1
|
Ju IJ, Tsai BCK, Kuo WW, Kuo CH, Lin YM, Hsieh DJY, Pai PY, Huang SE, Lu SY, Lee SD, Huang CY. Rhodiola and Salidroside Attenuate Oxidative Stress-Triggered H9c2 Cardiomyoblast Apoptosis Through IGF1R-Induced ERK1/2 Activation. ENVIRONMENTAL TOXICOLOGY 2024; 39:5150-5161. [PMID: 39109685 DOI: 10.1002/tox.24372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/15/2024] [Accepted: 06/08/2024] [Indexed: 10/17/2024]
Abstract
Oxidative stress is a pivotal factor in the pathogenesis of various cardiovascular diseases. Rhodiola, a traditional Chinese medicine, is recognized for its potent antioxidant properties. Salidroside, a phenylpropanoid glycoside derived from Rhodiola rosea, has shown remarkable antioxidant capabilities. This study aimed to elucidate the potential protective mechanisms of Rhodiola and salidroside against H2O2-induced cardiac apoptosis in H9c2 cardiomyoblast cells. H9c2 cells were exposed to H2O2 for 4 h, and subsequently treated with Rhodiola or salidroside for 24 h. Cell viability and apoptotic pathways were assessed. The involvement of insulin-like growth factor 1 receptor (IGF1R) and the activation of extracellular regulated protein kinases 1/2 (ERK1/2) were investigated. H2O2 (100 μM) exposure significantly induced cardiac apoptosis in H9c2 cells. However, treatment with Rhodiola (12.5, 25, and 50 μg/mL) and salidroside (0.1, 1, and 10 nM) effectively attenuated H2O2-induced cytotoxicity and apoptosis. This protective effect was associated with IGF1R-activated phosphorylation of ERK1/2, leading to the inhibition of Fas-dependent proteins, HIF-1α, Bax, and Bak expression in H9c2 cells. The images from hematoxylin and eosin staining and immunofluorescence assays also revealed the protective effects of Rhodiola and salidroside in H9c2 cells against oxidative damage. Our findings suggest that Rhodiola and salidroside possess antioxidative properties that mitigate H2O2-induced apoptosis in H9c2 cells. The protective mechanisms involve the activation of IGF1R and subsequent phosphorylation of ERK1/2. These results propose Rhodiola and salidroside as potential therapeutic agents for cardiomyocyte cytotoxicity and apoptosis induced by oxidative stress in heart diseases. Future studies may explore their clinical applications in cardiac health.
Collapse
Affiliation(s)
- I-Ju Ju
- Division of General Medicine, Department of Medical Education, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
- Institute of Sports Sciences, University of Taipei, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, VA, USA
- School of Physical Education and Sports Science, Soochow University, Suzhou, Jiangsu, China
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pei-Ying Pai
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Shang-En Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Shang-Yeh Lu
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Shin-Da Lee
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, Shandong, China
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
2
|
Chen JK, Ramesh S, Islam MN, Shibu MA, Kuo CH, Hsieh DJY, Lin SZ, Kuo WW, Huang CY, Ho TJ. Artemisia argyi mitigates doxorubicin-induced cardiotoxicity by inhibiting mitochondrial dysfunction through the IGF-IIR/Drp1/GATA4 signaling pathway. Biotechnol Appl Biochem 2024. [PMID: 39375847 DOI: 10.1002/bab.2671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024]
Abstract
Doxorubicin (DOX) is mostly utilized as a wide range of antitumor anthracycline to treat different cancers. The severe antagonistic impacts of DOX on cardiotoxicity constrain its clinical application. Many mechanisms are involved in cardiac toxicity induced by DOX in the human body. Mitochondria is a central part of fatty acid and glucose metabolism. Thus, impaired mitochondrial metabolism can increase heart failure risk, which can play a vital role in cardiomyocyte mitochondrial dysfunction. This study aimed to assess the possible cardioprotective effect of water-extracted Artemisia argyi (AA) against the side effect of DOX in H9c2 cells and whether these protective effects are mediated through IGF-IIR/Drp1/GATA4 signaling pathways. Although several studies proved that AA extract has benefits for various diseases, its cardiac effects have not yet been identified. The H9c2 cells were exposed to 1 μM to establish a model of cardiac toxicity. The results revealed that water-extracted AA could block the expression of IGF-IIR/calcineurin signaling pathways induced by DOX. Notably, our results also showed that AA treatment markedly attenuated Akt phosphorylation and cleaved caspase 3, and the nuclear translocation markers NFATC3 and p-GATA4. Using actin staining for hypertrophy, we determined that AA can reduce the effect of mitochondrial reactive oxygen species and cell size. These findings suggest that water-extracted AA could be a suitable candidate for preventing DOX-induced cardiac damage.
Collapse
Affiliation(s)
- Jhong-Kuei Chen
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Samiraj Ramesh
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Research and Innovation, Institute of Biotechnology, Saveetha School of Engineering (SSE), Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Md Nazmul Islam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
3
|
Cao W, Wang L, Mo Q, Peng F, Hong W, Zhou Y, Sun R, Li H, Liang C, Zhao D, Zheng M, Li B, Peng G. Disease-associated gut microbiome and metabolome changes in rats with chronic hypoxia-induced pulmonary hypertension. Front Cell Dev Biol 2024; 12:1022181. [PMID: 39071798 PMCID: PMC11272533 DOI: 10.3389/fcell.2024.1022181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 06/19/2024] [Indexed: 07/30/2024] Open
Abstract
Background Pulmonary hypertension (PH) is a progressive disease affecting the lung vasculature that is characterized by sustained vasoconstriction and leads to vascular remodeling. The lung microbiome contributes to PH progression, but the function of the gut microbiome and the correlation between the gut microbiome and metabolome remain unclear. We have analyzed whether chronic hypoxia-induced PH alters the rat fecal microbiota. Purpose We explored hypoxia-induced pulmonary hypertension model rats to find out the characteristic changes of intestinal microorganisms and metabolites of hypoxia-induced pulmonary hypertension, and provide a theoretical basis for clinical treatment. Methods In the current study, a chronic hypoxia-induced PH rat model was used to investigate the role of the gut microbiome and metabolome as a potential mechanism contributing to the occurrence and development of PH. 16S ribosomal ribonucleic acid (16S rRNA), short-chain fatty acid (SCFA) measurements, mass spectrometry (MS) metabolomics analysis and metatranscriptome were performed to analyze stool samples. The datasets were analyzed individually and integrated for combined analysis using bioinformatics approaches. Results Our results suggest that the gut microbiome and metabolome of chronic hypoxia-induced PH rats are distinct from those of normoxic rats and may thus aid in the search for new therapeutic or diagnostic paradigms for PH. Conclusion The gut microbiome and metabolome are altered as a result of chronic hypoxia-induced PH. This imbalanced bacterial ecosystem might play a pathophysiological role in PH by altering homeostasis.
