1
|
Strik H, Efferth T, Kaina B. Artesunate in glioblastoma therapy: Case reports and review of clinical studies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155274. [PMID: 38142662 DOI: 10.1016/j.phymed.2023.155274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/22/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Artesunate, a derivative of the active ingredient artemisinin from Artemisia annua L. used for centuries in the traditional Chinese medicine, is being applied as front-line drug in malaria treatment. As it is cytotoxic for cancer cells, trials are ongoing to include this drug as supplement in cancer therapy. In glioblastoma cells, artesunate was shown to induce oxidative stress, DNA base damage and double-strand breaks (DSBs), apoptosis, and necroptosis. It also inhibits DNA repair functions and bears senolytic activity. Compared to ionizing radiation, DNA damages accumulate over the whole exposure period, which makes the agent unique in its genotoxic profile. Artesunate has been used in adjuvant therapy of various cancers. PURPOSE As artesunate has been used in adjuvant therapy of different types of cancer and clinical trials are lacking in brain cancer, we investigated its activity in glioma patients with focus on possible side effects. STUDY DESIGN Between 2014 and 2020, twelve patients were treated with artesunate for relapsing glioma and analyzed retrospectively: 8 males and 4 females, median age 45 years. HISTOLOGY 4 glioblastomas WHO grade 4, 5 astrocytomas WHO grade 3, 3 oligodendrogliomas grade 2 or 3. All patients were pretreated with radiation and temozolomide-based chemotherapy. Artesunate 100 mg was applied twice daily p.o. combined with dose-dense temozolomide alone (100 mg/m2 day 1-5/7, 10 patients) or with temozolomide (50 mg/m2 day 1-5/7) plus lomustine (CCNU, 40 mg day 6/7). Blood count, C-reactive protein (CRP), liver enzymes, and renal parameters were monitored weekly. RESULTS Apart from one transient grade 3 hematological toxicity, artesunate was well tolerated. No liver toxicity was observed. While 8 patients with late stage of the disease had a median survival of 5 months after initiation of artesunate treatment, 4 patients with treatment for remission maintenance showed a median survival of 46 months. We also review clinical trials that have been performed in other cancers where artesunate was included in the treatment regimen. CONCLUSIONS Artesunate administered at a dose of 2 × 100 mg/day was without harmful side effects, even if combined with alkylating agents used in glioma therapy. Thus, the phytochemical, which is also utilized as food supplement, is an interesting, well tolerated supportive agent useful for long-term maintenance treatment. Being itself cytotoxic on glioblastoma cells and enhancing the cytotoxicity of temozolomide as well as in view of its senolytic activity, artesunate has clearly a potential to enhance the efficacy of malignant brain cancer therapy.
Collapse
Affiliation(s)
- Herwig Strik
- Department of Neurology, Sozialstiftung Bamberg, Bamberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| |
Collapse
|
2
|
Jung EJ, Kim HJ, Shin SC, Kim GS, Jung JM, Hong SC, Kim CW, Lee WS. Artemisia annua L. Polyphenols Enhance the Anticancer Effect of β-Lapachone in Oxaliplatin-Resistant HCT116 Colorectal Cancer Cells. Int J Mol Sci 2023; 24:17505. [PMID: 38139333 PMCID: PMC10743427 DOI: 10.3390/ijms242417505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Recent studies suggest that the anticancer activity of β-lapachone (β-Lap) could be improved by different types of bioactive phytochemicals. The aim of this study was to elucidate how the anticancer effect of β-Lap is regulated by polyphenols extracted from Korean Artemisia annua L. (pKAL) in parental HCT116 and oxaliplatin-resistant (OxPt-R) HCT116 colorectal cancer cells. Here, we show that the anticancer effect of β-Lap is more enhanced by pKAL in HCT116-OxPt-R cells than in HCT116 cells via a CCK-8 assay, Western blot, and phase-contrast microscopy analysis of hematoxylin-stained cells. This phenomenon was associated with the suppression of OxPt-R-related upregulated proteins including p53 and β-catenin, the downregulation of cell survival proteins including TERT, CD44, and EGFR, and the upregulation of cleaved HSP90, γ-H2AX, and LC3B-I/II. A bioinformatics analysis of 21 proteins regulated by combined treatment of pKAL and β-Lap in HCT116-OxPt-R cells showed that the enhanced anticancer effect of β-Lap by pKAL was related to the inhibition of negative regulation of apoptotic process and the induction of DNA damage through TERT, CD44, and EGFR-mediated multiple signaling networks. Our results suggest that the combination of pKAL and β-Lap could be used as a new therapy with low toxicity to overcome the OxPt-R that occurred in various OxPt-containing cancer treatments.
Collapse
Affiliation(s)
- Eun Joo Jung
- Department of Internal Medicine, Institute of Medical Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 15 Jinju-daero 816 Beon-gil, Jinju 52727, Republic of Korea;
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
| | - Sung Chul Shin
- Department of Chemistry, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Jin-Myung Jung
- Department of Neurosurgery, Institute of Medical Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea;
| | - Soon Chan Hong
- Department of Surgery, Institute of Medical Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea;
| | - Choong Won Kim
- Department of Biochemistry, Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea;
| | - Won Sup Lee
- Department of Internal Medicine, Institute of Medical Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 15 Jinju-daero 816 Beon-gil, Jinju 52727, Republic of Korea;
| |
Collapse
|
3
|
Guo Z, Zhang Q, Zhang Y, Wu C, Zheng Y, Tong F, Zhang L, Lu R, Pan X, Tan H, Lv Z. Effects of exogenous indole-3-acetic acid on the density of trichomes, expression of artemisinin biosynthetic genes, and artemisinin biosynthesis in Artemisia annua. Biotechnol Appl Biochem 2023; 70:1870-1880. [PMID: 37424116 DOI: 10.1002/bab.2489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 06/14/2023] [Indexed: 07/11/2023]
Abstract
Artemisinin is the most practical medication for the treatment of malaria, but is only very minimally synthesized in Artemisia annua, significantly less than the market needs. In this study, indole-3-acetic acid (IAA) was used to investigate its effects on trichomes, artemisinin accumulation, and biosynthetic gene expression in A. anuua. The results showed that exogenous IAA could contribute to the growth and development of A. annua and increase the density of trichomes. Analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) indicated that artemisinin and dihydroartemisinic acid (DHAA) contents were increased by 1.9-fold (1.1 mg/g) and 2.1-fold (0.51 mg/g) after IAA treatment in comparison with control lines (CK), respectively. Furthermore, quantitative real-time PCR results showed that AaADS, AaCYP71AV1, AaALDH1, and AaDBR2, four critical enzyme genes for the biosynthesis of artemisinin, had relatively high transcription levels in leaves of A. annua treated with IAA. In summary, this study indicated that exogenous IAA treatment was a feasible strategy to enhance artemisinin production, which paves the way for further metabolic engineering of artemisinin biosynthesis.
Collapse
Affiliation(s)
- Zhiying Guo
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Qin Zhang
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Yitong Zhang
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Changlin Wu
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Yijuan Zheng
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Fupeng Tong
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Linhui Zhang
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Ruyu Lu
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Xiusong Pan
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Hexin Tan
- Department Chinese Medicine Authentication, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Nabi N, Singh S, Saffeullah P. An updated review on distribution, biosynthesis and pharmacological effects of artemisinin: A wonder drug. PHYTOCHEMISTRY 2023; 214:113798. [PMID: 37517615 DOI: 10.1016/j.phytochem.2023.113798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Plant-based drugs have been used for centuries for treating different ailments. Malaria, one of the prevalent threats in many parts of the world, is treated mainly by artemisinin-based drugs derived from plants of genus Artemisia. However, the distribution of artemisinin is restricted to a few species of the genus; besides, its yield depends on ontogeny and the plant's geographical location. Here, we review the studies focusing on biosynthesis and distributional pattern of artemisinin production in species of the genus Artemisia. We also discussed various agronomic and in vitro methods and molecular approaches to increase the yield of artemisinin. We have summarized different mechanisms of artemisinin involved in its anti-malarial, anti-cancer, anti-inflammatory and anti-viral activities (like against Covid-19). Overall the current review provides a synopsis of a global view of the distribution of artemisinin, its biosynthesis, and pharmacological potential in treating various diseases like malaria, cancer, and coronavirus, which may provoke future research efforts in drug development. Nevertheless, long-term trials and molecular approaches, like CRISPR-Cas, are required for in-depth research.
Collapse
Affiliation(s)
- Neelofer Nabi
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Seema Singh
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Peer Saffeullah
- Department of Botany, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
5
|
Ekiert H, Klimek-Szczykutowicz M, Rzepiela A, Klin P, Szopa A. Artemisia Species with High Biological Values as a Potential Source of Medicinal and Cosmetic Raw Materials. Molecules 2022; 27:6427. [PMID: 36234965 PMCID: PMC9571683 DOI: 10.3390/molecules27196427] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 01/19/2023] Open
Abstract
Artemisia species play a vital role in traditional and contemporary medicine. Among them, Artemisia abrotanum, Artemisia absinthium, Artemisia annua, Artemisia dracunculus, and Artemisia vulgaris are the most popular. The chemical composition and bioactivity of these species have been extensively studied. Studies on these species have confirmed their traditional applications and documented new pharmacological directions and their valuable and potential applications in cosmetology. Artemisia ssp. primarily contain sesquiterpenoid lactones, coumarins, flavonoids, and phenolic acids. Essential oils obtained from these species are of great biological importance. Extracts from Artemisia ssp. have been scientifically proven to exhibit, among others, hepatoprotective, neuroprotective, antidepressant, cytotoxic, and digestion-stimulating activities. In addition, their application in cosmetic products is currently the subject of several studies. Essential oils or extracts from different parts of Artemisia ssp. have been characterized by antibacterial, antifungal, and antioxidant activities. Products with Artemisia extracts, essential oils, or individual compounds can be used on skin, hair, and nails. Artemisia products are also used as ingredients in skincare cosmetics, such as creams, shampoos, essences, serums, masks, lotions, and tonics. This review focuses especially on elucidating the importance of the most popular/important species of the Artemisia genus in the cosmetic industry.
