1
|
Gonzales M, Jacquet P, Gaucher F, Chabrière É, Plener L, Daudé D. AHL-Based Quorum Sensing Regulates the Biosynthesis of a Variety of Bioactive Molecules in Bacteria. JOURNAL OF NATURAL PRODUCTS 2024; 87:1268-1284. [PMID: 38390739 DOI: 10.1021/acs.jnatprod.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Bacteria are social microorganisms that use communication systems known as quorum sensing (QS) to regulate diverse cellular behaviors including the production of various secreted molecules. Bacterial secondary metabolites are widely studied for their bioactivities including antibiotic, antifungal, antiparasitic, and cytotoxic compounds. Besides playing a crucial role in natural bacterial niches and intermicrobial competition by targeting neighboring organisms and conferring survival advantages to the producer, these bioactive molecules may be of prime interest to develop new antimicrobials or anticancer therapies. This review focuses on bioactive compounds produced under acyl homoserine lactone-based QS regulation by Gram-negative bacteria that are pathogenic to humans and animals, including the Burkholderia, Serratia, Pseudomonas, Chromobacterium, and Pseudoalteromonas genera. The synthesis, regulation, chemical nature, biocidal effects, and potential applications of these identified toxic molecules are presented and discussed in light of their role in microbial interactions.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
- Gene&GreenTK, Marseille 13005, France
| | | | | | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
| | | | | |
Collapse
|
2
|
Devi M, Ramakrishnan E, Deka S, Parasar DP. Bacteria as a source of biopigments and their potential applications. J Microbiol Methods 2024; 219:106907. [PMID: 38387652 DOI: 10.1016/j.mimet.2024.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
From the prehistoric period, the utilization of pigments as colouring agents was an integral part of human life. Early people may have utilized paint for aesthetic motives, according to archaeologists. The pigments are either naturally derived or synthesized in the laboratory. Different studies reported that certain synthetic colouring compounds were toxic and had adverse health and environmental effects. Therefore, knowing the drawbacks of these synthetic colouring agents now scientists are attracted towards the harmless natural pigments. The main sources of natural pigments are plants, animals or microorganisms. Out of these natural pigments, microorganisms are the most important source for the production and application of bioactive secondary metabolites. Among all kinds of microorganisms, bacteria have specific benefits due to their short life cycle, low sensitivity to seasonal and climatic variations, ease of scaling, and ability to create pigments of various colours. Based on these physical characteristics, bacterial pigments appear to be a promising sector for novel biotechnological applications, ranging from functional food production to the development of new pharmaceuticals and biomedical therapies. This review summarizes the need for bacterial pigments, biosynthetic pathways of carotenoids and different applications of bacterial pigments.
Collapse
Affiliation(s)
- Moitrayee Devi
- Faculty of Paramedical Science (Microbiology), Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam 781026, India
| | - Elancheran Ramakrishnan
- Department of Chemistry, School of Engineering and Technology, Dhanalakshmi Srinivasan University, Tiruchirappalli, Tamil Nadu 621112, India
| | - Suresh Deka
- Faculty of Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam 781026, India
| | - Deep Prakash Parasar
- Faculty of Science (Biotechnology), Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam 781026, India.
| |
Collapse
|
3
|
Nemer G, Louka N, Rabiller Blandin P, Maroun RG, Vorobiev E, Rossignol T, Nicaud JM, Guénin E, Koubaa M. Purification of Natural Pigments Violacein and Deoxyviolacein Produced by Fermentation Using Yarrowia lipolytica. Molecules 2023; 28:4292. [PMID: 37298767 PMCID: PMC10254742 DOI: 10.3390/molecules28114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/14/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Violacein and deoxyviolacein are bis-indole pigments synthesized by a number of microorganisms. The present study describes the biosynthesis of a mixture of violacein and deoxyviolacein using a genetically modified Y. lipolytica strain as a production chassis, the subsequent extraction of the intracellular pigments, and ultimately their purification using column chromatography. The results show that the optimal separation between the pigments occurs using an ethyl acetate/cyclohexane mixture with different ratios, first 65:35 until both pigments were clearly visible and distinguishable, then 40:60 to create a noticeable separation between them and recover the deoxyviolacein, and finally 80:20, which allows the recovery of the violacein. The purified pigments were then analyzed by thin-layer chromatography and nuclear magnetic resonance.
Collapse
Affiliation(s)
- Georgio Nemer
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu—CS 60319, 60203 Compiègne CEDEX, France; (G.N.); (P.R.B.); (E.V.); (E.G.)
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (N.L.); (R.G.M.)
| | - Nicolas Louka
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (N.L.); (R.G.M.)
| | - Paul Rabiller Blandin
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu—CS 60319, 60203 Compiègne CEDEX, France; (G.N.); (P.R.B.); (E.V.); (E.G.)
| | - Richard G. Maroun
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (N.L.); (R.G.M.)
| | - Eugène Vorobiev
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu—CS 60319, 60203 Compiègne CEDEX, France; (G.N.); (P.R.B.); (E.V.); (E.G.)
| | - Tristan Rossignol
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (T.R.); (J.-M.N.)
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (T.R.); (J.-M.N.)
| | - Erwann Guénin
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu—CS 60319, 60203 Compiègne CEDEX, France; (G.N.); (P.R.B.); (E.V.); (E.G.)
| | - Mohamed Koubaa
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu—CS 60319, 60203 Compiègne CEDEX, France; (G.N.); (P.R.B.); (E.V.); (E.G.)
| |
Collapse
|
4
|
da Silva Barbirato D, Fogacci MF, Guimarães TC, de Carvalho DP, Rurr JC, Takiya CM, Scharfstein J, da Costa Leitão AA. Protective effect of Chromobacterium violaceum and violacein against bone resorption by periodontitis. Clin Oral Investig 2023; 27:2175-2186. [PMID: 36809354 DOI: 10.1007/s00784-023-04891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the potential protective effect of Chromobacterium violaceum and violacein against periodontitis, in experimental models. MATERIALS AND METHODS A double-blind experimental study on the exposure to C. violaceum or violacein in experimentally ligature-induced periodontitis, as preventive factors against alveolar bone loss by periodontitis. Bone resorption was assessed by morphometry. Antibacterial potential of violacein was assessed in an in vitro assay. Its cytotoxicity and genotoxicity were evaluated using the Ames test and SOS Chromotest assay, respectively. RESULTS The potential of C. violaceum to prevent/limit bone resorption by periodontitis was confirmed. Daily exposure to 106 cells/ml in water intake since birth and only during the first 30 days of life significantly reduced bone loss from periodontitis in teeth with ligature. Violacein extracted from C. violaceum was efficient in inhibiting or limiting bone resorption and had a bactericidal effect against Porphyromonas gingivalis in the in vitro assay. CONCLUSIONS We conclude that C. violaceum and violacein have the potential to prevent or limit the progression of periodontal diseases, in an experimental model. CLINICAL RELEVANCE The effect of an environmental microorganism with potential action against bone loss in animal models with ligature-induced periodontitis represents the possibility of understanding the etiopathogenesis of periodontal diseases in populations exposed to C. violaceum and the possibility of new probiotics and antimicrobials. This would imply new preventive and therapeutic possibilities.