Collapse
Affiliation(s)
- Weitao Cao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Luyao Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiudi Mo
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Respiratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fang Peng
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Hong
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruiting Sun
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haiqing Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunxiao Liang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Thoracic Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Guangzhou, China
| | - Dongxing Zhao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mengning Zheng
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Bing Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gongyong Peng
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Jiao K, Su P, Li Y. FGFR2 modulates the Akt/Nrf2/ARE signaling pathway to improve angiotensin II-induced hypertension-related endothelial dysfunction. Clin Exp Hypertens 2023; 45:2208777. [PMID: 37154169 DOI: 10.1080/10641963.2023.2208777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Fibroblast growth factor receptor (FGFR)2 expression was decreased in hypertension patients while its role in hypertension was not explored. This experiment aimed to investigate the expression ofFGFR2 in angiotensin II (Ang II)-induced human umbilical vein endothelial cells (HUVECs) and the role of FGFR2 in improving AngII-induced hypertension-related endothelial dysfunction. METHODS AngII-induced HUVECs simulated the hypertension model in vitro. The expression of FGFR2 in Ang II-induced HUVECs and transfected HUVECswas detected by RT-qPCR and western blot. The viability, apoptosis, migration and tube formation ability of Ang II-induced HUVECs were analyzed by Methyl Thiazolyl Tetrazolium (MTT) assay, flow cytometry analysis, wound healing assay and tube formation assay.Detectionof lactate dehydrogenase (LDH), caspase 3, Nitric Oxide (NO) and oxidative stress levels was conducted by assay kits and reactive oxygen species (ROS) level was detected by DCFH-DA assay. The expression of apoptosis-related proteins, protein kinase B(Akt)/nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway-related proteins, phospho(p)-endothelial nitric oxide synthase (eNOS) and eNOS was determined by western blot. RESULTS The expression of FGFR2 was decreased in Ang II-induced HUVECs. FGFR2overexpression increased viability, suppressed apoptosis and oxidative stress, and improve endothelial dysfunction of AngII-induced HUVECs through activating the Akt/Nrf2/ARE signaling pathway. MK-2206 (Akt inhibitor) could weaken the effect of FGFR2overexpression to reduce viability, promote apoptosis and oxidative stress, and aggravate endothelial dysfunction of Ang II-inducedHUVECs. CONCLUSION Inconclusion, FGFR2activated the Akt/Nrf2/ARE signaling pathway to improve AngII-induced hypertension-related endothelial dysfunction.
Collapse
Affiliation(s)
- Kun Jiao
- Division 1, Department of Cardiology, Ordos Central Hospital, Inner Mongolia, China
| | - Ping Su
- Division 1, Department of Cardiology, Ordos Central Hospital, Inner Mongolia, China
| | - Yongling Li
- Division 1, Department of Cardiology, Ordos Central Hospital, Inner Mongolia, China
| |
Collapse
|
5
|
Zhang YP, Wang YN, Wan L, Chen XX, Zhao CH. Superwetting Stainless Steel Mesh Used for Both Immiscible Oil/Water and Surfactant-Stabilized Emulsion Separation. MEMBRANES 2023; 13:808. [PMID: 37887980 PMCID: PMC10608510 DOI: 10.3390/membranes13100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
The design and fabrication of advanced membrane materials for versatile oil/water separation are major challenges. In this work, a superwetting stainless steel mesh (SSM) modified with in situ-grown TiO2 was successfully prepared via one-pot hydrothermal synthesis at 180 °C for 24 h. The modified SSM was characterized by means of scanning electron microscopy, energy spectroscopy, and X-ray photoelectron spectroscopy analysis. The resultant SSM membrane was superhydrophilic/superoleophilic in air, superoleophobic underwater, with an oil contact angle (OCA) underwater of over 150°, and superhydrophobic under oil, with a water contact angle (WCA) as high as 158°. Facile separation of immiscible light oil/water and heavy oil/water was carried out using the prewetting method with water and oil, respectively. For both "oil-blocking" and "water-blocking" membranes, the separation efficiency was greater than 98%. Also, these SSMs wrapped in TiO2 nanoparticles broke emulsions well, separating oil-in-water and oil-in-water emulsions with an efficiency greater than 99.0%. The as-prepared superwetting materials provided a satisfactory solution for the complicated or versatile oil/water separation.
Collapse
Affiliation(s)
- Yu-Ping Zhang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, China
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Ya-Ning Wang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Li Wan
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, China
| | - Xin-Xin Chen
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Chang-Hua Zhao
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Zhou C, Huang Y, Nie S, Zhou S, Gao X, Chen G. Biological effects and mechanisms of fisetin in cancer: a promising anti-cancer agent. Eur J Med Res 2023; 28:297. [PMID: 37626424 PMCID: PMC10464434 DOI: 10.1186/s40001-023-01271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Fisetin, a natural flavonoid, possesses numerous biological activities that have been extensively studied in various diseases. When it comes to cancer, fisetin exhibits a range of biological effects, such as suppressing cell growth, triggering programmed cell death, reducing the formation of new blood vessels, protecting against oxidative stress, and inhibiting cell migration. Moreover, fisetin has the ability to enhance the effectiveness of chemotherapy. The anticancer properties of fisetin can be attributed to a diverse array of molecules and signaling pathways, including vascular endothelial growth factor (VEGF), mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB), PI3K/Akt/mTOR, and Nrf2/HO-1. Consequently, fisetin holds promise as a therapeutic agent for anticancer treatment. In this review, we place emphasis on the biological functions and various molecular targets of fisetin in anticancer therapy.
Collapse
Affiliation(s)
- Chenhui Zhou
- School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, 315300, China
| | - Yi Huang
- School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, 315300, China
| | - Sheng Nie
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, 315300, China
| | - Shengjun Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, 315300, China
| | - Xiang Gao
- School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, 315300, China.
| | - Gao Chen
- School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Department of Neurosurgery, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Huard CA, Gao X, Dey Hazra ME, Dey Hazra RO, Lebsock K, Easley JT, Millett PJ, Huard J. Effects of Fisetin Treatment on Cellular Senescence of Various Tissues and Organs of Old Sheep. Antioxidants (Basel) 2023; 12:1646. [PMID: 37627641 PMCID: PMC10451965 DOI: 10.3390/antiox12081646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Fisetin has been shown to be beneficial for brain injury and age-related brain disease via different mechanisms. The purpose of this study was to determine the presence of senescent cells and the effects of fisetin on cellular senescence in the brain and other vital organs in old sheep, a more translational model. Female sheep 6-7 years old (N = 6) were treated with 100 mg/kg fisetin or vehicle alone on two consecutive days a week for 8 weeks. All vital organs were harvested at the time of sacrifice. Histology, immunofluorescence staining, and RT-Q-PCR were performed on different regions of brain tissues and other organs. Our results indicated that fisetin treatment at the current regimen did not affect the general morphology of the brain. The presence of senescent cells in both the cerebral brain cortex and cerebellum and non-Cornu Ammonis (CA) area of the hippocampus was detected by senescent-associated β-galactosidase (SA-β-Gal) staining and GL13 (lipofuscin) staining. The senescent cells detected were mainly neurons in both gray and white matter of either the cerebral brain cortex, cerebellum, or non-CA area of the hippocampus. Very few senescent cells were detected in the neurons of the CA1-4 area of the hippocampus, as revealed by GL13 staining and GLB1 colocalization with NEUN. Fisetin treatment significantly decreased the number of SA-β-Gal+ cells in brain cortex white matter and GL13+ cells in the non-CA area of the hippocampus, and showed a decreasing trend of SA-β-Gal+ cells in the gray matter of both the cerebral brain cortex and cerebellum. Furthermore, fisetin treatment significantly decreased P16+ and GLB1+ cells in neuronal nuclear protein (NEUN)+ neurons, glial fibrillary acidic protein (GFAP)+ astrocytes, and ionized calcium binding adaptor molecule 1 (IBA1)+ microglia cells in both gray and white matter of cerebral brain cortex. Fisetin treatment significantly decreased GLB1+ cells in microglia cells, astrocytes, and NEUN+ neurons in the non-CA area of the hippocampus. Fisetin treatment significantly decreased plasma S100B. At the mRNA level, fisetin significantly downregulated GLB1 in the liver, showed a decreasing trend in GLB1 in the lung, heart, and spleen tissues, and significantly decreased P21 expression in the liver and lung. Fisetin treatment significantly decreased TREM2 in the lung tissues and showed a trend of downregulation in the liver, spleen, and heart. A significant decrease in NRLP3 in the liver was observed after fisetin treatment. Finally, fisetin treatment significantly downregulated SOD1 in the liver and spleen while upregulating CAT in the spleen. In conclusion, we found that senescent cells were widely present in the cerebral brain cortex and cerebellum and non-CA area of the hippocampus of old sheep. Fisetin treatment significantly decreased senescent neurons, astrocytes, and microglia in both gray and white matter of the cerebral brain cortex and non-CA area of the hippocampus. In addition, fisetin treatment decreased senescent gene expressions and inflammasomes in other organs, such as the lung and the liver. Fisetin treatment represents a promising therapeutic strategy for age-related diseases.
