGuangzhou510642GuangdongPeople's Republic of China
| | - Jianwu Wang
- Key Laboratory of Tropical Agro‐EnvironmentMinistry of AgricultureSouth China Agricultural UniversityGuangzhou510642GuangdongPeople's Republic of China
- College of Natural Resources and EnvironmentSouth China Agricultural UniversityGuangzhou510642GuangdongPeople's Republic of China
| |
Collapse
|
25
|
Wang CM, Yeh KL, Tsai SJ, Jhan YL, Chou CH. Anti-Proliferative Activity of Triterpenoids and Sterols Isolated from Alstonia scholaris against Non-Small-Cell Lung Carcinoma Cells. Molecules 2017; 22:E2119. [PMID: 29194373 PMCID: PMC6149710 DOI: 10.3390/molecules22122119] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 01/11/2023] Open
Abstract
(1) Background: In China and South Asia, Alstonia scholaris (Apocynaceae) is an important medicinal plant that has been historically used in traditional ethnopharmacy to treat infectious diseases. Although various pharmacological activities have been reported, the anti-lung cancer components of A. scholaris have not yet been identified. The objective of this study is to evaluate the active components of the leaf extract of A. scholaris, and assess the anti-proliferation effects of isolated compounds against non-small-cell lung carcinoma cells; (2) Methods: NMR was used to identify the chemical constitutes isolated from the leaf extract of A. scholaris. The anti-proliferative activity of compounds against non-small-cell lung carcinoma cells was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay; (3) Results: Eight triterpenoids and five sterols were isolated from the hexane portion of A. scholaris, and structurally identified as: (1) ursolic acid, (2) oleanolic acid, (3) betulinic acid, (4) betulin, (5) 2β,3β,28-lup-20(29)-ene-triol, (6) lupeol, (7) β-amyrin, (8) α-amyrin, (9) poriferasterol, (10) epicampesterol, (11) β-sitosterol, (12) 6β-hydroxy-4-stigmasten-3-one, and (13) ergosta-7,22-diene-3β,5α,6β-triol. Compound 5 was isolated from a plant source for the first time. In addition, compounds 9, 10, 12, and 13 were also isolated from A. scholaris for the first time. Ursolic acid, betulinic acid, betulin, and 2β,3β,28-lup-20(29)-ene-triol showed anti-proliferative activity against NSCLC, with IC50 of 39.8, 40.1, 240.5 and 172.6 μM, respectively.; (4) Conclusion: These findings reflect that pentacyclic triterpenoids are the anti-lung cancer chemicals in A. scholaris. The ability of ursolic acid, betulinic acid, betulin, and 2β,3β,28-lup-20(29)-ene-triol to inhibit the proliferative activity of NSCLC can constitute a valuable group of therapeutic agents in the future.
Collapse
Affiliation(s)
- Chao-Min Wang
- Research Center for Biodiversity, China Medical University, Taichung 40402, Taiwan.
| | - Kuei-Lin Yeh
- Department of Laboratory, Chang Bing Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| | - Shang-Jie Tsai
- Research Center for Biodiversity, China Medical University, Taichung 40402, Taiwan.
| | - Yun-Lian Jhan
- Research Center for Biodiversity, China Medical University, Taichung 40402, Taiwan.
| | - Chang-Hung Chou
- Research Center for Biodiversity, China Medical University, Taichung 40402, Taiwan.
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
26
|
Cho CL, Lee YZ, Tseng CN, Cho J, Cheng YB, Wang KW, Chen HJ, Chiou SJ, Chou CH, Hong YR. Hexane fraction of Pluchea indica root extract inhibits proliferation and induces autophagy in human glioblastoma cells. Biomed Rep 2017; 7:416-422. [PMID: 29181154 DOI: 10.3892/br.2017.979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022] Open
Abstract
Pluchea indica (L.) Less. is a perennial plant known for its versatile uses in traditional medicine. Previous findings have shown that the extracts of Pluchea indica possess significant anti-inflammatory, anti-ulcer and anti-tuberculosis activity. The aim of this study was to demonstrate the anticancer activity of the hexane fraction of P. indica root extract (H-PIRE) in human glioblastoma cells using flow cytometric and western blot analysis. The results shoewd that, H-PIRE suppressed the growth of glioblastoma cells in a dose-dependent manner. H-PIRE treatment markedly decreased the population of cells in S and G2/M phases. The significant upregulation of acidic vesicular organelle (AVO) was detected during H-PIRE treatment. The expression levels of microtubule-associated light chain 3-II (LC3-II) protein, phosphorylated JNK and phosphorylated p38 were significantly increased, confirming the occurrence of autophagy during the process. Finally, the combination treatment of H-PIRE and LY294002, a pan PI3K inhibitor, further decreased cell viability, suggesting an additive anticancer effect. Taken together, our results suggest that H-PIRE suppresses the proliferation of glioblastoma cells by inducing cell cycle arrest and autophagy.
