1
|
Pogorzelska-Nowicka E, Hanula M, Pogorzelski G. Extraction of polyphenols and essential oils from herbs with green extraction methods - An insightful review. Food Chem 2024; 460:140456. [PMID: 39084104 DOI: 10.1016/j.foodchem.2024.140456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
The demand for polyphenols and essential oils (EOs) on the food market is high and grows every year. Its partially the result of the fact that these compounds can be used in formulation of clean label foods, a fast growing food sector. A significant share of polyphenols and EOs are extracted from herbs. The quality of the extracts is determined mainly by the extraction method. Conventional extraction techniques of phytochemicals are time-consuming, operate at high temperatures, and require usage of organic solvents and energy in large quantities. According to the United Nations Sustainability Development Plan, chemical processes should be replaced by green alternatives that would reduce the use of solvents and energy. Ultrasound-Assisted Extraction (UAE), Microwave-Assisted Extraction (MAE) and Cold Plasma-Assisted Extraction (CPAE) meets these criteria. The review shows that each of these techniques seems to be a great alternative for conventional extraction methods ensuring higher yields of bioactive compounds.
Collapse
Affiliation(s)
- Ewelina Pogorzelska-Nowicka
- Institute of Human Nutrition Sciences, Department of Technique and Food Product Development, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159 c street, 02-776 Warsaw, Poland.
| | - Monika Hanula
- Institute of Human Nutrition Sciences, Department of Technique and Food Product Development, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159 c street, 02-776 Warsaw, Poland.
| | - Grzegorz Pogorzelski
- The Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland.
| |
Collapse
|
2
|
Mohan RD, Kulkarni NV. Recent developments in the design of functional derivatives of edaravone and exploration of their antioxidant activities. Mol Divers 2024:10.1007/s11030-024-10940-7. [PMID: 39102113 DOI: 10.1007/s11030-024-10940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024]
Abstract
Edaravone, a pyrazalone derivative, is an antioxidant and free radical scavenger used to treat oxidative stress-related diseases. It is a proven drug to mitigate conditions prevailing to oxidative stress by inhibiting lipid peroxidation, reducing inflammation, and thereby preventing endothelial cell death. In recent years, considerable interest has been given by researchers in the derivatization of edaravone by adding varieties of substituents of versatile steric and functional properties to improve its antioxidant and pharmacological activity. This review accounts all the important methods developed for the derivatization of edaravone and the impacts of the structural modifications on the antioxidant activity of the motif.
Collapse
Affiliation(s)
- R Divya Mohan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India
| | - Naveen V Kulkarni
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India.
| |
Collapse
|
3
|
Jia Y, Leung SW. The efficacy of Chinese herbal drugs for adults with angina pectoris: Bayesian network meta-analysis of 331 RCTs involving 36,467 individuals. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117925. [PMID: 38395177 DOI: 10.1016/j.jep.2024.117925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/28/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hundreds of randomized controlled trials (RCT) on Chinese herbal drugs (CHDs) including Shexiang baoxin pill (BXP), compound Danshen dripping pill (DSP), compound Danshen tablet (DST), Suxiao jiuxin pill (JXP), Naoxintong capsule (NXT), Tongxinluo capsule (TXL), and Di'ao xinxuekang capsule (XXK) and conventional chemical drugs, such as isosorbide dinitrate (ISDN), for angina pectoris are available but have not been evaluated by a PRISMA-compliant network meta-analysis (NMA). AIM OF THE STUDY This study aimed to compare the efficacy of nine anti-anginal drugs through NMA on RCTs. METHODS RCTs of drug treatment for adult patients with angina pectoris for improvements in symptoms and electrocardiography were retrieved. Odds ratios and 95% credible intervals were computed to measure effect sizes. RCT quality was evaluated with the Cochrane risk of bias tool. Evidence synthesis was performed with Bayesian NMA. Essential analyses including subgroup analysis, sensitivity analysis, meta-regression analysis, publication bias analysis, and ranking analysis were conducted to assess the robustness of efficacies. Evidence strength was assessed with the GRADE approach. RESULTS A total of 331 RCTs with 36,467 participants were eligible. The overall quality of all included RCTs was low. Overall efficacy estimates from different approaches of evidential synthesis found that BXP, TXL, and DSP were more efficacious than DST and ISDN. Essential analyses indicated consistent efficacy estimates, insignificant publication bias, and corroborative ranking results. The overall GRADE evidence strength was low. CONCLUSION This comprehensive Bayesian NMA found BXP, TXL, and DSP to be the top three candidates among the seven tested CHDs for treating adults suffering from angina pectoris. However, the quality and the evidence strength of eligible RCTs were low. Further high-quality RCTs with more outcome measures and their NMAs are warranted. REGISTRATION PROSPERO CRD42014007035.
Collapse
Affiliation(s)
- Yongliang Jia
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Siu-Wai Leung
- Edinburgh Bayes Centre for AI Research in Shenzhen, College of Science and Engineering, University of Edinburgh, Scotland, UK.
| |
Collapse
|
4
|
Li Y, Liu L. Drug-drug interaction between danshensu and irbesartan and its potential mechanism. Xenobiotica 2024; 54:211-216. [PMID: 38591142 DOI: 10.1080/00498254.2024.2338183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
To uncover the effect of danshensu on irbesartan pharmacokinetics and its underlying mechanisms.To investigate the effect of danshensu on the pharmacokinetics of irbesartan, Sprague-Dawley rats (n = 6) were orally administered 30 mg/kg irbesartan alone (control group) or pre-treated with 160 mg/kg danshensu (experimental group). The effect of danshensu on the metabolic stability of irbesartan in RLMs was examined by LC-MS/MS method. The effect of danshensu on CYP2C9 activity was also determined.Danshensu markedly increased the AUC(0-t) (9573 ± 441 vs. 16157 ± 559 μg/L*h) and Cmax (821 ± 24 vs. 1231 ± 44 μg/L) of irbesartan. Danshensu prolonged the t1/2 (13.39 ± 0.98 vs. 16.04 ± 1.21 h) and decreased the clearance rate (2.27 ± 0.14 vs. 1.19 ± 0.10 L/h/kg) of irbesartan. Danshensu enhanced the metabolic stability of irbesartan in vitro with prolonged t1/2 (36.34 ± 11.68 vs. 48.62 ± 12.03 min) and reduced intrinsic clearance (38.14 ± 10.24 vs. 28.51 ± 9.06 μL/min/mg protein). Additionally, the IC50 value for CYP2C9 inhibition by danshensu was 35.74 μM.Danshensu enhanced systemic exposure of irbesartan by suppressing CYP2C9. The finding can also serve as a guidance for further investigation of danshensu-irbesartan interaction in clinical practice.
Collapse
Affiliation(s)
- Yuexia Li
- Department of the Pharmacy, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Liheng Liu
- Department of the Pharmacy, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
5
|
Wu Q, Ou C, Wang J, Wu X, Gao Z, Zhao Y, Lu G, Wu Z, Yu H. Jiawei Kongsheng Zhenzhong Pill: marker compounds, absorption into the serum (rat), and Q-markers identified by UPLC-Q-TOF-MS/MS. Front Pharmacol 2024; 15:1328632. [PMID: 38375037 PMCID: PMC10875140 DOI: 10.3389/fphar.2024.1328632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024] Open
Abstract
Background: The Jiawei Kongsheng Zhenzhong pill (JKZP), a Chinese herbal prescription comprised of eight Chinese crude drugs, has been historically employed to treat neurological and psychological disorders. Nevertheless, the ambiguous material basis severely hindered its progress and application. Purpose: The current study aimed to establish a rapid analytical method for identifying the chemical components of the JKZP aqueous extract and the components absorbed into the rat serum to investigate the quality markers (Q-markers) responsible for the neuroprotective effects of JKZP. Methods: The qualitative detection of the chemical components, prototype components, and metabolites of the aqueous extracts of JKZP, as well as the serum samples of rats that were administered the drug, was performed using the ultra-performance liquid chromatography- quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) technology. This analysis combined information from literature reports and database comparisons. Moreover, the study was conducted to anticipate the potential Q-markers for the neuroprotective effects of JKZP based on the "five principles" of Q-marker determination. Results: A total of 67 compounds and 111 serum components (comprising 33 prototypes and 78 metabolites) were detected and identified. Combining the principles of quality transmission and traceability, compound compatibility environment, component specificity, effectiveness, and measurability, the study predicted that five key compounds, namely, senkyunolide H, danshensu, echinacoside, loganin, and 3,6'-disinapoyl sucrose, may serve as potential pharmacological bases for the neuroprotective effects of JKZP. Conclusion: To summarize, the UPLC-Q-TOF-MS/MS technique can be employed to rapidly and accurately identify compounds in JKZP. Five active compounds have been predicted to be the Q-markers for the neuroprotective effects of JKZP. This discovery serves as a reference for improving quality, advancing further research and development, and utilizing Chinese herbal prescriptions.
Collapse
Affiliation(s)
- Qiaolan Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunxue Ou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiayun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaolin Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zu Gao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yue Zhao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangying Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Co-innovation Center of Classic TCM Formula, Jinan, China
| | - Zhichun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Co-innovation Center of Classic TCM Formula, Jinan, China
| | - Huayun Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Co-innovation Center of Classic TCM Formula, Jinan, China
| |
Collapse
|
6
|
Yan Y, Cao D, Liang J, Yang Q, Gao D, Shen C, Hu F, Li Z, Han Y, Cao X, Wang Q. Dangui Huoxue Preparation (DHP) Ameliorates Skin Fibrosis, Inflammation, and Vasculopathy in the Bleomycin-Induced Murine Model of Systemic Sclerosis. Adv Biol (Weinh) 2024; 8:e2300315. [PMID: 37759403 DOI: 10.1002/adbi.202300315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/24/2023] [Indexed: 09/29/2023]
Abstract
Systemic sclerosis (SSc) is an immune-mediated rheumatic disease that is characterized by fibrosis of the skin and internal organs and vasculopathy with poor prognosis. Dangui Huoxue Preparation (DHP) is a clinically effective traditional Chinese herbal formula for the treatment of SSc in the hospital. This study aims to investigate the therapeutic effects and underlying molecular mechanisms of DHP in the treatment of SSc. SSc mice models are induced by bleomycin (BLM). Tissues of DHP group, normal control group, and positive control drug Sanqi Tongshu Capsule (STC) group are collected for inflammation, fibrosis, and vasculopathy. Also, the human dermal fibroblasts (HDF) stimulated with TGF-β1 are analyzed for in vitro study. The expression levels of MCP-1, IFN-γ, IL-1β, IL-10, Fizz1, iNOS, and IL12p40, and the mRNA levels of Col1a1, Col1a2, Col3a1, and Col5a1 are significantly decreased in all DHP groups and STC group compare with those in the BLM group. The main drug of DHP inhibits the proliferation and migration of HDF, reduces Ctgf, Itgb3, Itgb5 expression, and also inhibits the Smad3 pathway. In conclusion, DHP can ameliorate SSc skin inflammation, fibrosis, and vasculopathy, possibly suppressing the TGF-β1/Smad3 signaling pathway through extracellular and intracellular mechanisms.