Collapse
Affiliation(s)
- Charles A. Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA or (C.A.H.); (R.-O.D.H.); (P.J.M.)
| | - Xueqin Gao
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA or (C.A.H.); (R.-O.D.H.); (P.J.M.)
| | - Maria E. Dey Hazra
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA or (C.A.H.); (R.-O.D.H.); (P.J.M.)
- The Steadman Clinic, Vail, CO 81657, USA
| | - Rony-Orijit Dey Hazra
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA or (C.A.H.); (R.-O.D.H.); (P.J.M.)
- The Steadman Clinic, Vail, CO 81657, USA
- Department for Shoulder and Elbow Surgery, Center for Musculoskeletal Surgery, Charite-University Medicine Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 14195 Berlin, Germany
| | - Kimberly Lebsock
- Preclinical Surgical Research Laboratory, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.L.); (J.T.E.)
| | - Jeremiah T. Easley
- Preclinical Surgical Research Laboratory, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.L.); (J.T.E.)
| | - Peter J. Millett
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA or (C.A.H.); (R.-O.D.H.); (P.J.M.)
- The Steadman Clinic, Vail, CO 81657, USA
| | - Johnny Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA or (C.A.H.); (R.-O.D.H.); (P.J.M.)
| |
Collapse
|
8
|
Fisetin Prevents Angiogenesis in Diabetic Retinopathy by Downregulating VEGF. J Ophthalmol 2023; 2023:7951928. [PMID: 36777991 PMCID: PMC9918361 DOI: 10.1155/2023/7951928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 02/05/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the more serious complications of diabetes. However, the mechanisms involved in DR are complex and still need to be investigated. The beneficial effects of fisetin have been widely reported, but whether it is beneficial in DR is not clear yet. This study was designed to investigate the regulatory role of fisetin in regulating DR and explore the involved mechanism. First, 30 mM glucose was used to establish DR cell model in vitro. Cell counting kit 8 (CCK8) assay was utilized to study the effects of fisetin on cell viability through treating human retinal microvascular endothelial cells (HRMECs) with 25, 50, and 100 μM fisetin. Transwell and wound healing assays were used to detect the function of fisetin on the migration and angiogenesis on HG-induced HRMECs. Finally, OE-VEGF was used as a mimic of VEGF, and western blotting (WB) was used to verify the targeting genes of fisetin. HG induced an increase in cell viability, cell migration, and angiogenesis in HRMECs, whereas fisetin inhibited these enhancements induced by HG through inhibiting VEGF. In conclusion, fisetin prevents angiogenesis in DR by downregulating VEGF.
Collapse
|
9
|
Wang Y, Zhang P, Li H, Chen P, Zhang X, Wang B, Zhang M. Zhijing powder manages blood pressure by regulating PI3K/AKT signal pathway in hypertensive rats. Heliyon 2023; 9:e12777. [PMID: 36685421 PMCID: PMC9850196 DOI: 10.1016/j.heliyon.2022.e12777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/08/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
Background Zhijing Powder (ZJP) is a traditional Chinese medicine containing two kinds of Chinese medicine. Those studies analyze the molecular mechanism of ZJP in treating hypertension through network pharmacology, combined with animal experiments. Methods First, the effective ingredients and potential targets of the drug were obtained through drug databases, while the targets of disease obtained through disease target databases. The potential targets, cellular bioanalysis and signaling pathways were found in some platforms by analyzing collected targets. Further experiments were conducted to verify the effect and mechanism of drugs on cold and high salt in an induced-hypertension rat model. Results There are 17 effective components of centipedes and 10 of scorpions, with 464 drug targets obtained after screening. A total of 1263 hypertension targets were obtained after screening and integration, resulting in a protein-protein interaction network (PPI) with 145 points and 1310 edges. Gene ontology (GO) analysis shows that blood circulation regulation and activation of G protein-coupled receptors are mainly biological processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis shows that neuroactive ligand-receptor interaction, calcium signaling pathways, PI3K-AKT signaling pathways are the most abundant gene-enriched pathway. Animal experiments indicated that ZJP can reduce blood pressure (BP), affect expression of the PI3K-AKT signaling pathway, and improve oxidative stress in the body. Conclusion ZJP ameliorates oxidative stress and reduces BP in hypertensive rats caused by cold stimuli and high salt, revealing its effect on the expression of the PI3K/AKT signaling pathway in the rat aorta.
Collapse
Affiliation(s)
- Yue Wang
- School of Basic Medical Sciences, Hebei University of CM, Shijiazhuang 050200, Hebei Province, China
| | - Pengfei Zhang
- School of Basic Medical Sciences, Hebei University of CM, Shijiazhuang 050200, Hebei Province, China
| | - Hao Li
- Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang 050000, Hebei Province, China
| | - Pingping Chen
- School of Basic Medical Sciences, Hebei University of CM, Shijiazhuang 050200, Hebei Province, China
| | - Xia Zhang
- School of Basic Medical Sciences, Hebei University of CM, Shijiazhuang 050200, Hebei Province, China
| | - Bin Wang
- Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang 050000, Hebei Province, China
| | - Mingquan Zhang
- School of Basic Medical Sciences, Hebei University of CM, Shijiazhuang 050200, Hebei Province, China
- Corresponding author.
| |
Collapse
|
10
|
Abstract
The PI3K/AKT signaling has crucial role in the regulation of numerous physiological functions through activation of downstream effectors and modulation of cell cycle transition, growth and proliferation. This pathway participates in the pathogenesis of several human disorders such as heart diseases through regulation of size and survival of cardiomyocytes, angiogenic processes as well as inflammatory responses. Moreover, PI3K/AKT pathway participates in the process of myocardial injury induced by a number of substances such as H2O2, Mercury, lipopolysaccharides, adriamycin, doxorubicin and epirubicin. In this review, we describe the contribution of this pathway in the pathoetiology of myocardial ischemia/reperfusion injury and myocardial infarction, heart failure, cardiac hypertrophy, cardiomyopathy and toxins-induced cardiac injury.