Collapse
Affiliation(s)
- Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Marta Klimek-Szczykutowicz
- Department of Dermatology, Cosmetology and Aesthetic Surgery, The Institute of Medical Sciences, Medical College, Jan Kochanowski University, IX Wieków Kielc 19a, 25-516 Kielce, Poland
| | - Agnieszka Rzepiela
- Museum of Pharmacy, Medical College, Jagiellonian University, Floriańska 25, 31-019 Kraków, Poland
| | - Paweł Klin
- US Army Health Clinic, Urlas Kaserne, Building 8156, 91522 Ansbach, Germany
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
6
|
Zou X, Liu C, Li C, Fu R, Xu W, Bian H, Dong X, Zhao X, Xu Z, Zhang J, Shen Z. Study on the structure-activity relationship of dihydroartemisinin derivatives: Discovery, synthesis, and biological evaluation of dihydroartemisinin-bile acid conjugates as potential anticancer agents. Eur J Med Chem 2021; 225:113754. [PMID: 34399390 DOI: 10.1016/j.ejmech.2021.113754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022]
Abstract
A series of dihydroartemisinin derivatives was synthesized, and their anti-proliferation activity against cancer cells was evaluated. Structure-activity relationship studies led to the discovery of dihydroartemisinin-bile acid conjugates that exhibit broad-spectrum anti-proliferation activities. Among them, the dihydroartemisinin-ursodeoxycholic acid conjugate (49) was the most potent, with IC50 values between 0.04 and 0.96 μM when tested to determine its inhibitory properties against 15 various cancer cell lines. In vivo experiments showed that compound 49 effectively suppressed tumor growth in an A549 cell xenograft model at the dosage of 10 mg/kg body weight and in Lewis lung cancer cell transplant model at the dosage of 12 mg/kg body weight.
Collapse
Affiliation(s)
- Xiaosu Zou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Road, Shanghai, 201203, China
| | - Chang Liu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South WanPing Road, Shanghai, 200032, China
| | - Congcong Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Road, Shanghai, 201203, China
| | - Rong Fu
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai, 200025, China
| | - Wei Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Road, Shanghai, 201203, China
| | - Hongzhu Bian
- Yunnan Baiyao Group Co. Ltd, 3686 Yunnan Baiyao Street, Kunming, 650200, China
| | - Xun Dong
- Yunnan Baiyao Group Co. Ltd, 3686 Yunnan Baiyao Street, Kunming, 650200, China
| | - Xiaozhen Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South WanPing Road, Shanghai, 200032, China
| | - Zhenye Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South WanPing Road, Shanghai, 200032, China.
| | - Jinghua Zhang
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Zhengwu Shen
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai, 200025, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Road, Shanghai, 201203, China.
| |
Collapse
|
7
|
Chen Y, Wang F, Wu P, Gong S, Gao J, Tao H, Shen Q, Wang S, Zhou Z, Jia Y. Artesunate induces apoptosis, autophagy and ferroptosis in diffuse large B cell lymphoma cells by impairing STAT3 signaling. Cell Signal 2021; 88:110167. [PMID: 34628002 DOI: 10.1016/j.cellsig.2021.110167] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 02/08/2023]
Abstract
Artesunate (ART), a water-soluble derivative of artemisinin, has been reported to exert antineoplastic effects via diverse mechanisms in various types of cancer. Therefore, understanding the underlying mechanism of action of ART in distinct cancer types is indispensable to optimizing the therapeutic application of ART for different types of cancer. The present study aimed to investigate the cellular and molecular mechanisms responsible for the antineoplastic effects of ART in diffuse large B cell lymphoma (DLBCL) cells. Cell proliferation was measured using Cell Counting Kit-8 and colony formation assays. The levels of apoptosis and cell cycle distribution were investigated using flow cytometry. In addition, western blotting was used to analyze the expression levels of ART-induced apoptosis-, autophagy- and ferroptosis-related proteins. Monodansylcadaverine staining was performed to determine the levels of autophagy. Moreover, malondialdehyde and reactive oxygen species assays were used to determine the levels of ferroptosis. The results of the present study revealed that ART inhibited proliferation, and induced apoptosis, cell cycle arrest, autophagy and ferroptosis in DLBCL cells. Pharmacological inhibition of autophagy and ferroptosis alleviated the increased levels of apoptosis induced by ART. Notably, ART was found to exert its effects via inhibition of STAT3 activation. The genetic knockdown of STAT3 enhanced ART-induced autophagy and ferroptosis, and concomitantly upregulated the expression levels of apoptosis- and cell cycle-related proteins. In conclusion, the findings of the current study suggested that ART may induce apoptosis and cell cycle arrest to inhibit cell proliferation, and regulate autophagy and ferroptosis via impairing the STAT3 signaling pathway in DLBCL cells.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Fujue Wang
- Department of Hematology, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Pengqiang Wu
- Department of Hematology, The First Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Shuaige Gong
- Department of Hematology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jie Gao
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Huan Tao
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Qianqing Shen
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Shuoting Wang
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhencang Zhou
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Yongqian Jia
- Department of Hematology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
8
|
The Effects of Artemisia Plant and Its Components Against Respiratory Viruses Like Influenza and Their Mechanisms of Action. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.113060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Context: Artemisia genus and its chemical constituents show antiviral activity against different viruses. The aim of this study was to review the effects of selected Artemisia species and their components against respiratory viruses like influenza and coronavirus. Methods: All the articles published in English or Persian related to the effects of Artemisia and its components on viral respiratory infections and relevant mechanisms of action were searched throughout Medline, Science Direct, Scopus, Ebsco, Google Scholar, and Cochrane Library Database from 1966 up to April 2020. Results: A few numbers of Artemisia species such as A. scoparia, A. rupestris, and A. annua and their components showed efficacy against the influenza virus and coronaviruses. Furthermore, some chemical compounds isolated from Artemisia species, like rupestonic acid, showed potent anti-influenza activity. The mechanism of antiviral activity was also determined for some of these compounds. Conclusions: The present study summarized the efficacy of a number of Artemisia species and their components against respiratory viruses like influenza and coronavirus. Future studies on other Artemisia species may lead to the discovery of new antiviral drugs against the influenza virus and coronaviruses.
Collapse
|
9
|
Kamarya Y, Lijie X, Jinyao L. Chemical Constituents and their Anti-Tumor Mechanism of Plants from Artemisia. Anticancer Agents Med Chem 2021; 22:1838-1844. [PMID: 34238198 DOI: 10.2174/1871520621666210708125230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/16/2021] [Accepted: 05/23/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND At present, chemotherapy is still the main treatment method for cancer, but its side effects and multidrug resistance limit the therapeutic effect seriously. Now the screening of anti-tumor drugs with higher efficiency and lower toxicity from natural products is one of the important research directions for oncotherapy. Artemisia has a variety of anti-tumor constituents, which can exert its anti-tumor effect by inducing tumor cell apoptosis, inhibiting tumor angiogenesis, arresting cell cycle, accelerating iron ion-mediated oxidative damage, etc. Objective: This paper will provide a focused, up-to-date and comprehensive overview of the anti-tumor active constituents and their mechanisms of plants in Artemisia. METHOD The relevant information about Artemisia and its bioactive components comes from scientific databases (such as PubMed, Web of Science, Science Direct). RESULTS Here we have discussed the present situation and mechanism of bioactive components of Artemisia in anti-tumor. The application prospect of active components of Artemisia in cancer prevention and treatment was investigated. CONCLUSION The information summarized in this review may provide new ideas for the follow-up treatment of cancer and contribute to the development of new, effective, multi-side effects and fewer side effects of antineoplastic drugs.
Collapse
Affiliation(s)
- Yasin Kamarya
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xia Lijie
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Li Jinyao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
10
|
Ekiert H, Świątkowska J, Klin P, Rzepiela A, Szopa A. Artemisia annua - Importance in Traditional Medicine and Current State of Knowledge on the Chemistry, Biological Activity and Possible Applications. PLANTA MEDICA 2021; 87:584-599. [PMID: 33482666 DOI: 10.1055/a-1345-9528] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Artemisia annua (annual mugwort) is a species that has long been used in traditional Asian medicine, mainly Chinese and Hindu. The species is widespread and known as a medicinal plant not only in Asia but also in Europe, in both Americas, and Australia. The species has become a subject of particular interest due to the 2015 Nobel Prize awarded for detecting the sesquiterpene lactone artemisinin in it and proving its antimalarial activities. The raw materials obtained from this species are Artemisiae annuae folium and Artemisiae annuae herba. The leaves are a raw material in the Chinese Pharmacopoeia and Vietnamese Pharmacopoeia. Both raw materials are in the International Pharmacopoeia published by the WHO. The main components of these raw materials are mainly specific sesquiterpene lactones, essential oil, flavonoids, coumarins, and phenolic acids. In traditional Asian medicine, the species is used, for example, in the treatment of jaundice and bacterial dysentery, as an antipyretic agent in malaria and tuberculosis, in the treatment of wounds and haemorrhoids, and in viral, bacterial, and autoimmune diseases. Professional pharmacological studies conducted today have confirmed its known traditional applications and explain previously unknown mechanisms of its biological action and have also found evidence of new directions of biological activity, including, among others, anti-inflammatory, analgesic, antioxidant, antitumour, and nephroprotective activities. The species is of growing importance in the cosmetics industry.
Collapse
Affiliation(s)
- Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Kraków, Poland
| | - Joanna Świątkowska
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Kraków, Poland
| | - Paweł Klin
- Family Medicine Clinic, Medizinisches Versorgungszentrum (MVZ) Burgbernheim GmbH, Burgbernheim, Germany
| | - Agnieszka Rzepiela
- Museum of Pharmacy, Jagiellonian University, Medical College, Kraków, Poland
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Kraków, Poland
| |
Collapse
|
11
|
Meng Y, Ma N, Lyu H, Wong YK, Zhang X, Zhu Y, Gao P, Sun P, Song Y, Lin L, Wang J. Recent pharmacological advances in the repurposing of artemisinin drugs. Med Res Rev 2021; 41:3156-3181. [PMID: 34148245 DOI: 10.1002/med.21837] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/27/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022]
Abstract
Artemisinins are a family of sesquiterpene lactones originally derived from the sweet wormwood (Artemisia annua). Beyond their well-characterized role as frontline antimalarial drugs, artemisinins have also received increased attention for other potential pharmaceutical effects, which include antiviral, antiparsitic, antifungal, anti-inflammatory, and anticancer activities. With concerted efforts in further preclinical and clinical studies, artemisinin-based drugs have the potential to be viable treatments for a great variety of human diseases. Here, we provide a comprehensive update on recent reports of pharmacological actions and applications of artemisinins outside of their better-known antimalarial role and highlight their potential therapeutic viability for various diseases.