Collapse
Affiliation(s)
- Chung-Lung Cho
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Ya-Zhe Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Chao-Neng Tseng
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C.,Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Joshua Cho
- University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Kuo-Wei Wang
- Department of Neurosurgery, E-Da Hospital, I-Shou University, Kaohsiung 84001, Taiwan, R.O.C
| | - Han-Jung Chen
- Department of Neurosurgery, E-Da Hospital, I-Shou University, Kaohsiung 84001, Taiwan, R.O.C
| | - Shean-Jaw Chiou
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Chia-Hua Chou
- Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Yi-Ren Hong
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C.,Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C.,Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| |
Collapse
|
27
|
Wang HM, Kao CL, Liu CM, Li WJ, Yeh HC, Li HT, Kuo CN, Chen CY. Chemical Constituents of the Roots of Pluchea indica. Chem Nat Compd 2017. [DOI: 10.1007/s10600-017-2103-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Encapsulation of β-Sitosterol in Polyurethane by Sol–Gel Electrospinning. Appl Biochem Biotechnol 2016; 182:624-634. [DOI: 10.1007/s12010-016-2349-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022]
|
29
|
Dong H, Wang X, Huang J, Xing J. Effects of post-harvest stigmasterol treatment on quality-related parameters and antioxidant enzymes of green asparagus (Asparagus officinalis L.). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:1785-1792. [DOI: 10.1080/19440049.2016.1241896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Huanhuan Dong
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiangyang Wang
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianying Huang
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianrong Xing
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
30
|
Bin Sayeed MS, Karim SMR, Sharmin T, Morshed MM. Critical Analysis on Characterization, Systemic Effect, and Therapeutic Potential of Beta-Sitosterol: A Plant-Derived Orphan Phytosterol. MEDICINES (BASEL, SWITZERLAND) 2016; 3:E29. [PMID: 28930139 PMCID: PMC5456237 DOI: 10.3390/medicines3040029] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/27/2016] [Accepted: 11/07/2016] [Indexed: 12/03/2022]
Abstract
Beta-sitosterol (BS) is a phytosterol, widely distributed throughout the plant kingdom and known to be involved in the stabilization of cell membranes. To compile the sources, physical and chemical properties, spectral and chromatographic analytical methods, synthesis, systemic effects, pharmacokinetics, therapeutic potentials, toxicity, drug delivery and finally, to suggest future research with BS, classical as well as on-line literature were studied. Classical literature includes classical books on ethnomedicine and phytochemistry, and the electronic search included Pubmed, SciFinder, Scopus, the Web of Science, Google Scholar, and others. BS could be obtained from different plants, but the total biosynthetic pathway, as well as its exact physiological and structural function in plants, have not been fully understood. Different pharmacological effects have been studied, but most of the mechanisms of action have not been studied in detail. Clinical trials with BS have shown beneficial effects in different diseases, but long-term study results are not available. These have contributed to its current status as an "orphan phytosterol". Therefore, extensive research regarding its effect at cellular and molecular level in humans as well as addressing the claims made by commercial manufacturers such as the cholesterol lowering ability, immunological activity etc. are highly recommended.
Collapse
Affiliation(s)
| | - Selim Muhammad Rezaul Karim
- Department of Pharmacy, Daffodil International University, Dhaka-1207, Bangladesh.
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka-1000, Bangladesh.
| | - Tasnuva Sharmin
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka-1000, Bangladesh.
| | - Mohammed Monzur Morshed
- Department of Biochemistry and Molecular, Biology, University of Dhaka, Dhaka-1000, Bangladesh.
| |
Collapse
|
31
|
Quercetin-3-O-rhamnoside from Euphorbia hirta protects against snake Venom induced toxicity. Biochim Biophys Acta Gen Subj 2016; 1860:1528-40. [PMID: 27033089 DOI: 10.1016/j.bbagen.2016.03.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 03/14/2016] [Accepted: 03/23/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND The plant Euphorbia hirta is widely used against snake envenomations in rural areas and it was proved to be effective in animal models. Therefore, the scientific validation of its phytoconstituents for their antiophidian activity is aimed in the present study. METHODS E. hirta extract was subjected to bioactivity guided fractionation and the fractions that inhibited different enzyme activities of Naja naja venom in vitro was structurally characterized using UV, FT-IR, LC-MS and NMR spectroscopy. Edema, hemorrhage and lethality inhibition activity of the compound were studied in mice model. In addition, molecular docking and molecular dynamic simulations were also performed in silico. RESULTS The bioactive fraction was identified as Quercetin-3-O-α-rhamnoside (QR, 448.38 Da). In vitro experiments indicated that protease, phospholipase-A(2), hemolytic activity and hemorrhage inducing activity of the venom were inhibited completely at a ratio of 1:20 (venom: QR) w/w. At the same concentration, the edema ratio was drastically reduced from 187% to 107%. Significant inhibition (93%) of hyaluronidase activity was also observed at a slightly higher concentration of QR (1:50). Further, in in vivo analysis, QR significantly prolonged the survival time of mice injected with snake venom. CONCLUSION For the first time Quercetin-3-O-α-rhamnoside, isolated from E. hirta, has been shown to exhibit anti-snake venom activity against Naja naja venom induced toxicity. GENERAL SIGNIFICANCE Exploring such multifunctional lead molecules with anti-venom activity would help in developing complementary medicine for snakebite treatments especially in rural areas where anti-snake venom is not readily available.