Collapse
|
11
|
Shirazi-Tehrani E, Chamasemani A, Firouzabadi N, Mousaei M. ncRNAs and polyphenols: new therapeutic strategies for hypertension. RNA Biol 2022; 19:575-587. [PMID: 35438046 PMCID: PMC9037439 DOI: 10.1080/15476286.2022.2066335] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Polyphenols have gained significant attention in protecting several chronic diseases, such as cardiovascular diseases (CVDs). Accumulating evidence indicates that polyphenols have potential protective roles for various CVDs. Hypertension (HTN) is among the hazardous CVDs accounting for nearly 8.5 million deaths worldwide. HTN is a complex and multifactorial disease and a combination of genetic susceptibility and environmental factors play major roles in its development. However, the underlying regulatory mechanisms are still elusive. Polyphenols have shown to cause favourable and beneficial effects in the management of HTN. Noncoding RNAs (ncRNAs) as influential mediators in modulating the biological properties of polyphenols, have shown significant footprints in CVDs. ncRNAs control basic functions in virtually all cell types relevant to the cardiovascular system and, thus, a direct link with blood pressure (BP) regulation is highly probable. Recent evidence suggests that a number of ncRNAs, including main small ncRNAs, microRNAs (miRNAs) and long ncRNAs (lncRNAs), play crucial roles with respect to the antihypertensive effects of polyphenols. Indeed, targeting lncRNAs by polyphenols will be a novel and promising strategy in the management of HTN. Herein, we reviewed the effects of polyphenols in HTN. Additionally, we emphasized on the potential effects of polyphenols on regulations of main ncRNAs, which imply the role of polyphenols in regulating ncRNAs in order to exert protective effects and thus proposing them as new targets for HTN treatment.Abbreviations : CVD: cardiovascular disease; BP: blood pressure; HTN: hypertension, lncRNAs: long noncoding RNAs; p38-MAPK: p38-mitogenactivated protein kinase; OPCs: oligomeric procyanidins; GTP: guanosine triphosphate; ROS: reactive oxygen species; cGMP: cyclic guanosine monophosphate; SGC: soluble guanylate cyclase; PI3K: phosphatidylinositol 3-kinase; cGMP: Cyclic GMP; eNOS: endothelial NO synthase; ERK ½: extracellular signal-regulated kinase ½; L-Arg: L-Arginine; MAPK: mitogen-activated protein kinases; NO: Nitric oxide; P: Phosphorus; PDK1: Phosphoinositide-dependent kinase 1; PI3-K: Phosphatidylinositol 3-kinase; PIP2: Phosphatidylinositol diphosphate; ncRNAs: non-protein-coding RNA; miRNAs: microRNAs; OPCs: oligomeric procyanidins; RES: resveratrol; GE: grape extract; T2DM: type 2 diabetes mellitus; IL: interleukin; TNF-α: tumour necrosis factor-alpha; NF-κB: nuclear factor NF-kappa-B; ALP: alkaline phosphatase; PARP1: poly [ADP-ribose] polymerase 1; HIF1a: Hypoxia-inducible-factor 1A; NFATc2: nuclear factor of activated T cells 2; PAD: peripheral artery disease; SHR: spontaneously hypertensive rat; RAAS: renin-angiotensin-aldosterone system; AT1R: angiotensin type-1 receptor; Nox: NADPH oxidase; HO-1: haem oxygenase-1; JAK/STAT: Janus kinase/signal transducers/activators of the transcription; PNS: panax notoginseng saponin; snoRNA: small nucleolar RNA; hnRNA: heterogeneous nuclear RNA; VSMCs: vascular smooth muscle cells; irf7: interferon regulatory factor 7; limo2: LIM only domain 2; GWAS: genome-wide association study; GAS5: Growth arrest-specific 5; Asb3, Ankyrin repeat and SPCS box containing 3; Chac2: cation transport regulator homolog 2; Pex11b: peroxisomal membrane 11B; Sp5: Sp5 transcription factor; EGCG: epigallocatechin gallate; ApoE: Apo lipoprotein E; ERK-MAP kinase: extracellular signal-regulated kinases-mitogen-activated protein kinase; PAH: pulmonary artery hypertension; PAP: pulmonary arterial pressure; HIF1a: hypoxia-inducible-factor 1A; NFATc2: nuclear factor of activated T cells 2; HMEC-1: Human microvascular endothelial cells; stat2: signal transducers and activators of transcription 2; JNK: c-Jun N-terminal kinase; iNOS: inducible NO synthase. SNP: single nucleotide polymorphism; CAD: coronary artery disease.
Collapse
Affiliation(s)
- Elham Shirazi-Tehrani
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Chamasemani
- Department of Cardiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Mousaei
- Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
12
|
Veeraraghavan VP, Mony U, Renu K, Mohan SK, Ammar RB, AlZahrani AM, Ahmed EA, Rajendran P. Effects of Polyphenols on ncRNAs in cancer - An update. Clin Exp Pharmacol Physiol 2022; 49:613-623. [PMID: 35275419 DOI: 10.1111/1440-1681.13641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/24/2022] [Accepted: 03/02/2022] [Indexed: 11/27/2022]
Abstract
In recent years, oncotherapy has received considerable attention concerning plant polyphenols. Increasing evidence suggests that due to the efficiency of polyphenols, they may have antitumor effects in various cancers. However, their regulatory structures remain elusive. Long non-coding RNAs (LncRNAs) have been identified in the regulation of various forms of tumorigenesis and tumor development. Long non-coding RNAs (LncRNAs) have recently emerged as regulatory eukaryotic transcripts and therapeutic targets with important and diverse functions in health and diseases. LncRNAs may be associated with the initiation, development, and progression of cancer. This review summarizes the research on the modulatory effects of LncRNAs and their roles in mediating cellular processes. The mechanisms of action of polyphenols underlying their therapeutic effects on cancers are also discussed. Based on our review, polyphenols might facilitate a significant epigenetic modification as part of their tissue-/cell-related biological effects. This finding may be attributed to their interaction with cellular signaling pathways involved in chronic diseases. Certain LncRNAs might be the target of specific polyphenols, and some critical signaling processes involved in the intervention of cancers might mediate the therapeutic roles of polyphenols. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ullas Mony
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Surapaneni Krishna Mohan
- Departments of Biochemistry, Molecular Virology, Research, Clinical Skills& Simulation, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, Tamil Nadu, India
| | - Rebai Ben Ammar
- College of Science, Department of Biological Sciences, King Faisal University, Al Ahsa, Saudi Arabia.,Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology, Technopole of Borj-Cedria PBOX 901, 2050, Hammam-Lif, Tunisia
| | - Abdullah M AlZahrani
- College of Science, Department of Biological Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Emad A Ahmed
- College of Science, Department of Biological Sciences, King Faisal University, Al Ahsa, Saudi Arabia.,Molecular Physiology Laboratory, Zoology department, Faculty of Science, Assiut University, Egypt
| | - Peramaiyan Rajendran
- College of Science, Department of Biological Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| |
Collapse
|
13
|
Harnessing the therapeutic potential of fisetin and its nanoparticles: Journey so far and road ahead. Chem Biol Interact 2022; 356:109869. [DOI: 10.1016/j.cbi.2022.109869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/02/2022] [Accepted: 02/21/2022] [Indexed: 01/19/2023]
|
14
|
Feng P, Shu S, Zhao F. Anti-osteoporosis Effect of Fisetin against Ovariectomy Induced Osteoporosis in Rats: In silico, in vitro and in vivo Activity. J Oleo Sci 2022; 71:105-118. [PMID: 35013033 DOI: 10.5650/jos.ess21252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is a bone related disease that is characterised by bone loss that further increases the susceptibility to bone fractures and bone frailty due to disturbances in the micro-architecture of bone tissue. Fisetin (flavonoids) exhibited anti-inflammatory and antioxidative stress effects against various diseases. In this protocol, we make an effort to comfort the anti-osteoporosis effect of fisetin against ovariectomy (OVX) induced osteoporosis. A docking study of fisetin and alendronate on the estrogen (α and β) and vitamin D receptors was carried out. SaOS-2 (osteoblast like human) cells were used for the estimation of cell proliferation. The OVX induced OVX model was used and three doses of fisetin and alendronate was given to rats till 16 weeks. The hormone levels, bone turnover markers and biochemical parameters were estimated. Fisetin was docked into estrogen (α and β) and vitamin D receptors, resulting in stable complexes with lower binding scores. Fisetin significantly (p < 0.001) exhibited the induction of cell proliferation against the SaOS-2 cells. OVX induced osteoporosis rats exhibited a suppression of body weight and uterus index, after the Fisetin treatment. Fisetin treatment significantly (p < 0.001) improved the level of bone mineral content (BMC), bone mineral density (BMD) and biochemical parameters such as energy, maximum load, stiffness, young modules, maximum stress and reduced the level of 1,25(OH) 2 D3 and E 2 . Fisetin treatment significantly (p < 0.001) declined the level of phosphorus (P), calcium (Ca) and boosted the level of VitD. Fisetin treatment significantly (p < 0.001) reduced the malonaldehyde (MDA) level and enhanced the glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) level in the bone, intestine and hepatic tissue. Fisetin treatment suppressed the cytokines, RANKL/OPG ratio, receptor activator of nuclear factor-κB ligand (RANKL) and improved the level of osteoprotegerin (OPG). The findings suggest that fisetin could be a beneficial phytoconstituent for the treatment and prevention of postmenopausal osteoporotic complications.