Collapse
Affiliation(s)
- Yuqing Meng
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nan Ma
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haining Lyu
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yin Kwan Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xing Zhang
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongping Zhu
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng Gao
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng Sun
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yali Song
- Center for Reproductive Medicine, Dongguan Maternal And Child Health Care Hospital, Southern Medical University, Dongguan, China
| | - Lizhu Lin
- Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jigang Wang
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|
12
|
Kadioglu O, Klauck SM, Fleischer E, Shan L, Efferth T. Selection of safe artemisinin derivatives using a machine learning-based cardiotoxicity platform and in vitro and in vivo validation. Arch Toxicol 2021; 95:2485-2495. [PMID: 34021777 PMCID: PMC8241674 DOI: 10.1007/s00204-021-03058-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022]
Abstract
The majority of drug candidates fails the approval phase due to unwanted toxicities and side effects. Establishment of an effective toxicity prediction platform is of utmost importance, to increase the efficiency of the drug discovery process. For this purpose, we developed a toxicity prediction platform with machine-learning strategies. Cardiotoxicity prediction was performed by establishing a model with five parameters (arrhythmia, cardiac failure, heart block, hypertension, myocardial infarction) and additional toxicity predictions such as hepatotoxicity, reproductive toxicity, mutagenicity, and tumorigenicity are performed by using Data Warrior and Pro-Tox-II software. As a case study, we selected artemisinin derivatives to evaluate the platform and to provide a list of safe artemisinin derivatives. Artemisinin from Artemisia annua was described first as an anti-malarial compound and later its anticancer properties were discovered. Here, random forest feature selection algorithm was used for the establishment of cardiotoxicity models. High AUC scores above 0.830 were achieved for all five cardiotoxicity indications. Using a chemical library of 374 artemisinin derivatives as a case study, 7 compounds (deoxydihydro-artemisinin, 3-hydroxy-deoxy-dihydroartemisinin, 3-desoxy-dihydroartemisinin, dihydroartemisinin-furano acetate-d3, deoxyartemisinin, artemisinin G, artemisinin B) passed the toxicity filtering process for hepatotoxicity, mutagenicity, tumorigenicity, and reproductive toxicity in addition to cardiotoxicity. Experimental validation with the cardiomyocyte cell line AC16 supported the findings from the in silico cardiotoxicity model predictions. Transcriptomic profiling of AC16 cells upon artemisinin B treatment revealed a similar gene expression profile as that of the control compound, dexrazoxane. In vivo experiments with a Zebrafish model further substantiated the in silico and in vitro data, as only slight cardiotoxicity in picomolar range was observed. In conclusion, our machine-learning approach combined with in vitro and in vivo experimentation represents a suitable method to predict cardiotoxicity of drug candidates.
Collapse
Affiliation(s)
- Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | | | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany.
| |
Collapse
|
13
|
Li Y, Zhou X, Liu J, Yuan X, He Q. Therapeutic Potentials and Mechanisms of Artemisinin and its Derivatives for Tumorigenesis and Metastasis. Anticancer Agents Med Chem 2021; 20:520-535. [PMID: 31958040 DOI: 10.2174/1871520620666200120100252] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Tumor recurrence and metastasis are still leading causes of cancer mortality worldwide. The influence of traditional treatment strategies against metastatic tumors may still be limited. To search for novel and powerful agents against tumors has become a major research focus. In this study, Artemisinin (ARM), a natural compound isolated from herbs, Artemisia annua L., proceeding from drug repurposing methods, attracts more attention due to its good efficacy and tolerance in antimalarial practices, as well as newly confirmed anticancer activity. METHODS We have searched and reviewed the literatures about ARM and its derivatives (ARMs) for cancer using keywords "artemisinin" until May 2019. RESULTS In preclinical studies, ARMs can induce cell cycle arrest and cell death by apoptosis etc., to inhibit the progression of tumors, and suppress EMT and angiogenesis to inhibit the metastasis of tumors. Notably, the complex relationships of ARMs and autophagy are worth exploring. Inspired by the limitations of its antimalarial applications and the mechanical studies of artemisinin and cancer, people are also committed to develop safer and more potent ARM-based modified compounds (ARMs) or combination therapy, such as artemisinin dimers/ trimers, artemisinin-derived hybrids. Some clinical trials support artemisinins as promising candidates for cancer therapy. CONCLUSION ARMs show potent therapeutic potentials against carcinoma including metastatic tumors. Novel compounds derived from artemisinin and relevant combination therapies are supposed to be promising treatment strategies for tumors, as the important future research directions.
Collapse
Affiliation(s)
- Yue Li
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiaoyan Zhou
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jiali Liu
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiaohong Yuan
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qian He
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
14
|
Drug repurposing using transcriptome sequencing and virtual drug screening in a patient with glioblastoma. Invest New Drugs 2020; 39:670-685. [PMID: 33313992 PMCID: PMC8068653 DOI: 10.1007/s10637-020-01037-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/19/2020] [Indexed: 12/02/2022]
Abstract
Background Precision medicine and drug repurposing are attractive strategies, especially for tumors with worse prognosis. Glioblastoma is a highly malignant brain tumor with limited treatment options and short survival times. We identified novel BRAF (47-438del) and PIK3R1 (G376R) mutations in a glioblastoma patient by RNA-sequencing. Methods The protein expression of BRAF and PIK3R1 as well as the lack of EGFR expression as analyzed by immunohistochemistry corroborated RNA-sequencing data. The expression of additional markers (AKT, SRC, mTOR, NF-κB, Ki-67) emphasized the aggressiveness of the tumor. Then, we screened a chemical library of > 1500 FDA-approved drugs and > 25,000 novel compounds in the ZINC database to find established drugs targeting BRAF47-438del and PIK3R1-G376R mutated proteins. Results Several compounds (including anthracyclines) bound with higher affinities than the control drugs (sorafenib and vemurafenib for BRAF and PI-103 and LY-294,002 for PIK3R1). Subsequent cytotoxicity analyses showed that anthracyclines might be suitable drug candidates. Aclarubicin revealed higher cytotoxicity than both sorafenib and vemurafenib, whereas idarubicin and daunorubicin revealed higher cytotoxicity than LY-294,002. Liposomal formulations of anthracyclines may be suitable to cross the blood brain barrier. Conclusions In conclusion, we identified novel small molecules via a drug repurposing approach that could be effectively used for personalized glioblastoma therapy especially for patients carrying BRAF47-438del and PIK3R1-G376R mutations.
Collapse
|
15
|
Traditional application and modern pharmacological research of Artemisia annua L. Pharmacol Ther 2020; 216:107650. [DOI: 10.1016/j.pharmthera.2020.107650] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/30/2022]
|
16
|
Zhao PH, Ma ST, Hu JQ, Zheng BY, Ke MR, Huang JD. Artesunate-Based Multifunctional Nanoplatform for Photothermal/Photoinduced Thermodynamic Synergistic Anticancer Therapy. ACS APPLIED BIO MATERIALS 2020; 3:7876-7885. [PMID: 35019528 DOI: 10.1021/acsabm.0c01026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thermodynamic therapy (TDT), one that uses heat to activate thermosensitizers and produce reactive oxygen species (ROS), has recently emerged as an attractive approach for cancer therapy. However, the development of safe and efficient thermosensitizers for TDT remains a big challenge. Here, we have found that artesunate (ARS) could produce ROS upon heating. Based on this interesting result, we have designed and prepared a pH-sensitive liposomal nanoplatform (ICG-ARS@NPs) composed of indocyanine green (ICG) and ARS for photoinduced TDT as well as photothermal therapy (PTT). Under the slightly acidic conditions in tumor tissues, the pH-sensitive liposomal ICG-ARS@NPs were able to release their drug cargos. Upon near-infrared irradiation, the photothermal agent ICG generated in situ hyperthermia and triggered the thermal sensitizing activity of ARS to produce ROS, resulting in damage to cancer cells and tumor tissues. The heat-induced ROS generation of ARS was also confirmed both in vitro and in vivo. In addition, because of their specific tumor targeting and synergistic photothermal and thermodynamic effects, ICG-ARS@NPs exhibited highly efficient anticancer therapeutic efficacy in H22 tumor-bearing mice. We believe that this work will promote the exploration of TDT for cancer therapy as well as the application of the old drug, artemisinin.
Collapse
Affiliation(s)
- Peng-Hui Zhao
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, PR China
| | - Si-Tan Ma
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, PR China
| | - Jia-Qian Hu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, PR China
| | - Bi-Yuan Zheng
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, PR China
| | - Mei-Rong Ke
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, PR China
| | - Jian-Dong Huang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, PR China
| |
Collapse
|
17
|
Qin DP, Li HB, Pang QQ, Huang YX, Pan DB, Su ZZ, Yao XJ, Yao XS, Xiao W, Yu Y. Structurally diverse sesquiterpenoids from the aerial parts of Artemisia annua (Qinghao) and their striking systemically anti-inflammatory activities. Bioorg Chem 2020; 103:104221. [DOI: 10.1016/j.bioorg.2020.104221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
|
18
|
Fröhlich T, Mai C, Bogautdinov RP, Morozkina SN, Shavva AG, Friedrich O, Gilbert DF, Tsogoeva SB. Synthesis of Tamoxifen-Artemisinin and Estrogen-Artemisinin Hybrids Highly Potent Against Breast and Prostate Cancer. ChemMedChem 2020; 15:1473-1479. [PMID: 32374071 PMCID: PMC7496903 DOI: 10.1002/cmdc.202000174] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/01/2020] [Indexed: 01/02/2023]
Abstract
In the search for new and effective treatments of breast and prostate cancer, a series of hybrid compounds based on tamoxifen, estrogens, and artemisinin were successfully synthesized and analyzed for their in vitro activities against human prostate (PC-3) and breast cancer (MCF-7) cell lines. Most of the hybrid compounds exhibit a strong anticancer activity against both cancer cell lines - for example, EC50 (PC-3) down to 1.07 μM, and EC50 (MCF-7) down to 2.08 μM - thus showing higher activities than their parent compounds 4-hydroxytamoxifen (afimoxifene, 7; EC50 =75.1 (PC-3) and 19.3 μM (MCF-7)), dihydroartemisinin (2; EC50 =263.6 (PC-3) and 49.3 μM (MCF-7)), and artesunic acid (3; EC50 =195.1 (PC-3) and 32.0 μM (MCF-7)). The most potent compounds were the estrogen-artemisinin hybrids 27 and 28 (EC50 =1.18 and 1.07 μM, respectively) against prostate cancer, and hybrid 23 (EC50 =2.08 μM) against breast cancer. These findings demonstrate the high potential of hybridization of artemisinin and estrogens to further improve their anticancer activities and to produce synergistic effects between linked pharmacophores.