Collapse
Affiliation(s)
- Davi da Silva Barbirato
- Laboratory of Molecular Radiobiology - Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, 373 Carlos Chagas Filho Avenue, G1-003, Cidade Universitária, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Mariana Fampa Fogacci
- Department of Clinical and Preventive Dentistry, Federal University of Pernambuco, Recife, PE, Brazil
| | - Taísa Coelho Guimarães
- Department of Integrated Clinic, Division of Periodontics, Dental School, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Denise Pires de Carvalho
- Laboratory of Endocrine Physiology Doris Rosenthal - Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Janine Cardoso Rurr
- Laboratory of Radiation in Biology - Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christina Maeda Takiya
- Laboratory of Immunopathology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Julio Scharfstein
- Laboratory of Molecular Immunology - Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alvaro Augusto da Costa Leitão
- Laboratory of Molecular Radiobiology - Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, 373 Carlos Chagas Filho Avenue, G1-003, Cidade Universitária, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| |
Collapse
|
5
|
Di Salvo E, Lo Vecchio G, De Pasquale R, De Maria L, Tardugno R, Vadalà R, Cicero N. Natural Pigments Production and Their Application in Food, Health and Other Industries. Nutrients 2023; 15:nu15081923. [PMID: 37111142 PMCID: PMC10144550 DOI: 10.3390/nu15081923] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
In addition to fulfilling their function of giving color, many natural pigments are known as interesting bioactive compounds with potential health benefits. These compounds have various applications. In recent times, in the food industry, there has been a spread of natural pigment application in many fields, such as pharmacology and toxicology, in the textile and printing industry and in the dairy and fish industry, with almost all major natural pigment classes being used in at least one sector of the food industry. In this scenario, the cost-effective benefits for the industry will be welcome, but they will be obscured by the benefits for people. Obtaining easily usable, non-toxic, eco-sustainable, cheap and biodegradable pigments represents the future in which researchers should invest.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Giovanna Lo Vecchio
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Rita De Pasquale
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Laura De Maria
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Roberta Tardugno
- Department of Pharmacy-Drug Sciences, University of Bari, 70121 Bari, Italy
| | - Rossella Vadalà
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Nicola Cicero
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
- Science4life srl, University of Messina, 98168 Messina, Italy
| |
Collapse
|
6
|
Lyakhovchenko NS, Travkin VM, Senchenkov VY, Solyanikova IP. Bacterial Violacein: Properties, Biosynthesis and Application Prospects. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
7
|
Ghosh S, Sarkar T, Chakraborty R, Shariati MA, Simal-Gandara J. Nature's palette: An emerging frontier for coloring dairy products. Crit Rev Food Sci Nutr 2022; 64:1508-1552. [PMID: 36066466 DOI: 10.1080/10408398.2022.2117785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Consumers all across the world are looking for the most delectable and appealing foods, while also demanding products that are safer, more nutritious, and healthier. Substitution of synthetic colorants with natural colorants has piqued consumer and market interest in recent years. Due to increasing demand, extensive research has been conducted to find natural and safe food additives, such as natural pigments, that may have health benefits. Natural colorants are made up of a variety of pigments, many of which have significant biological potential. Because of the promising health advantages, natural colorants are gaining immense interest in the dairy industry. This review goes over the use of various natural colorants in dairy products which can provide desirable color as well as positive health impacts. The purpose of this review is to provide an in-depth look into the field of food (natural or synthetic) colorants applied in dairy products as well as their potential health benefits, safety, general trends, and future prospects in food science and technology. In this paper, we listed a plethora of applications of natural colorants in various milk-based products.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Tanmay Sarkar
- Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Mohammad Ali Shariati
- Research Department, K. G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation
- Department of Scientific Research, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russian Federation
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Universidade de Vigo, Ourense, E32004, Spain
| |
Collapse
|
8
|
Olivera-Bravo S, Bolatto C, Otero Damianovich G, Stancov M, Cerri S, Rodríguez P, Boragno D, Hernández Mir K, Cuitiño MN, Larrambembere F, Isasi E, Alem D, Canclini L, Marco M, Davyt D, Díaz-Amarilla P. Neuroprotective effects of violacein in a model of inherited amyotrophic lateral sclerosis. Sci Rep 2022; 12:4439. [PMID: 35292673 PMCID: PMC8924276 DOI: 10.1038/s41598-022-06470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive death of motor neurons and muscle atrophy, with defective neuron-glia interplay and emergence of aberrant glial phenotypes having a role in disease pathology. Here, we have studied if the pigment violacein with several reported protective/antiproliferative properties may control highly neurotoxic astrocytes (AbAs) obtained from spinal cord cultures of symptomatic hSOD1G93A rats, and if it could be neuroprotective in this ALS experimental model. At concentrations lower than those reported as protective, violacein selectively killed aberrant astrocytes. Treatment of hSOD1G93A rats with doses equivalent to the concentrations that killed AbAs caused a marginally significant delay in survival, partially preserved the body weight and soleus muscle mass and improved the integrity of the neuromuscular junction. Reduced motor neuron death and glial reactivity was also found and likely related to decreased inflammation and matrix metalloproteinase-2 and -9. Thus, in spite that new experimental designs aimed at extending the lifespan of hSOD1G93A rats are needed, improvements observed upon violacein treatment suggest a significant therapeutic potential that deserves further studies.
Collapse
Affiliation(s)
- Silvia Olivera-Bravo
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay.
| | - Carmen Bolatto
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Histology and Embryology Department, Faculty of Medicine, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - Gabriel Otero Damianovich
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Matías Stancov
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Sofía Cerri
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Histology and Embryology Department, Faculty of Medicine, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - Paola Rodríguez
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Daniela Boragno
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Karina Hernández Mir
- Histology and Embryology Department, Faculty of Medicine, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - María Noel Cuitiño
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Fernanda Larrambembere
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Eugenia Isasi
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Histology and Embryology Department, Faculty of Medicine, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - Diego Alem
- Genetic Department, IIBCE, Montevideo, Uruguay
| | | | - Marta Marco
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Tumoral Biol Area, Clin Biochem Department, Faculty of Chemistry, UdelaR, Montevideo, Uruguay
| | - Danilo Davyt
- Pharm Chem Lab, Organic Chemistry Department, Faculty of Chemistry, UdelaR, Montevideo, Uruguay
| | - Pablo Díaz-Amarilla
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| |
Collapse
|
9
|
Valenzuela B, Benavides A, Gutierrez D, Blamey L, Monsalves MT, Modak B, Blamey JM. Violacein from an Antarctic Iodobacter sp. 7MAnt and its function as immunomodulator of the defence mechanism of innate immunity in fish cells. JOURNAL OF FISH DISEASES 2022; 45:485-489. [PMID: 34850980 DOI: 10.1111/jfd.13559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Beatriz Valenzuela
- Laboratory of Natural Products Chemistry, Centre of Aquatic Biotechnology, Department of Environmental Sciences, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Almendra Benavides
- Laboratory of Natural Products Chemistry, Centre of Aquatic Biotechnology, Department of Environmental Sciences, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Daniela Gutierrez
- Laboratory of Natural Products Chemistry, Centre of Aquatic Biotechnology, Department of Environmental Sciences, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | | | | | - Brenda Modak
- Laboratory of Natural Products Chemistry, Centre of Aquatic Biotechnology, Department of Environmental Sciences, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Jenny M Blamey
- Fundación Biociencia, Santiago, Chile
- Biology Department, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| |
Collapse
|
10
|
Comparative Genomics Reveals Insights into Induction of Violacein Biosynthesis and Adaptive Evolution in Janthinobacterium. Microbiol Spectr 2021; 9:e0141421. [PMID: 34908429 PMCID: PMC8672880 DOI: 10.1128/spectrum.01414-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Violacein has different bioactive properties conferring distinct selective advantages, such as defense from predation and interspecific competition. Adaptation of Janthinobacterium to diverse habitats likely leads to variation in violacein production among phylogenetically closely related species inhabiting different environments, yet genomic mechanisms and the influence of adaptive evolution underpinning violacein biosynthesis in Janthinobacterium are not clear. In this study, we performed genome sequencing, comparative genomic analysis, and phenotypic characterization to investigate genomic factors regulating violacein production in nine Janthinobacterium strains, including a type strain from soil and eight strains we isolated from terrestrial subsurface sediment and groundwater. Results show that although all nine Janthinobacterium strains are phylogenetically closely related and contain genes essential for violacein biosynthesis, they vary in carbon usage and violacein production. Sediment and groundwater strains are weak violacein producers and possess far fewer secondary metabolite biosynthesis genes, indicating genome adaptation compared to soil strains. Further examination suggests that quorum sensing (QS) may play an important role in regulating violacein in Janthinobacterium: the strains exhibiting strong potential in violacein production possess both N-acyl-homoserine lactone (AHL) QS and Janthinobacterium QS (JQS) systems in their genomes, while weaker violacein-producing strains harbor only the JQS system. Preliminary tests of spent media of two Janthinobacterium strains possessing both AHL QS and JQS systems support the potential role of AHLs in inducing violacein production in Janthinobacterium. Overall, results from this study reveal potential genomic mechanisms involved in violacein biosynthesis in Janthinobacterium and provide insights into evolution of Janthinobacterium for adaptation to oligotrophic terrestrial subsurface environment. IMPORTANCE Phylogenetically closely related bacteria can thrive in diverse environmental habitats due to adaptive evolution. Genomic changes resulting from adaptive evolution lead to variations in cellular function, metabolism, and secondary metabolite biosynthesis. The most well-known secondary metabolite produced by Janthinobacterium is the purple-violet pigment violacein. To date, the mechanisms of induction of violacein biosynthesis in Janthinobacterium is not clear. Comparative genome analysis of closely related Janthinobacterium strains isolated from different environmental habitats not only reveals potential mechanisms involved in induction of violacein production by Janthinobacterium but also provides insights into the survival strategy of Janthinobacterium for adaptation to oligotrophic terrestrial subsurface environment.
Collapse
|
11
|
Ahmed A, Ahmad A, Li R, AL-Ansi W, Fatima M, Mushtaq BS, Basharat S, Li Y, Bai Z. Recent Advances in Synthetic, Industrial and Biological Applications of Violacein and Its Heterologous Production. J Microbiol Biotechnol 2021; 31:1465-1480. [PMID: 34584039 PMCID: PMC9705886 DOI: 10.4014/jmb.2107.07045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
Violacein, a purple pigment first isolated from a gram-negative coccobacillus Chromobacterium violaceum, has gained extensive research interest in recent years due to its huge potential in the pharmaceutic area and industry. In this review, we summarize the latest research advances concerning this pigment, which include (1) fundamental studies of its biosynthetic pathway, (2) production of violacein by native producers, apart from C. violaceum, (3) metabolic engineering for improved production in heterologous hosts such as Escherichia coli, Citrobacter freundii, Corynebacterium glutamicum, and Yarrowia lipolytica, (4) biological/pharmaceutical and industrial properties, (5) and applications in synthetic biology. Due to the intrinsic properties of violacein and the intermediates during its biosynthesis, the prospective research has huge potential to move this pigment into real clinical and industrial applications.