Collapse
Affiliation(s)
- Yuemei Yan
- Department of Dermatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P. R. China
- Department of Dermatology, The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, No. 1882 South Zhonghuan Road, Jiaxing, Zhejiang, 314000, P. R. China
| | - Dianyu Cao
- Department of Dermatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Jian Liang
- Department of Pharmacy, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Qiaorong Yang
- Department of Dermatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Di Gao
- Department of Dermatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Chen Shen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, No. 1278 Baode Road, Shanghai, 200443, P. R. China
| | - Feifei Hu
- Department of Dermatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Zheng Li
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P.R. China
| | - Yumei Han
- Department of Dermatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P.R. China
| | - Qiang Wang
- Department of Dermatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P. R. China
| |
Collapse
|
7
|
Suppression of Macrophage Activation by Sodium Danshensu via HIF-1α/STAT3/NLRP3 Pathway Ameliorated Collagen-Induced Arthritis in Mice. Molecules 2023; 28:molecules28041551. [PMID: 36838542 PMCID: PMC9963181 DOI: 10.3390/molecules28041551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
It is still a clinical challenge to sustain the remission of rheumatoid arthritis (RA); thus, identifying more effective and safer agents for RA treatment remains an urgent demand. We investigated the anti-arthritic activity and potential mechanism of action of sodium Danshensu (SDSS), a structurally representative water-soluble derivative of Danshen, on collagen-induced arthritis (CIA) mice. Our results showed that paw edema, synovium hyperplasia, bone destruction, and the serum levels of both IL-1β and IL-6 were ameliorated by SDSS (40 mg/kg·d) in CIA mice. In addition, there was no difference between SDSS and methotrexate (MTX, 2 mg/kg·3d) treatment in the above indicators. Further mechanism studies illustrated that SDSS inhibited IL-1β secretion by downregulating the HIF-1α/STAT3/NLRP3 pathway in macrophages. On the other hand, HIF-1α accumulation and HIF-1α/STAT3/NLRP3 pathway activation by IOX4 stimulation reduced the therapeutic effect of SDSS. These findings demonstrate that SDSS displays anti-arthritic activity in CIA mice and prevents proinflammatory cytokines secretion in macrophages by suppressing the HIF-1α/STAT3/NLRP3 pathway.
Collapse
|
8
|
Han R, Gao K, Jiang Y, Zhou J, Xu G, Dong J, Schwaneberg U, Ji Y, Ni Y. Self-Sufficient In Vitro Multi-Enzyme Cascade for Efficient Synthesis of Danshensu from l-DOPA. ACS Synth Biol 2023; 12:277-286. [PMID: 36412006 DOI: 10.1021/acssynbio.2c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Danshensu (DSS), a traditional Chinese medicine, is widely used for the treatment of cardiovascular and cancer diseases. Here, a one-pot multi-enzyme cascade pathway was designed for DSS synthesis from l-DOPA using tyrosine aminotransferase from Escherichia coli (EcTyrB) and d-isomer-specific 2-hydroxyacid dehydrogenase from Lactobacillus frumenti (LfD2-HDH). Glutamate dehydrogenase from Clostridium difficile (CdgluD) was also introduced for a self-sufficient system of α-ketoglutaric acid and NADH. Under optimal conditions (35 °C, pH 7.0, EcTyrB:LfD2-HDH:CdgluD = 3:2:1, glutamate:NAD+ = 1:1), 98.3% yield (at 20 mM l-DOPA) and space-time yield of 6.61 g L-1 h-1 (at 40 mM l-DOPA) were achieved. Decreased yields of DSS at elevated l-DOPA concentrations (100 mM) could be attributed to an inhibited CdgluD activity caused by NH4+ accumulation. This developed multi-enzyme cascade pathway (including EcTyrB, LfD2-HDH, and CdgluD) provides an efficient and sustainable approach for the production of DSS from l-DOPA.
Collapse
Affiliation(s)
- Ruizhi Han
- Key laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi214122, China.,Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen52074, Germany
| | - Ke Gao
- Key laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Yulin Jiang
- Key laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Jieyu Zhou
- Key laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Guochao Xu
- Key laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Jinjun Dong
- Key laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen52074, Germany
| | - Yu Ji
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen52074, Germany
| | - Ye Ni
- Key laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi214122, China
| |
Collapse
|
9
|
Revalorisation of Sage ( Salvia lavandulifolia Vahl) By-Product Extracts as a Source of Polyphenol Antioxidants for Novel Jelly Candies. Antioxidants (Basel) 2023; 12:antiox12010159. [PMID: 36671021 PMCID: PMC9854814 DOI: 10.3390/antiox12010159] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Sage (Salvia lavandulifolia Vahl) aqueous extracts (SE) obtained from distillation by-products were assessed as antioxidants for nutritionally enhanced jelly candies. Two experimental SEs with a different content of phenolic acids and flavonoids were tested: (i) SE38 (37.6 mg/g) and (ii) SE70 (69.8 mg/g), with salvianic and rosmarinic acids as main polyphenols, respectively. Flavour alteration, stability of sage polyphenols, physical quality traits and antioxidant capacity (AC) were studied in strawberry candies formulated without sugars and enriched with SEs at 0.25, 0.50 and 0.75 g/kg. Despite their different quantitative composition, SE38 and SE70 provided similar antioxidant properties, which were dose dependent. Salvianic and rosmarinic acids were stable without degrading to candy processing (up to 80 °C), keeping their antioxidant potential. There were no relevant differences in flavour or physical traits (pH, °Brix and CIELab colour) between untreated and SE-enriched strawberry candies. The addition of 0.75 g SE/kg resulted in relevant increases of candy AC: (i) from 30 to 38 mg GAE/100 g (total phenolics); (ii) from 10 to 17 mg TE/100 g (DPPH• radical scavenging assay); (iii) from 5 to 13 mg TE/100 g (ABTS·+ radical scavenging assay); (iv) from 84 to 163 µmol Fe2+/100 g (FRAP capacity) and (v) from to 75 to 83% (inhibition of deoxyribose damage). Sage distillation by-products can be revalorised as a source of natural antioxidants to produce healthier candies.
Collapse
|
10
|
Ameliorative effects of Danshensu from the functional food Salvia miltiorrhiza against arsenic trioxide-induced cardiac toxicity in vivo and in vitro: Involvement of inhibiting the AKT/IKK/NF-κB signaling pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
11
|
Ma L, Zhou Y, Zhang J, Yuan X, Zhao Y, Gu W, Pan J, Yang Z, Lu T, Yan G. Simultaneous Evaluation of Dissolution and Absorption Study of Compound Danshen Tablets and Capsules Based on Cellular Electrical Sensing Model. AAPS PharmSciTech 2022; 23:290. [DOI: 10.1208/s12249-022-02441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
|
12
|
Hu KS, Chen CL, Ding HR, Wang TY, Zhu Q, Zhou YC, Chen JM, Mei JQ, Hu S, Huang J, Zhao WR, Mei LH. Production of Salvianic Acid A from l-DOPA via Biocatalytic Cascade Reactions. Molecules 2022; 27:molecules27186088. [PMID: 36144828 PMCID: PMC9501478 DOI: 10.3390/molecules27186088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Salvianic acid A (SAA), as the main bioactive component of the traditional Chinese herb Salvia miltiorrhiza, has important application value in the treatment of cardiovascular diseases. In this study, a two-step bioprocess for the preparation of SAA from l-DOPA was developed. In the first step, l-DOPA was transformed to 3,4-dihydroxyphenylalanine (DHPPA) using engineered Escherichia coli cells expressing membrane-bound L-amino acid deaminase from Proteus vulgaris. After that, the unpurified DHPPA was directly converted into SAA by permeabilized recombinant E. coli cells co-expressing d-lactate dehydrogenase from Pediococcus acidilactici and formate dehydrogenase from Mycobacterium vaccae N10. Under optimized conditions, 48.3 mM of SAA could be prepared from 50 mM of l-DOPA, with a yield of 96.6%. Therefore, the bioprocess developed here was not only environmentally friendly, but also exhibited excellent production efficiency and, thus, is promising for industrial SAA production.
Collapse
Affiliation(s)
- Ke Shun Hu
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
- Department of Chemical and Biological Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Chong Le Chen
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Huan Ru Ding
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Tian Yu Wang
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Qin Zhu
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Yi Chen Zhou
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Jia Min Chen
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Jia Qi Mei
- Hangzhou Huadong Medicine Group Co. Ltd., Hangzhou 310011, China
| | - Sheng Hu
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Jun Huang
- Department of Chemical and Biological Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Wei Rui Zhao
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
- Correspondence: (W.R.Z.); (L.H.M.); Tel.: +86-574-881-301-30 (W.R.Z.); +86-571-879-531-61(L.H.M.)
| | - Le He Mei
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Jinhua Advanced Research Institute, Jinhua 321019, China
- Correspondence: (W.R.Z.); (L.H.M.); Tel.: +86-574-881-301-30 (W.R.Z.); +86-571-879-531-61(L.H.M.)
| |
Collapse
|
13
|
Ceccanti C, De Bellis L, Guidi L, Negro C, Pardossi A, Incrocci L. Effect of Blanching and Boiling on the Secondary Metabolism of Cultivated Cardoon Stalks: A Case Study of the Tuscany Region (Italy). Metabolites 2022; 12:metabo12080728. [PMID: 36005600 PMCID: PMC9414563 DOI: 10.3390/metabo12080728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
Cardoon (C. cardunculus var. altilis DC) is commonly cultivated in the Mediterranean area to produce stalks that are consumed once cooked. Before cooking, stalks are usually subjected to blanching, which means they are exposed to darkness for a few weeks. The present work analyzed the effect of field blanching carried out for 40 days in different ways (burying the stalks under soil or covering them with plastic sheet) on the total phenolic content (TPC), phenolic profile, cynaropicrin content (a bitter compound), and antioxidant activity (AA) of two cardoon cultivars. The nutraceutical quality of blanched cardoons was also investigated following boiling. The phenolic profile revealed a higher number of compounds in blanched stalks than in raw ones. The cynaropicrin content decreased in both cultivars after blanching, indicating a sensitivity to dark conditions and the effectiveness of blanching method in reducing its bitterness. The data presented contribute to improving the knowledge about the effect of blanching and boiling on the quality of cardoon stalks.