Collapse
Affiliation(s)
- Tony Fröhlich
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander University of Erlangen-NürnbergNikolaus-Fiebiger-Straße 1091058ErlangenGermany
| | - Christina Mai
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander University of Erlangen-NürnbergNikolaus-Fiebiger-Straße 1091058ErlangenGermany
| | | | | | | | - Oliver Friedrich
- Institute of Medical BiotechnologyFriedrich-Alexander University of Erlangen-NürnbergPaul-Gordan-Straße 391052ErlangenGermany
| | - Daniel F. Gilbert
- Institute of Medical BiotechnologyFriedrich-Alexander University of Erlangen-NürnbergPaul-Gordan-Straße 391052ErlangenGermany
| | - Svetlana B. Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander University of Erlangen-NürnbergNikolaus-Fiebiger-Straße 1091058ErlangenGermany
| |
Collapse
|
19
|
Zhang W, Du Q, Bian P, Xiao Z, Wang X, Feng Y, Feng H, Zhu Z, Gao N, Zhu D, Fan X, Zhu Y. Artesunate exerts anti-prolactinoma activity by inhibiting mitochondrial metabolism and inducing apoptosis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:858. [PMID: 32793702 PMCID: PMC7396798 DOI: 10.21037/atm-20-1113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Prolactinoma is the most common hormone-secreting pituitary adenoma. Dopamine receptor agonists (DAs) are effective in reducing prolactin levels and tumor mass, but some prolactinoma patients are resistant to DAs. Treating patients with DA-resistant prolactinoma is challenging. In this study, we examined the anti-prolactinoma effect of artesunate (ART), a potential new treatment option for prolactinoma, and its mechanism of action. METHODS Cell Counting Kit-8 (CCK8) and flow cytometry were used to detect the effect of ART on the proliferation, cycle, and apoptosis of rat pituitary adenoma cell line MMQ. The subcellular localization of ART was observed using confocal fluorescence microscopy. The JC-1 mitochondrial membrane potential (MMP) detection and Seahorse assays were used to detect the effect of ART on mitochondrial function. Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis were used to detect the effect of ART on the expression of prolactin (PRL) and apoptosis-related proteins. A mouse xenograft model of prolactinoma was used to detect the inhibitory effect of ART on MMQ in vivo. RESULTS ART specifically inhibited MMQ proliferation and PRL synthesis, induced G0/G1 phase arrest and apoptosis in vitro. ART accumulated in the mitochondria of MMQ cells, inhibiting mitochondrial respiratory function and mediating apoptosis through the mitochondrial pathway. ART also inhibited proliferation and activated the apoptosis of MMQ cells in vivo. CONCLUSIONS ART has a strong inhibitory effect on prolactinoma both in vitro and in vivo, and its effects rely on high MMP to inhibit mitochondrial metabolism and induce apoptosis. Our results provide evidence for ART as a candidate drug for the treatment of prolactinoma.
Collapse
Affiliation(s)
- Weiyu Zhang
- Department of Neurosurgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Qiu Du
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Piaopiao Bian
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zheng Xiao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Wang
- Department of Histology and Embryology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yajuan Feng
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hou Feng
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ziyan Zhu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nailin Gao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Diming Zhu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Fan
- Department of Neurosurgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yonghong Zhu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Maurya N, Imtiyaz K, Alam Rizvi MM, Khedher KM, Singh P, Patel R. Comparative in vitro cytotoxicity and binding investigation of artemisinin and its biogenetic precursors with ctDNA. RSC Adv 2020; 10:24203-24214. [PMID: 35516214 PMCID: PMC9055135 DOI: 10.1039/d0ra02042g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022] Open
Abstract
Artemisinin (ART) and its biogenetic precursors artemisinic acid (AA) and dihydroartemisinic acid (DHAA) are important traditional medicinal herb compounds with tumor growth inhibition properties. Herein, we have studied the cytotoxicity of ART, AA, and DHAA on different cancer cell lines (H1299, A431, and HCT 116) and investigated in detail their binding mechanisms with ctDNA by using spectroscopy, cyclic voltammetry, and computational methods. The UV absorbance, cyclic voltammetry, DNA helix melting, competition binding, and circular dichroism studies suggested that the complex formation of ART-ctDNA and AA-ctDNA occurs through groove binding. However, in the case of DHAA-ctDNA interaction, electrostatic interaction plays a major role. The thermodynamic parameters, viz., ΔG 0, ΔH 0, and ΔS 0 were calculated, which showed the involvement of hydrogen bonds and van der Waals interactions for drug-ctDNA interaction. FTIR and molecular docking results suggested that ART, AA, and DHAA were bound to the A-T rich region in the minor groove of ctDNA.
Collapse
Affiliation(s)
- Neha Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia New Delhi-110025 India +91 11 26983409 +91 8860634100
| | - Khalid Imtiyaz
- Department of Biosciences, Jamia Millia Islamia New Delhi-110025 India
| | | | - Khaled Mohamed Khedher
- Department of Civil Engineering, College of Engineering, King Khalid University Abha 6421 Saudi Arabia
- Department of Civil Engineering, ISET, DGET Nabeul Tunisia
| | - Prashant Singh
- Department of Chemistry, ARSD College, University of Delhi New Delhi-110021 India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia New Delhi-110025 India +91 11 26983409 +91 8860634100
| |
Collapse
|
21
|
Abstract
Artemisinin (ART) and its derivatives are one of the most important classes of antimalarial agents, originally derived from a Chinese medicinal plant called Artemisia annua L. Beyond their outstanding antimalarial and antischistosomal activities, ART and its derivatives also possess both in-vitro and in-vivo activities against various types of cancer. Their anticancer effects range from initiation of apoptotic cell death to inhibition of cancer proliferation, metastasis and angiogenesis, and even modulation of the cell signal transduction pathway. This review provides a comprehensive update on ART and its derivatives, their mechanisms of action, and their synergistic effects with other chemicals in targeting leukemia cells. Combined with limited evidence of drug resistance and low toxicity profile, we conclude that ART and its derivatives, including dimers, trimers, and hybrids, might be a potential therapeutic alternative to current chemotherapies in combating leukemia, although more studies are necessary before they can be applied clinically.
Collapse
|
22
|
Saeed MEM, Breuer E, Hegazy MEF, Efferth T. Retrospective study of small pet tumors treated with Artemisia annua and iron. Int J Oncol 2019; 56:123-138. [PMID: 31789393 PMCID: PMC6910181 DOI: 10.3892/ijo.2019.4921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022] Open
Abstract
Artemisinin from Artemisia annua L. and its derivatives are well-known antimalarial drugs. In addition, in vitro studies, in vivo studies and clinical trials have demonstrated that these drugs exhibit anticancer activity in human patients with cancer. Therefore, the aim of the present study was to investigate whether a phytotherapeutic A. annua preparation exerts anticancer activity in veterinary tumors of small pets. Dogs and cats with spontaneous cancer (n=20) were treated with standard therapy plus a commercial A. annua preparation (Luparte®) and compared with a control group treated with standard therapy alone (n=11). Immunohistochemical analyses were performed with formalin-fixed paraffin-embedded tumor biopsies to analyze the expression of transferrin receptor (TfR) and the proliferation marker Ki-67 as possible biomarkers to assess treatment response of tumors to A. annua. Finally, the expression levels of TfR and Ki-67 were compared with the IC50 values towards artemisinin in two dog tumor cells lines (DH82 and DGBM) and a panel of 54 human tumor cell lines. Retrospectively, the present study assessed the survival times of small animals treated by standard therapy with or without A. annua. A. annua treatment was associated with a significantly higher number of animals surviving >18 months compared with animals without A. annua treatment (P=0.0331). Using a second set of small pet tumors, a significant correlation was identified between TfR and Ki-67 expression by immunohistochemistry (P=0.025). To further assess the association of transferrin and Ki-67 expression with cellular response to artemisinin, the present study compared the expression of these two biomarkers and the IC50 values for artemisinin in National Cancer Institute tumor cell lines in vitro. Both markers were inversely associated with artemisinin response (P<0.05), and the expression levels of TfR and Ki-67 were significantly correlated (P=0.008). In conclusion, the promising results of the present retrospective study warrant further confirmation by prospective studies in the future.
Collapse
Affiliation(s)
- Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, D‑55128 Rhineland‑Palatinate, Germany
| | - Elmar Breuer
- Veterinary Clinic for Small Animals, 'Alte Ziegelei' Müllheim, D‑79379 Baden, Germany
| | - Mohamed-Elamir F Hegazy
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, D‑55128 Rhineland‑Palatinate, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, D‑55128 Rhineland‑Palatinate, Germany
| |
Collapse
|
23
|
Ullrich CI, Aloni R, Saeed MEM, Ullrich W, Efferth T. Comparison between tumors in plants and human beings: Mechanisms of tumor development and therapy with secondary plant metabolites. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:153081. [PMID: 31568956 DOI: 10.1016/j.phymed.2019.153081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Human tumors are still a major threat to human health and plant tumors negatively affect agricultural yields. Both areas of research are developing largely independent of each other. Treatment of both plant and human tumors remains unsatisfactory and novel therapy options are urgently needed. HYPOTHESIS The concept of this paper is to compare cellular and molecular mechanisms of tumor development in plants and human beings and to explore possibilities to develop novel treatment strategies based on bioactive secondary plant metabolites. The interdisciplinary discourse may unravel commonalities and differences in the biology of plant and human tumors as basis for rational drug development. RESULTS Plant tumors and galls develop upon infection by bacteria (e.g. Agrobacterium tumefaciens and A. vitis, which harbor oncogenic T-DNA) and by insects (e.g. gall wasps, aphids). Plant tumors are benign, i.e. they usually do not ultimately kill their host, but they can lead to considerable economic damage due to reduced crop yields of cultivated plants. Human tumors develop by biological carcinogenesis (i.e. viruses and other infectious agents), chemical carcinogenesis (anthropogenic and non-anthropogenic environmental toxic xenobiotics) and physical carcinogenesis (radioactivity, UV-radiation). The majority of human tumors are malignant with lethal outcome. Although treatments for both plant and human tumors are available (antibiotics and apathogenic bacterial strains for plant tumors, cytostatic drugs for human tumors), treatment successes are non-satisfactory, because of drug resistance and the severe adverse side effects. In human beings, attacks by microbes are repelled by cellular immunity (i.e. innate and acquired immune systems). Plants instead display chemical defense mechanisms, whereby constitutively expressed phytoanticipin compounds compare to the innate human immune system, the acquired human immune system compares to phytoalexins, which are induced by appropriate biotic or abiotic stressors. Some chemical weapons of this armory of secondary metabolites are also active against plant galls. There is a mutual co-evolution between plant defense and animals/human beings, which was sometimes referred to as animal plant warfare. As a consequence, hepatic phase I-III metabolization and excretion developed in animals and human beings to detoxify harmful phytochemicals. On the other hand, plants invented "pro-drugs" during evolution, which are activated and toxified in animals by this hepatic biotransformation system. Recent efforts focus on phytochemicals that specifically target tumor-related mechanisms and proteins, e.g. angiogenic or metastatic inhibitors, stimulators of the immune system to improve anti-tumor immunity, specific cell death or cancer stem cell inhibitors, inhibitors of DNA damage and epigenomic deregulation, specific inhibitors of driver genes of carcinogenesis (e.g. oncogenes), inhibitors of multidrug resistance (i.e. ABC transporter efflux inhibitors), secondary metabolites against plant tumors. CONCLUSION The exploitation of bioactive secondary metabolites to treat plant or human tumors bears a tremendous therapeutic potential. Although there are fundamental differences between human and plant tumors, either isolated phytochemicals and their (semi)synthetic derivatives or chemically defined and standardized plant extracts may offer new therapy options to decrease human tumor incidence and mortality as well as to increase agricultural yields by fighting crown galls.