Collapse
|
32
|
Ethanolic Extracts of Pluchea indica Induce Apoptosis and Antiproliferation Effects in Human Nasopharyngeal Carcinoma Cells. Molecules 2015; 20:11508-23. [PMID: 26111179 PMCID: PMC6272159 DOI: 10.3390/molecules200611508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/10/2015] [Accepted: 06/16/2015] [Indexed: 12/03/2022] Open
Abstract
Pluchea indica is used in traditional medicine for the treatment of lumbago, ulcer, tuberculosis and inflammation. The anti-cancer activities and the underlying molecular mechanisms of the ethanolic extracts of P. indica root (PIRE) were characterized in the present study. PIRE strongly inhibited the viability of the human nasopharyngeal carcinoma cells (NPC-TW 01 and NPC-TW 04) in a time- and dose-dependent manner. Migration of cancer cells was also suppressed by PIRE. In addition, PIRE significantly increased the occurrence of the cells in sub-G1 phase and the extent of DNA fragmentation in a dose-dependent manner, which indicates that PIRE significantly increased apoptosis in NPC cells. The apoptotic process triggered by PIRE involved up-regulation of pro-apoptotic Bax protein and down-regulation of anti-apoptotic Bcl-2 protein, consequently increasing the ratios of Bax/Bcl-2 protein levels. Moreover, the p53 protein was up-regulated by PIRE in a concentration-dependent manner. Therefore, PIRE could induce the apoptosis-signaling pathway in NPC cells by activation of p53 and by regulation of apoptosis-related proteins.
Collapse
|
33
|
Butt MA, Ahmad M, Fatima A, Sultana S, Zafar M, Yaseen G, Ashraf MA, Shinwari ZK, Kayani S. Ethnomedicinal uses of plants for the treatment of snake and scorpion bite in Northern Pakistan. JOURNAL OF ETHNOPHARMACOLOGY 2015; 168:164-81. [PMID: 25818693 DOI: 10.1016/j.jep.2015.03.045] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/09/2015] [Accepted: 03/18/2015] [Indexed: 05/20/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Medicinal plants represent one of the most accessible resources available for snake and scorpion bite among the rural communities of Northern Pakistan. This first ethno-botanical study aimed to document the indigenous knowledge and practices of using plants for snake and scorpion bite disorders in Northern Pakistan. METHODS Ethno-medicinal data is documented from 187 informants using semi-structured interviews. The data is analyzed using quantitative ethno-botanical indices of frequency citation (FC) and relative Frequency of Citation (RFC). In addition to this, the ethno-medicinal findings of this survey were compared with 10 previous published studies in order to report novel uses of medicinal plants against snake and scorpion bite disorders. RESULTS In total 62 medicinal plants belonging to 40 families are reported against snake and scorpion bite in this study. Our results showed that Asteraceae is the most used family (10 species), dominant life form is herb (48.38%), leaves were the most used plants part (18 Use-reports) and the paste is most used method of administration (22 reports). The range of RFC was 0.08-0.27 about the use of documented species. Compared to previous published studies, 33.87% similarity index while 66.12% novelty index is reported. About 40 plant species are first time reported with medicinal uses against snake and scorpion bite from Northern Pakistan. CONCLUSIONS This study presents useful traditional knowledge of rural communities for the control of snake and scorpion bite using medicinal plants. The study mainly focused on ethno-medicinal documentation to preserve the valuable traditional knowledge that can be used in future phytochemical and pharmacological studies on medicinal plants of the area.
Collapse
Affiliation(s)
- Maryam Akram Butt
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Anam Fatima
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shazia Sultana
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Zafar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ghulam Yaseen
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Aqeel Ashraf
- Department of Geology, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sadaf Kayani
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
34
|
Lee J, Weon JB, Yun BR, Eom MR, Ma CJ. Simultaneous determination three phytosterol compounds, campesterol, stigmasterol and daucosterol in Artemisia apiacea by high performance liquid chromatography-diode array ultraviolet/visible detector. Pharmacogn Mag 2015; 11:297-303. [PMID: 25829768 PMCID: PMC4378127 DOI: 10.4103/0973-1296.153082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 04/29/2014] [Accepted: 03/12/2015] [Indexed: 11/21/2022] Open
Abstract
Background: Artemisia apiacea is a traditional herbal medicine using treatment of eczema and jaundice in Eastern Asia, including China, Korea, and Japan. Objective: An accurate and sensitive analysis method using high performance liquid chromatography-diode array ultraviolet/visible detector and liquid chromatography–mass spectrometry for the simultaneous determination of three phytosterol compounds, campesterol, stigmasterol and daucosterol in A. apiacea was established. Materials and Methods: The analytes were separated on a Shiseido C18 column (5 μm, 4.6 mm I.D. ×250 mm) with gradient elution of 0.1% trifluoroacetic acid and acetonitrile. The flow rate was 1 mL/min and detection wavelengths were set at 205 and 254 nm. Results: Validation of the method was performed to demonstrate its linearity, precision and accuracy. The calibration curves showed good linearity (R2 > 0.9994). The limits of detection and limits of quantification were within the ranges 0.55–7.07 μg/mL and 1.67–21.44 μg/mL, respectively. And, the relative standard deviations of intra- and inter-day precision were <2.93%. The recoveries were found to be in the range of 90.03–104.91%. Conclusion: The developed method has been successfully applied to the analysis for quality control of campesterol, stigmasterol and daucosterol in A. apiacea.