Collapse
Affiliation(s)
- Aqsa Ahmed
- School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Abdullah Ahmad
- Department of Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad 44000, Pakistan
| | - Renhan Li
- School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Waleed AL-Ansi
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China,Department of Food Science and Technology, Faculty of Agriculture, Sana’a University, Sana’a, 725, Yemen
| | - Momal Fatima
- Department of Industrial Biotechnology, National Institute of Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| | - Bilal Sajid Mushtaq
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Samra Basharat
- School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China
| | - Ye Li
- School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, P.R. China,Corresponding authors Y. Li E-mail:
| | - Zhonghu Bai
- School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, P.R. China,
Z. Bai Phone: +86510-85197983 Fax: +86510-85197983 E-mail:
| |
Collapse
|
12
|
Chamberlain CA, Hatch M, Garrett TJ. Extracellular Vesicle Analysis by Paper Spray Ionization Mass Spectrometry. Metabolites 2021; 11:metabo11050308. [PMID: 34065030 PMCID: PMC8151837 DOI: 10.3390/metabo11050308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/23/2021] [Accepted: 05/06/2021] [Indexed: 12/29/2022] Open
Abstract
Paper spray ionization mass spectrometry (PSI-MS) is a direct MS analysis technique with several reported bacterial metabolomics applications. As with most MS-based bacterial studies, all currently reported PSI-MS bacterial analyses have focused on the chemical signatures of the cellular unit. One dimension of the bacterial metabolome that is often lost in such analyses is the exometabolome (extracellular metabolome), including secreted metabolites, lipids, and peptides. A key component of the bacterial exometabolome that is gaining increased attention in the microbiology and biomedical communities is extracellular vesicles (EVs). These excreted structures, produced by cells in all domains of life, contain a variety of biomolecules responsible for a wide array of cellular functions, thus representing a core component of the bacterial secreted metabolome. Although previously examined using other MS approaches, no reports currently exist for a PSI-MS analysis of bacterial EVs, nor EVs from any other organism (exosomes, ectosomes, etc.). PSI-MS holds unique analytical strengths over other commonly used MS platforms and could thus provide an advantageous approach to EV metabolomics. To address this, we report a novel application representing, to our knowledge, the first PSI-MS analysis of EVs from any organism (using the human gut resident Oxalobacter formigenes as the experimental model, a bacterium whose EVs were never previously investigated). In this report, we show how we isolated and purified EVs from bacterial culture supernatant by EV-specific affinity chromatography, confirmed and characterized these vesicles by nanoparticle tracking analysis, analyzed the EV isolate by PSI-MS, and identified a panel of EV-derived metabolites, lipids, and peptides. This work serves as a pioneering study in the field of MS-based EV analysis and provides a new, rapid, sensitive, and economical approach to EV metabolomics.
Collapse
|
13
|
Park H, Park S, Yang YH, Choi KY. Microbial synthesis of violacein pigment and its potential applications. Crit Rev Biotechnol 2021; 41:879-901. [PMID: 33730942 DOI: 10.1080/07388551.2021.1892579] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Violacein is a pigment synthesized by Gram-negative bacteria such as Chromobacterium violaceum. It has garnered significant interest owing to its unique physiological and biological activities along with its synergistic effects with various antibiotics. In addition to C. violaceum, several microorganisms, including: Duganella sp., Pseudoalteromonas sp., Iodobacter sp., and Massilia sp., are known to produce violacein. Along with the identification of violacein-producing strains, the genetic regulation, quorum sensing mechanism, and sequence of the vio-operon involved in the biosynthesis of violacein have been elucidated. From an engineering perspective, the heterologous production of violacein using the genetically engineered Escherichia coli or Citrobacter freundii host has also been attempted. Genetic engineering of host cells involves the heterologous expression of genes involved in the vio operon and the optimization of metabolic pathways and gene regulation. Further, the crystallography of VioD and VioE was revealed, and mass production by enzyme engineering has been accelerated. In this review, we highlight the biologically assisted end-use applications of violacein (such as functional fabric development, nanoparticles, functional polymer composites, and sunscreen ingredients) and violacein activation mechanisms, production strains, and the results of mass production with engineered methods. The prospects for violacein research and engineering applications have also been discussed.
Collapse
Affiliation(s)
- HyunA Park
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | - SeoA Park
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea.,Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
14
|
Choi SY, Lim S, Yoon KH, Lee JI, Mitchell RJ. Biotechnological Activities and Applications of Bacterial Pigments Violacein and Prodigiosin. J Biol Eng 2021; 15:10. [PMID: 33706806 PMCID: PMC7948353 DOI: 10.1186/s13036-021-00262-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
In this review, we discuss violacein and prodigiosin, two chromogenic bacterial secondary metabolites that have diverse biological activities. Although both compounds were "discovered" more than seven decades ago, interest into their biological applications has grown in the last two decades, particularly driven by their antimicrobial and anticancer properties. These topics will be discussed in the first half of this review. The latter half delves into the current efforts of groups to produce these two compounds. This includes in both their native bacterial hosts and heterogeneously in other bacterial hosts, including discussing some of the caveats related to the yields reported in the literature, and some of the synthetic biology techniques employed in this pursuit.
Collapse
Affiliation(s)
- Seong Yeol Choi
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Sungbin Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Kyoung-Hye Yoon
- Department of Physiology, Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, South Korea.
| | - Jin I Lee
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Mirae Campus, Wonju, Gangwon-do, South Korea.
| | - Robert J Mitchell
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| |
Collapse
|
15
|
Silva TRE, Silva LCF, de Queiroz AC, Alexandre Moreira MS, de Carvalho Fraga CA, de Menezes GCA, Rosa LH, Bicas J, de Oliveira VM, Duarte AWF. Pigments from Antarctic bacteria and their biotechnological applications. Crit Rev Biotechnol 2021; 41:809-826. [PMID: 33622142 DOI: 10.1080/07388551.2021.1888068] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pigments from microorganisms have triggered great interest in the market, mostly by their "natural" appeal, their favorable production conditions, in addition to the potential new chemical structures or naturally overproducing strains. They have been used in: food, feed, dairy, textile, pharmaceutical, and cosmetic industries. The high rate of pigment production in microorganisms recovered from Antarctica in response to selective pressures such as: high UV radiation, low temperatures, and freezing and thawing cycles makes this a unique biome which means that much of its biological heritage cannot be found elsewhere on the planet. This vast arsenal of pigmented molecules has different functions in bacteria and may exhibit different biotechnological activities, such as: extracellular sunscreens, photoprotective function, antimicrobial activity, biodegradability, etc. However, many challenges for the commercial use of these compounds have yet to be overcome, such as: the low stability of natural pigments in cosmetic formulations, the change in color when subjected to pH variations, the low yield and the high costs in their production. This review surveys the different types of natural pigments found in Antarctic bacteria, classifying them according to their chemical structure. Finally, we give an overview of the main pigments that are used commercially today.
Collapse
Affiliation(s)
- Tiago Rodrigues E Silva
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrárias, Universidade Estadual de Campinas, UNICAMP, Campinas, Brazil
| | | | | | | | | | | | - Luiz Henrique Rosa
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliano Bicas
- Departamento de Ciência de Alimentos, Universidade Estadual de Campinas, UNICAMP, Campinas, Brazil
| | - Valéria Maia de Oliveira
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrárias, Universidade Estadual de Campinas, UNICAMP, Campinas, Brazil
| | | |
Collapse
|
16
|
Durán N, Fávaro WJ, Brocchi M, Justo GZ, Castro GR, Durán M, Nakazato G. Patents on Violacein: A Compound with Great Diversity of Biological Activities and Industrial Potential. Recent Pat Biotechnol 2020; 15:102-111. [PMID: 33349223 DOI: 10.2174/2213476x07666201221111655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/15/2020] [Accepted: 11/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND This review outlines to envisage the current impact of violacein-derivative materials in several technological areas through patents. METHODS A comprehensive examination up to day patent databases on violacein demonstrated the relevance of this pigment, as well as the pertinent topics related to its technological development in order to obtain adaptable new pharmaceuticals, cosmetics and new quality fiber materials, together with others applications of violacein in different areas. RESULTS At present time, there is no efficient and economical feasible technique for violacein preparation at industrial scale. Many attempts have been developed but none have achieved the big challenge of being effective and inexpensive process. However, some potential applications of violacein in fields like biomedicine make the pigment worth to continuous the investigations. Particularly, violacein patents covering from biosynthesis to different applications were reported recently. CONCLUSION As unique pigment, violacein has been used in distinct areas of specialties, such as in medical and industrial fields. Then, this review through patents provides an update on violacein innovations useful for researchers working in an expandable and interesting field of biotechnology with natural pigments.