Collapse
Affiliation(s)
- Costanza Ceccanti
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy
- Interdepartmental Research Center, Nutrafood, “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
- Correspondence:
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy
- Interdepartmental Research Center, Nutrafood, “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Carmine Negro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Alberto Pardossi
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy
- Interdepartmental Research Center, Nutrafood, “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Luca Incrocci
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
14
|
Hung IL, Chung CJ, Hu WL, Liao YN, Hsu CY, Chiang JH, Hung YC. Chinese Herbal Medicine as an Adjunctive Therapy Improves the Survival Rate of Patients with Ischemic Heart Disease: A Nationwide Population-Based Cohort Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5596829. [PMID: 35832512 PMCID: PMC9273382 DOI: 10.1155/2022/5596829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
Background Ischemic heart disease (IHD) related to cardiovascular or cerebrovascular disease is the leading cause of mortality and an important issue of public health worldwide. The cost of long-term healthcare for IHD patients may result in a huge financial burden. Objectives To analyze the medical expenditure incurred for and survival of IHD patients treated with Chinese herbal medicine (CHM) and Western medicine. Methods Subjects were randomly selected from the National Health Insurance Research Database in Taiwan. The Cox proportional hazards regression model, Kaplan-Meier estimator, logrank test, chi-square test, and analysis of variance were applied. Landmark analysis was used to assess the cumulative incidence of death in IHD patients. Results We identified 11,527 users of CHM combined with Western medicine and 11,527 non-CHM users. CHM users incurred a higher medical expenditure for outpatient care within 1 (24,529 NTD versus 18,464 NTD, P value <0.0001) and 5 years (95,345 NTD versus 60,367 NTD, P value <0.0001). However, CHM users had shorter hospitalizations and lower inpatient medical expenditure (7 days/43,394 NTD in 1 year; 11 days/83,141 NTD in 5 years) than non-CHM users (11 days/72,939 NTD in 1 year; 14 days/107,436 NTD in 5 years). The CHM group's adjusted hazard ratio for mortality was 0.41 lower than that of the non-CHM group by Cox proportional hazard models with time-dependent exposure covariates. Danshen, Huang qi, Niu xi, Da huang, and Fu zi were the most commonly prescribed Chinese single herbs; Zhi-Gan-Cao-Tang, Xue-Fu-Zhu-Yu-Tang, Tian-Wang-Bu-Xin-Dan, Sheng-Mai-San, and Yang-Xin-Tang were the five most frequently prescribed herbal formulas in Taiwan. Conclusions Combining Chinese and Western medicine can reduce hospital expenditure and improve survival for IHD patients.
Collapse
Affiliation(s)
- I.-Ling Hung
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Chinese Medicine, Jen-Ai Hosiptal, Taichung, Taiwan
| | - Chia-Jung Chung
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Long Hu
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Kaohsiung Medical University College of Medicine, Kaohsiung, Taiwan
- Fooyin University College of Nursing, Kaohsiung, Taiwan
| | - Yen-Nung Liao
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chung-Y. Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Jen-Huai Chiang
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chiang Hung
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Jiang Y, Zhao Q, Li L, Huang S, Yi S, Hu Z. Effect of Traditional Chinese Medicine on the Cardiovascular Diseases. Front Pharmacol 2022; 13:806300. [PMID: 35387325 PMCID: PMC8978630 DOI: 10.3389/fphar.2022.806300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/31/2022] [Indexed: 02/03/2023] Open
Abstract
Background: Traditional Chinese medicine (TCM) is the health care system developed with the help of clinical trials that are based ideally on the scientific model of regulation. Objective: This systematic health care system relies on some specific unique theories and practical experiences to treat and cure diseases, thus enhancing the public's health. Review Methodology: The current review covers the available literature from 2000 to 2021. The data was collected from journals research articles, published books, thesis, and electronic databases, search engines such as Google Scholar, Elsevier, EBSCO, PMC, PubMed, ScienceDirect, Willey Online Library, Springer Link, and CNKI) searching key terms, cardiovascular disease, traditional Chinese medicines, natural products, and bioactive compounds. Full-length articles and abstracts were screened for the collection of information included in the paper. Results: Clinical trials on the TCM and basic research carried out on its mechanism and nature have led to the application and development of the perfect design of the research techniques, for example, twofold striking in acupuncture that aid in overcoming the limitations and resistances in integrating and applicability of these experiences and trials into the pre-existing biomedical models. Furthermore, TCM has also been utilized from ancient times to treat heart diseases in Asia, particularly in China, and is now used by people in many other areas. Cardiovascular disease (CVD) is mainly developed by oxidative stress. Hence antioxidants can be beneficial in treating this particular disease. TCM has a wide variety of antioxidant components. Conclusion: The current review article summarizes the underlying therapeutic property of TCM and its mechanism. It also overviews the evidence of the mechanism of TCM action in CVD prevention by controlling oxidative stress and its signaling pathway.
Collapse
Affiliation(s)
- Yang Jiang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China.,Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, China
| | - Qi Zhao
- Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, China
| | - Lin Li
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Shumin Huang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Shuai Yi
- Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, China
| | - Zhixi Hu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
16
|
Qi JY, Yang YK, Jiang C, Zhao Y, Wu YC, Han X, Jing X, Wu ZL, Chu L. Exploring the Mechanism of Danshensu in the Treatment of Doxorubicin-Induced Cardiotoxicity Based on Network Pharmacology and Experimental Evaluation. Front Cardiovasc Med 2022; 9:827975. [PMID: 35295262 PMCID: PMC8918531 DOI: 10.3389/fcvm.2022.827975] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/27/2022] [Indexed: 12/30/2022] Open
Abstract
Background Doxorubicin (DOX) is one of the most effective chemotherapeutic agents available; however, its use is limited by the risk of serious cardiotoxicity. Danshensu (DSS), an active ingredient in Salvia miltiorrhiza, has multiple cardioprotective effects, but the effect of DSS on DOX-induced cardiotoxicity has not been reported. Objectives Predicting the targets of DOX-induced cardiotoxicity and validating the protective effects and mechanisms of DSS. Methods (1) Using methods based on network pharmacology, DOX-induced cardiotoxicity was analyzed by data analysis, target prediction, PPI network construction and GO analysis. (2) The cardiotoxicity model was established by continuous intraperitoneal injection of 15 mg/kg of DOX into mice for 4 days and the protective effects and mechanism were evaluated by treatment with DSS. Results The network pharmacology results indicate that CAT, SOD, GPX1, IL-6, TNF, BAX, BCL-2, and CASP3 play an important role in this process, and Keap1 is the main target of DOX-induced cardiac oxidative stress. Then, based on the relationship between Keap1 and Nrf2, the Keap1-Nrf2/NQO1 pathway was confirmed by animal experiments. In the animal experiments, by testing the above indicators, we found that DSS effectively reduced oxidative stress, inflammation, and apoptosis in the damaged heart, and significantly alleviated the prolonged QTc interval caused by DOX. Moreover, compared with the DOX group, DSS elevated Keap1 content and inhibited Nrf2, HO-1, and NQO1. Conclusion The results of network pharmacology studies indicated that Keap1-Nrf2/NQO1 is an important pathway leading to DOX-induced cardiotoxicity, and the results of animal experiments showed that DSS could effectively exert anti-oxidative stress, anti-inflammatory and anti-apoptotic therapeutic effects on DOX-induced cardiotoxicity by regulating the expression of Keap1-Nrf2/NQO1.
Collapse
Affiliation(s)
- Jia-ying Qi
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ya-kun Yang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Chuan Jiang
- School of Preventive Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yang Zhao
- Department of Radiology and Interventional Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong-chao Wu
- Department of Radiology and Interventional Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xuan Jing
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Xuan Jing
| | - Zhong-lin Wu
- Department of Radiology and Interventional Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Zhong-lin Wu
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Li Chu
| |
Collapse
|
17
|
Muscella A, Stefàno E, De Bellis L, Nutricati E, Negro C, Marsigliante S. Antitumor and antimigration effects of Salvia clandestina L. extract on osteosarcoma cells. Ann N Y Acad Sci 2021; 1500:34-47. [PMID: 33960434 PMCID: PMC8518948 DOI: 10.1111/nyas.14601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/25/2021] [Accepted: 03/23/2021] [Indexed: 01/02/2023]
Abstract
Salvia clandestina L. is a wild perennial species present in the Salento area of Italy. Here, we examined the in vitro effects of an aqueous extract of S. clandestina L. on the MG-63 osteosarcoma cell line. The extract reduced osteosarcoma cell viability mainly by way of apoptosis, as we observed (1) upregulation of gene and protein expression of p53, cyclin-dependent kinase inhibitors p21WAF1 and p27Kip1 , and proapoptotic BAX; (2) activation of caspases; and (3) induction of a sub-G1 peak in the cell cycle. The mitogen-activated protein kinases (MAPKs) JNK1/2 and p38 are activated and involved in the intracellular effects of the S. clandestina extract, as preincubation with the JNK1/2 inhibitor SP600125 or the p38 inhibitor SB203580 significantly decreased S. clandestina extract-induced cytotoxicity and inhibited increase in p53, p21WAF1 , p27Kip1 , and BAX. SP600125 also inhibited mRNA levels for all the aforementioned proteins, while SB203580 only affected p53 mRNA. Furthermore, S. clandestina extract treatment counteracted epithelial-to-mesenchymal transition, inhibited cell migration, and decreased the expression and activity of matrix metalloproteinase MMP2. In addition, S. clandestina extract enhanced the cytotoxic activity of cisplatin on MG-63 cells through downregulation of the Akt/PKB protein kinase. We conclude that S. clandestina extract may be a novel agent for osteosarcoma treatment.
Collapse
Affiliation(s)
- Antonella Muscella
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Erika Stefàno
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Eliana Nutricati
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Carmine Negro
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Santo Marsigliante
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| |
Collapse
|
18
|
Effect of Drying Methods on Phenolic Compounds and Antioxidant Activity of Urtica dioica L. Leaves. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7010010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stinging nettle (Urtica dioica) is a plant well known in traditional medicine for its many beneficial properties, but the lack of standardization regarding the product to offer to consumers limits its diffusion. To this end, drying appears to be a useful technique to offer a low-cost product that can be stored for long time, but the different drying procedures may give rise to end-products of very different quality as nutraceutical and antioxidant compounds. Nettle leaves have been dehydrated employing freeze-drying (FD), oven-drying (OD) or heat pump drying (HPD) and compared with fresh leaves following water extraction to emulate the use by final consumers. Results indicate that the best dehydration technique is HPD, which apparently gives rise to more than a doubling of total phenols and antioxidant activity in the extract compared to the water extract obtained from fresh leaves but a reduction in the level of ascorbic acid of about 39%. In addition, the content of some phenolic compounds is 10 to over a hundred times higher in the extract after HPD than that obtained from fresh samples. This confirms that the dehydration technique should be tuned in relation to the compounds of greatest interest or value.
Collapse
|
19
|
Wang YL, Yin SJ, Yang FQ, Hu G, Zheng GC, Chen H. The Metabolism of Tanshinone IIA, Protocatechuic Aldehyde, Danshensu, Salvianolic Acid B and Hydroxysafflor Yellow A in Zebrafish. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190716164035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background:
Tanshinone IIA (TIIA), protocatechuic aldehyde (PA), danshensu (DSS), salvianolic
acid B (SAB) and hydroxysafflor yellow A (HSYA) are the major components of Salvia miltiorrhiza
Bge. (Danshen) and Carthamus tinctorius L. (Honghua) herbal pair. These active components
may contribute to the potential synergistic effects of the herbal pair.
Objective:
This study aimed to investigate the metabolites of TIIA, PA, DSS, SAB and HSYA in
zebrafish, and to explore the influence of HSYA on the metabolism of TIIA, PA, DSS, and SAB.
Method:
48 h post-fertilization zebrafish embryos were exposed either to each compound alone, TIIA
(0.89 μg/mL), PA (0.41 μg/mL), DSS (0.59 μg/mL), SAB (2.15 μg/mL), and HSYA (1.83 μg/mL) and
in combination with HSAY (1.83 μg/mL). The metabolites of TIIA, PA, DSS, SAB, and HSYA in
zebrafish were characterized using high-performance liquid chromatography/tandem mass spectrometry
(HPLC-MS/MS) and quantitatively determined by HPLC-MS with single and combined exposure.