Collapse
Affiliation(s)
- Jiwoo Lee
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Jin Bae Weon
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Bo-Ra Yun
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Min Rye Eom
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Choong Je Ma
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea ; Department of Biomaterials Engineering, Institute of Biotechnology, Kangwon National University, Chuncheon 200-701, Korea
| |
Collapse
|
35
|
Forest biorefinery: Potential of poplar phytochemicals as value-added co-products. Biotechnol Adv 2015; 33:681-716. [PMID: 25733011 DOI: 10.1016/j.biotechadv.2015.02.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/22/2015] [Accepted: 02/21/2015] [Indexed: 11/21/2022]
Abstract
The global forestry industry after experiencing a market downturn during the past decade has now aimed its vision towards the integrated biorefinery. New business models and strategies are constantly being explored to re-invent the global wood and pulp/paper industry through sustainable resource exploitation. The goal is to produce diversified, innovative and revenue generating product lines using on-site bioresources (wood and tree residues). The most popular product lines are generally produced from wood fibers (biofuels, pulp/paper, biomaterials, and bio/chemicals). However, the bark and other tree residues like foliage that constitute forest wastes, still remain largely an underexploited resource from which extractives and phytochemicals can be harnessed as by-products (biopharmaceuticals, food additives and nutraceuticals, biopesticides, cosmetics). Commercially, Populus (poplar) tree species including hybrid varieties are cultivated as a fast growing bioenergy crop, but can also be utilized to produce bio-based chemicals. This review identifies and underlines the potential of natural products (phytochemicals) from Populus species that could lead to new business ventures in biorefineries and contribute to the bioeconomy. In brief, this review highlights the importance of by-products/co-products in forest industries, methods that can be employed to extract and purify poplar phytochemicals, the potential pharmaceutical and other uses of >160 phytochemicals identified from poplar species - their chemical structures, properties and bioactivities, the challenges and limitations of utilizing poplar phytochemicals, and potential commercial opportunities. Finally, the overall discussion and conclusion are made considering the recent biotechnological advances in phytochemical research to indicate the areas for future commercial applications from poplar tree species.
Collapse
|
36
|
Shabbir A, Shahzad M, Masci P, Gobe GC. Protective activity of medicinal plants and their isolated compounds against the toxic effects from the venom of Naja (cobra) species. JOURNAL OF ETHNOPHARMACOLOGY 2014; 157:222-227. [PMID: 25291011 DOI: 10.1016/j.jep.2014.09.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Various medicinal plants have protective properties against the toxicities of the venom of cobra snake (Naja species). They may be used as local first aid for the treatment of snakebite victims, and can significantly inhibit lethality, cardio-, neuro-, nephro- and myotoxicity, hemorrhage, and respiratory paralysis induced by the cobra snake venom. The plants or their extracts may also complement the benefits of conventional anti-serum treatment. AIM OF THE REVIEW This review provides information on the protective, anti-venom, properties of medicinal plants against snakebites from cobras. In addition, it identifies knowledge gaps and suggests further research opportunities. METHODS The literature was searched using databases including Google Scholar, PubMed, ScienceDirect, Scopus and Web of Science. The searches were limited to peer-reviewed journals written in English with the exception of some books and a few articles in foreign languages. RESULTS The plants possess neutralization properties against different cobra venom enzymes, such as hyaluronidase, acetylcholinesterase, phospholipase A2 and plasma proteases. Different active constituents that show promising activity against the effects of cobra venom include lupeol acetate, β-sitosterol, stigmasterol, rediocides A and G, quercertin, aristolochic acid, and curcumin, as well as the broad chemical groups of tannins, glycoproteins, and flavones. The medicinal plants can increase snakebite victim survival time, decrease the severity of toxic signs, enhance diaphragm muscle contraction, block antibody attachment to venom, and inhibit protein destruction. In particular, the cardiovascular system is protected, with inhibition of blood pressure decline and depressed atrial contractility and rate, and prevention of damage to heart and vessels. The designs of experimental studies that show benefits, or otherwise, of use of medicinal plants have some limitations: deficiency in identification and isolation of active constituents responsible for therapeutic activity; lack of comparison with reference drugs; and little investigation of the mechanism of anti-venom activity. CONCLUSION Despite some current deficiencies in experimental or clinical analysis, medicinal plants with anti-venom characteristics are effective and so are candidates for future therapeutic agents. We suggest that emphasis on identification and testing of active ingredients in research in the future will assist better understanding of their anti-venom activity.