Collapse
Affiliation(s)
- Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Biology Institute, Department of Structural and Functional Biology, University of Campinas,Campinas, SP. Brazil
| | - Wagner J Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Biology Institute, Department of Structural and Functional Biology, University of Campinas,Campinas, SP. Brazil
| | - Marcelo Brocchi
- Laboratory of Tropical Diseases, Institute of Biology, Department of Genetic, Evolution, Microbiology and Immunology. University of Campinas, Campinas, SP. Brazil
| | - Giselle Z Justo
- Department of Pharmaceutical Sciences and Department of Biochemistry, Federal University of São Paulo (UNIFESP). Brazil
| | - Guillermo R Castro
- Nanobiomaterials Laboratory, Institute of Applied Biotechnology CINDEFI (UNLP-CONICET, CCT La Plata), Department of Chemistry, School of Sciences, Universidad Nacional de La Plata, La Plata. Argentina
| | - Marcela Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Biology Institute, Department of Structural and Functional Biology, University of Campinas,Campinas, SP. Brazil
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Biology Sciences Center, Londrina State University (UEL), Londrina. Brazil
| |
Collapse
|
17
|
Pang L, Antonisamy P, Esmail GA, Alzeer AF, Al-Dhabi NA, Arasu MV, Ponmurugan K, Kim YO, Kim H, Kim HJ. Nephroprotective effect of pigmented violacein isolated from Chromobacterium violaceum in wistar rats. Saudi J Biol Sci 2020; 27:3307-3312. [PMID: 33304136 PMCID: PMC7715039 DOI: 10.1016/j.sjbs.2020.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 01/07/2023] Open
Abstract
The present study aimed to analyze the nephroprotective property of violacein obtained from the bacterium, Chromobacterium violaceum. The nephrotoxicity in the animal model was induced by gentamicin, potassium dichromate, mercuric chloride, and cadmium chloride-induced nephrotoxicity in the Wistar rats was analyzed by measuring the serum creatinine, uric acid, and urea level. The present investigation revealed the nephroprotective property on convoluted proximal tubule (S1 and S2 segments) and the straight proximal tubule (S3 segment). Also, violacein significantly improved the renal function by the renal protective property on S2 segment of proximal tubule from the nephrotoxicity stimulated by mercuric chloride, potassium dichromate, cadmium chloride and gentamicin in animal models. Animal model studies revealed that violacein at 20 and 40 mg/kg p.o improved the renal function and significantly reduced the increased amount of uric acid, creatinine, and blood urea compared to the control.
Collapse
Affiliation(s)
- Lei Pang
- The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Paulrayer Antonisamy
- Ilwonbio Co., Ltd., Department of Physiology, Wonkwang University School of Korean Medicine, Iksan, Jeonbuk, South Korea
| | - Galal Ali Esmail
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulaziz Fahad Alzeer
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Karuppiah Ponmurugan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Young Ock Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hyungsuk Kim
- Department of Rehabilitation Medicine of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hak-Jae Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
18
|
Venil CK, Dufossé L, Renuka Devi P. Bacterial Pigments: Sustainable Compounds With Market Potential for Pharma and Food Industry. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00100] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
19
|
Sajjad W, Din G, Rafiq M, Iqbal A, Khan S, Zada S, Ali B, Kang S. Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications. Extremophiles 2020; 24:447-473. [PMID: 32488508 PMCID: PMC7266124 DOI: 10.1007/s00792-020-01180-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022]
Abstract
Pigments are an essential part of everyday life on Earth with rapidly growing industrial and biomedical applications. Synthetic pigments account for a major portion of these pigments that in turn have deleterious effects on public health and environment. Such drawbacks of synthetic pigments have shifted the trend to use natural pigments that are considered as the best alternative to synthetic pigments due to their significant properties. Natural pigments from microorganisms are of great interest due to their broader applications in the pharmaceutical, food, and textile industry with increasing demand among the consumers opting for natural pigments. To fulfill the market demand of natural pigments new sources should be explored. Cold-adapted bacteria and fungi in the cryosphere produce a variety of pigments as a protective strategy against ecological stresses such as low temperature, oxidative stresses, and ultraviolet radiation making them a potential source for natural pigment production. This review highlights the protective strategies and pigment production by cold-adapted bacteria and fungi, their industrial and biomedical applications, condition optimization for maximum pigment extraction as well as the challenges facing in the exploitation of cryospheric microorganisms for pigment extraction that hopefully will provide valuable information, direction, and progress in forthcoming studies.
Collapse
Affiliation(s)
- Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Ghufranud Din
- Department of Microbiology, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta, Pakistan
| | - Awais Iqbal
- School of Life Sciences, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, People's Republic of China
| | - Suliman Khan
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sahib Zada
- Department of Biology, College of Science, Shantou University, Shantou, China
| | - Barkat Ali
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China.
| |
Collapse
|
20
|
Rivero Berti I, Rodenak-Kladniew B, Onaindia C, Adam CG, Islan GA, Durán N, Castro GR. Assessment of in vitro cytotoxicity of imidazole ionic liquids and inclusion in targeted drug carriers containing violacein. RSC Adv 2020; 10:29336-29346. [PMID: 35521105 PMCID: PMC9055966 DOI: 10.1039/d0ra05101b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/17/2020] [Indexed: 01/29/2023] Open
Abstract
Violacein (Viol) is a pigment produced by several Gram-negative bacteria with many bioactivities, such as anticancer, virucide, and antiparasitic. However, violacein is insoluble under physiological conditions preventing its potential therapeutic uses. Surface-active ionic liquids (SAILs) based on the cation 1-alkylimidazolium ([CnHim]) with n = 10 to 16 alkyl carbon side chain lengths and acetate, bromide, methanesulfonate (S) or trifluoroacetate (F) as counterions were synthesized and screened to dissolve Viol in micellar aqueous media and for toxicological studies on the human lung carcinoma A549 cell line. Screening allowed the selection of 1.5 × 10−3% (w/v) [C16Him]-S because it combines low cytotoxicity with 71.5% cell viability and good interaction with 95.2% of the violacein kept in micellar solution for at least 48 h. [Viol-([C16Him]-S)] complex was used to develop an efficient hybrid solid lipid nanoparticle (SLN) carrier based on myristyl myristate and poloxamer 188 and tailored with folate to target cancer cells. Cellular SLN uptake was evaluated with fluorescent DiOC18 on A549, HCT-116, and HeLa cell lines expressing or not the folate receptor. The results showed fivefold incorporation of Viol nanoparticles in HCT-116 and HeLa cell cultures, displaying a high level of folate receptor. Biophysical characterization of the hybrid solid lipid carrier containing Viol was performed by dynamic light scattering, Fourier transform infrared, X-ray diffraction and X-ray photoelectron spectroscopies, and by transmission electron and cryo-transmission microscopies. Violacein (Viol) is a pigment produced by several Gram-negative bacteria with many bioactivities, such as anticancer, virucide, and antiparasitic.![]()
Collapse
Affiliation(s)
- Ignacio Rivero Berti
- Laboratorio de Nanobiomateriales
- CINDEFI
- Departamento de Química
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata-CONICET (CCT La Plata)
| | - Boris Rodenak-Kladniew
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP)
- CONICET-UNLP
- CCT-La Plata
- Facultad de Ciencias Médicas
- B1900 La Plata
| | - Celeste Onaindia
- IQAL
- Instituto de Química del Litoral (UNL-CONICET)
- Facultad de Ingeniería Química-Universidad Nacional del Litoral
- Santa Fe
- Argentina
| | - Claudia G. Adam
- IQAL
- Instituto de Química del Litoral (UNL-CONICET)
- Facultad de Ingeniería Química-Universidad Nacional del Litoral
- Santa Fe
- Argentina
| | - German A. Islan
- Laboratorio de Nanobiomateriales
- CINDEFI
- Departamento de Química
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata-CONICET (CCT La Plata)
| | - Nelson Durán
- Institute of Biology
- Universidade Estadual de Campinas
- Campinas
- Brazil
- NanoMed Center
| | - Guillermo R. Castro
- Laboratorio de Nanobiomateriales
- CINDEFI
- Departamento de Química
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata-CONICET (CCT La Plata)
| |
Collapse
|
21
|
The Bacterial Product Violacein Exerts an Immunostimulatory Effect Via TLR8. Sci Rep 2019; 9:13661. [PMID: 31541142 PMCID: PMC6754391 DOI: 10.1038/s41598-019-50038-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 07/19/2019] [Indexed: 12/28/2022] Open
Abstract
Violacein, an indole-derived, purple-colored natural pigment isolated from Chromobacterium violaceum has shown multiple biological activities. In this work, we studied the effect of violacein in different immune cell lines, namely THP-1, MonoMac 6, ANA-1, Raw 264.7 cells, as well as in human peripheral blood mononuclear cells (PBMCs). A stimulation of TNF-α production was observed in murine macrophages (ANA-1 and Raw 264.7), and in PBMCs, IL-6 and IL-1β secretion was detected. We obtained evidence of the molecular mechanism of activation by determining the mRNA expression pattern upon treatment with violacein in Raw 264.7 cells. Incubation with violacein caused activation of pathways related with an immune and inflammatory response. Our data utilizing TLR-transfected HEK-293 cells indicate that violacein activates the human TLR8 (hTLR8) receptor signaling pathway and not human TLR7 (hTLR7). Furthermore, we found that the immunostimulatory effect of violacein in PBMCs could be suppressed by the specific hTLR8 antagonist, CU-CPT9a. Finally, we studied the interaction of hTLR8 with violacein in silico and obtained evidence that violacein could bind to hTLR8 in a similar fashion to imidazoquinoline compounds. Therefore, our results indicate that violacein may have some potential in contributing to future immune therapy strategies.