Collapse
Affiliation(s)
- Cornelia I Ullrich
- Department of Biology, Darmstadt University of Technology, Schnittspahnstr. 3-5, Darmstadt 64287, Germany
| | - Roni Aloni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz 55128, Germany
| | - Wolfram Ullrich
- Department of Biology, Darmstadt University of Technology, Schnittspahnstr. 3-5, Darmstadt 64287, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz 55128, Germany.
| |
Collapse
|
24
|
Su T, Li F, Guan J, Liu L, Huang P, Wang Y, Qi X, Liu Z, Lu L, Wang D. Artemisinin and its derivatives prevent Helicobacter pylori-induced gastric carcinogenesis via inhibition of NF-κB signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:152968. [PMID: 31280140 DOI: 10.1016/j.phymed.2019.152968] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/30/2019] [Accepted: 05/21/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Gastric cancer has a high morbidity and is a leading cause of cancer-related mortality worldwide. Helicobacter pylori (H. pylori) infection is commonly found in the early stage of gastric cancer pathogenesis, which induces chronic gastritis. Artemisinin (ART) and its derivatives (ARTS, artesunate and DHA, dihydroartemisinin), a new class of potent antimalarials, have been reported to exert both preventive and anti-gastric cancer effects. However, the underlying mechanisms of the chemopreventive effects of ART and its derivatives in H. pylori infection induced-gastric cancer are not fully elucidated. PURPOSE We investigated the effects of H. pylori infection in gastric cancer; and the preventive mechanisms of ART, ARTS and DHA. METHODS The H. pylori growth was determined by the broth macro-dilution method, and its adhesion to gastric cancer cells was evaluated by using the urease assay. The protein and mRNA levels, reactive oxygen species (ROS) production, as well as the production of inflammatory cytokines were evaluated by Western blot, real-time PCR, flow cytometry and ELISA, respectively. Moreover, an in vivo MNU (N-methyl-N-nitroso-urea) and H. pylori-induced gastric adenocarcinoma mouse model was established for the investigation of the cancer preventive effects of ART and its derivaties, and the underlying mechanisms of action. RESULTS ART, DHA and ARTS inhibited the growth of H. pylori and gastric cancer cells,suppressed H. pylori adhesion to the gastric cancer cells, and reduced the H. pylori-enhanced ROS production. Moreover, ART, DHA and ARTS significantly reduced tumor incidence, number of tumor nodules and tumor size in the mouse model. Among these three compounds, DHA exerted the most potent chemopreventive effect. Mechanistic studies showed that ART and its derivatives potently inhibited the NF-κB activation. CONCLUSION ART, DHA and ARTS have potent preventive effects in H. pylori-induced gastric carcinogenesis. These effects are, at least in part, attributed to the inhibition of NF-κB signaling pathway. Our findings provide a molecular justification of using ART and its derivatives for the prevention and treatment of gastric cancer.
Collapse
Key Words
- ARTS, artesunate
- Abbreviations: ART, artemisinin
- Artemisinin
- Artesunate
- CFU, colony forming units
- COX-2, cyclooxygenase-2
- DHA, dehydroartemisinin
- DMSO, dimethyl sulfoxide
- Dihydroartemisinin
- ELISA, enzyme-linked immunosorbent assay
- Gastric cancer
- Helicobacter pylori
- IARC, International Agency for Research on Cancer
- IL-8, interleukin-8
- MNU, N-methyl-N-nitroso-urea
- MOI, multiplicity of infection
- NF-κB signaling
- NF-κB, nuclear factor-κB
- PBS, phosphate buffer solution
- ROS, reactive oxygen species
- TNF-α, tumor necrosis factor-α
Collapse
Affiliation(s)
- Tao Su
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fangyuan Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiaji Guan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Linxin Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ping Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ying Wang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoxiao Qi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhongqiu Liu
- Shunde Hospital of Guangzhou University of Chinese Medicine, Shunde, Guangdong, China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Linlin Lu
- Shunde Hospital of Guangzhou University of Chinese Medicine, Shunde, Guangdong, China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Dawei Wang
- Shunde Hospital of Guangzhou University of Chinese Medicine, Shunde, Guangdong, China.
| |
Collapse
|
25
|
Lang SJ, Schmiech M, Hafner S, Paetz C, Steinborn C, Huber R, Gaafary ME, Werner K, Schmidt CQ, Syrovets T, Simmet T. Antitumor activity of an Artemisia annua herbal preparation and identification of active ingredients. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152962. [PMID: 31132755 DOI: 10.1016/j.phymed.2019.152962] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Artemisia annua L. has gained increasing attention for its anticancer activity. However, beside artemisinin, less is known about the possible bioactive ingredients of Artemisia annua and respective herbal preparations. We hypothesized that, in addition to artemisinin, Artemisia annua preparations might contain multiple ingredients with potential anticancer activity. METHODS MDA-MB-231 triple negative human breast cancer (TNBC) cells along with other treatment resistant, metastatic cancer cell lines were used to investigate in vitro and in vivo the anticancer efficacy of an Artemisia annua extract marketed as a herbal preparation, which contained no detectable artemisinin (limit of detection = 0.2 ng/mg). The extract was characterized by HPLC-DAD and the most abundant compounds were identified by 1H- and 13C NMR spectroscopy and quantified by UHPLC-MS/MS. Cell viability and various apoptotic parameters were quantified by flow cytometry. In vitro data were validated in two in vivo cancer models, the chick chorioallantoic membrane (CAM) assay and in orthotopic breast cancer xenografts in nude mice. RESULTS The Artemisia annua extract, the activity of which could be enhanced by acetonitrile maceration, inhibited the viability of breast (MDA-MB-231 and MCF-7), pancreas (MIA PaCa-2), prostate (PC-3), non-small cell lung cancer (A459) cells, whereas normal mammary epithelial cells, lymphocytes, and PBMC were relatively resistant to extract treatment. Likewise, the extract's most abundant ingredients, chrysosplenol D, arteannuin B, and casticin, but not arteannuic acid or 6,7-dimethoxycoumarin, inhibited the viability of MDA-MB-231 breast cancer cells. The extract induced accumulation of multinucleated cancer cells within 24 h of treatment, increased the number of cells in the S and G2/M phases of the cell cycle, followed by loss of mitochondrial membrane potential, caspase 3 activation, and formation of an apoptotic hypodiploid cell population. Further, the extract inhibited cancer cell proliferation, decreased tumor growth, and induced apoptosis in vivo in TNBC MDA-MB-231 xenografts grown on CAM as well as in nude mice. CONCLUSION An extract of an artemisinin-deficient Artemisia annua herbal preparation exhibits potent anticancer activity against triple negative human breast cancer. New active ingredients of Artemisia annua extract with potential anticancer activity have been identified.
Collapse
Affiliation(s)
- Sophia J Lang
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany
| | - Michael Schmiech
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany
| | - Susanne Hafner
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany
| | - Christian Paetz
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Carmen Steinborn
- Center for Complementary Medicine, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Roman Huber
- Center for Complementary Medicine, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Menna El Gaafary
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany; Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Katharina Werner
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany
| | - Tatiana Syrovets
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
26
|
Wang Y, Li Y, Shang D, Efferth T. Interactions between artemisinin derivatives and P-glycoprotein. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 60:152998. [PMID: 31301971 DOI: 10.1016/j.phymed.2019.152998] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Artemisinin was isolated and identified in 1972, which was the starting point for a new era in antimalarial drug therapy. Furthermore, numerous studies have demonstrated that artemisinin and its derivatives exhibit considerable anticancer activity both in vitro, in vivo, and even in clinical Phase I/II trials. P-glycoprotein (P-gp) mediated multi-drug resistance (MDR) is one of the most serious causes of chemotherapy failure in cancer treatment. Interestingly, many artemisinin derivatives exhibit excellent ability to overcome P-gp mediated MDR and even show collateral sensitivity against MDR cancer cells. Furthermore, some artemisinin derivatives show P-gp-mediated MDR reversal activity. Therefore, the interaction between P-gp and artemisinin derivatives is important to develop novel combination treatment protocols with artemisinin derivatives and established anticancer drugs that are P-gp substrates. PURPOSE This systematic review provides an updated overview on the interaction between artemisinin derivatives and P-gp and the effect of artemisinin derivatives on the P-gp expression level. RESULTS Artemisinin derivatives exhibit multi-specific interactions with P-gp. The currently used artemisinin derivatives are not transported by P-gp. However, some of novel synthetized artemisinin derivatives exhibit P-gp substrate properties. Furthermore, many artemisinin derivatives act as P-gp inhibitors, which exhibit the potential to reverse MDR towards clinically used anticancer drugs. CONCLUSION Therefore, studies on the interaction between artemisinin derivatives and P-gp provide important information for the development of novel anti-cancer artemisinin derivatives to reverse P-gp mediated MDR and for the design of rational artemisinin-based combination therapies against cancer.