Collapse
Affiliation(s)
- Arham Shabbir
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad 22060 Pakistan.
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan; Centre for Kidney Disease Research, Translational Research Institute, School of Medicine, The University of Queensland, Australia.
| | - Paul Masci
- Venomics Research Centre, Translational Research Institute, School of Medicine, The University of Queensland, Australia.
| | - Glenda C Gobe
- Centre for Kidney Disease Research, Translational Research Institute, School of Medicine, The University of Queensland, Australia.
| |
Collapse
|
37
|
Dey A, Pandey DK. HPTLC detection of altitudinal variation of the potential antivenin stigmasterol in different populations of the tropical ethnic antidote Rauvolfia serpentina. ASIAN PAC J TROP MED 2014; 7S1:S540-5. [DOI: 10.1016/s1995-7645(14)60287-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/07/2014] [Accepted: 06/03/2014] [Indexed: 10/24/2022] Open
|
38
|
Gopi K, Renu K, Jayaraman G. Inhibition of Naja naja venom enzymes by the methanolic extract of Leucas aspera and its chemical profile by GC-MS. Toxicol Rep 2014; 1:667-673. [PMID: 28962280 PMCID: PMC5598287 DOI: 10.1016/j.toxrep.2014.08.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/24/2014] [Accepted: 08/24/2014] [Indexed: 01/05/2023] Open
Abstract
Purpose The present investigation was aimed at evaluating the anti-ophidian properties of ethnomedicinal herb Leucas aspera against Indian cobra, Naja naja venom enzymes. Methods Methanolic extract of Leucas aspera was evaluated, in vitro, for its ability to inhibit the major enzyme activities of Naja naja venom including protease, phospholipase A2, hyaluronidase and hemolytic factors. The type of phytochemicals present in the extract was analyzed. Also, the major phytoconstituents in the extract was determined by gas chromatography–mass spectrometry (GC–MS). Results Venom protease and hyaluronidase activities (two isoforms) were completely (100%) neutralized by the L. aspera methanolic extract at ratio of 1:50 w/w (venom: plant extract) and venom hemolytic activity was also completely neutralized at a ratio of 1:80 w/w by the plant extract. However, the extract failed to neutralize phospholipase A2 activity even at the highest concentration used. Phytochemical analysis revealed the presence of alkaloids, acidic compounds, flavonoids, steroids and cardiac glycosides in the extract. GC–MS analysis indicated that a total of 14 compounds were present in the extract. The major bioactive constituents were found to be 6-octadecenoic acid (32.47%), n-hexadecanoic acid (25.97%), and 17-octadecen-14-yn-1-ol (14.22%) along with the minor constituents, sitosterol (2.45%) and stigmasterol (2%), which was previously reported to exhibit antivenom activity. Conclusion The results obtained demonstrate for the first time that the methanolic extract of Leucas aspera possesses anti-venom activity and could be considered as a potential source for the anti-ophidian metabolites.
Collapse
|
39
|
Prasad SK, Laloo D, Sahu AN, Nath G, Hemalatha S. Cryptocoryne spiralis, a substitute of Aconitum heterophyllum in the treatment of diarrhoea. J Pharm Pharmacol 2014; 66:1808-17. [PMID: 25130980 DOI: 10.1111/jphp.12292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 06/15/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To scientifically validate the traditional substitution of roots of highly expensive Aconitum heterophyllum (AH) with rhizomes of Cryptocoryne spiralis (CS) in the treatment of diarrhoea. METHODS Different fractions from root/rhizome extract of both the plant were subjected to faecal excretion rate and castor oil-induced diarrhoea models. Further, bioactive fractions from both plants, i.e. chloroform (CAH) from AH at 50 mg/kg p.o. and ethyl acetate (EACS) from CS at 100 mg/kg p.o., were examined for small intestinal transit, intestinal fluid accumulation and PGE2 -induced enteropooling models in rats. Biochemical estimations and Na(+) and K(+) concentration in intestinal fluid were also determined along with antibacterial studies. Phytochemical standardisation of AH and CS was performed by quantifying aconitine for the former and stigmasterol for the latter using HPLC. KEY FINDINGS CAH and EACS illustrated a significant reduction in faecal output rate and demonstrated a protection of 63.068% at CAH 50 and 59.090% at EACS 100 mg/kg p.o. in castor oil-induced diarrhoea model. The fractions also persuaded promising effects in all the other models, restored alterations in biochemical parameters and showed potential antibacterial activity. CONCLUSION The antidiarrhoeal potential of AH and CS may be attributed to an antimotility and antisecretory type of effect.