Collapse
Affiliation(s)
- Peng Feng
- Department of Orthopedics, Tongchuan People's Hospital
| | - Shijun Shu
- Department of Orthopedics, Xiamen Fifth Hospital
| | - Feifei Zhao
- Department of Orthopedic, The Fourth Hospital of Hebei Medical University (Hebei Cancer Hospital)
| |
Collapse
|
15
|
Zhou G, Chen J, Wu C, Jiang P, Wang Y, Zhang Y, Jiang Y, Li X. Deciphering the Protein, Modular Connections and Precision Medicine for Heart Failure With Preserved Ejection Fraction and Hypertension Based on TMT Quantitative Proteomics and Molecular Docking. Front Physiol 2021; 12:607089. [PMID: 34721049 PMCID: PMC8552070 DOI: 10.3389/fphys.2021.607089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 09/23/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Exploring the potential biological relationships between heart failure with preserved ejection fraction (HFpEF) and concomitant diseases has been the focus of many studies for the establishment of personalized therapies. Hypertension (HTN) is the most common concomitant disease in HFpEF patients, but the functional connections between HFpEF and HTN are still not fully understood and effective treatment strategies are still lacking. Methods: In this study, tandem mass tag (TMT) quantitative proteomics was used to identify disease-related proteins and construct disease-related networks. Furthermore, functional enrichment analysis of overlapping network modules was used to determine the functional similarities between HFpEF and HTN. Molecular docking and module analyses were combined to identify therapeutic targets for HFpEF and HTN. Results: Seven common differentially expressed proteins (co-DEPs) and eight overlapping modules were identified in HFpEF and HTN. The common biological processes between HFpEF and HTN were mainly related to energy metabolism. Myocardial contraction, energy metabolism, apoptosis, oxidative stress, immune response, and cardiac hypertrophy were all closely associated with HFpEF and HTN. Epinephrine, sulfadimethoxine, chloroform, and prednisolone acetate were best matched with the co-DEPs by molecular docking analyses. Conclusion: Myocardial contraction, energy metabolism, apoptosis, oxidative stress, immune response, and cardiac hypertrophy were the main functional connections between HFpEF and HTN. Epinephrine, sulfadimethoxine, chloroform, and prednisolone acetate could potentially be effective for the treatment of HTN and HFpEF.
Collapse
Affiliation(s)
- Guofeng Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiye Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanhong Wu
- The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Ping Jiang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongcheng Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongjian Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuehua Jiang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
16
|
AbuZahra HM, Rajendran P, Ismail MB. Zerumbone Exhibit Protective Effect against Zearalenone Induced Toxicity via Ameliorating Inflammation and Oxidative Stress Induced Apoptosis. Antioxidants (Basel) 2021; 10:antiox10101593. [PMID: 34679730 PMCID: PMC8533127 DOI: 10.3390/antiox10101593] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
Zearalenone are widely occurring food contaminants that cause hepatotoxicity. This research work aimed to investigate how zerumbone, a plant-derived dietary compound, can fight ZEA-induced hepatotoxicity. ZER is found to increase the cells’ toxin resistance. This study was performed on mice challenged with ZEA. The administration of ZER decreased the level of alkaline phosphatase and alanine aminotransferase (ALT). Simultaneously, ZER attenuated the inflammatory response via significantly reducing the levels of pro-inflammatory factors, including interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) in serum. Pretreatment with ZER reduced the hepatic malondialdehyde (MDA) concentration, as well as the depletion of hepatic superoxide dismutase (SOD), hepatic glutathione (GSH), and hepatic catalase (CAT). Moreover, it significantly ameliorated ZEA-induced liver damage and histological hepatocyte changes. ZER also relieved ZEA-induced apoptosis by regulating the PI3K/AKT pathway and Nrf2 and HO-1 expression. Furthermore, ZER increasingly activated Bcl2 and suppressed apoptosis marker proteins. Our findings suggest that ZER exhibits the ability to prevent ZEA-induced liver injury and present the underlying molecular basis for potential applications of ZER to cure liver injuries.
Collapse
|
17
|
Mechanism of Pingyang Jiangya Formula in treating hypertension based on network pharmacology and in vivo study. DIGITAL CHINESE MEDICINE 2021. [DOI: 10.1016/j.dcmed.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Kirenol Inhibits B[a]P-Induced Oxidative Stress and Apoptosis in Endothelial Cells via Modulation of the Nrf2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5585303. [PMID: 33981385 PMCID: PMC8088375 DOI: 10.1155/2021/5585303] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/18/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022]
Abstract
Atherosclerosis is a persistent inflammatory disorder specified by the dysfunction of the arteries, the world's leading cause of cardiovascular diseases. We sought to determine the effectiveness of KRL in B[a]P-induced oxidative stress and programmed cell death in endothelial cells. Western blotting, real-time PCR, DCFH2-DA, and TUNEL staining were performed to detect pPI3K, pAKT, Nrf2, HO-1, NQO-1, Bcl2, Bax, and caspase-3 on the HUVECs. Through the pretreatment of KRL, a drastic enhancement was observed in the cell viability of HUVECs, whereas DNA damage and generation of reactive oxygen species induced by B[a]P was suppressed. KRL's potential use as an antioxidant was observed to have a direct correlation with an antioxidant gene's augmented expression and the nuclear translocation activation of Nrf2, even during the event when B[a]P was found to be absent. In addition, this study proved that the signaling cascades of PI3K/AKT mediated Nrf2 translocation. Activation of suppressed nuclear Nrf2 and reduced antioxidant genes across cells interacting with an LY294002 confirmed this phenomenon. In addition, knockdown of Nrf2 by Nrf2-siRNA transfection abolished the protective effects of KRL on HUVECs cells against oxidative damage. Finally, the expression of apoptotic proteins also supported the hypothesis that KRL may inhibit endothelial dysfunction. This study showed that KRL potentially prevents B[a]P-induced redox imbalance in the vascular endothelium by inducing the Nrf2 signaling via the PI3K/AKT pathway.