Collapse
Affiliation(s)
- Yulin Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yongjie Li
- Department of Chinese Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian China; College of Integrative Medicine, Dalian Medical University, Dalian, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg University 55128 Mainz, Germany.
| |
Collapse
|
27
|
Keshavarzi Z, Shakeri F, Barreto GE, Bibak B, Sathyapalan T, Sahebkar A. Medicinal plants in traumatic brain injury: Neuroprotective mechanisms revisited. Biofactors 2019; 45:517-535. [PMID: 31206893 DOI: 10.1002/biof.1516] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/05/2019] [Indexed: 01/31/2023]
Abstract
Traumatic brain injury (TBI) is the most prevalent health problem affecting all age groups, and leads to many secondary problems in other organs especially kidneys, gastrointestinal tract, and heart function. In this review, the search terms were TBI, fluid percussion injury, cold injury, weight drop impact acceleration injury, lateral fluid percussion, cortical impact injury, and blast injury. Studies with Actaea racemosa, Artemisia annua, Aframomum melegueta, Carthamus tinctorius, Cinnamomum zeylanicum, Crocus sativus, Cnidium monnieri, Curcuma longa, Gastrodia elata, Malva sylvestris, Da Chuanxiong Formula, Erigeron breviscapus, Panax ginseng, Salvia tomentosa, Satureja khuzistanica, Nigella sativa, Drynaria fortune, Dracaena cochinchinensis, Polygonum cuspidatum, Rosmarinus officinalis, Rheum tanguticum, Centella asiatica, and Curcuma zedoaria show a significant decrease in neuronal injury by different mechanisms such as increasing superoxide dismutase and catalase activities, suppressing nuclear factor kappa B (NF-κB), interleukin 1 (IL-1), glial fibrillary acidic protein, and IL-6 expression. The aim of this study was to evaluate the neuroprotective effects of medicinal plants in central nervous system pathologies by reviewing the available literature.
Collapse
Affiliation(s)
- Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Protti M, Mandrioli R, Mandrone M, Cappadone C, Farruggia G, Chiocchio I, Malucelli E, Isani G, Poli F, Mercolini L. Analysis of Artemisia annua extracts and related products by high performance liquid chromatography-tandem mass spectrometry coupled to sample treatment miniaturisation. J Pharm Biomed Anal 2019; 174:81-88. [PMID: 31158609 DOI: 10.1016/j.jpba.2019.05.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
Artemisinin, the main antimalarial compound of Artemisia annua L., is currently attracting increasing interest for its antiproliferative properties, but its content is highly variable, depending on several genetic, environmental and processing conditions. Aim of the present study is to analyse the artemisinin content in different plant extracts, to test their in vitro activity on cell proliferation and then to correlate these data to the active principle concentration. For this purpose, an innovative miniaturised sample pretreatment strategy based on microextraction by packed sorbent (MEPS) was developed and coupled to an original advanced method based on liquid chromatography with diode array detection and tandem mass spectrometry (LC-DAD-MS/MS). The method was fully validated, granting consistent data. Good linearity was found over a suitable concentration range, i.e. 5-1000ng/mL. Extraction yields (>85%), precision (RSD < 3.5%) and accuracy (recovery 88-93%) were all within acceptable levels of confidence. After validation, the method was successfully applied to the determination of artemisinin in A. annua extracts. Analyte content was widely variable (up to twenty-fold) according to the starting material and the extraction procedure, ranging between 5.9μg/g and 109μg/mL. The cytotoxic activity of all analysed extracts was also tested on human leukemic cells by viable cell count and cell cycle analysis. Artemisinin concentrations and biological activity were carefully evaluated and the observed antiproliferative effects varied according to artemisinin content in each extract type. This highlights the need to quantitatively analyse the main active constituent of plant extracts and the obtained data have shown to be promising for the choice of the related herbal product dosage.
Collapse
Affiliation(s)
- Michele Protti
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| | - Roberto Mandrioli
- Department for Life Quality Studies (QuVi), Alma Mater Studiorum - University of Bologna, Corso d'Augusto 237, 47921, Rimini, Italy
| | - Manuela Mandrone
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Concettina Cappadone
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via San Donato 19/2, 40127, Bologna, Italy
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via San Donato 19/2, 40127, Bologna, Italy
| | - Ilaria Chiocchio
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via San Donato 19/2, 40127, Bologna, Italy
| | - Gloria Isani
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Ferruccio Poli
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Laura Mercolini
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| |
Collapse
|
29
|
Liu X, Cao J, Huang G, Zhao Q, Shen J. Biological Activities of Artemisinin Derivatives Beyond Malaria. Curr Top Med Chem 2019; 19:205-222. [DOI: 10.2174/1568026619666190122144217] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/26/2022]
Abstract
Artemisinin is isolated from Artemisia annua L. with peroxide-containing sesquiterpene lactone structure. Because of its unique structural characteristics and promising anticancer, antivirus activities, it has recently received increasing attention. The aim of this review is to summarize recent discoveries of artemisinin's novel derivatives with new pharmaceutical effects beyond malaria with a focus on its antitumor and antivirus activity, as well as potential results of combination therapy with other clinical drugs.
Collapse
Affiliation(s)
- Xiaoyan Liu
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianguo Cao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 201418, China
| | - Guozheng Huang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 201418, China
| | - Qingjie Zhao
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingshan Shen
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
30
|
Yan G, Saeed MEM, Foersch S, Schneider J, Roth W, Efferth T. Relationship between EGFR expression and subcellular localization with cancer development and clinical outcome. Oncotarget 2019; 10:1918-1931. [PMID: 30956774 PMCID: PMC6443015 DOI: 10.18632/oncotarget.26727] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/15/2019] [Indexed: 12/11/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) as a prevalent oncogene regulates proliferation, apoptosis and differentiation and thereby contributes to carcinogenesis. Even though, the documentation on its clinical relevance is surprisingly heterogeneous in the scientific literature. Here, we systematically investigated the correlation of mRNA to survival time and pathological parameters by analyzing 30 datasets in silico. Furthermore, the prognostic value of membrane-bound, cytoplasmic (mcEGFR) and nuclear expression (nEGFR) of EGFR was experimentally analyzed by immunohistochemical staining of 502 biopsies from 27 tumor types. We found that protein expression of EGFR showed better prognostic efficiency compared to mRNA, and that mcEGFR expression was positively correlated with nEGFR expression (p < 0.001). Unexpectedly, both mcEGFR and nEGFR expression were associated with low T stage (p < 0.001 and p = 0.004; respectively). Moreover, positive mcEGFR was significantly related to high differentiation (p = 0.027). No significant correlation was found with any other pathological parameters. Collectively, our results imply that the oncogenic function of EGFR may be more related to nascent stages of carcinogenesis than to advanced and progressive tumors, which may as well explain at least partially the occurrence of secondary resistance against EGFR-directed therapy.
Collapse
Affiliation(s)
- Ge Yan
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | | | - Jose Schneider
- Universidad Rey Juan Carlos, Facultad de Ciencias de la Salud, Móstoles, Spain
| | - Wilfried Roth
- Institute of Pathology, University Medical Center, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
31
|
Artemisinin-indole and artemisinin-imidazole hybrids: Synthesis, cytotoxic evaluation and reversal effects on multidrug resistance in MCF-7/ADR cells. Bioorg Med Chem Lett 2019; 29:1138-1142. [PMID: 30837097 DOI: 10.1016/j.bmcl.2019.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 01/10/2023]
Abstract
A series of artemisinin derivatives with MDR reversal activity were designed and synthesized. All hybrids were screened to anticancer activities against four human cancer cell lines (A549, MCF-7, HepG-2, MDA-MB-231) and normal human hepatic cell (L02) in vitro. Most of the new compounds showed higher anticancer activities than artemisinin, among which compounds 11a and 11c displayed superior potency with IC50 6.78 μM and 5.25 μM against MCF-7, respectively. The further research indicated that the most potent 11c induced cell cycle arrest at G2 phase in MCF-7. Additionally, compound 11c showed remarkable MDR reversal activity which reversed adriamycin against MCF-7/ADR cells with IC50 0.76 μM.
Collapse
|
32
|
Efferth T. Beyond malaria: The inhibition of viruses by artemisinin-type compounds. Biotechnol Adv 2018; 36:1730-1737. [DOI: 10.1016/j.biotechadv.2018.01.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/29/2017] [Accepted: 01/01/2018] [Indexed: 12/12/2022]
|
33
|
Prevention of carcinogenesis and metastasis by Artemisinin-type drugs. Cancer Lett 2018; 429:11-18. [DOI: 10.1016/j.canlet.2018.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022]
|
34
|
Zhang Y, Xu G, Zhang S, Wang D, Saravana Prabha P, Zuo Z. Antitumor Research on Artemisinin and Its Bioactive Derivatives. NATURAL PRODUCTS AND BIOPROSPECTING 2018; 8:303-319. [PMID: 29633188 PMCID: PMC6102173 DOI: 10.1007/s13659-018-0162-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/27/2018] [Indexed: 05/02/2023]
Abstract
Cancer is the leading cause of human death which seriously threatens human life. The antimalarial drug artemisinin and its derivatives have been discovered with considerable anticancer properties. Simultaneously, a variety of target-selective artemisinin-related compounds with high efficiency have been discovered. Many researches indicated that artemisinin-related compounds have cytotoxic effects against a variety of cancer cells through pleiotropic effects, including inhibiting the proliferation of tumor cells, promoting apoptosis, inducing cell cycle arrest, disrupting cancer invasion and metastasis, preventing angiogenesis, mediating the tumor-related signaling pathways, and regulating tumor microenvironment. More importantly, artemisinins demonstrated minor side effects to normal cells and manifested the ability to overcome multidrug-resistance which is widely observed in cancer patients. Therefore, we concentrated on the new advances and development of artemisinin and its derivatives as potential antitumor agents in recent 5 years. It is our hope that this review could be helpful for further exploration of novel artemisinin-related antitumor agents.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Guowei Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuqun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - P Saravana Prabha
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, Yunnan, China.