Collapse
Affiliation(s)
- Satyendra K Prasad
- Department of Pharmaceutics, Indian Institute of Technology, Banaras Hindu University, Varanasi, Maharashtra, India; Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Shenoy PA, Nipate SS, Sonpetkar JM, Salvi NC, Waghmare AB, Chaudhari PD. Production of high titre antibody response against Russell's viper venom in mice immunized with ethanolic extract of fruits of Piper longum L. (Piperaceae) and piperine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:159-63. [PMID: 24060214 DOI: 10.1016/j.phymed.2013.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/07/2013] [Accepted: 08/09/2013] [Indexed: 06/02/2023]
Abstract
Piper longum L. fruits have been traditionally used against snakebites in north-eastern and southern region of India. The aim of the study was to assess the production of antibody response against Russell's viper venom in mice after prophylactic immunization with ethanolic extract of fruits of Piper longum L. and piperine. The mice sera were tested for the presence of antibodies against Russell's viper venom by in vitro lethality neutralization assay and in vivo lethality neutralization assay. Polyvalent anti-snake venom serum (antivenom) manufactured by Haffkine Bio-Pharmaceutical Corporation Ltd. was used as standard. Further confirmation of presence of antibodies against the venom in sera of mice immunized with PLE and piperine was done using indirect enzyme-linked immunosorbent assay (ELISA) and double immunodiffusion test. Treatment with PLE-treated mice serum and piperine-treated mice serum was found to inhibit the lethal action of venom both in the in vitro lethality neutralization assay and in vivo lethality neutralization assay. ELISA testing indicated that there were significantly high (p<0.01) levels of cross reactions between the PLE and piperine treated mice serum and the venom antigens. In double immunodiffusion test, a white band was observed between the two wells of antigen and antibodies for both the PLE-treated and piperine-treated mice serum. Thus it can be concluded that immunization with ethanolic extract of fruits of Piper longum and piperine produced a high titre antibody response against Russell's viper venom in mice. The antibodies against PLE and piperine could be useful in antivenom therapy of Russell's viper bites. PLE and piperine may also have a potential interest in view of the development of antivenom formulations used as antidote against snake bites.
Collapse
Affiliation(s)
- P A Shenoy
- Department of Pharmacology, Progressive Education Society's Modern College of Pharmacy, Sector No. 21, Yamunanagar, Nigdi, Pune 411044, Maharashtra, India.
| | - S S Nipate
- Department of Pharmacology, Progressive Education Society's Modern College of Pharmacy, Sector No. 21, Yamunanagar, Nigdi, Pune 411044, Maharashtra, India.
| | - J M Sonpetkar
- Department of Pharmacology, Progressive Education Society's Modern College of Pharmacy, Sector No. 21, Yamunanagar, Nigdi, Pune 411044, Maharashtra, India
| | - N C Salvi
- Haffkine Bio-Pharmaceutical Corporation Ltd., Pimpri, Pune 411018, Maharashtra, India
| | - A B Waghmare
- Haffkine Bio-Pharmaceutical Corporation Ltd., Pimpri, Pune 411018, Maharashtra, India
| | - P D Chaudhari
- Department of Pharmacology, Progressive Education Society's Modern College of Pharmacy, Sector No. 21, Yamunanagar, Nigdi, Pune 411044, Maharashtra, India
| |
Collapse
|
42
|
Hussain H, Al-Harrasi A, Abbas G, Rehman NU, Mabood F, Ahmed I, Saleem M, van Ree T, Green IR, Anwar S, Badshah A, Shah A, Ali I. The GenusPluchea:Phytochemistry, Traditional Uses, and Biological Activities. Chem Biodivers 2013; 10:1944-71. [DOI: 10.1002/cbdv.201200140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Indexed: 11/11/2022]
|
43
|
Abstract
Snakebite is classified by the WHO as a neglected tropical disease. Envenoming is a significant public health problem in tropical and subtropical regions. Neurotoxicity is a key feature of some envenomings, and there are many unanswered questions regarding this manifestation. Acute neuromuscular weakness with respiratory involvement is the most clinically important neurotoxic effect. Data is limited on the many other acute neurotoxic manifestations, and especially delayed neurotoxicity. Symptom evolution and recovery, patterns of weakness, respiratory involvement, and response to antivenom and acetyl cholinesterase inhibitors are variable, and seem to depend on the snake species, type of neurotoxicity, and geographical variations. Recent data have challenged the traditional concepts of neurotoxicity in snake envenoming, and highlight the rich diversity of snake neurotoxins. A uniform system of classification of the pattern of neuromuscular weakness and models for predicting type of toxicity and development of respiratory weakness are still lacking, and would greatly aid clinical decision making and future research. This review attempts to update the reader on the current state of knowledge regarding this important issue.