Results:
Among the 26 metabolites detected and characterized from these five compounds, methylation,
hydroxylation, dehydrogenation, hydrolysis, sulfation and glucuronidation were the main phase I
and phase II metabolic reactions of these compounds, respectively. Furthermore, the results showed
that HSYA could either enhance or reduce the amount of TIIA, PA, DSS, SAB, and their corresponding
metabolites.
Conclusion:
The results provided a reference for the study on drug interactions in vivo. In addition, the
zebrafish model which required much fewer amounts of test samples, compared to regular mammal
models, had higher efficiency in predicting in vivo metabolism of compounds.
Collapse
Affiliation(s)
- Ya-Li Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Shi-Jun Yin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Guang Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Guo-Can Zheng
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
| | - Hua Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| |
Collapse
|
20
|
UPLC/MS-based untargeted metabolomics reveals the changes of metabolites profile of Salvia miltiorrhiza bunge during Sweating processing. Sci Rep 2020; 10:19524. [PMID: 33177654 PMCID: PMC7658355 DOI: 10.1038/s41598-020-76650-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Salvia miltiorrhiza has numerous compounds with extensive clinical application. "Sweating", a processing method of Traditional Chinese Medicine (TCM), results in great changes in pharmacology and pharmacodynamics. Previously, chromatogram of 10 characteristic metabolites in S. miltiorrhiza showed a significant difference after "Sweating". Due to the complexity of TCM, changes in metabolites should be investigated metabolome-wide after "Sweating". An untargeted UPLC/MS-based metabolomics was performed to discover metabolites profile variation of S. miltiorrhiza after "Sweating". Multivariate analysis was conducted to screen differential metabolites. Analysis indicated distinct differences between sweated and non-sweated samples. 10,108 substance peaks had been detected altogether, and 4759 metabolites had been identified from negative and positive ion model. 287 differential metabolites were screened including 112 up-regulated and 175 down-regulated and they belong to lipids and lipid-like molecules, and phenylpropanoid and polyketides. KEGG analysis showed the pathway of linoleic acid metabolism, and glyoxylate and dicarboxylate metabolism were mainly enriched. 31 and 49 identified metabolites were exclusively detected in SSM and NSSM, respectively, which mainly belong to carboxylic acids and derivatives, polyketides and fatty acyls. By mapping tanshinones and salvianolic acids to 4759 identified metabolites library, 23 characteristic metabolites had been identified, among which 11 metabolites changed most. We conclude that "Sweating'' has significant effect on metabolites content and composition of S. miltiorrhiza.
Collapse
|
21
|
Zhou H, He Y, Zheng Z, Liu Z, Song F, Liu S. Quantitative analysis and pharmacokinetic comparison of multiple bioactive components in rat plasma after oral administration of Qi-Shen-Ke-Li formula and its single-herb extracts using ultra-high-performance liquid chromatography-tandem mass spectrometry. Biomed Chromatogr 2020; 34:e4959. [PMID: 32726460 DOI: 10.1002/bmc.4959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/14/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022]
Abstract
Qi-Shen-Ke-Li (QSKL), a traditional Chinese formula prepared from six herbs, has long been used for the treatment of coronary heart disease and chronic heart failure. However, the herbal combination mechanism and underlying material basis of this multi-herbal formula are not clear. In this study, an ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method to simultaneously determine multiple bioactive compounds in QSKL was established and validated. Using the developed method, 18 bioactive components in rat plasma after oral administration of QSKL formula and its single herb extracts were quantified. Based on these results, pharmacokinetic (PK) parameters (T1/2 , Tmax , Cmax , AUC0-48h , and AUC0-∞ ) of the 18 bioactive components were analyzed and compared using PKSlover 2.0 PK software. The experimental data suggested that significant changes in PK profiles were observed between the QSKL formula and its single-herb extracts. The herbal combination in QSKL significantly influences the system exposure and the PK behaviors of the 18 bioactive components, indicating multicomponent interactions among the herbs. This study provides insight into the herbal combination mechanism and underlying material basis of the QSKL formula.
Collapse
Affiliation(s)
- Hui Zhou
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Pharmacy and Food Science, Zhuhai College of Jilin University, Zhuhai, China
| | - Yang He
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Pharmacy and Food Science, Zhuhai College of Jilin University, Zhuhai, China
| | - Zhong Zheng
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
22
|
Zhang Y, Zhang G, Liang Y, Wang H, Wang Q, Zhang Y, Zhang X, Zhang J, Chu L. Potential Mechanisms Underlying the Hepatic–Protective Effects of Danshensu on Iron Overload Mice. Biol Pharm Bull 2020; 43:968-975. [DOI: 10.1248/bpb.b19-01084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuanyuan Zhang
- School of Pharmacy, Hebei University of Chinese Medicine
| | - Gaohua Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine
| | - Yingran Liang
- School of Basic Medicine, Hebei University of Chinese Medicine
| | - Hongfang Wang
- School of Pharmacy, Hebei University of Chinese Medicine
| | - Qian Wang
- School of Pharmacy, Hebei University of Chinese Medicine
| | - Ying Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine
| | - Xuan Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine
| | - Jianping Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns
| |
Collapse
|
23
|
Xu H, He K, Li Y, Tao Y, Xu C, Hu Z, Wang T, Zhang C. Cytoprotective Effects Evaluation of a Novel Danshensu Derivative DEX-018 against Oxidative Stress Injury in HUVECs. Biol Pharm Bull 2020; 43:801-809. [PMID: 32132313 DOI: 10.1248/bpb.b19-00878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemic heart disease (IHD) is one of the most common cardiovascular diseases with high morbidity and mortality. Danshensu (DSS) is widely used in the treatment of coronary heart disease. In this study, the carboxy group of DSS was esterified with edaravone to synthesize the novel DSS derivative DEX-018 to achieve a synergistic protective effect and overcome the structural deficiency of DSS. The pharmacological effect of DEX-018 against tert-butyl hydrogen peroxide (t-BHP) induced oxidative damage in human umbilical vein endothelial cells (HUVECs) was evaluated. The results demonstrated that pretreatment with DEX-018 significantly increased cell viability and superoxide dismutase (SOD) activity and decreased the lactate dehydrogenase (LDH) leakage rate, malondialdehyde (MDA) level and intracellular reactive oxygen species (ROS) level. In addition, DEX-018 inhibited cell apoptosis and reversed the expression of apoptosis-related proteins (Bcl-2, Bax, and caspase-3) in HUVECs stimulated by t-BHP. Further study on the mechanism of DEX-018 revealed that the expression of p-Akt and p-extracellular signal-regulated kinase 1/2 (ERK1/2) was increased, which suggested that DEX-018 may protect HUVECs against t-BHP induced oxidative injury via the Akt and ERK1/2 signaling pathways. To further validate the correlation, CCK8 was used to detect cell viability after treatment with DEX-018 plus Akt inhibitor (MK2206) and phosphadylinositol 3-kinase (PI3K) inhibitor (LY294002). Compared with DEX-018 alone, MK2206 or LY294002 significantly decreased cell viability of HUVECs, indicating that the protective effect of DEX-018 against t-BHP induced oxidative injury was significantly weakened. It was further verified that the antioxidant and anti-apoptotic effects of DEX-018 were partly related to the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Honglei Xu
- School of Pharmacy, Second Military Medical University
| | - Kun He
- School of Pharmacy, Second Military Medical University
| | - Yi Li
- Shanghai University of Traditional Chinese Medicine
| | - Yulong Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University
| | - Chunfang Xu
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University
| | - Zhenlin Hu
- School of Pharmacy, Second Military Medical University
| | | | - Chuan Zhang
- School of Pharmacy, Second Military Medical University.,School of Medicine, Shanghai University
| |
Collapse
|
24
|
Yang L, Zhao X. Integrated Chinese and Western Medicine for Acute Guillain-barré Syndrome Treatment. Transl Neurosci 2020; 11:38-47. [PMID: 32161685 PMCID: PMC7053400 DOI: 10.1515/tnsci-2020-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/31/2020] [Indexed: 11/15/2022] Open
Abstract
Introduction Guillain-Barré syndrome (GBS) is a worldwide demyelinating polyradiculopathy and polyneuropathy. Currently, there is no specific drug for GBS, and established treatment is generally based on immune-modulating treatment with plasma exchange or intravenous immunoglobulin in combination with supportive care. This study aimed to investigate the efficiency of integrated Chinese and Western medicine for acute GBS treatment. Methods We enrolled 73 subjects, and randomly divided them into two groups: 35 cases in the traditional Chinese medicine (TCM) group, and 28 in the Control group. The Control group was treated with the common Western medicine for one month; and the TCM group was administrated with one month of common treatment combined with TCM medication. Results Compared to the controls, TCM significantly enhanced the treatment efficiency in symptom expression, including the TCM syndrome score, the activity of daily living score, Hughes functional score and sensory dysfunction assessment. The total effective rate of the TCM group was 94.29%, significantly better than controls (78.59%). Moreover, TCM provide better improvement in motor nerve conduction functions (distal motor latency and motor conduction velocity) and sensory nerve conduction functions (sensory conduction velocity and sensory nerve action potential) in median nerve, ulnar nerve, and common fibular nerve. Conclusion When combined with TCM administration, the GBS treatment could acquire better outcomes.
Collapse
Affiliation(s)
- Liu Yang
- Shanghai Dunlu Biomedical Technology Co., Ltd. Shanghai, China
| | - Xiumin Zhao
- The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
25
|
Chen L, Zhao F, Li W, Chen Z, Pan J, Xiong D, Li B, Zhang Q, Qu H. Evaluation of a multiple and global analytical indicator of batch consistency: traditional Chinese medicine injection as a case study. RSC Adv 2020; 10:10338-10351. [PMID: 35498564 PMCID: PMC9050359 DOI: 10.1039/c9ra10065b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/27/2020] [Indexed: 12/20/2022] Open
Abstract
This paper evaluates a multiple and global analytical indicator of batch consistency in traditional Chinese medicine injections (TCMIs) via a chemometrics tool, which is more comprehensive to appraise quality consistency of different batches of injections than the traditional method of fingerprint similarity. A commonly used TCMI, Salviae miltiorrhizae and ligustrazine hydrochloride injection (SLI), was employed as a model. With the aid of a chemometrics tool (principal component analysis, PCA), evaluation of multiple and global analytical indicators of batch consistency, which included saccharides, phenolic acids and inorganic salts (18 indicators in total), was carried out to appraise the quality consistency of 13 batches of injection provided by the Guizhou Baite Pharmaceutical Co., Ltd. (Guizhou, China). Compared with the traditional HPLC-UV fingerprint similarity evaluation, the method proposed in the paper can more comprehensively and correctly reflect the quality consistency of different batches of injections. In this paper, the multi-index evaluation result showed poor batch consistency, which was more consistent with the determination results, while the fingerprint similarity evaluation results still showed good batch consistency. The HPLC-UV fingerprint reflects only substances with UV absorption, but it is not able to reflect substances without UV absorption or weak UV absorption, which leads to inappropriate conclusions. Therefore, quality consistency of injections can be effectively appraised by evaluation of multiple and global analytical indicators, instead of HPLC-UV fingerprint only. For visualizing the batch consistency of the multiple and global analytical indicators, a heat map was used to represent the fluctuation. Furthermore, critical indicator identification was also applied to select several indicators that should be paid more attention during the process of quality control of injection. And the analysis result showed that Na+, fructose (Fru), glucose (Glc), manninotriose (Man), danshensu (DSS) and salvianolic acid B (SAB) are the indicators that should be given more attention when controlling the quality of injections, also called critical quality control indicators. The proposed method provides a reference for the quality control of TCMIs and has broad application potential.