Collapse
|
22
|
Enzymatic and Microbial Biosynthesis of Novel Violacein Glycosides with Enhanced Water Solubility and Improved Anti-nematode Activity. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0466-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Zadeh-Ardabili PM, Rad SK. Anti-pain and anti-inflammation like effects of Neptune krill oil and fish oil against carrageenan induced inflammation in mice models: Current statues and pilot study. ACTA ACUST UNITED AC 2019; 22:e00341. [PMID: 31061816 PMCID: PMC6488718 DOI: 10.1016/j.btre.2019.e00341] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/31/2019] [Accepted: 04/13/2019] [Indexed: 12/15/2022]
Abstract
Although inflammation is a reactive to injurious stimuli and considered as beneficial process in body, but it causes some discomforts, such as pain. Murine dietary contains appreciable amounts of fatty acids and antioxidants which encourages researchers to focus on their potential therapeutic effects. This study is aimed to examine the analgesic and anti-inflammatory activity of Neptune krill oil (NKO) and fish oil (FO) in rodent model which are two well-known sources of rich content of n-3 polyunsaturated fatty acids (n-3 PUFAs), mostly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). NKO and FO were used at the same dose of 500 mg and also balanced at similar doses of EPA: 12 in NKO vs. 12 in FO wt%, DHA: 7 NKO vs. 8 FO wt%. Application of NKO and FO in acetic acid-induced writhing effect, hot plate, and formalin induced test, indicated the nociceptive activity of the two tested drugs in comparison with normal saline. Also, the anti-inflammatory effect of these supplements was confirmed by carrageenan test. Analysis of cytokines levels in the blood samples of the mice after induction inflammation by carrageenan indicated decreased levels of those proteins compared to that in the normal groups. Both tested drugs, effectively could reduce severe inflammation and pain in rodents in comparison with the references drugs (depends on the tests); however, NKO was found to be more effective.
Collapse
Affiliation(s)
| | - Sima Kianpour Rad
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Sen T, Barrow CJ, Deshmukh SK. Microbial Pigments in the Food Industry-Challenges and the Way Forward. Front Nutr 2019; 6:7. [PMID: 30891448 PMCID: PMC6411662 DOI: 10.3389/fnut.2019.00007] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/17/2019] [Indexed: 11/30/2022] Open
Abstract
Developing new colors for the food industry is challenging, as colorants need to be compatible with a food flavors, safety, and nutritional value, and which ultimately have a minimal impact on the price of the product. In addition, food colorants should preferably be natural rather than synthetic compounds. Micro-organisms already produce industrially useful natural colorants such as carotenoids and anthocyanins. Microbial food colorants can be produced at scale at relatively low costs. This review highlights the significance of color in the food industry, why there is a need to shift to natural food colors compared to synthetic ones and how using microbial pigments as food colorants, instead of colors from other natural sources, is a preferable option. We also summarize the microbial derived food colorants currently used and discuss their classification based on their chemical structure. Finally, we discuss the challenges faced by the use and development of food grade microbial pigments and how to deal with these challenges, using advanced techniques including metabolic engineering and nanotechnology.
Collapse
Affiliation(s)
- Tanuka Sen
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, Australia
| | - Sunil Kumar Deshmukh
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
25
|
Azman AS, Mawang CI, Abubakar S. Bacterial Pigments: The Bioactivities and as an Alternative for Therapeutic Applications. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Synthetic pigments have been widely used in various applications since the 1980s. However, the hyperallergenicity or carcinogenicity effects of synthetic dyes have led to the increased research on natural pigments. Among the natural resources, bacterial pigments are a good alternative to synthetic pigments because of their significant properties. Bacterial pigments are also one of the emerging fields of research since it offers promising opportunities for different applications. Besides its use as safe coloring agents in the cosmetic and food industry, bacterial pigments also possess biological properties such as antimicrobial, antiviral, antioxidant and anticancer activities. This review article highlights the various types of bacterial pigments, the latest studies on the discovery of bacterial pigments and the therapeutic insights of these bacterial pigments which hopefully provides useful information, guidance and improvement in future study.
Collapse
Affiliation(s)
- Adzzie-Shazleen Azman
- Tropical Infectious Diseases Research and Education Centre, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Christina-Injan Mawang
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Sazaly Abubakar
- Tropical Infectious Diseases Research and Education Centre, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Pauer H, Hardoim CCP, Teixeira FL, Miranda KR, Barbirato DDS, de Carvalho DP, Antunes LCM, Leitão ÁADC, Lobo LA, Domingues RMCP. Impact of violacein from Chromobacterium violaceum on the mammalian gut microbiome. PLoS One 2018; 13:e0203748. [PMID: 30212521 PMCID: PMC6136722 DOI: 10.1371/journal.pone.0203748] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/20/2018] [Indexed: 12/03/2022] Open
Abstract
Violacein is a violet pigment produced by Chromobacterium violaceum that possesses several functions such as antibacterial, antiviral, antifungal, and antioxidant activities. The search for potential compounds and therapies that may interfere with and modulate the gut microbial consortia without causing severe damage and increased resistance is important for the treatment of inflammatory, allergic, and metabolic diseases. The aim of the present work was to evaluate the ability of violacein to change microbial patterns in the mammalian gut by favoring certain groups over the others in order to be used as a therapy for diseases associated with changes in the intestinal microflora. To do this, we used male Wistar rats, and administered violacein orally, in low (50 μg/ml) and high (500 μg/ml) doses for a month. Initially, the changes in the microbial diversity were observed by DGGE analyses that showed that the violacein significantly affects the gut microbiota of the rats. Pyrosequencing of 16S rDNA was then employed using a 454 GS Titanium platform, and the results demonstrated that higher taxonomic richness was observed with the low violacein treatment group, followed by the control group and high violacein treatment group. Modulation of the microbiota at the class level was observed in the low violacein dose, where Bacilli and Clostridia (Firmicutes) were found as dominant. For the high violacein dose, Bacilli followed by Clostridia and Actinobacteria were present as the major components. Further analyses are crucial for a better understanding of how violacein affects the gut microbiome and whether this change would be beneficial to the host, providing a framework for the development of alternative treatment strategies for intestinal diseases using this compound.
Collapse
Affiliation(s)
- Heidi Pauer
- Laboratório de Biologia de Anaeróbios, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Cristiane Cassiolato Pires Hardoim
- Laboratório de Interação Hospedeiro-Microbiota, Instituto de Biociências, Universidade Estadual Paulista, Campus do Litoral Paulista, São Vicente, SP, Brazil
| | - Felipe Lopes Teixeira
- Laboratório de Biologia de Anaeróbios, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Karla Rodrigues Miranda
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé, RJ, Brazil
| | | | - Denise Pires de Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro–Rio de Janeiro, Brazil
| | - Luis Caetano Martha Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Inovação em Doenças de Populações Negligenciadas, Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | - Leandro Araujo Lobo
- Laboratório de Biologia de Anaeróbios, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- * E-mail:
| | - Regina Maria Cavalcanti Pilotto Domingues
- Laboratório de Biologia de Anaeróbios, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
27
|
Tlili N, Tir M, Feriani A, Yahia Y, Allagui MS, Saadaoui E, El Cafsi M, Nasri N. Potential health advantages of Periploca laevigata: Preliminary phytochemical analysis and evaluation of in vitro antioxidant capacity and assessment of hepatoprotective, anti-inflammatory and analgesic effects. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.06.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
28
|
|
29
|
Antonisamy P, Dhanasekaran M, Kim HR, Jo SG, Agastian P, Kwon KB. Anti-inflammatory and analgesic activity of ononitol monohydrate isolated from Cassia tora L. in animal models. Saudi J Biol Sci 2017; 24:1933-1938. [PMID: 29551947 PMCID: PMC5851938 DOI: 10.1016/j.sjbs.2017.11.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 11/12/2022] Open
Abstract
Ononitol monohydrate (OM) was isolated from Cassia tora L. leaves. The anti-inflammatory and analgesic activities of OM have been examined in male Wistar rats and mice. The efficacy of OM against inflammation was studied by using carrageenan-induced paw oedema, croton oil-induced ear oedema, acetic acid-induced vascular permeability, cotton pellet-induced granuloma and adjuvant-induced arthritis. The analgesic activity of OM was assessed using the acetic acid-induced abdominal constriction response, formalin-induced paw licking response and the hot-plate test. In acute type inflammation models, maximum inhibitions of 50.69 and 61.06% (P < .05) were noted with 20 mg/kg of OM in carrageenan-induced hind paw oedema and croton oil-induced ear oedema, respectively. Treatment of OM (20 mg/kg) meaningfully (P < .05) reduced the granuloma tissue formation by cotton pellet study at a rate of 36.25%. OM (20 mg/kg) inhibited 53.64% of paw thickness in adjuvant-induced arthritis model. OM has also been produced significant (P < .05) analgesic activity in acetic acid-induced abdominal constriction response, formalin-induced paw licking response and in hot-plate test suggesting its peripheral and central analgesic potential. The outcomes of the present study proposed that OM influenced on the anti-inflammatory and analgesic activities.