Collapse
Affiliation(s)
- Udaya K. Ranawaka
- Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
- * E-mail:
| | - David G. Lalloo
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | |
Collapse
|
44
|
Venkatesan C, Sarathi M, Balasubramanian G, Thomas J, Balachander V, Babu VS, Bilal SMY, Majeed SA, Madan N, Raj NS, Vimal S, Nambi KSN, Hameed ASS. Antivenom activity of triterpenoid (C34H68O2) from Leucas aspera Linn. against Naja naja naja venom induced toxicity: antioxidant and histological study in mice. Hum Exp Toxicol 2013; 33:336-59. [PMID: 23857030 DOI: 10.1177/0960327113494901] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The isolated and identified triterpenoid, 1-hydroxytetratriacontane-4-one (C34H68O2), obtained from the methanolic leaf extract of Leucas aspera Linn. was explored for the first time for antisnake venom activity. The plant (L. aspera Linn.) extract significantly antagonized the spectacled cobra (Naja naja naja) venom induced lethal activity in a mouse model. It was compared with commercial antiserum obtained from King Institute of Preventive Medicine (Chennai, Tamil Nadu, India). N. naja naja venom induced a significant decrease in antioxidant superoxide dismutase, glutathione (GSH) peroxidase, catalase, reduced GSH and glutathione-S-transferase activities and increased lipid peroxidase (LPO) activity in different organs such as heart, liver, kidney and lungs. The histological changes following the antivenom treatment were also evaluated in all these organs. There were significant alterations in the histology. Triterpenoid from methanol extract of L. aspera Linn. at a dose level of 75 mg per mouse significantly attenuated (neutralized) the venom-induced antioxidant status and also the LPO activity in different organs.
Collapse
Affiliation(s)
- C Venkatesan
- 1Aquaculture Biotechnology Division, OIE Reference Laboratory for WTD, Department of Zoology, C. Abdul Hakeem College, Melvisharam, Vellore District, Tamil Nadu, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shenoy PA, Nipate SS, Sonpetkar JM, Salvi NC, Waghmare AB, Chaudhari PD. Anti-snake venom activities of ethanolic extract of fruits of Piper longum L. (Piperaceae) against Russell's viper venom: characterization of piperine as active principle. JOURNAL OF ETHNOPHARMACOLOGY 2013; 147:373-82. [PMID: 23506990 DOI: 10.1016/j.jep.2013.03.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 02/11/2013] [Accepted: 03/08/2013] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Piper longum L. fruits have been traditionally used against snakebites in north-eastern and southern region of India. AIM OF THE STUDY To examine the ability of ethanolic extract of fruits of Piper longum L., Piperaceae (PLE) and piperine, one of the main active principles of Piper longum, to inhibit the Russell's viper (Doboia russelii, Viperidae) snake venom activities. MATERIALS AND METHODS Anti-snake venom activities of ethanolic extract of fruits of Piper longum L. (Piperaceae) and piperine against Russell's viper venom was studied in embryonated fertile chicken eggs, mice and rats by using various models as follows: inhibition of venom lethal action, inhibition of venom haemorrhagic action (in vitro), inhibition of venom haemorrhagic action (in vivo), inhibition of venom necrotizing action, inhibition of venom defibrinogenating action, inhibition of venom induced paw edema, inhibition of venom induced mast cell degranulation, creatine kinase assay and assay for catalase activity. RESULTS PLE was found to inhibit the venom induced haemorrhage in embryonated fertile chicken eggs. Administration of PLE and piperine significantly (p<0.01) inhibited venom induced lethality, haemorrhage, necrosis, defibrinogenation and inflammatory paw edema in mice in a dose dependent manner. PLE and piperine also significantly (p<0.01) reduced venom induced mast cell degranulation in rats. Venom induced decrease in catalase enzyme levels in mice kidney tissue and increase in creatine kinase enzyme levels in mice serum were significantly (p<0.01) reversed by administration of both PLE and piperine. CONCLUSIONS PLE possesses good anti-snake venom properties and piperine is one of the compounds responsible for the effective venom neutralizing ability of the plant.
Collapse
Affiliation(s)
- P A Shenoy
- Department of Pharmacology, Progressive Education Society's Modern College of Pharmacy, Sector No. 21, Yamunanagar, Nigdi, Pune-411044, Maharashtra, India.