Collapse
|
19
|
Ismail MB, Rajendran P, AbuZahra HM, Veeraraghavan VP. Mangiferin Inhibits Apoptosis in Doxorubicin-Induced Vascular Endothelial Cells via the Nrf2 Signaling Pathway. Int J Mol Sci 2021; 22:ijms22084259. [PMID: 33923922 PMCID: PMC8073066 DOI: 10.3390/ijms22084259] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 12/24/2022] Open
Abstract
Doxorubicin increases endothelial permeability, hence increasing cardiomyocytes’ exposure to doxorubicin (DOX) and exposing myocytes to more immediate damage. Reactive oxygen species are major effector molecules of doxorubicin’s activity. Mangiferin (MGN) is a xanthone derivative that consists of C-glucosylxanthone with additional antioxidant properties. This particular study assessed the effects of MGN on DOX-induced cytotoxicity in human umbilical vein endothelial cells’ (HUVECs’) signaling networks. Mechanistically, MGN dramatically elevated Nrf2 expression at both the messenger RNA and protein levels through the upregulation of the PI3K/AKT pathway, leading to an increase in Nrf2-downstream genes. Cell apoptosis was assessed with a caspase-3 activity assay, transferase-mediated dUTP-fluorescein nick end labeling (TUNEL) staining was performed to assess DNA fragmentation, and protein expression was determined by Western blot analysis. DOX markedly increased the generation of reactive oxygen species, PARP, caspase-3, and TUNEL-positive cell numbers, but reduced the expression of Bcl-2 and antioxidants’ intracellular concentrations. These were effectively antagonized with MGN (20 μM), which led to HUVECs being protected against DOX-induced apoptosis, partly through the PI3K/AKT-mediated NRF2/HO-1 signaling pathway, which could theoretically protect the vessels from severe DOX toxicity.
Collapse
Affiliation(s)
- Mohammad Bani Ismail
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Correspondence: (M.B.I.); (P.R.); Tel.: +97-0135899543l (M.B.I. & P.R.)
| | - Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Correspondence: (M.B.I.); (P.R.); Tel.: +97-0135899543l (M.B.I. & P.R.)
| | - Hamad Mohammed AbuZahra
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India;
| |
Collapse
|
20
|
Lin YM, Badrealam KF, Kuo CH, Daddam J, Asokan Shibu M, Lin KH, Ho TJ, Viswanadha VP, Kuo WW, Huang CY. Small Molecule Compound Nerolidol attenuates Hypertension induced hypertrophy in spontaneously hypertensive rats through modulation of Mel-18-IGF-IIR signalling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 84:153450. [PMID: 33611212 DOI: 10.1016/j.phymed.2020.153450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cardiovascular diseases are caused by multitudes of stress factors like hypertension and their outcomes are associated with high mortality and morbidity worldwide. Nerolidol, a naturally occurring sesquiterpene found in several plant species, embodies various pharmacological benefits against numerous health disorders. However, their effects on hypertension induced cardiac complications are not completely understood. PURPOSE The present study is to elucidate the efficacy of nerolidol against hypertension related cardiac hypertrophy in spontaneously hypertensive rats (SHRs). STUDY DESIGN For preliminary in vitro studies, H9c2 cardiomyoblasts cells were challenged with 200 nM Angiotensin-II (AngII) for 12 h and were then treated with nerolidol for 24 h. The hypertrophic effect in H9c2 cells were analyzed by actin staining and the modulations in hypertrophic protein markers and mediators were determined by Western blotting analysis. For in vivo experiments, sixteen week-old male Wistar Kyoto (WKY) and SHRs were segregated into five groups (n = 9): Control WKY, hypertensive SHRs, SHRs with low dose (75 mg/kg b.w/day) nerolidol, SHRs with high dose (150 mg/kg b.w/day) nerolidol and SHR rats treated with an anti-hypertensive drug captopril (50 mg/kg b.w/day). Nerolidol treatment was given orally for 8 weeks and were analysed through Echocardiography. After euthanasia, hematoxylin and eosin staining, Immunohistochemical analysis and Western blotting was performed on left ventricle tissue. RESULTS Western blotting analysis revealed that nerolidol significantly attenuates AngII induced expression of hypertrophic markers ANP and BNP in H9c2 cardiomyoblasts. In addition, actin staining further ascertained the potential of nerolidol to ameliorate AngII induced cardiac hypertrophy. Moreover, nerolidol administration suppressed the hypertrophic signalling mediators like calcineurin, GATA4, Mel-18, HSF-2 and IGFIIR in a dose-dependent fashion. In silico studies also ascertained the role of Mel-18 in the ameliorative effects of nerolidol. Further, these intriguing in vitro results were further confirmed in in vivo SHR model. Oral neraolidol in SHRs efficiently reduced blood pressure and ameliorated hypertension induced cardiac hypertrophic effects by effectively reducing the levels of proteins involved in cardiac MeL-18-HSF2-IGF-IIR signalling. CONCLUSION Collectively, the data reveals that the cardioprotective effect of nerolidol against hypertension induced hypertrophy involves reduction in blood pressure and regulation of the cardiac Mel-18-IGFIIR signalling cascade.
Collapse
Affiliation(s)
- Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua 500, Taiwan; Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Taipei 11260, Taiwan
| | - Khan Farheen Badrealam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taiwan
| | - Jayasimharayalu Daddam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Kuan-Ho Lin
- College of Medicine, China Medical University, Taichung, Taiwan; Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan; Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan; School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung; Ph.D. Program for Biotechnology Industry, China Medical University, Taichuang 406, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Biological Science and Technology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
21
|
Alzahrani AM, Rajendran P, Veeraraghavan VP, Hanieh H. Cardiac Protective Effect of Kirenol against Doxorubicin-Induced Cardiac Hypertrophy in H9c2 Cells through Nrf2 Signaling via PI3K/AKT Pathways. Int J Mol Sci 2021; 22:ijms22063269. [PMID: 33806909 PMCID: PMC8004766 DOI: 10.3390/ijms22063269] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Kirenol (KRL) is a biologically active substance extracted from Herba Siegesbeckiae. This natural type of diterpenoid has been widely adopted for its important anti-inflammatory and anti-rheumatic properties. Despite several studies claiming the benefits of KRL, its cardiac effects have not yet been clarified. Cardiotoxicity remains a key concern associated with the long-term administration of doxorubicin (DOX). The generation of reactive oxygen species (ROS) causes oxidative stress, significantly contributing to DOX-induced cardiac damage. The purpose of the current study is to investigate the cardio-protective effects of KRL against apoptosis in H9c2 cells induced by DOX. The analysis of cellular apoptosis was performed using the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining assay and measuring the modulation in the expression levels of proteins involved in apoptosis and Nrf2 signaling, the oxidative stress markers. Furthermore, Western blotting was used to determine cell survival. KRL treatment, with Nrf2 upregulation and activation, accompanied by activation of PI3K/AKT, could prevent the administration of DOX to induce cardiac oxidative stress, remodeling, and other effects. Additionally, the diterpenoid enhanced the activation of Bcl2 and Bcl-xL, while suppressing apoptosis marker proteins. As a result, KRL is considered a potential agent against hypertrophy resulting from cardiac deterioration. The study results show that KRL not only activates the IGF-IR-dependent p-PI3K/p-AKT and Nrf2 signaling pathway, but also suppresses caspase-dependent apoptosis.