Collapse
Affiliation(s)
- Libing Chen
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 China
| | - Fang Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 China
| | - Wenzhu Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 China
| | - Zeqi Chen
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 China
| | - Jianyang Pan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 China
| | - Difeifei Xiong
- Guizhou Baite Pharmaceutical Co., LTD Guizhou 550008 China
| | - Bailing Li
- Guizhou Baite Pharmaceutical Co., LTD Guizhou 550008 China
| | - Qingjie Zhang
- Guizhou Baite Pharmaceutical Co., LTD Guizhou 550008 China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 China
| |
Collapse
|
26
|
Wu X, Han X, Li L, Fan S, Zhuang P, Yang Z, Zhang Y. iTRAQ-based quantitative proteomics and target-fishing strategies reveal molecular signatures on vasodilation of Compound Danshen Dripping Pills. Chem Biol Interact 2019; 316:108923. [PMID: 31838051 DOI: 10.1016/j.cbi.2019.108923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/26/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
Angina pectoris can be used as an early warning for coronary artery disease. Vasodilation is an important mechanism of angina pectoris. Traditional Chinese medicine - Compound Danshen Dripping Pill (CDDP) is widely used to improve the symptoms of cardiovascular diseases (CVDs). To investigate the influence of vasodilation effect and underlying mechanisms of CDDP, we determined the vasodilation effect of thoracic aorta ring on rat induced by norepinephrine (NE). Then targets-fishing method was used to predict the potential mechanism of CDDP on vasodilation, based on the structures of the main components. Then, iTRAQ-based quantitative proteomics analysis was used for verification of the candidate target proteins and pathways to illustrate the underlying mechanisms. Furthermore, the differentially expressed proteins in the enriched pathways were validated by western blotting. In this study, we found that CDDP could significantly inhibit NE induced aortic contraction tension, and the mechanism may be related to platelet activation, cGMP - PKG signaling pathway and vascular smooth muscle contraction. The method provides a new way to uncover the vasodilation mechanism of CDDP, as well as other multi-component herbal medicines.
Collapse
Affiliation(s)
- Xin Wu
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xiujiang Han
- Department of Cardiology, Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, 300100, China
| | - Lili Li
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Simiao Fan
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Pengwei Zhuang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Zhen Yang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yanjun Zhang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
27
|
Salehi B, Selamoglu Z, Sener B, Kilic M, Kumar Jugran A, de Tommasi N, Sinisgalli C, Milella L, Rajkovic J, Flaviana B Morais-Braga M, F Bezerra C, E Rocha J, D M Coutinho H, Oluwaseun Ademiluyi A, Khan Shinwari Z, Ahmad Jan S, Erol E, Ali Z, Adrian Ostrander E, Sharifi-Rad J, de la Luz Cádiz-Gurrea M, Taheri Y, Martorell M, Segura-Carretero A, Cho WC. Berberis Plants-Drifting from Farm to Food Applications, Phytotherapy, and Phytopharmacology. Foods 2019; 8:522. [PMID: 31652576 PMCID: PMC6836240 DOI: 10.3390/foods8100522] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022] Open
Abstract
The genus Berberis includes about 500 different species and commonly grown in Europe, the United States, South Asia, and some northern areas of Iran and Pakistan. Leaves and fruits can be prepared as food flavorings, juices, and teas. Phytochemical analysis of these species has reported alkaloids, tannins, phenolic compounds and oleanolic acid, among others. Moreover, p-cymene, limonene and ocimene as major compounds in essential oils were found by gas chromatography. Berberis is an important group of the plants having enormous potential in the food and pharmaceutical industry, since they possess several properties, including antioxidant, antimicrobial, anticancer activities. Here we would like to review the biological properties of the phytoconstituents of this genus. We emphasize the cultivation control in order to obtain the main bioactive compounds, the antioxidant and antimicrobial properties in order to apply them for food preservation and for treating several diseases, such as cancer, diabetes or Alzheimer. However, further study is needed to confirm the biological efficacy as well as, the toxicity.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran.
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Campus, 51240 Nigde, Turkey.
| | - Bilge Sener
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey.
| | - Mehtap Kilic
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey.
| | - Arun Kumar Jugran
- G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Garhwal Regional Centre, Srinagar 246174, Uttarakhand, India.
| | - Nunziatina de Tommasi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy.
| | - Chiara Sinisgalli
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | - Luigi Milella
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | - Jovana Rajkovic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Medical Faculty, University of Belgrade, 11129 Belgrade, Serbia.
| | | | - Camila F Bezerra
- Laboratory of Applied Micology of Cariri-LMAC, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil.
| | - Janaína E Rocha
- Laboratory of Microbiology and Molecular Biology-LMBM, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil.
| | - Henrique D M Coutinho
- Laboratory of Microbiology and Molecular Biology-LMBM, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil.
| | - Adedayo Oluwaseun Ademiluyi
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure 340252, Nigeria.
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
- Department of Biotechnology, Hazara University Mansehra, Khyber Pakhtunkhwa 21120, Pakistan.
| | - Sohail Ahmad Jan
- Department of Biotechnology, Hazara University Mansehra, Khyber Pakhtunkhwa 21120, Pakistan.
| | - Ebru Erol
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, Mugla 48121, Turkey.
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA.
| | - Elise Adrian Ostrander
- Medical Illustration, Kendall College of Art and Design, Ferris State University, Grand Rapids, MI 49501, USA.
| | - Javad Sharifi-Rad
- Department of Pharmacology, Faculty of Medicine, Jiroft University of Medical Sciences, Jiroft 7861756447, Iran.
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.
- Research and Development Functional Food Centre (CIDAF), Bioregión Building, Health Science Technological Park, Avenida del Conocimiento s/n, 188016 Granada, Spain.
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile.
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion 4070386, Chile.
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.
- Research and Development Functional Food Centre (CIDAF), Bioregión Building, Health Science Technological Park, Avenida del Conocimiento s/n, 188016 Granada, Spain.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China.
| |
Collapse
|
28
|
Zhang J, Zhang Q, Liu G, Zhang N. Therapeutic potentials and mechanisms of the Chinese traditional medicine Danshensu. Eur J Pharmacol 2019; 864:172710. [PMID: 31586468 DOI: 10.1016/j.ejphar.2019.172710] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
Danshensu is a pure molecule derived from Danshen, which is the root of the herb Salvia miltiorrhiza. It has a clearly defined chemical structure and demonstrates therapeutic effects in cardiovascular diseases (e.g., myocardial ischemia and reperfusion, atherosclerosis, hypertension), cerebral lesions and disorders (e.g., ischemia, cognitive decline, and anxiety), and other health problems (e.g., thrombosis, tumorigenesis, pancreatitis). The mechanisms behind these effects include antioxidation, anti-apoptosis, vasodilation, inflammation regulation, lipidemia control, etc., through the PI3K/Akt-ERK1/2/Nrf2/HO-1, Bcl-2/Bax, eNOS and other molecular signaling pathways. Both Danshen and Danshensu might be more effective than classical cardiovascular drugs, and their combination yields improved therapeutic efficiency. Here, we provide an overview of these drugs for a better understanding of Danshensu as a promising Chinese traditional medicine.
Collapse
Affiliation(s)
- Jinli Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, PR China
| | - Qianqian Zhang
- Department of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, PR China
| | - Guang Liu
- Department of Cardiology, The Fourth Affiliated Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, PR China
| | - Ning Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, PR China.
| |
Collapse
|
29
|
Biosynthesis of D-danshensu from L-DOPA using engineered Escherichia coli whole cells. Appl Microbiol Biotechnol 2019; 103:6097-6105. [DOI: 10.1007/s00253-019-09947-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/06/2018] [Accepted: 08/25/2018] [Indexed: 10/26/2022]
|
30
|
Aghaei M, Motallebnezhad M, Ghorghanlu S, Jabbari A, Enayati A, Rajaei M, Pourabouk M, Moradi A, Alizadeh AM, Khori V. Targeting autophagy in cardiac ischemia/reperfusion injury: A novel therapeutic strategy. J Cell Physiol 2019; 234:16768-16778. [PMID: 30807647 DOI: 10.1002/jcp.28345] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/31/2022]
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of morbidity worldwide. Myocardial reperfusion is known as an effective therapeutic choice against AMI. However, reperfusion of blood flow induces ischemia/reperfusion (I/R) injury through different complex processes including ion accumulation, disruption of mitochondrial membrane potential, the formation of reactive oxygen species, and so forth. One of the processes that gets activated in response to I/R injury is autophagy. Indeed, autophagy acts as a "double-edged sword" in the pathology of myocardial I/R injury and there is a controversy about autophagy being beneficial or detrimental. On the basis of the autophagy effect and regulation on myocardial I/R injury, many studies targeted it as a therapeutic strategy. In this review, we discuss the role of autophagy in I/R injury and its targeting as a therapeutic strategy.
Collapse
Affiliation(s)
- Mehrdad Aghaei
- Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Morteza Motallebnezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Sajjad Ghorghanlu
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Jabbari
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Pharmacognosy, Faculty of Pharmacy and Medicinal Plants Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Rajaei
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mona Pourabouk
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Moradi
- Department of Physiology, Medical School, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
31
|
The Role of Traditional Chinese Medicine in the Regulation of Oxidative Stress in Treating Coronary Heart Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3231424. [PMID: 30918578 PMCID: PMC6409025 DOI: 10.1155/2019/3231424] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/19/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
Oxidative stress has been closely related with coronary artery disease. In coronary heart disease (CHD), an excess of reactive oxygen species (ROS) production generates endothelial cell and smooth muscle functional disorders, leading to a disequilibrium between the antioxidant capacity and prooxidants. ROS also leads to inflammatory signal activation and mitochondria-mediated apoptosis, which can promote and increase the occurrence and development of CHD. There are several kinds of antioxidative and small molecular systems of antioxidants, such as β-carotene, ascorbic acid, α-tocopherol, and reduced glutathione (GSH). Studies have shown that antioxidant treatment was effective and decreased the risk of CHD, but the effect of the treatment varies greatly. Traditional Chinese medicine (TCM) has been utilized for thousands of years in China and is becoming increasingly popular all over the world, especially for the treatments of cardiovascular diseases. This review will concentrate on the evidence of the action mechanism of TCM in preventing CHD by modulating oxidative stress-related signaling pathways.