| | | | | | | | | | | |
Collapse
|
46
|
Cho JJ, Cho CL, Kao CL, Chen CM, Tseng CN, Lee YZ, Liao LJ, Hong YR. Crude aqueous extracts of Pluchea indica (L.) Less. inhibit proliferation and migration of cancer cells through induction of p53-dependent cell death. Altern Ther Health Med 2012; 12:265. [PMID: 23268709 PMCID: PMC3575299 DOI: 10.1186/1472-6882-12-265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 11/30/2012] [Indexed: 12/31/2022]
Abstract
Background Pluchea indica (L.) Less. (Asteraceae) is a perennial shrub plant with anti-inflammatory and antioxidant medicinal properties. However, the anti-cancer properties of its aqueous extracts have not been studied. The aim of this study was to investigate the anti-proliferation, anti-migration, and pro-apoptotic properties of crude aqueous extracts of P. indica leaf and root on human malignant glioma cancer cells and human cervical cancer cells, and the underlying molecular mechanism. Methods GBM8401 human glioma cells and HeLa cervical carcinoma cells were treated with various concentrations of crude aqueous extracts of P. indica leaf and root and cancer cell proliferation and viability were measured by cell growth curves, trypan blue exclusions, and the tetrazolium reduction assay. Effects of the crude aqueous extracts on focus formation, migration, and apoptosis of cancer cells were studied as well. The molecular mechanism that contributed to the anti-cancer activities of crude aqueous extracts of P. indica root was also examined using Western blotting analysis. Results Crude aqueous extracts of P. indica leaf and root suppressed proliferation, viability, and migration of GBM8401 and HeLa cells. Treatment with crude aqueous extracts of P. indica leaf and root for 48 hours resulted in a significant 75% and 70% inhibition on proliferation and viability of GBM8401 and HeLa cancer cells, respectively. Crude aqueous extracts of P. indica root inhibited focus formation and promoted apoptosis of HeLa cells. It was found that phosphorylated-p53 and p21 were induced in GBM8401 and HeLa cells treated with crude aqueous extracts of P. indica root. Expression of phosphorylated-AKT was decreased in HeLa cells treated with crude aqueous extracts of P. indica root. Conclusion The in vitro anti-cancer effects of crude aqueous extracts of P. indica leaf and root indicate that it has sufficient potential to warrant further examination and development as a new anti-cancer agent.
Collapse
|
47
|
Srivastava P, Shanker K. Pluchea lanceolata (Rasana): Chemical and biological potential of Rasayana herb used in traditional system of medicine. Fitoterapia 2012; 83:1371-85. [DOI: 10.1016/j.fitote.2012.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 04/30/2012] [Accepted: 07/24/2012] [Indexed: 11/28/2022]
|
48
|
Abstract
Snake envenomation is a global public health problem, with highest incidence in Southeast Asia. Inadequate health services, difficult transportation and consequent delay in antisnake venom administration are the main reasons for high mortality. Adverse drug reactions and inadequate storage conditions limit the use of antisnake venom. The medicinal plants, available locally and used widely by traditional healers, therefore need attention. A wide array of plants and their active principles have been evaluated for pharmacological properties. However, numerous unexplored plants claimed to be antidotes in folklore medicine need to be studied. The present article reviews the current status of various medicinal plants for the management of snake bite.
Collapse
Affiliation(s)
- Y K Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi - 110029, India
| | | |
Collapse
|
49
|
Dey A, Nath De J. Anti–snake Venom Botanicals Used by the Ethnic Groups of Purulia District, West Bengal, India. ACTA ACUST UNITED AC 2012. [DOI: 10.1080/10496475.2011.652298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
da Silva ML, Marcussi S, Fernandes RS, Pereira PS, Januário AH, França SC, Da Silva SL, Soares AM, Lourenço MV. Anti-snake venom activities of extracts and fractions from callus cultures of Sapindus saponaria. PHARMACEUTICAL BIOLOGY 2012; 50:366-375. [PMID: 22133075 DOI: 10.3109/13880209.2011.608072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CONTEXT Sapindus saponaria L. (Sapindaceae) bark, root, and fruits are used as sedatives and to treat gastric ulcer and also demonstrate diuretic and expectorant effects. OBJECTIVE The anti-snake venom properties of callus of S. saponaria are investigated here for the first time. MATERIALS AND METHODS In vitro cultivated callus of Sapindus saponaria were lyophilized, and the extracts were prepared with different solvents, before submitting to phytochemical studies and evaluation of the anti-ophidian activity. Crude extracts were fractionated by liquid-liquid partition and the fractions were monitored by thin layer chromatography (TLC). Subsequently, anti-ophidian activities were analyzed toward Bothrops jararacussu Lacerda (Viperidae), B. moojeni Hoge (Viperidae), B. alternates Duméril (Viperidea) and Crotalus durissus terrificus Lineu (Viperidae) venoms and isolated myotoxins and phospholipase A(2) (PLA(2)). RESULTS Fractions A1, A2 and the extract in MeOH:H(2)O (9:1) significantly inhibited the toxic and pharmacological activities induced by snake venoms and toxins, when compared to other extracts and fractions. The lethal, clotting, phospholipase, edema-inducing, hemorrhagic and myotoxic activities were partially inhibited by the different extracts and fractions. TLC profiles of the crude extracts (B and C) and fractions (A1 and A2) showed β-sitosterol and stigmasterol as their main compounds. Stigmasterol exhibited inhibitory effects on enzymatic and myotoxic activities of PLA(2). DISCUSSION AND CONCLUSION Sapindus saponaria extracts and fractions presented anti-ophidian activity and could be used as an adjuvant to serum therapy or for its supplementation, and in addition, as a rich source of potential inhibitors of enzymes involved in several pathophysiological human and animal diseases.
Collapse
Affiliation(s)
- Marcos L da Silva
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, UNAERP, Ribeirão Preto-SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|