Collapse
Affiliation(s)
- Abdullah M. Alzahrani
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Correspondence: ; Tel.: +97-0135899543
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India;
| | - Hamza Hanieh
- Department of Medical Analysis, Al-Hussein Bin Talal University, Ma’an 71111, Jordan;
| |
Collapse
|
22
|
Sadighi A, abdi A, Azarbayjani MA, barari A. Response of Some Apoptotic Indices to Six Weeks of Aerobic Training in Streptozotocin-Induced Diabetic Rats. MEDICAL LABORATORY JOURNAL 2021. [DOI: 10.29252/mlj.15.1.33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
23
|
Kaempferol Inhibits Zearalenone-Induced Oxidative Stress and Apoptosis via the PI3K/Akt-Mediated Nrf2 Signaling Pathway: In Vitro and In Vivo Studies. Int J Mol Sci 2020; 22:ijms22010217. [PMID: 33379332 PMCID: PMC7794799 DOI: 10.3390/ijms22010217] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
In this study, kaempferol (KFL) shows hepatoprotective activity against zearalenone (ZEA)-induced oxidative stress and its underlying mechanisms in in vitro and in vivo models were investigated. Oxidative stress plays a critical role in the pathophysiology of various hepatic ailments and is normally regulated by reactive oxygen species (ROS). ZEA is a mycotoxin known to exert toxicity via inflammation and ROS accumulation. This study aims to explore the protective role of KFL against ZEA-triggered hepatic injury via the PI3K/Akt-regulated Nrf2 pathway. KFL augmented the phosphorylation of PI3K and Akt, which may stimulate antioxidative and antiapoptotic signaling in hepatic cells. KFL upregulated Nrf2 phosphorylation and the expression of antioxidant genes HO-1 and NQO-1 in a dose-dependent manner under ZEA-induced oxidative stress. Nrf2 knockdown via small-interfering RNA (siRNA) inhibited the KFL-mediated defence against ZEA-induced hepatotoxicity. In vivo studies showed that KFL decreased inflammation and lipid peroxidation and increased H2O2 scavenging and biochemical marker enzyme expression. KFL was able to normalize the expression of liver antioxidant enzymes SOD, CAT and GSH and showed a protective effect against ZEA-induced pathophysiology in the livers of mice. These outcomes demonstrate that KFL possesses notable hepatoprotective roles against ZEA-induced damage in vivo and in vitro. These protective properties of KFL may occur through the stimulation of Nrf2/HO-1 cascades and PI3K/Akt signaling.
Collapse
|
24
|
Deng B, Feng J, Wang L, Chen X. Silencing of CRT relieves Ang II-Induced injury of HUVECs with insulin resistance. J Recept Signal Transduct Res 2020; 41:321-330. [PMID: 32873146 DOI: 10.1080/10799893.2020.1808677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this study, we investigated the effects of Angiotensin II (Ang II) on insulin-resistant endothelial cells. High glucose and insulin at series of concentrations were used to induce IR in Human Umbilical Vein Endothelial Cells (HUVECs). Successful IR induction was confirmed according to glucose consumption and glycogen content levels. Cell morphology was observed under a microscope. Expression levels of Ang II and Calreticulin (CRT) were measured by ELISA, qRT-PCR and Western blot as appropriate. Cell viability and apoptosis were measured by CCK-8 assay and flow cytometry, respectively. HUVECs with IR were exposed to Ang II at series of concentrations, and then the cell viability, apoptosis and CRT were detected. Rescue assays were performed by transfection of siCRT or overexpression of CRT with or without Ang II stimulation into the HUVECs with IR. Expressions of cell apoptosis-related proteins Bcl-2 and Bax were measured by qRT-PCR and Western blot. Glucose (33.3 mmol/L) and insulin (4 µmol/L) induced significantly strong IR to the HUVECs, with a pathological appearance. Levels of Agn II and CRT were both up-regulated by IR. Cell viability of HUVECs was slightly reduced after IR induction for 2 h, and cell apoptosis rate was increased. In addition, Ang II (10-7 mol/l) suppressed cell viability and glucose uptake, promoted cell apoptosis and increased CRT, and these effects could be weakened by silencing CRT. Thus, we preliminarily proved that Ang II up-regulates CRT, and CRT knockdown can relieve Ang II-induced injury of HUVECs with IR.
Collapse
Affiliation(s)
- Biyong Deng
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Feng
- Department of Cardiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Lei Wang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai, Jiaotong University School of Medicine, Shanghai, China
| | - Xin Chen
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Zhang S, Xue R, Geng Y, Wang H, Li W. Fisetin Prevents HT22 Cells From High Glucose-Induced Neurotoxicity via PI3K/Akt/CREB Signaling Pathway. Front Neurosci 2020; 14:241. [PMID: 32265642 PMCID: PMC7096699 DOI: 10.3389/fnins.2020.00241] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/03/2020] [Indexed: 01/27/2023] Open
Abstract
Hyperglycemia has been widely considered as a key risk factor for diabetic encephalopathy which can cause neuronal apoptosis and cognitive deficits. The flavonoid compound, fisetin, possesses potential neuroprotective effects and also enhances learning and memory. However, the role of fisetin in hyperglycemia-induced neuronal cytotoxicity has not been fully elucidated. In the present study, HT22 murine hippocampal neuronal cell line was used to establish the injured cell model. Cell proliferation and cytotoxicity assay, Hoechst 33258 staining, qRT-PCR, western blot analysis, and specific inhibitor were used to investigate the effect and molecular mechanisms of fisetin on high glucose (HG)-induced neurotoxicity in HT22 cells. Our results showed that 125 μM and 48 h of treatment was identified as optimal damage parameter of HG. Fisetin significantly improved HG-inhibited cell viability. The levels of LDH, malondialdehyde (MDA), and superoxide dismutase (SOD) were noticeably modulated by fisetin, which alleviated HG-induced HT22 cell oxidative damage. Besides, the apoptosis of HT22 cells was rescued by fisetin pretreatment. In addition, fisetin also prevented HG-induced downregulation of the mRNA expression of Bdnf, Gdnf, synaptophysin (Syp), and glutamate ionotropic receptor AMPA type subunit 1 (Gria1) in cells. More importantly, the decreased phosphorylation of phosphoinositide 3 kinase (PI3K), Akt, and cAMP-response element binding protein (CREB) was rescued by fisetin treatment and that neuroprotective effect of fisetin was partially blocked by PI3K inhibitor, LY294002. These findings indicate that fisetin has potent neuroprotective effect and prevents HG-induced neurotoxicity by activation of PI3K/Akt/CREB pathway.