Collapse
|
32
|
Luo J, Zhang L, Zhang X, Long Y, Zou F, Yan C, Zou W. Protective effects and active ingredients of Salvia miltiorrhiza Bunge extracts on airway responsiveness, inflammation and remodeling in mice with ovalbumin-induced allergic asthma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:168-177. [PMID: 30599896 DOI: 10.1016/j.phymed.2018.09.170] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/24/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Salvia miltiorrhiza Bunge (S. miltiorrhiza), a traditional Chinese medicine, has demonstrated antioxidant, anti-inflammatory, and antibacterial activities. However, its effects against asthma that shows chronic inflammation and oxidative damage remain unknown. PURPOSE To assess the effects of S. miltiorrhiza extracts on airway responsiveness, inflammation, and remodeling in ovalbumin (OVA)-induced asthmatic mice. METHODS Mice with ovalbumin (OVA)-induced allergic asthma were treated with S. miltiorrhiza extracts, and airway resistance (RL) to methacholine, inflammatory cell infiltration, Th1/Th2 cytokine levels, and airway remodeling were assessed. TGF-β1-induced BEAS-2B and MRC-5 cells were used to evaluate the effects of five S. miltiorrhiza compounds on epithelial-mesenchymal transition and fibrosis. RESULTS OVA-challenge resulted in remarkably increased RL, inflammatory cell infiltration, Th1/Th2 cytokine levels in BALF, goblet cell hyperplasia, collagen deposition, and airway wall thickening. Daily treatment with S. miltiorrhiza ethanolic (EE, 246 mg/kg) or water (WE, 156 mg/kg) extract significantly reduced OVA-induced airway inflammatory cell infiltration, Th1/Th2 cytokine amounts, and goblet cells hyperplasia. However, only WE remarkably decreased RL, collagen deposition, and airway wall thickening. Moreover, Chromatography showed that salvianic acid A and caffeic acid levels were much higher in WE than EE, while rosmarinic acid was slightly lower; salvianolic acid B and tanshinone IIA levels were much higher in EE than WE. Interestingly, caffeic acid and rosmarinic acid were more potent in reducing E-cadherin and vimentin levels in TGF-β1-induced BEAS-2B cells, and α-SMA and COL1A1 amounts in TGF-β1-induced MRC-5 cells. CONCLUSIONS Both S. miltiorrhiza WE and EE alleviate airway inflammation in mice with OVA-sensitized allergic asthma. S. miltiorrhiza WE is more potent in reducing responsiveness and airway remodeling.
Collapse
Affiliation(s)
- Junming Luo
- The Second Affiliated Hospital of Nanchang University, No. 1 Minde Avenue, Donghu Dist., Nanchang 330006, People's Republic of China
| | - Li Zhang
- Hunan Provincal Maternal and Child Health Hospital, No.53 Xiangchun Road, Changsha 410008, People's Republic of China
| | - Xinyi Zhang
- The Second Affiliated Hospital of Nanchang University, No. 1 Minde Avenue, Donghu Dist., Nanchang 330006, People's Republic of China
| | - Yingying Long
- The Second Affiliated Hospital of Nanchang University, No. 1 Minde Avenue, Donghu Dist., Nanchang 330006, People's Republic of China
| | - Fang Zou
- The Second Affiliated Hospital of Nanchang University, No. 1 Minde Avenue, Donghu Dist., Nanchang 330006, People's Republic of China
| | - Chunsong Yan
- The Second Affiliated Hospital of Nanchang University, No. 1 Minde Avenue, Donghu Dist., Nanchang 330006, People's Republic of China..
| | - Wei Zou
- Hunan Provincal Maternal and Child Health Hospital, No.53 Xiangchun Road, Changsha 410008, People's Republic of China.
| |
Collapse
|
33
|
Wang YH, Bai YJ, Fan TP, Zheng XH, Cai YJ. Reducing 3,4-dihydroxyphenylpyruvic acid to d-3,4-dihydroxyphenyllactic acid via a coenzyme nonspecific d-lactate dehydrogenase from Lactobacillus reuteri. J Appl Microbiol 2018; 125:1739-1748. [PMID: 30129993 DOI: 10.1111/jam.14077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 08/07/2018] [Accepted: 08/11/2018] [Indexed: 01/11/2023]
Abstract
AIMS The purpose of this work was to find an efficient enzyme to synthesize d-3,4-dihydroxyphenyllactic acid (d-DSS). METHODS AND RESULTS Nineteen lactic acid bacteria strains were screened for production of d-DSS using 3,4-dihydroxyphenylpyruvic acid (DPA) as a substrate. Lactobacillus reuteri JN516 exhibited the highest d-DSS yield. A nonspecific coenzyme, d-lactate dehydrogenase (d-LDH82319), from L. reuteri JN516 with high DPA reducing activity was identified. This enzyme reduced DPA to form d-DSS with excellent optical purity (enantioselectivity >99%). Its molecular weight was 35 kDa based on SDS-PAGE migration. The Michaelis-Menten constant (Km ), turnover number (kcat ), and catalytic efficiency (kcat /Km ) of d-LDH82319 for DPA were 0·09 mmol l-1 , 2·17 s-1 and 24·07 (mmol l-1 )-1 s-1 , respectively, with NADH as the coenzyme. The (Km ), (kcat ) and (kcat /Km ) of d-LDH82319 for DPA were 0·10 mmol l-1 , 0·13 s-1 and 1·30 (mmol l-1 )-1 s-1 , respectively, with NADPH as the coenzyme. The optimum temperature and pH of d-LDH82319 were 25°C and pH 8 respectively. Additionally, d-LDH82319 had a broad substrate range for alpha-keto acids, among which the activity of reducing pyruvate was the strongest; therefore, it belongs to the group of d-lactate dehydrogenases. d-LDH82319 and glucose dehydrogenase (GDH) were coexpressed to produce d-DSS from DPA. CONCLUSIONS d-LDH82319 from L. reuteri JN516 with high DPA reducing activity has the characteristics of a nonspecific coenzyme. SIGNIFICANCE AND IMPACT OF THE STUDY d-LDH82319 is the first reported coenzyme nonspecific d-lactate dehydrogenase with DPA-reducing activity. The coexpression system provided an effective method to produce d-DSS.
Collapse
Affiliation(s)
- Y H Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Y J Bai
- College of Life Sciences, Northwest University, Xi'an, China
| | - T-P Fan
- College of Life Sciences, Northwest University, Xi'an, China
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - X H Zheng
- College of Life Sciences, Northwest University, Xi'an, China
| | - Y J Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
34
|
Chen ZM, Huang L, Li MM, Meng L, Ying SC, Xu AM. Inhibitory effects of isocryptotanshinone on gastric cancer. Sci Rep 2018; 8:9307. [PMID: 29915371 PMCID: PMC6006307 DOI: 10.1038/s41598-018-27638-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 06/07/2018] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is one of the most common digestive malignancies globally, and the prognosis of patients with advanced tumors remains poor. Isocryptotanshinone (ICTS), isolated from Salvia miltiorrhiza, was found to inhibit the proliferation of lung and breast cancer cells. However, whether ICTS has anticancer activities against GC is unknown. In the present study, we reported that the proliferation of GC cells was inhibited by ICTS in a dose- and time-dependent manner. After treatment with ICTS, GC cells were arrested in the G1/G0 phase of cell cycle and the apoptotic cells were induced in a dose-dependent manner. Additionally, ICTS suppressed the expression of cell cycle- and apoptosis-associated proteins (e.g., Cyclin D1, phosphorylated Rb, E2F1, Mcl-1, Bcl-2, and Survivin). ICTS inhibited the phosphorylation of STAT3 in a dose-dependent manner. Down-regulated STAT3 attenuated the expression of Cyclin D1, p-Rb, and Survivin, which remarkably increased the sensitivity of ICTS in GC cells; overexpression of STAT3 restored the cell growth and proliferation and the protein expression suppressed by ICTS. ICTS also suppressed the xenograft tumor growth in BALB/c nude mice. Together, these data indicate that ICTS inhibits GC proliferation by inducing G1/G0 cell cycle arrest and apoptosis via inhibiting the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Zhang-Ming Chen
- Department of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Lei Huang
- Department of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Miao-Miao Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Lei Meng
- Department of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Song-Cheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - A-Man Xu
- Department of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
35
|
Abstract
The field of Traditional Chinese Medicine (TCM) represents a vast and largely untapped resource for modern medicine. Exemplified by the success of the antimalarial artemisinin, the recent years have seen a rapid increase in the understanding and application of TCM-derived herbs and formulations for evidence-based therapy. In this review, we summarise and discuss the developmental history, clinical background and molecular basis of an action for several representative TCM-derived medicines, including artemisinin, arsenic trioxide, berberine and Salvia miltiorrhiza or Danshen. Through this, we highlight important examples of how TCM-derived medicines have already contributed to modern medicine, and discuss potential avenues for further research.
Collapse
|
36
|
Discovery of a Novel ERp57 Inhibitor as Antiplatelet Agent from Danshen (Salvia miltiorrhiza). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9387568. [PMID: 29849736 PMCID: PMC5941821 DOI: 10.1155/2018/9387568] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/02/2018] [Accepted: 03/11/2018] [Indexed: 01/03/2023]
Abstract
Danshen (Salvia miltiorrhiza) is a well-known herb in Traditional Chinese Medicine (TCM) for treating cardiovascular diseases, but the underlying mechanism remains to be fully elucidated. Here, we showed that Danshen and its active ingredient rosmarinic acid exhibited antiplatelet effects through the inhibition of ERp57, a member of protein disulfide isomerase (PDI) with potential roles in platelet aggregation. Danshen extract (DSE) exhibited potent inhibitory effects on the platelet aggregation induced by arachidonic acid- (AA-) induced platelet aggregation and the enzymatic activity of ERp57. Rosmarinic acid was identified by virtual screening and molecular docking as one of the hit compounds for ERp57. In line with this, rosmarinic acid displayed significant inhibitory effect on ERp57 activity and inhibited AA-induced platelet aggregation. Taken together, we demonstrated for the first time that DSE and rosmarinic acid displayed inhibitory effects on the catalytic activity of ERp57, providing evidence of the regulatory role of ERp57 underlying the antiplatelet effects of Danshen.
Collapse
|
37
|
Nicolì F, Vergine M, Negro C, Luvisi A, Nutricati E, Aprile A, Rampino P, Sabella E, De Bellis L, Miceli A. Salvia clandestina L.: unexploited source of danshensu. Nat Prod Res 2018; 33:439-442. [DOI: 10.1080/14786419.2018.1452015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Francesca Nicolì
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Carmine Negro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Eliana Nutricati
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Alessio Aprile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Patrizia Rampino
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Antonio Miceli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
38
|
Zhang X, Yu Y, Cen Y, Yang D, Qi Z, Hou Z, Han S, Cai Z, Liu K. Bivariate Correlation Analysis of the Chemometric Profiles of Chinese Wild Salvia miltiorrhiza Based on UPLC-Qqq-MS and Antioxidant Activities. Molecules 2018; 23:molecules23030538. [PMID: 29495564 PMCID: PMC6017509 DOI: 10.3390/molecules23030538] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
To better understand the mechanisms underlying the pharmacological actions of Salvia miltiorrhiza, correlation between the chemical profiles and in vitro antioxidant activities in 50 batches of wild S. miltiorrhiza samples was analyzed. Our ultra-performance liquid chromatography-tandem mass spectrometry analysis detected twelve phenolic acids and five tanshinones and obtained various chemical profiles from different origins. In a principal component analysis (PCA) and cluster analysis, the tanshinones cryptotanshinone, tanshinone IIA and dihydrotanshinone I exhibited higher weights in PC1, whereas the phenolic acids danshensu, salvianolic acids A and B and lithospermic acid were highly loaded in PC2. All components could be optimized as markers of different locations and might be suitable for S. miltiorrhiza quality analyses. Additionally, the DPPH and ABTS assays used to comprehensively evaluate antioxidant activities indicated large variations, with mean DPPH and ABTS scavenging potencies of 32.24 and 23.39 μg/mL, respectively, among S. miltiorrhiza extract solutions. Notably, samples that exceeded the mean IC50 values had higher phenolic acid contents. A correlation analysis indicated a strong correlation between the antioxidant activities and phenolic acid contents. Caffeic acid, danshensu, rosmarinic acid, lithospermic acid and salvianolic acid B were major contributors to antioxidant activity. In conclusion, phenolic compounds were the predominant antioxidant components in the investigated plant species. These plants may be sources of potent natural antioxidants and beneficial chemopreventive agents.