Collapse
Affiliation(s)
- Paulrayer Antonisamy
- Department of Korean Physiology, Wonkwang University School of Korean Medicine, 460 Iksan-daero, Iksan City, Jeonbuk 570−749, Republic of Korea
| | - Muniyappan Dhanasekaran
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, India
| | - Ha-Rim Kim
- Department of Korean Physiology, Wonkwang University School of Korean Medicine, 460 Iksan-daero, Iksan City, Jeonbuk 570−749, Republic of Korea
| | - Sung-Gang Jo
- Department of Korean Physiology, Wonkwang University School of Korean Medicine, 460 Iksan-daero, Iksan City, Jeonbuk 570−749, Republic of Korea
| | - Paul Agastian
- Department of Plant Biology and Biotechnology, Loyola College, Chennai 600 034, Tamil Nadu, India
| | - Kang-Beom Kwon
- Department of Korean Physiology, Wonkwang University School of Korean Medicine, 460 Iksan-daero, Iksan City, Jeonbuk 570−749, Republic of Korea
| |
Collapse
|
30
|
Durán N, Justo GZ, Durán M, Brocchi M, Cordi L, Tasic L, Castro GR, Nakazato G. Advances in Chromobacterium violaceum and properties of violacein-Its main secondary metabolite: A review. Biotechnol Adv 2016; 34:1030-1045. [PMID: 27288924 DOI: 10.1016/j.biotechadv.2016.06.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 12/22/2022]
Abstract
Chromobacterium violaceum is important in the production of violacein, like other bacteria, such as Alteromonas, Janthinobacterium, Pseudoalteromonas, Duganella, Collimonas and Escherichia. Violacein is a versatile pigment, where it exhibits several biological activities, and every year, it shows increasing commercially interesting uses, especially for industrial applications in cosmetics, medicines and fabrics. This review on violacein focuses mainly on the last five years of research regarding this target compound and describes production and importance of quorum sensing in C. violaceum, mechanistic aspects of its biosynthesis, monitoring processes, genetic perspectives, pathogenic effects, antiparasitic and antimicrobial activities, immunomodulatory potential and uses, antitumor potential and industrial applications.
Collapse
Affiliation(s)
- Nelson Durán
- Institute of Chemistry, Biological Chemistry Laboratory, University of Campinas, CP 6154, CEP 13083-970 Campinas, SP, Brazil; NanoBioss, Institute of Chemistry, University of Campinas, Campinas, SP, Brazil; LNNano (CNPEM) Campinas, SP, Brazil.
| | - Giselle Z Justo
- Department of Cell Biology and Department of Biochemistry, Federal University of São Paulo (UNIFESP-Diadema), SP, Brazil
| | - Marcela Durán
- NanoBioss, Institute of Chemistry, University of Campinas, Campinas, SP, Brazil; Institute of Biology, Urogenital, Carcinogenesis and Immunotherapy Laboratory, University of Campinas, SP, Brazil
| | - Marcelo Brocchi
- Institute of Biology, Department Genetics, Evolution and Bioagents, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Livia Cordi
- NanoBioss, Institute of Chemistry, University of Campinas, Campinas, SP, Brazil; Institute of Biology, Department Genetics, Evolution and Bioagents, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Ljubica Tasic
- Institute of Chemistry, Biological Chemistry Laboratory, University of Campinas, CP 6154, CEP 13083-970 Campinas, SP, Brazil; NanoBioss, Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | - Guillermo R Castro
- Nanobiomaterials Laboratory, Applied Biotechnology Institute (CINDEFI, UNLP-CONICET CCT La Plata) - School of Sciences, Universidad Nacional de La Plata, La Plata, Argentina
| | - Gerson Nakazato
- Department of Microbiology, Biology Sciences Center, Londrina State University (UEL), Londrina, Brazil
| |
Collapse
|
31
|
Nigam PS, Luke JS. Food additives: production of microbial pigments and their antioxidant properties. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Alshatwi AA, Subash-Babu P, Antonisamy P. Violacein induces apoptosis in human breast cancer cells through up regulation of BAX, p53 and down regulation of MDM2. ACTA ACUST UNITED AC 2015; 68:89-97. [PMID: 26521020 DOI: 10.1016/j.etp.2015.10.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 08/24/2015] [Accepted: 10/16/2015] [Indexed: 12/30/2022]
Abstract
We aimed to explore the anticancer potential of violacein and its time, dose dependent mechanism of action in human MCF-7 breast cancer cells. We observed, violacein inhibit MCF-7 cells viability in a time and dose-dependent manner, IC50 value was 4.5 μM in 24 h, 1.7 μM in 48 h and 0.51 μM in 72 h. Violacein triggered generation of intra cellular ROS even from the lower doses, significant ROS production was observed from 0.25, 0.45 μM dose range and it is relative to higher doses. Further we fixed 0.45 μM and 4.5 μM as an experimental dose for relative dose dependent analysis. In nuclear staining, after 48 h 0.45 μM dose showed characteristic apoptotic morphological changes such as, 59% of cells in apoptosis and 11% of cells in necrotic stage, also in 72 h we found 68% in apoptosis and 12% in necrotic stage. However, 4.5 μM (IC50) dose of violacein, 78% of cells became apoptotic and 21% in necrotic after 48 h; but in 72 h only 61% cells are in apoptotic, necrosis was increased to 38%. Violacein increased both mitochondrial and extra mitochondrial apoptotic pathway related gene expressions; it was confirmed by increased CYP1A, GPX, GSK3β and TNF-α gene. Further, 0.45 and 4.5 μM of violacein increased apoptotic genes, such as Bax, p53, caspase 3, Fas, FADD and markedly reduced Bcl-2 and MDM2 expression levels to two fold when compared to control. In addition violacein upregulated poly ADP-ribose polymerase (PARP), CDKN1A and caspase-9 significantly (p≤0.05) when compared to control. Relative quantification of caspase-8 was differently expressed; there were no changes in 0.45 μM, but in 4.5 μM we found two fold increased caspase-8 expression. In conclusion, lower dose of violacein treatment induced apoptosis in human breast cancer MCF-7 cells through TNF-α and p53 dependent mitochondrial pathways.
Collapse
Affiliation(s)
- Ali A Alshatwi
- Cancer Molecular Biology Research Lab, Department of Food and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - P Subash-Babu
- Cancer Molecular Biology Research Lab, Department of Food and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - P Antonisamy
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonbuk National University, Biosafety Research Institute, 664-14 1GA, Duckjin-Dong, Duckjin-Gu, Jeonju City, Jeollabuk-Do 561-756, South Korea
| |
Collapse
|
33
|
Leal AMDS, de Queiroz JDF, de Medeiros SRB, Lima TKDS, Agnez-Lima LF. Violacein induces cell death by triggering mitochondrial membrane hyperpolarization in vitro. BMC Microbiol 2015; 15:115. [PMID: 26048053 PMCID: PMC4457087 DOI: 10.1186/s12866-015-0452-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 05/27/2015] [Indexed: 11/25/2022] Open
Abstract
Background Violacein is a purple pigment from Chromobacterium violaceum that possesses diverse biological and pharmacological properties. Among these, pro-oxidant and antioxidant activities have been suggested. However, the cytotoxic mechanisms induced by violacein are poorly understood and the improvement in knowledge regarding these cell death mechanisms will be useful to develop new therapeutic approaches. Considering this, in our work, we investigated the pro-oxidant effects of violacein in non-tumor (CHO-K1 and MRC-5) and tumor (HeLa) cell lines, searching for a better understanding of reactive oxygen species (ROS) production and cell death induction. Results Cytotoxicity induced by violacein was observed in the three cell lines; however, MRC-5 and HeLa cells were shown to be more sensitive to violacein treatment. Although punctual alterations in the antioxidant apparatus and increase in oxidative stress biomarkers was observed in some violacein concentrations, no association was found between increased oxidative stress and induction of cell death. However, the increase of mitochondrial membrane potential was observed. Conclusions In fact, the increase of mitochondrial membrane potential in MRC-5 and HeLa cells suggests that mitochondrial membrane hyperpolarization might be the main cause of cell death triggered by violacein.
Collapse
Affiliation(s)
- Angélica Maria de Sousa Leal
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, CEP 59072-970, Natal, RN, Brazil.
| | - Jana Dara Freires de Queiroz
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, CEP 59072-970, Natal, RN, Brazil.
| | | | - Tatjana Keesen de Souza Lima
- Departamento de Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal da Paraíba, CEP 58051-900, João Pessoa, PB, Brazil.
| | - Lucymara Fassarella Agnez-Lima
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, CEP 59072-970, Natal, RN, Brazil.
| |
Collapse
|
34
|
Hashimi SM, Xu T, Wei MQ. Violacein anticancer activity is enhanced under hypoxia. Oncol Rep 2015; 33:1731-6. [PMID: 25652759 DOI: 10.3892/or.2015.3781] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/29/2014] [Indexed: 11/05/2022] Open
Abstract
Current cancer treatments of solid tumours such as chemotherapy and radiotherapy, have yet to produce effective therapeutic results due to non-specific targeting. This has led to many complications, such as toxicities in cancer patients. The ability of natural compounds in inducing programmed cell death (apoptosis), a process dysregulated in cancer cells, has been extensively studied in recent studies. This study assessed the anti-proliferative activity of violacein in a number of human cancer cell lines under normal and hypoxic conditions. Furthermore, we investigated its effects in a tumour‑bearing subcutaneous mouse model. We also examined the ability of a tumour‑targeting Salmonella strain to produce violacein for local delivery within the tumour microenvironment. The results showed that hypoxia significantly increased the cytotoxic effects of violacein. The most significant reduction in the IC50 was in the HT29 (12.6-fold) and HCT116 (4.8-fold) colon cancer cell lines, HN5 head and neck squamous carcinoma cell line (6.5-fold), and MCF-7 breast ductal carcinoma cell line (4-fold). Among the cell lines tested for active caspase-3/7 activity, violacein only increased caspase-3/7 activity in the A549 non-small lung cancer cell line. In vivo efficacy of violacein showed that HN5 tumour‑bearing mice had regressed tumours during the treatment period and survival increased. The results also showed that transfer of the violacein biosynthetic cluster into the oncolytic strain VNP20009 of Salmonella resulted in the production of active violacein, suggesting targeted delivery of violacein by VNP20009. Taken together, our study has shown that hypoxia synergises the effects of violacein and the results from the in vivo administration of violacein require further investigation of violacein as an anticancer chemotherapeutic.