| |
Collapse
|
35
|
Våtsveen TK, Myhre MR, Steen CB, Wälchli S, Lingjærde OC, Bai B, Dillard P, Theodossiou TA, Holien T, Sundan A, Inderberg EM, Smeland EB, Myklebust JH, Oksvold MP. Artesunate shows potent anti-tumor activity in B-cell lymphoma. J Hematol Oncol 2018; 11:23. [PMID: 29458389 PMCID: PMC5819282 DOI: 10.1186/s13045-018-0561-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/29/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Although chemo-immunotherapy has led to an improved overall survival for most B-cell lymphoma types, relapsed and refractory disease remains a challenge. The malaria drug artesunate has previously been identified as a growth suppressor in some cancer types and was tested as a new treatment option in B-cell lymphoma. METHODS We included artesunate in a cancer sensitivity drug screen in B lymphoma cell lines. The preclinical properties of artesunate was tested as single agent in vitro in 18 B-cell lymphoma cell lines representing different histologies and in vivo in an aggressive B-cell lymphoma xenograft model, using NSG mice. Artesunate-treated B lymphoma cell lines were analyzed by functional assays, gene expression profiling, and protein expression to identify the mechanism of action. RESULTS Drug screening identified artesunate as a highly potent anti-lymphoma drug. Artesunate induced potent growth suppression in most B lymphoma cells with an IC50 comparable to concentrations measured in serum from artesunate-treated malaria patients, while leaving normal B-cells unaffected. Artesunate markedly inhibited highly aggressive tumor growth in a xenograft model. Gene expression analysis identified endoplasmic reticulum (ER) stress and the unfolded protein response as the most affected pathways and artesunate-induced expression of the ER stress markers ATF-4 and DDIT3 was specifically upregulated in malignant B-cells, but not in normal B-cells. In addition, artesunate significantly suppressed the overall cell metabolism, affecting both respiration and glycolysis. CONCLUSIONS Artesunate demonstrated potent apoptosis-inducing effects across a broad range of B-cell lymphoma cell lines in vitro, and a prominent anti-lymphoma activity in vivo, suggesting it to be a relevant drug for treatment of B-cell lymphoma.
Collapse
Affiliation(s)
- Thea Kristin Våtsveen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Ullernschausseen 70, Montebello, 0379 Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Marit Renée Myhre
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Chloé Beate Steen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Ullernschausseen 70, Montebello, 0379 Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
- Department of Computer Science, University of Oslo, Oslo, Norway
| | - Sébastien Wälchli
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Ullernschausseen 70, Montebello, 0379 Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Ole Christian Lingjærde
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
- Department of Computer Science, University of Oslo, Oslo, Norway
| | - Baoyan Bai
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Ullernschausseen 70, Montebello, 0379 Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Pierre Dillard
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Theodossis A. Theodossiou
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Toril Holien
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Hematology, St. Olav’s Hospital HF, Trondheim, Norway
| | - Anders Sundan
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Hematology, St. Olav’s Hospital HF, Trondheim, Norway
| | - Else Marit Inderberg
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Erlend B. Smeland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Ullernschausseen 70, Montebello, 0379 Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - June Helen Myklebust
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Ullernschausseen 70, Montebello, 0379 Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Morten P. Oksvold
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Ullernschausseen 70, Montebello, 0379 Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| |
Collapse
|
36
|
Qin DP, Pan DB, Xiao W, Li HB, Yang B, Yao XJ, Dai Y, Yu Y, Yao XS. Dimeric Cadinane Sesquiterpenoid Derivatives from Artemisia annua. Org Lett 2018; 20:453-456. [PMID: 29300490 DOI: 10.1021/acs.orglett.7b03796] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arteannoide A (1), an unusual cadinane dimer featuring a rare fused 6,8-dioxabicyclo[3.2.l]octan-7-one ring system, arteannoides B and C (2 and 3), two novel heterodimers incorporating a rearranged cadinene sesquiterpenoid and a phenylpropanoid, together with two new rearranged cadinene sesquiterpenoids 4 and 5, were isolated from Artemisia annua L. Their structures were determined by a combination of NMR spectroscopy, electronic circular dichroism calculations, and X-ray diffraction analyses. Compounds 2 and 3 showed inhibition of nitric oxide production in lipopolysaccharide-induced RAW 264.7 mouse macrophage cell lines with IC50 values of 4.5 and 2.9 μM, respectively.
Collapse
Affiliation(s)
| | | | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, People's Republic of China
| | - Hai-Bo Li
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, People's Republic of China
| | - Biao Yang
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, People's Republic of China
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology , AvenidaWailong, Taipa, Macau
| | | | | | | |
Collapse
|
37
|
Efferth T. Cancer combination therapy of the sesquiterpenoid artesunate and the selective EGFR-tyrosine kinase inhibitor erlotinib. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 37:58-61. [PMID: 29174651 DOI: 10.1016/j.phymed.2017.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The shift from cytotoxic to targeted chemotherapy led to improved treatment outcomes in oncology. Nevertheless, many cancer patients cannot be cured from their disease because of the development of drug resistance and side effects. PURPOSE There is an ongoing quest for novel compounds, which raised not only the interest in natural products but also in novel combination therapy regimens. STUDY DESIGN In this review, we report on the inhibition epidermal growth factor receptor (EGFR) by targeted small molecules and their combination with natural products from medicinal plants. RESULTS The combination of erlotinib with artesunate leads to synergistic inhibition of cell growth in isobologram analyses. Artesunate is an approved anti-malaria drug, which is also active against cancer as shown in vitro, in vivo and in preliminary clinical phase I/II trials. CONCLUSION The combination of natural products (e.g. the sesquiterpenoid artesunate) and synthetic compounds (e.g. the small molecule EGFR tyrosine kinase inhibitor erlotinib) may lead to improved clinical success rates in oncology.
Collapse
Affiliation(s)
- Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
38
|
Zyad A, Tilaoui M, Jaafari A, Oukerrou MA, Mouse HA. More insights into the pharmacological effects of artemisinin. Phytother Res 2017; 32:216-229. [PMID: 29193409 DOI: 10.1002/ptr.5958] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/23/2022]
Abstract
Artemisinin is one of the most widely prescribed drugs against malaria and has recently received increased attention because of its other potential biological effects. The aim of this review is to summarize recent discoveries of the pharmaceutical effects of artemisinin in basic science along with its mechanistic action, as well as the intriguing results of recent clinical studies, with a focus on its antitumor activity. Scientific evidence indicates that artemisinin exerts its biological activity by generating reactive oxygen species that damage the DNA, mitochondrial depolarization, and cell death. In the present article review, scientific evidence suggests that artemisinin is a potential therapeutic agent for various diseases. Thus, this review is expected to encourage interested scientists to conduct further preclinical and clinical studies to evaluate these biological activities.
Collapse
Affiliation(s)
- Abdelmajid Zyad
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Mounir Tilaoui
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Abdeslam Jaafari
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Moulay Ali Oukerrou
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Hassan Ait Mouse
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| |
Collapse
|
39
|
Dihydroartemisinin selectively inhibits PDGFRα-positive ovarian cancer growth and metastasis through inducing degradation of PDGFRα protein. Cell Discov 2017; 3:17042. [PMID: 29387451 PMCID: PMC5787695 DOI: 10.1038/celldisc.2017.42] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/22/2017] [Indexed: 02/06/2023] Open
Abstract
To develop traditional medicines as modern pharmacotherapies, understanding their molecular mechanisms of action can be very helpful. We have recently reported that Artemisinin and its derivatives, which are clinically used anti-malarial drugs, have significant effects against ovarian cancer, but the direct molecular targets and related combination therapy have been unclear. Herein, we report that dihydroartemisinin, one of the most active derivatives of Artemisinin, directly targets platelet-derived growth factor receptor-alpha (PDGFRα) to inhibit ovarian cancer cell growth and metastasis. Dihydroartemisinin directly binds to the intercellular domain of PDGFRα, reducing its protein stability by accelerating its ubiquitin-mediated degradation, which further inactivates downstream phosphoinositide 3-Kinase and mitogen-activated protein kinase pathways and subsequently represses epithelial–mesenchymal transition, inhibiting cell growth and metastasis of PDGFRα-positive ovarian cancer in vitro and in vivo. A combinational treatment reveals that dihydroartemisinin sensitizes ovarian cancer cells to PDGFR inhibitors. Our clinical study also finds that PDGFRα is overexpressed and positively correlated with high grade and metastasis in human ovarian cancer. Considering that Artemisinin compounds are currently clinically used drugs with favorable safety profiles, the results from this study will potentiate their use in combination with clinically used PDGFRα inhibitors, leading to maximal therapeutic efficacy with minimal adverse effects in PDGFRα-positive cancer patients. These findings also shed high light on future development of novel Artemisinin-based targeted therapy.
Collapse
|
40
|
Chloroform Extract of Artemisia annua L. Relaxes Mouse Airway Smooth Muscle. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9870414. [PMID: 29259649 PMCID: PMC5702405 DOI: 10.1155/2017/9870414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/06/2017] [Accepted: 10/10/2017] [Indexed: 11/18/2022]
Abstract
Artemisia annua L. belongs to the Asteraceae family, which is indigenous to China. It has valuable pharmacological properties, such as antimalarial, anti-inflammatory, and anticancer properties. However, whether it possesses antiasthma properties is unknown. In the current study, chloroform extract of Artemisia annua L. (CEAA) was prepared, and we found that CEAA completely eliminated acetylcholine (ACh) or high K+-elicited (80 mM) contractions of mouse tracheal rings (TRs). Patch-clamp technique and ion channel blockers were employed to explore the underlying mechanisms of the relaxant effect of CEAA. In whole-cell current recording, CEAA almost fully abolished voltage-dependent Ca2+ channel (VDCC) currents and markedly enhanced large conductance Ca2+-activated K+ (BK) channel currents on airway smooth muscle cells (ASMCs). In single channel current recording, CEAA increased the opening probability but had no effect on the single channel conductance of BK channels. However, under paxilline-preincubated (a selective BK channel blocker) conditions, CEAA only slightly increased BK channel currents. These results indicate that CEAA may contain active components with potent antiasthma activity. The abolished VDCCs by CEAA may mainly contribute to the underlying mechanism through which it acts as an effective antiasthmatic compound, but the enhanced BK currents might play a less important role in the antiasthmatic effects.