Collapse
Affiliation(s)
- Xiaodan Zhang
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China.
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling 712100, China.
| | - Yange Yu
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Yesheng Cen
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Dongfeng Yang
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Zhechen Qi
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Zhuoni Hou
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Shuanglai Han
- Department of Research and Development, Focused Photonics Inc., Hangzhou 310018, China.
| | - Zengxuan Cai
- Department of Physicochemical and Toxicology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310018, China.
| | - Kuancheng Liu
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
39
|
Shao X, Zhao J, Wang X, Tao Y. Rapid Screening and Quantitative Determination of Active Components in Qing-Hua-Yu-Re-Formula Using UHPLC-Q-TOF/MS and HPLC-UV. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:8535127. [PMID: 29713560 PMCID: PMC5866887 DOI: 10.1155/2018/8535127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/24/2018] [Indexed: 05/19/2023]
Abstract
Qing-Hua-Yu-Re-Formula (QHYRF), a new herbal preparation, has been extensively used for treating diabetic cardiomyopathy. However, the chemical constituents of QHYRF remain uninvestigated. In the present study, rapid ultrahigh-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) was used to qualitatively analyze the components of QHYRF. Qualitative detection was performed on a Kromasil C18 column through the gradient elution mode, using acetonitrile-water containing 0.1% formic acid. Twenty-seven compounds were identified or tentatively characterized, including 12 phenolic acids, nine monoterpene glycosides, two flavonoids, three iridoids, and one unknown compound. Among these, six compounds were confirmed by comparing with standards. A high-performance liquid chromatography (HPLC) method was developed to simultaneously determine the following six active components in QHYRF: danshensu, paeoniflorin, acteoside, lithospermic acid, salvianolic acid B, and salvianolic acid C. These HPLC chromatograms were monitored at 254, 280, and 320 nm. The method was well validated with respect to specificity, linearity, limit of detection, limit of quantification, precision, stability, and recovery. The HPLC-UV method was successfully applied to 10 batches of QHYRF.
Collapse
Affiliation(s)
- Xin Shao
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Endocrinology, Nanjing Hospital of Traditional Chinese Medicine, Nanjing 210001, China
| | - Jie Zhao
- Pharmaceutical Animal Experimental Center, China Pharmaceutical University, Nanjing 210009, China
| | - Xu Wang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yi Tao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
40
|
Sun L, Gao J, Wang M, Zhang H, Liu Y, Ren X, Deng Y. Comprehensive evaluation of chemical stability of Xuebijing injection based on multiwavelength chromatographic fingerprints and multivariate chemometric techniques. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1350864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lili Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jie Gao
- School of Chemistry, Nankai University, Tianjin, China
| | - Meng Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huijie Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanru Deng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
41
|
Wang D, Yu W, Liu Y, Zhong G, Zhao Z, Yan X, Liu Q. Roles of Autophagy in Ischemic Heart Diseases and the Modulatory Effects of Chinese Herbal Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1401-1419. [PMID: 28946768 DOI: 10.1142/s0192415x17500768] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Autophagy is an evolutionarily conserved degradation process which eliminates dysfunctional proteins and cytoplasmic components to maintain homeostasis for cell survival. Increasing evidence has demonstrated the modulatory role of autophagy in ischemic heart diseases (IHDs). Traditionally, this process has been recognized as having protective functions, such as inhibiting atherosclerosis progression and reducing cell death during the ischemic phase. However, recent studies have suggested its dual roles in myocardial ischemia/reperfusion (MIR) injury. Excessive autophagy may play a deleterious role in cardiac function, due to overwhelming clearance of cellular constituents and proteins. Hence modulation of autophagy to increase cardiomyocyte survival and improve cardiac function is meaningful for the treatment of IHD. Chinese herbal medicine, including extractive compounds and patented drugs, has shown its potential role in treating IHD by addressing autophagy-related mechanisms. This review summarizes the updated knowledge on the molecular basis and modulatory role of autophagy in IHD and the recent progress of Chinese herbal medicine in its treatment.
Collapse
Affiliation(s)
- Dawei Wang
- * The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.,† Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510405, China
| | - Weiqing Yu
- ‡ Department of Cardiology, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510095, China
| | - Yuntao Liu
- * The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.,† Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510405, China
| | - Guofu Zhong
- * The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhen Zhao
- * The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xia Yan
- * The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.,† Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510405, China
| | - Qing Liu
- * The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.,§ Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
42
|
Zhang J, Jin Q, Deng Y, Hou J, Wu W, Guo D. New depsides from the roots of Salvia miltiorrhiza and their radical-scavenging capacity and protective effects against H 2 O 2 -induced H9c2 cells. Fitoterapia 2017. [DOI: 10.1016/j.fitote.2017.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
43
|
Danshensu accelerates angiogenesis after myocardial infarction in rats and promotes the functions of endothelial progenitor cells through SDF-1α/CXCR4 axis. Eur J Pharmacol 2017; 814:274-282. [PMID: 28864209 DOI: 10.1016/j.ejphar.2017.08.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 01/16/2023]
Abstract
The present study was performed to investigate the potential role of Danshensu in therapeutic angiogenesis in ischemic myocardium and endothelial progenitor cells (EPCs) function. The rat model of myocardial infarction (MI) injury was induced by left anterior descending coronary artery ligation for 14 days. Danshensu significantly alleviated myocardial ischemia injury by ameliorating left ventricular function and reducing infarct size. Furthermore, Danshensu potentiated post-ischemia neovascularization as evidenced by increased microvessel density in infarction boundary zone, as well as the expression of marker proteins vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). Moreover, Danshensu notably promoted stromal cell-derived factor-1α (SDF-1α) level in plasma and C-X-C chemokine receptor type 4 (CXCR4) expression in peri-infarction myocardium, and AMD3100 (CXCR4 antagonist) could reverse the angiogenic and cardioprotective effects of Danshensu. For in vitro study, EPCs were isolated from bone marrow of rats. On the one hand, Danshensu provided significant cytoprotection against hypoxia insult by boosting EPCs viability and inhibiting apoptosis, and upregulated Akt phosphorylation. On the other hand, Danshensu enhanced proangiogenic functions of EPCs on cell migration and tube formation, and increased SDF-1α and CXCR4 expression. Likewise, the cytoprotection and proangiogenic functions of Danshensu on EPCs were partly negated by LY294002 (PI3K antagonist) and CXCR4 siRNA, respectively. Taken together, our results suggested that the cardioprotection of Danshensu in MI rats may be related to promoting myocardial neovascularization. The possible mechanisms may involve improving EPCs survival in hypoxia condition through Akt phosphorylation, and accelerating EPCs proangiogenic functions through SDF-1α/CXCR4 axis.
Collapse
|
44
|
Identification of a Quality Marker (Q-Marker) of Danhong Injection by the Zebrafish Thrombosis Model. Molecules 2017; 22:molecules22091443. [PMID: 28858254 PMCID: PMC6151580 DOI: 10.3390/molecules22091443] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/12/2022] Open
Abstract
Quality-marker (Q-marker) is an emerging concept to ensure the quality and batch-to-batch consistency of Chinese medicine (CM). However, significant difficulties remain in the identification of Q-markers due to the unclear relationship between complex chemical compositions and the pharmacological efficacy of CM. In the present study, we proposed a novel strategy to identify the potential Q-marker of danhong injection (DHI) by an in vivo zebrafish thrombosis model. The anti-thrombotic effects of DHI and its major constituents were evaluated by the zebrafish model of arachidonic acid (AA)-induced thrombosis. The results indicated that DHI can attenuate tail venous thrombus and recover the decrease of heart red blood cell (RBC) intensity in a dose-dependent manner. The result that DHI prevented the formulation of thrombosis in zebrafish was also validated in the zebrafish thrombosis model with green fluorescence protein (GFP)-labeled hemoglobin. The major components of DHI, namely danshen (DS) and honghua (HH), as well as the major chemical constituents of DHI, also exerted anti-thrombotic effects, among which rosmarinic acid (RA) and p-coumaric acid (pCA) showed moderate anti-thrombotic effects. This is the first time that pCA from HH has been found as an active compound exerting an anti-thrombotic effect in a dose-dependent manner, whose IC50 value is approximately 147 μg/mL. By analyzing 10 batches of normal DHI samples and five abnormal samples by high-performance liquid chromatography (HPLC), we found the contents of pCA and RA can be positively correlated to the anti-thrombotic effect of DHI, suggesting that pCA and RA could be potential Q-markers of DHI to ensure batch-to-batch consistency. Our findings illustrated that discovering major active compounds from CM by in vivo pharmacological models can be a useful approach to identifying Q-markers of CM, and in vivo pharmacological models can be a potential tool to evaluate batch-to-batch consistency of CMs.
Collapse
|
45
|
Graphene nanoplatelets based matrix solid-phase dispersion microextraction for phenolic acids by ultrahigh performance liquid chromatography with electrochemical detection. Sci Rep 2017; 7:7496. [PMID: 28790408 PMCID: PMC5548748 DOI: 10.1038/s41598-017-07840-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/04/2017] [Indexed: 01/10/2023] Open
Abstract
A simple, rapid and eco-friendly approach based on matrix solid-phase dispersion microextraction (MSPDM) followed by ultrahigh performance liquid chromatography coupled with electrochemical detection (UHPLC-ECD) was presented for the microextraction and determination of six phenolic acids in a plant preparation (Danshen tablets). The parameters that influenced the extraction performance of phenolic acids were investigated and optimized. The optimal MSPDM conditions were determined as follows: sorbent, using graphene nanoplatelets with sample/sorbent ratio of 1:1, grinding time set at 60 s, and 0.2 mL of water as elution solvent. Under the optimum conditions, the validation experiments indicated that the proposed method exhibited good linearity (r2 ≥ 0.9991), excellent precision (RSD ≤ 4.57%), and satisfactory recoveries (82.34–98.34%). The limits of detection were from 1.19 to 4.62 ng/mL for six phenolic acids. Compared with other reported methods, this proposal required less sample, solvent and extraction time. Consequently, the proposed method was successfully used to the extraction and determination of phenolic acids in Danshen tablets.