Collapse
Affiliation(s)
- Saeed M Hashimi
- Division of Molecular and Gene Therapies, Griffith Health Institute, School of Medical Science, Griffith University, Gold Coast, Qld 4215, Australia
| | - Tiefeng Xu
- Cancer Institute of Hainan Medical College, Affiliated Hospital of Hainan Medical College, Haikou, Hainan 570102, P.R. China
| | - Ming Q Wei
- Division of Molecular and Gene Therapies, Griffith Health Institute, School of Medical Science, Griffith University, Gold Coast, Qld 4215, Australia
| |
Collapse
|
35
|
Platt D, Amara S, Mehta T, Vercuyssee K, Myles EL, Johnson T, Tiriveedhi V. Violacein inhibits matrix metalloproteinase mediated CXCR4 expression: potential anti-tumor effect in cancer invasion and metastasis. Biochem Biophys Res Commun 2015; 455:107-12. [PMID: 25450700 DOI: 10.1016/j.bbrc.2014.10.124] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 10/25/2014] [Indexed: 11/16/2022]
Abstract
Matrix metalloproteinases (MMP-2 and -9) play an important role in the tumor metastasis through cleavage of proinflammatory cytokines. Violacein a small molecule produced by Chromobacterium violaceum and has been implicated with anti-cancer effects. In this study we investigated the molecular basis of violacein mediated downregulation of CXCL12/CXCR4, chemokine-receptor ligand interaction. Zymography analysis demonstrated that violacein significantly inhibited the cytokine (TNFα and TGFβ) mediated MMP-2 activation in MCF-7 breast cancer cell line. MMP-2 plays a critical role in the secretion of inflammatory chemokine, CXCL12, involved in cell migration and cancer metastasis. ELISA analysis demonstrated that violacein inhibited the secretion of CXCL12 from the activated MCF-7 cells. Further, we show that MMP-2/-9 act synergistically at two distinct steps towards the membrane expression of the tumor metastasis chemokine receptor, CXCR4. Violacein efficiently downregulated the CXCR4 membrane expression through MMP-9 inhibition. Taken together, these studies demonstrate a unique anti-tumor mechanism of action of violacein through reduction of CXCL12/CXCR4 interaction. These studies could offer a novel venue for violacein in cancer therapy.
Collapse
|
36
|
Tuli HS, Chaudhary P, Beniwal V, Sharma AK. Microbial pigments as natural color sources: current trends and future perspectives. Journal of Food Science and Technology 2014; 52:4669-78. [PMID: 26243889 DOI: 10.1007/s13197-014-1601-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/31/2014] [Accepted: 10/02/2014] [Indexed: 02/07/2023]
Abstract
Synthetic colors have been widely used in various industries including food, textile, cosmetic and pharmaceuticals. However toxicity problems caused by synthetic pigments have triggered intense research in natural colors and dyes. Among the natural Sources, pigment producing microorganisms hold a promising potential to meet present day challenges. Furthermore natural colors not only improve the marketability of the product but also add extra features like anti oxidant, anti cancer properties etc. In this review, we present various sources of microbial pigments and to explore their biological and clinical properties like antimicrobial, antioxidant, anticancer and anti inflammatory. The study also emphasizes upon key parameters to improve the bioactivity and production of microbial pigments for their commercial use in pharmacological and medical fields.
Collapse
Affiliation(s)
- Hardeep S Tuli
- Department of Biotechnology, M.M.E.C. Maharishi Markandeshwar University, Mullana, Ambala, 133207 Haryana India
| | - Prachi Chaudhary
- Department of Biotechnology, M.M.E.C. Maharishi Markandeshwar University, Mullana, Ambala, 133207 Haryana India
| | - Vikas Beniwal
- Department of Biotechnology, M.M.E.C. Maharishi Markandeshwar University, Mullana, Ambala, 133207 Haryana India
| | - Anil K Sharma
- Department of Biotechnology, M.M.E.C. Maharishi Markandeshwar University, Mullana, Ambala, 133207 Haryana India
| |
Collapse
|
37
|
Gastroprotective activity of violacein isolated from Chromobacterium violaceum on indomethacin-induced gastric lesions in rats: investigation of potential mechanisms of action. ScientificWorldJournal 2014; 2014:616432. [PMID: 25162059 PMCID: PMC4138890 DOI: 10.1155/2014/616432] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/18/2014] [Accepted: 06/26/2014] [Indexed: 12/21/2022] Open
Abstract
Chromobacterium violaceum, Gram-negative bacteria species found in tropical regions of the world, produces a distinct deep violet-colored pigment called violacein. In the present study, we investigated whether violacein can promote a gastroprotective effect and verified the possible mechanisms involved in this action. For this study, an indomethacin-induced gastric ulcer rat model was used. The roles of biomolecules such as MPO, PGE2, pro- and anti-inflammatory cytokines, growth factors, caspase-3, NO, K+ATP channels, and α2-receptors were investigated. Violacein exhibited significant gastroprotective effect against indomethacin-induced lesions, while pretreatment with L-NAME and glibenclamide (but not with NEM or yohimbine) was able to reverse this action. Pretreatment with violacein also restored cNOS level to normal and led to attenuation of enhanced apoptosis and gastric microvascular permeability. Our results suggest that violacein provides a significant gastroprotective effect in an indomethacin-induced ulcer model through the maintenance of some vital protein molecules, and this effect appears to be mediated, at least in part, by endogenous prostaglandins, NOS, K+ATP channel opening, and inhibition of apoptosis and gastric microvascular permeability.
Collapse
|
38
|
|
39
|
Mo J, Panichayupakaranant P, Kaewnopparat N, Nitiruangjaras A, Reanmongkol W. Topical anti-inflammatory and analgesic activities of standardized pomegranate rind extract in comparison with its marker compound ellagic acid in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:901-8. [PMID: 23743057 DOI: 10.1016/j.jep.2013.05.040] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 05/13/2013] [Accepted: 05/23/2013] [Indexed: 02/05/2023]
Affiliation(s)
- Jiao Mo
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110 Thailand
| | | | | | | | | |
Collapse
|
40
|
Bioactivity guided isolation of antiinflammatory, analgesic, and antipyretic constituents from the leaves of Pedilanthus tithymaloides (L.). Med Chem Res 2013. [DOI: 10.1007/s00044-012-0449-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Menezes CBA, Silva BP, Sousa IMO, Ruiz ALTG, Spindola HM, Cabral E, Eberlin MN, Tinti SV, Carvalho JE, Foglio MA, Fantinatti-Garboggini F. In vitro and in vivo antitumor activity of crude extracts obtained from Brazilian Chromobacterium sp isolates. ACTA ACUST UNITED AC 2012; 46:65-70. [PMID: 23090123 PMCID: PMC3854353 DOI: 10.1590/s0100-879x2012007500167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/15/2012] [Indexed: 11/22/2022]
Abstract
Natural products produced by microorganisms have been an important source of new substances and lead compounds for the pharmaceutical industry. Chromobacterium violaceum is a Gram-negative β-proteobacterium, abundant in water and soil in tropical and subtropical regions and it produces violacein, a pigment that has shown great pharmaceutical potential. Crude extracts of five Brazilian isolates of Chromobacterium sp (0.25, 2.5, 25, and 250 µg/mL) were evaluated in an in vitro antitumor activity assay with nine human tumor cells. Secondary metabolic profiles were analyzed by liquid chromatography and electrospray ionization mass spectrometry resulting in the identification of violacein in all extracts, whereas FK228 was detected only in EtCE 308 and EtCE 592 extracts. AcCE and EtCE 310 extracts showed selectivity for NCI/ADR-RES cells in the in vitro assay and were evaluated in vivo in the solid Ehrlich tumor model, resulting in 50.3 and 54.6% growth inhibition, respectively. The crude extracts of Chromobacterium sp isolates showed potential and selective antitumor activities for certain human tumor cells, making them a potential source of lead compounds. Furthermore, the results suggest that other compounds, in addition to violacein, deoxyviolacein and FK228, may be involved in the antitumor effect observed.
Collapse
Affiliation(s)
- C B A Menezes
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Campinas, SP, Brasil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Antioxidant, antinociceptive, and anti-inflammatory effects of carotenoids extracted from dried pepper (Capsicum annuum L.). J Biomed Biotechnol 2012; 2012:524019. [PMID: 23091348 PMCID: PMC3468166 DOI: 10.1155/2012/524019] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/21/2012] [Indexed: 01/21/2023] Open
Abstract
Carotenoids extracted from dried peppers were evaluated for their antioxidant, analgesic, and anti-inflammatory activities. Peppers had a substantial carotenoid content: guajillo 3406 ± 4 μg/g, pasilla 2933 ± 1 μg/g, and ancho 1437 ± 6 μg/g of sample in dry weight basis. A complex mixture of carotenoids was discovered in each pepper extract. The TLC analysis revealed the presence of chlorophylls in the pigment extract from pasilla and ancho peppers. Guajillo pepper carotenoid extracts exhibited good antioxidant activity and had the best scavenging capacity for the DPPH(+) cation (24.2%). They also exhibited significant peripheral analgesic activity at 5, 20, and 80 mg/kg and induced central analgesia at 80 mg/kg. The results suggest that the carotenoids in dried guajillo peppers have significant analgesic and anti-inflammatory benefits and could be useful for pain and inflammation relief.