Collapse
|
41
|
Morgia G, Voce S, Palmieri F, Gentile M, Iapicca G, Giannantoni A, Blefari F, Carini M, Vespasiani G, Santelli G, Arnone S, Pareo RM, Russo GI. Association between selenium and lycopene supplementation and incidence of prostate cancer: Results from the post-hoc analysis of the procomb trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 34:1-5. [PMID: 28899491 DOI: 10.1016/j.phymed.2017.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/23/2017] [Accepted: 06/17/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Many potential chemopreventive agents have been used in PCa prevention, including selenium (Se) and lycopene (Ly). However, their role has been matter of debate over the years, due to potential of promotion of PCa. PURPOSE In this study we aimed at evaluating the incidence risk of prostate cancer (PCa) in a cohort of patients treated with Se and Ly. METHODS The Procomb trial design has been previously published (ISRCTN78639965). From April 2012 to April 2014 209 patients were followed and underwent prostate biopsy when PSA ≥4 ng/ml and/or suspicion of PCa. The all cohort was composed by patients treated with Se and Ly (Group A = 134 patients) and control (Group B = 75 patients). RESULTS During the follow-up time of 2 years, a total of 24 patients (11.5%) underwent prostate biopsy, of which 9 (4.3%) where diagnosed with PCa and 15 (7.2%) where diagnosed with benign prostatic hyperplasia. We did not observe statistical differences in terms of mean changes of PSA between the two groups (p-value for trend = 0.33). The relative risk (RR) for PCa was 1.07 and 0.89 in group A and B, respectively (p = 0.95). At the multivariate Cox regression analysis supplementation with Se and Ly was not associated with greater risk of PCa (hazard ratio: 1.38; p = 0.67). CONCLUSION In this analysis we did not show evidences supporting a detrimental role of Selenium and Lycopene supplementation in increasing PCa after 2 years of therapy, nor supporting a protective role.
Collapse
Affiliation(s)
- Giuseppe Morgia
- Department of Urology, University of Catania, Catania, Italy
| | | | | | | | | | | | - Franco Blefari
- Urologic Unit, Misericordia e Dolce Hospital, Prato, Italy
| | - Marco Carini
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | | | | | | | | | | |
Collapse
|
42
|
From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin Cancer Biol 2017; 46:65-83. [DOI: 10.1016/j.semcancer.2017.02.009] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 12/24/2022]
|
43
|
Artemisinin disrupts androgen responsiveness of human prostate cancer cells by stimulating the 26S proteasome-mediated degradation of the androgen receptor protein. Anticancer Drugs 2017; 28:1018-1031. [DOI: 10.1097/cad.0000000000000547] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Cancer combination therapies with artemisinin-type drugs. Biochem Pharmacol 2017; 139:56-70. [DOI: 10.1016/j.bcp.2017.03.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/28/2017] [Indexed: 01/28/2023]
|
45
|
Zhao X, Guo X, Yue W, Wang J, Yang J, Chen J. Artemether suppresses cell proliferation and induces apoptosis in diffuse large B cell lymphoma cells. Exp Ther Med 2017; 14:4083-4090. [PMID: 29104626 PMCID: PMC5658687 DOI: 10.3892/etm.2017.5063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 08/23/2017] [Indexed: 12/23/2022] Open
Abstract
Artemether (ART), a derivative of the well-known anti-malaria drug artemisinin, demonstrates potent anti-cancer activity in various cancer cells, however its effects on lymphoma remain unknown. The present study demonstrated that ART significantly inhibited proliferation of diffuse large B cell lymphoma (DLBCL) in vivo and in vitro, and led to G0/G1 phase arrest. Mechanistic studies demonstrated that ART suppressed the expression of the cell cycle proteins cyclin dependent kinase (CDK) 2, 4, and Cyclin D1, and specifically repressed the proto-oncogene c-Myc, rather than regulating the extracellular signal-regulated kinase or protein kinase B signaling pathways (two key pathways involved in regulating cell proliferation). In addition, high-concentration ART treatment significantly induced the apoptosis of DLBCL cells by promoting the cleavage of Caspase-3 and Poly (ADP-ribose) polymerase (PARP) 1. Overall, the data indicated that ART exhibited anti-cancer activity by inhibiting the expression of cell cycle genes and c-Myc, and promoting Caspase-3 and PARP1 cleavage, which suggested that ART may serve as a dual pharmaceutical for the treatment DLBCL.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai 200168, P.R. China
| | - Xudong Guo
- Clinical and Translational Research Centre of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Centre for Brain Science, School of Life Science and Technology, Tongji University, Shanghai 200092, P.R. China.,Institute of Regenerative Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Wenqin Yue
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai 200168, P.R. China
| | - Jianmin Wang
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai 200168, P.R. China
| | - Jianmin Yang
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai 200168, P.R. China
| | - Jie Chen
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai 200168, P.R. China
| |
Collapse
|
46
|
Nunes JJ, Pandey SK, Yadav A, Goel S, Ateeq B. Targeting NF-kappa B Signaling by Artesunate Restores Sensitivity of Castrate-Resistant Prostate Cancer Cells to Antiandrogens. Neoplasia 2017; 19:333-345. [PMID: 28319807 PMCID: PMC5358938 DOI: 10.1016/j.neo.2017.02.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 10/24/2022]
Abstract
Androgen deprivation therapy (ADT) is the most preferred treatment for men with metastatic prostate cancer (PCa). However, the disease eventually progresses and develops resistance to ADT in majority of the patients, leading to the emergence of metastatic castration-resistant prostate cancer (mCRPC). Here, we assessed artesunate (AS), an artemisinin derivative, for its anticancer properties and ability to alleviate resistance to androgen receptor (AR) antagonists. We have shown AS in combination with bicalutamide (Bic) attenuates the oncogenic properties of the castrate-resistant (PC3, 22RV1) and androgen-responsive (LNCaP) PCa cells. Mechanistically, AS and Bic combination inhibits nuclear factor (NF)-κB signaling and decreases AR and/or AR-variant 7 expression via ubiquitin-mediated proteasomal degradation. The combination induces oxidative stress and apoptosis via survivin downregulation and caspase-3 activation, resulting in poly-ADP-ribose polymerase (PARP) cleavage. Moreover, preclinical castrate-resistant PC3 xenograft studies in NOD/SCID mice (n =28, seven per group) show remarkable tumor regression and significant reduction in lungs and bone metastases upon administering AS (50 mg/kg per day in two divided doses) and Bic (50 mg/kg per day) via oral gavage. Taken together, we for the first time provide a compelling preclinical rationale that AS could disrupt AR antagonist-mediated resistance observed in mCRPC. The current study also indicates that the therapeutic combination of Food and Drug Administration-approved AS or NF-κB inhibitors and AR antagonists may enhance the clinical efficacy in the treatment of mCRPC patients.
Collapse
Affiliation(s)
- Jessica J Nunes
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur-208016, U.P., India
| | - Swaroop K Pandey
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur-208016, U.P., India
| | - Anjali Yadav
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur-208016, U.P., India
| | - Sakshi Goel
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur-208016, U.P., India
| | - Bushra Ateeq
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur-208016, U.P., India.
| |
Collapse
|
47
|
The pharmacological activities and mechanisms of artemisinin and its derivatives: a systematic review. Med Chem Res 2017. [DOI: 10.1007/s00044-016-1778-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
48
|
Artemisinin and its derivatives in cancer therapy: status of progress, mechanism of action, and future perspectives. Cancer Chemother Pharmacol 2017; 79:451-466. [DOI: 10.1007/s00280-017-3251-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/03/2017] [Indexed: 12/21/2022]
|
49
|
Ali M, Abbasi BH, Ahmad N, Khan H, Ali GS. Strategies to enhance biologically active-secondary metabolites in cell cultures of Artemisia - current trends. Crit Rev Biotechnol 2017; 37:833-851. [PMID: 28049347 DOI: 10.1080/07388551.2016.1261082] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The genus Artemisia has been utilized worldwide due to its immense potential for protection against various diseases, especially malaria. Artemisia absinthium, previously renowned for its utilization in the popular beverage absinthe, is gaining resurgence due to its extensive pharmacological activities. Like A. annua, this species exhibits strong biological activities like antimalarial, anticancer and antioxidant. Although artemisinin was found to be the major metabolite for its antimalarial effects, several flavonoids and terpenoids are considered to possess biological activities when used alone and also to synergistically boost the bioavailability of artemisinin. However, due to the limited quantities of these metabolites in wild plants, in vitro cultures were established and strategies have been adopted to enhance medicinally important secondary metabolites in these cultures. This review elaborates on the traditional medicinal uses of Artemisia species and explains current trends to establish cell cultures of A. annua and A. absinthium for enhanced production of medicinally important secondary metabolites.
Collapse
Affiliation(s)
- Mohammad Ali
- a Center for Biotechnology and Microbiology , Department of Biotechnology, University of Swat , Pakistan.,b Department of Biotechnology, Faculty of Biological Sciences , Quaid-i-Azam University Islamabad , Pakistan
| | - Bilal Haider Abbasi
- b Department of Biotechnology, Faculty of Biological Sciences , Quaid-i-Azam University Islamabad , Pakistan
| | - Nisar Ahmad
- a Center for Biotechnology and Microbiology , Department of Biotechnology, University of Swat , Pakistan
| | - Haji Khan
- a Center for Biotechnology and Microbiology , Department of Biotechnology, University of Swat , Pakistan
| | - Gul Shad Ali
- c Mid-Florida Research and Education Center and Department of Plant Pathology , University of Florida/Institute of Food and Agricultural Sciences , Apopka , FL , USA
| |
Collapse
|
50
|
Wang Z, Wang C, Wu Z, Xue J, Shen B, Zuo W, Wang Z, Wang SL. Artesunate Suppresses the Growth of Prostatic Cancer Cells through Inhibiting Androgen Receptor. Biol Pharm Bull 2017; 40:479-485. [DOI: 10.1248/bpb.b16-00908] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zhenzhong Wang
- School of Public Health, Nanjing Medical University
- Department of Urology, the Second Affiliated Hospital of Nanjing Medical University
| | - Chao Wang
- School of Public Health, Nanjing Medical University
| | - Ziyu Wu
- Department of Urology, Huai’an Hospital Affiliated with Xuzhou Medical University
| | - Jun Xue
- Department of Urology, the Second Affiliated Hospital of Nanjing Medical University
| | - Baixin Shen
- Department of Urology, the Second Affiliated Hospital of Nanjing Medical University
| | - Wei Zuo
- Department of Urology, the Second Affiliated Hospital of Nanjing Medical University
| | - Zengjun Wang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University
| | | |
Collapse
|