Collapse
|
46
|
Yang X, Yang R, Li X, Zheng X. Danshensu attenuates aldosterone-induced cardiomyocytes injury through interfering p53 pathway. Mol Med Rep 2017; 16:4994-5000. [PMID: 28765913 DOI: 10.3892/mmr.2017.7137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/11/2017] [Indexed: 11/05/2022] Open
Abstract
Heart failure, characterized by impaired systolic and/or diastolic function, is a common cardiovascular disease. The loss of cardiomyocytes due to various factors, including through necrosis or apoptosis can result in heart failure. Previous studies have indicated that excessive aldosterone (ALD) serves an essential role in the process of heart failure, and the heart is also one of the direct targets of ALD, which can provoke hypertrophy and the apoptosis of cardiomyocytes. The aim of the present study was to investigate the protective effect of danshensu (DSS) on ALD‑induced cardiomyocytes injury. The present results demonstrated that DSS increased cell viability and decreased the leakage of lactate dehydrogenase in cardiomyocytes exposed to ALD. In addition, DSS decreased the apoptotic rate of ALD‑stimulated cells. Further research indicated that DSS‑ and cellular tumor antigen p53 (p53)‑alone or combination treatment was able to decrease the expression levels of apoptosis regulator BAX and caspase‑3, and increase the expression of apoptosis regulator B‑cell lymphoma (Bcl)‑2 in ALD‑stimulated cardiomyocytes. Taken together, the results of the present study suggest that DSS inhibits the harmful effects of ALD on cardiomyocytes via interfering with the p53 signaling pathway. These results provide novel evidence for the potential protective effects of DSS.
Collapse
Affiliation(s)
- Xiaohong Yang
- Department of Cardiovascular, Anyang District Hospital, Anyang, Henan 455000, P.R. China
| | - Rui Yang
- Department of Cardiovascular, Anyang District Hospital, Anyang, Henan 455000, P.R. China
| | - Xianli Li
- Department of Cardiovascular, Anyang District Hospital, Anyang, Henan 455000, P.R. China
| | - Xiaohui Zheng
- Department of Cardiovascular, Anyang District Hospital, Anyang, Henan 455000, P.R. China
| |
Collapse
|
47
|
Ke F, Wang Z, Song X, Ma Q, Hu Y, Jiang L, Zhang Y, Liu Y, Zhang Y, Gong W. Cryptotanshinone induces cell cycle arrest and apoptosis through the JAK2/STAT3 and PI3K/Akt/NFκB pathways in cholangiocarcinoma cells. Drug Des Devel Ther 2017; 11:1753-1766. [PMID: 28670110 PMCID: PMC5479302 DOI: 10.2147/dddt.s132488] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is the most common biliary tract malignancy in the world with high resistance to current chemotherapies and extremely poor prognosis. The main objective of this study was to investigate the inhibitory effects of cryptotanshinone (CTS), a natural compound isolated from Salvia miltiorrhiza Bunge, on CCA both in vitro and in vivo and to explore the underlying mechanisms of CTS-induced apoptosis and cell cycle arrest. METHODS The anti-tumor activity of CTS on HCCC-9810 and RBE cells was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay and colony forming assays. Cell cycle changes were detected by flow cytometric analysis. Apoptosis was detected by annexin V/propidium iodide double staining and Hoechst 33342 staining assays. The efficacy of CTS in vivo was evaluated using a HCCC-9810 xenograft model in athymic nude mice. The expression of key proteins involved in cell apoptosis and signaling pathway in vitro was analyzed by Western blot analysis. RESULTS CTS induced potent growth inhibition, S-phase arrest, apoptosis, and colony-forming inhibition in HCCC-9810 and RBE cells in a dose-dependent manner. Intraperitoneal injection of CTS (0, 10, or 25 mg/kg) for 4 weeks significantly inhibited the growth of HCCC-9810 xenografts in athymic nude mice. CTS treatment induced S-phase arrest with a decrease of cyclin A1 and an increase of cyclin D1 protein level. Bcl-2 expression was downregulated remarkably, while Bax expression was increased after apoptosis occurred. Additionally, the activation of JAK2/STAT3 and PI3K/Akt/NFκB was significantly inhibited in CTS-treated CCA cells. CONCLUSION CTS induced CCA cell apoptosis by suppressing both the JAK2/STAT3 and PI3K/Akt/NFκB signaling pathways and altering the expression of Bcl-2/Bax family, which was regulated by these two signaling pathways. CTS may serve as a potential therapeutic agent for CCA.
Collapse
Affiliation(s)
- Fayong Ke
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zheng Wang
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiaoling Song
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Qiang Ma
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yunping Hu
- Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lin Jiang
- Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yijian Zhang
- Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yingbin Liu
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yong Zhang
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
48
|
He S, Zhao T, Guo H, Meng Y, Qin G, Goukassian DA, Han J, Gao X, Zhu Y. Coordinated Activation of VEGF/VEGFR-2 and PPARδ Pathways by a Multi-Component Chinese Medicine DHI Accelerated Recovery from Peripheral Arterial Disease in Type 2 Diabetic Mice. PLoS One 2016; 11:e0167305. [PMID: 27930695 PMCID: PMC5145164 DOI: 10.1371/journal.pone.0167305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/12/2016] [Indexed: 12/26/2022] Open
Abstract
Diabetic mellitus (DM) patients are at an increased risk of developing peripheral arterial disease (PAD). Danhong injection (DHI) is a Chinese patent medicine widely used for several cardiovascular indications but the mechanism of action is not well-understood. We investigated the therapeutic potential of DHI on experimental PAD in mice with chemically induced as well as genetic (KKAy) type 2 DM and the overlapping signaling pathways regulating both therapeutic angiogenesis and glucose homeostasis. Compared with normal genetic background wild type (WT) mice, both DM mice showed impaired perfusion recovery in hind-limb ischemia (HLI) model. DHI treatment significantly accelerated perfusion recovery, lowered blood glucose and improved glucose tolerance in both DM models. Bioluminescent imaging demonstrated a continuous ischemia-induced vascular endothelial growth factor receptor 2 (VEGFR-2) gene expressions with a peak time coincident with the maximal DHI stimulation. Flow cytometry analysis showed a DHI-mediated increase in endothelial progenitor cell (EPC) mobilization from bone marrow to circulating peripheral blood. DHI administration upregulated the expression of vascular endothelial growth factor A (VEGF-A) and VEGF receptor-2 (VEGFR-2) in ischemic muscle. A cross talk between ischemia-induced angiogenesis and glucose tolerance pathways was analyzed by Ingenuity Pathway Analysis (IPA) which suggested an interaction of VEGF-A/VEGFR-2 and peroxisome proliferator-activated receptor δ (PPARδ)/peroxisome proliferator-activated receptor γ (PPARγ) genes. We confirmed that upregulation of VEGF-A/VEGFR-2 by DHI promoted PPARδ gene expression in both type 2 diabetic mice. Our findings demonstrated that a multi-component Chinese medicine DHI effectively increased blood flow recovery after tissue ischemia in diabetic mice by promoting angiogenesis and improving glucose tolerance through a concomitant activation of VEGF-A/VEGFR-2 and PPARδ signaling pathways.
Collapse
Affiliation(s)
- Shuang He
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Tiechan Zhao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Hao Guo
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Yanzhi Meng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Gangjian Qin
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Medicine-Cardiology and Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, United States of America
| | - David A. Goukassian
- Center of Biomedical Research, Tufts University School of Medicine, Boston, United States of America
| | - Jihong Han
- State Key Laboratory of Medicinal Chemical Biology, and Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin, China
| | - Xuimei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
- Molecular Cardiology Research Institute, Tufts Medical Center and Tufts University School of Medicine, Boston, United States of America
- * E-mail:
| |
Collapse
|
49
|
Li S, Ding W, Zhang X, Jiang H, Bi C. Development of a modularized two-step (M2S) chromosome integration technique for integration of multiple transcription units in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:232. [PMID: 27800017 PMCID: PMC5084435 DOI: 10.1186/s13068-016-0645-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Saccharomyces cerevisiae has already been used for heterologous production of fuel chemicals and valuable natural products. The establishment of complicated heterologous biosynthetic pathways in S. cerevisiae became the research focus of Synthetic Biology and Metabolic Engineering. Thus, simple and efficient genomic integration techniques of large number of transcription units are demanded urgently. RESULTS An efficient DNA assembly and chromosomal integration method was created by combining homologous recombination (HR) in S. cerevisiae and Golden Gate DNA assembly method, designated as modularized two-step (M2S) technique. Two major assembly steps are performed consecutively to integrate multiple transcription units simultaneously. In Step 1, Modularized scaffold containing a head-to-head promoter module and a pair of terminators was assembled with two genes. Thus, two transcription units were assembled with Golden Gate method into one scaffold in one reaction. In Step 2, the two transcription units were mixed with modules of selective markers and integration sites and transformed into S. cerevisiae for assembly and integration. In both steps, universal primers were designed for identification of correct clones. Establishment of a functional β-carotene biosynthetic pathway in S. cerevisiae within 5 days demonstrated high efficiency of this method, and a 10-transcriptional-unit pathway integration illustrated the capacity of this method. CONCLUSIONS Modular design of transcription units and integration elements simplified assembly and integration procedure, and eliminated frequent designing and synthesis of DNA fragments in previous methods. Also, by assembling most parts in Step 1 in vitro, the number of DNA cassettes for homologous integration in Step 2 was significantly reduced. Thus, high assembly efficiency, high integration capacity, and low error rate were achieved.
Collapse
Affiliation(s)
- Siwei Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308 China
| | - Wentao Ding
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308 China
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308 China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308 China
| | - Changhao Bi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308 China
| |
Collapse
|
50
|
Zhou X, Choi PS, Yang JM, Or PMY, Hoi PM, Lee SMY, Leung GPH, Ngai SM, Kong SK, Ho HP, Wong MYM, Chan SW, Yeung JHK, Kwan YW. Chemical and pharmacological evaluations on the extract of Scutellaria baicalensis Georgi (Huang-Qin) prepared by various extraction methods. SPRINGERPLUS 2016; 5:1438. [PMID: 27652014 PMCID: PMC5005245 DOI: 10.1186/s40064-016-3115-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/19/2016] [Indexed: 11/30/2022]
Abstract
Background This study reported a comprehensive approach (comparing the extraction yields, chemical profiles, antioxidant properties and CYP450-inhibitory effects) to evaluated the effectiveness of various extraction methods [microwave-assisted extraction using water (MAE-W), heat reflux extraction using water (HRE-W), ultrasonic extraction using 70 % ethanol and ultrasonic extraction using ethanol (UE-E)] for Huang-Qin (HQ), the dried root of Scutellaria baicalensis Georgi. Results The HQ extraction efficiency by MAE-W was the best. The chemical profiles of extracts obtained using HRE-W and MAE-W were similar; whereas more flavones but less flavone glycosides were detected in the UE-E extract. There was no difference in the antioxidant properties among different extracts. In vitro human liver microsome assays illustrated that all extracts possessed herb–drug interaction potentials but the UE-E extract are shown with a potent interaction with CYP3A4-metabolized drugs. Conclusion MAE-W is a favorable method for the preparation of HQ extracts based on extraction yield, pharmacological properties and safety.
Collapse
Affiliation(s)
- Xuelin Zhou
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Pou Seng Choi
- Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jia-Ming Yang
- School of Chinese Medicine, Faculty of Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Penelope M Y Or
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Pui Man Hoi
- Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Simon M Y Lee
- Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - George P H Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Sai Ming Ngai
- School of Life Sciences, Faculty of Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Siu Kai Kong
- School of Life Sciences, Faculty of Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Pui Ho
- Department of Electronic Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Melody Y M Wong
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shun Wan Chan
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.,Department of Food and Health Sciences, Faculty of Science and Technology, The Technological and Higher Education Institute of Hong Kong, Hong Kong, China
| | - John H K Yeung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiu Wa Kwan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|