Collapse
|
43
|
Pathway redesign for deoxyviolacein biosynthesis in Citrobacter freundii and characterization of this pigment. Appl Microbiol Biotechnol 2012; 94:1521-32. [PMID: 22391969 DOI: 10.1007/s00253-012-3960-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 01/20/2023]
Abstract
Violacein (Vio) is an important purple pigment with many potential bioactivities. Deoxyviolacein, a structural analog of Vio, is always synthesized in low concentrations with Vio in wild-type bacteria. Due to deoxyviolacein's low production and difficulties in isolation and purification, little has been learned regarding its function and potential applications. This study was the first effort in developing a stable and efficient biosynthetic system for producing pure deoxyviolacein. A recombinant plasmid with vioabce genes was constructed by splicing using an overlapping extension-polymerase chain reaction, based on the Vio-synthesizing gene cluster of vioabcde, originating from Duganella sp. B2, and was introduced into Citrobacter freundii. With the viod gene disrupted in the Vio synthetic pathway, Vio production was completely abolished and the recombinant C. freundii synthesized only deoxyviolacein. Interestingly, vioe gene expression was strongly stimulated in the viod-deleted recombinant strain, indicating that viod disruptions could potentially induce polar effects upon the downstream vioe gene within this small operon. Deoxyviolacein production by this strain reached 1.9 g/L in shaker flasks. The product exhibited significant acid/alkali and UV resistance as well as significant inhibition of hepatocellular carcinoma cell proliferation at low concentrations of 0.1-1 μM. These physical characteristics and antitumor activities of deoxyviolacein contribute to illuminating its potential applications.
Collapse
|
44
|
Meng Y, Liu B, Lei N, Zheng J, He Q, Li D, Zhao X, Shen F. Alpha-momorcharin possessing high immunogenicity, immunotoxicity and hepatotoxicity in SD rats. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:590-598. [PMID: 22172326 DOI: 10.1016/j.jep.2011.11.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 11/27/2011] [Accepted: 11/29/2011] [Indexed: 05/31/2023]
Abstract
UNLABELLED Momordica charantia L., a genus of Momordica Linn. of the family Cucurbitaceae, commonly known as bitter melon, has been widely planted in China, Southeast Asia, Turkey and other areas, and has been used as a medicine for a long time. Alpha-momorcharin (α-MMC) extracted and purified from bitter melon seeds has significant anti-tumor and anti-virus effects, and has potential toxicity as well, especially when taken overdose. However, up to date studies on its safety evaluation are still insufficient. AIMS OF THE STUDY The immunogenicity, immunotoxicity and general toxicity of α-MMC were investigated in rats and guinea-pigs, and the potential toxic effects of the agent on the body were also examined. MATERIALS AND METHODS The major ribosome-inactivating protein was isolated by column chromatographies from the protein extracted from bitter melon seeds, and was verified as α-MMC. After rats were immunized by α-MMC, titers of specific antibody to α-MMC in immunized rats serum were detected by indirect ELISA. Guinea-pigs and rats immunized with α-MMC were used to evaluate the active systemic anaphylaxis and passive cutaneous anaphylaxis induced by α-MMC relatively. α-MMC of 6.25 mg/kg, 2.08 mg/kg and 0.70 mg/kg was administered to rats every 2 days. Five weeks later, animals were sacrificed, and then, biochemical examination, analysis of bone marrow and peripheral blood cells, and histopathologic examination were performed. RESULTS The ribosome-inactivating protein isolated and purified from bitter melon seeds was identified as α-MMC. It induced high titer (1:46.4) of specific IgG and high positive results of the active systemic anaphylaxis and passive cutaneous anaphylaxis tests in animals. With the time of the α-MMC administration increasing, the body weights of the animals administered with α-MMC of 6.25 mg/kg decreased significantly, and point necrosis was also observed in liver cells, along with abnormal findings in serum chemistry, hematology and bone marrow histopathology test. The toxic effect lessened with the decrease of the dose of α-MMC and further reduced after the convalescence stage. CONCLUSIONS The results of the study show that α-MMC has high immunogenicity and immunotoxicity, and can cause obvious organic liver lesion.
Collapse
Affiliation(s)
- Yao Meng
- West China Hospital Laboratory of Nanomedicine, Sichuan University, Chengdu, PR China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Hoshino T. Violacein and related tryptophan metabolites produced by Chromobacterium violaceum: biosynthetic mechanism and pathway for construction of violacein core. Appl Microbiol Biotechnol 2011; 91:1463-75. [PMID: 21779844 DOI: 10.1007/s00253-011-3468-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 06/22/2011] [Accepted: 06/23/2011] [Indexed: 01/07/2023]
Abstract
Violacein is a natural violet pigment produced by several gram-negative bacteria, including Chromobacterium violaceum, Janthinobacterium lividum, and Pseudoalteromonas tunicata D2, among others. This pigment has potential medical applications as antibacterial, anti-trypanocidal, anti-ulcerogenic, and anticancer drugs. The structure of violacein consists of three units: a 5-hydroxyindole, an oxindole, and a 2-pyrrolidone. The biosynthetic origins of hydrogen, nitrogen, and carbon in the pyrrolidone nucleus were established by feeding experiments using various stable isotopically labeled tryptophans (Trps). Pro-S hydrogen of CH(2) at the 3-position of Trp is retained during biosynthesis. The nitrogen atom is exclusively from the α-amino group, and the skeletal carbon atoms originate from the side chains of the two Trp molecules. All three oxygen atoms in the violacein core are derived from molecular oxygen. The most interesting biosynthetic mechanism is the 1,2-shift of the indole nucleus on the left side of the violacein scaffold. The alternative Trp molecule is directly incorporated into the right side of the violacein core. This indole shift has been observed only in violacein biosynthesis, despite the large number of natural products having been isolated. There were remarkable advances in biosynthetic studies in 2006-2008. During the 3 years, most of the intermediates and the complete pathway were established. Two independent processes are involved: the enzymatic process catalyzed by the five proteins VioABCDE or the alternative nonenzymatic oxidative decarboxylation reactions. The X-ray crystallographic structure of VioE that mediates the indole rearrangement reaction was recently identified, and the mechanism of the indole shift is discussed here.
Collapse
Affiliation(s)
- Tsutomu Hoshino
- Department of Applied Biological Chemistry, Faculty of Agriculture, and Graduate School of Science and Technology, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata, 950-2181, Japan.
| |
Collapse
|
46
|
Durán M, Ponezi AN, Faljoni-Alario A, Teixeira MFS, Justo GZ, Durán N. Potential applications of violacein: a microbial pigment. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9654-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Zhu ZZ, Ma KJ, Ran X, Zhang H, Zheng CJ, Han T, Zhang QY, Qin LP. Analgesic, anti-inflammatory and antipyretic activities of the petroleum ether fraction from the ethanol extract of Desmodium podocarpum. JOURNAL OF ETHNOPHARMACOLOGY 2011; 133:1126-1131. [PMID: 21126565 DOI: 10.1016/j.jep.2010.11.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/25/2010] [Accepted: 11/18/2010] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Desmodium podocarpum is a plant that has been used in the folk medicine to treat febrile diseases, cough and bleeding wounds. However, there is no scientific basis or reports in the modern literature regarding its effectiveness as an analgesic, anti-inflammatory and antipyretic agent. AIMS OF THE STUDY The objective of this study is to evaluate the analgesic, anti-inflammatory and antipyretic activities of the petroleum ether fraction (PEF) from the ethanol extract of Desmodium podocarpum. MATERIALS AND METHODS PEF (50, 100, 200 mg/kg) was estimated for its pharmacological properties by using the acetic acid-induced writhing test, the hot plate test, the Carrageenan-induced rat paw edema model, the dimethylbenzene-induced mouse inflammation model, and the lipopolysaccharide (LPS)-induced rat fever model. In addition, the acute toxicity of PEF was also studied. RESULTS PEF significantly and dose-dependently inhibited the writhing responses in mice, increased reaction time of mice in the hot plate test, reduced carrageenan-induced paw edema in rats and the dimethylbenzene-induced ear edema in mice, and attenuated LPS-induced fever in rats. No death of mice was observed when orally administered PEF up to 4.2 g/kg. CONCLUSIONS These findings suggest that PEF possesses evident analgesic, anti-inflammatory and antipyretic activities, and has a favorable safety, which supports the use of Desmodium podocarpum as an analgesic, anti-inflammatory and antipyretic drug in the folk medicine.
Collapse
Affiliation(s)
- Zhan-Zhou Zhu
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, No. 325, Guohe Road, Shanghai 200433, PR China
| | | | | | | | | | | | | | | |
Collapse
|