Collapse
Affiliation(s)
- Shenshen Zhang
- Precision Nutrition Innovation Center, College of Public Health, Zhengzhou University, Zhengzhou, China.,Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ran Xue
- Precision Nutrition Innovation Center, College of Public Health, Zhengzhou University, Zhengzhou, China.,Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yaping Geng
- Precision Nutrition Innovation Center, College of Public Health, Zhengzhou University, Zhengzhou, China.,Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hao Wang
- Precision Nutrition Innovation Center, College of Public Health, Zhengzhou University, Zhengzhou, China.,Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wenjie Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Qiu Y, Huang X, He W. The regulatory role of HIF-1 in tubular epithelial cells in response to kidney injury. Histol Histopathol 2019; 35:321-330. [PMID: 31691948 DOI: 10.14670/hh-18-182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The high sensitivity to changes in oxygen tension makes kidney vulnerable to hypoxia. Both acute kidney injury and chronic kidney disease are almost always accompanied by hypoxia. Tubular epithelial cells (TECs), the dominant intrinsic cells in kidney tissue, are believed to be not only a victim in the pathological process of various kidney diseases, but also a major contributor to kidney damage. Hypoxia inducible factor-1 (HIF-1) is the main regulator of adaptive response of cells to hypoxia. Under various clinical and experimental kidney disease conditions, HIF-1 plays a pivotal role in modulating multiple cellular processes in TECs, including apoptosis, autophagy, inflammation, metabolic pattern alteration, and cell cycle arrest. A comprehensive understanding of the mechanisms by which HIF-1 regulates these cellular processes in TECs may help identify potential therapeutic targets to improve the outcome of acute kidney injury and delay the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Yumei Qiu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaowen Huang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
27
|
Huang PC, Shibu MA, Kuo CH, Han CK, Chen YS, Lo FY, Li H, Viswanadha VP, Lai CH, Li X, Huang CY. Pheretima aspergillum extract attenuates high-KCl-induced mitochondrial injury and pro-fibrotic events in cardiomyoblast cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:921-927. [PMID: 31066208 DOI: 10.1002/tox.22763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Hyperkalemia is often associated with cardiac dysfunction. In this study an earthworm extract (dilong) was prepared from dried Pheretima aspergillum powder and its effect against high-KCl challenge was determined in H9c2 cardiomyoblast cells. H9c2 cells pre-treated with dilong (31.25, 62.5, 125, and 250 mg/mL) for 24 hours, where challenged with different doses of KCl treatment for 3 hours to determine the protective mechanisms of dilong against cardiac fibrosis. High-KCl administration induced mitochondrial injury and elevated the levels of pro-apoptotic proteins. The mediators of fibrosis such as ERK, uPA, SP1, and CTGF were also found to be upregulated in high-KCl condition. However, dilong treatment enhanced IGF1R/PI3k/Akt activation which is associated with cell survival. In addition, dilong also reversed high-KCl induced cardiac fibrosis related events in H9c2 cells and displayed a strong cardio-protective effect. Therefore, dilong is a potential agent to overcome cardiac events associated with high-KCl toxicity.
Collapse
Affiliation(s)
- Pei-Chen Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Marthandam Asokan Shibu
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Chien-Kuo Han
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Yueh-Sheng Chen
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Feng-Yueh Lo
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Heng Li
- Department of Anesthesiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | | | - Chao-Hung Lai
- Division of Cardiology, Department of Internal Medicine, Taichung Armed Force General Hospital, Taichung, Taiwan
| | - Xudong Li
- Division of Cardiac Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Chih-Yang Huang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
28
|
Wang M, Yang L, Yang J, Wang C. Shen Shuai IIRecipe attenuates renal injury and fibrosis in chronic kidney disease by regulating NLRP3 inflammasome and Sirt1/Smad3 deacetylation pathway. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:107. [PMID: 31118021 PMCID: PMC6530021 DOI: 10.1186/s12906-019-2524-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Excessive activation of NLRP3 inflammasome and down-regulation of Sirt1/Smad3 deacetylation pathway play a significant role in the evolution of renal fibrosis. In China, it has been well known that Chinese herbal medicine is markedly effective in treating chronic kidney disease (CKD). Shen Shuai IIRecipe (SSR) has been used clinically for more than 20 years and has been confirmed to be effective in improvements of renal function and fibrosis. However, the specific mechanisms under the efficacy require further research. The purpose of this study was to evaluate whether SSR could alleviate renal injury and fibrosis by regulating NLRP3 inflammasome and Sirt1/Smad3 deacetylation pathway. METHODS Four weeks after 5/6 ablation/infarction (A/I) surgery, Sprague-Dawley rats were randomly divided into the following groups: sham operation group, 5/6 (A/I) group, 5/6 (A/I) + SSR group, and 5/6 (A/I) + Losartan group (5/6 (A/I) + Los). After 8 weeks intervention,we mainly assessed the severity of renal injury and fibrosis along with the activation of NLRP3 inflammasome and Sirt1/Smad3 deacetylation pathway. RESULTS SSR significantly attenuated renal injury and fibrosis in the remnant kidneys. In addition, we found that SSR effectively inhibited activation of NLRP3/ASC/Caspase-1/IL-1βcascade, decreased inflammatory infiltration and up-regulated Sirt1/Smad3 deacetylation pathway. CONCLUSIONS SSR could contribute to renal protection by inhibiting the activation of NLRP3 inflammasome and, furthermore, strengthen the antifibrotic effects by up-regulating Sirt1/Smad3 deacetylation pathway in 5/6 renal (A/I) model.
Collapse
Affiliation(s)
- Meng Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
- Key Laboratory of Liver and Kidney Diseases,Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Liuyi Yang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
- Key Laboratory of Liver and Kidney Diseases,Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Jing Yang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
- Key Laboratory of Liver and Kidney Diseases,Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Chen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
- Key Laboratory of Liver and Kidney Diseases,Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
- TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| |
Collapse
|
29
|
Wang J, Fu D, Senouthai S, Jiang Y, Hu R, You Y. Identification of the Transcriptional Networks and the Involvement in Angiotensin II-Induced Injury after CRISPR/Cas9-Mediated Knockdown of Cyr61 in HEK293T Cells. Mediators Inflamm 2019; 2019:8697257. [PMID: 31148949 PMCID: PMC6501185 DOI: 10.1155/2019/8697257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/14/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The transcriptional networks of Cyr61 and its function in cell injury are poorly understood. The present study depicted the lncRNA and mRNA profiles and the involvement in angiotensin II-induced injury after Cyr61 knockdown mediated by CRISPR/Cas9 in HEK293T cells. METHODS HEK293T cells were cultured, and Cyr61 knockdown was achieved by transfection of the CRISPR/Cas9 KO plasmid. lncRNA and mRNA microarrays were used to identify differentially expressed genes (DEGs). Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to determine biofunctions and signaling pathways. RT-PCR was used to validate the microarray results. Cells were divided into four groups: control, Cyr61 knockdown, angiotensin II (Ang II) without Cyr61 knockdown, and Ang II with Cyr61 knockdown. CCK8, western blotting, and flow cytometry analysis were carried out to dissect cellular function. RESULTS A total of 23184 lncRNAs and 28264 mRNAs were normalized. 26 lncRNAs and 212 mRNAs were upregulated, and 74 lncRNAs and 233 mRNAs were downregulated after Cyr61 knockdown. Analysis of cellular components, molecular functions, biological processes, and regulatory pathways associated with the differentially expressed mRNAs revealed downstream mechanisms of the Cyr61 gene. The differentially expressed genes were affected for small cell lung cancer, axon guidance, Fc gamma R-mediated phagocytosis, MAPK signaling pathway, focal adhesion, insulin resistance, and metabolic pathways. In addition, Cyr61 expression was increased in accordance with induction of cell cycle arrest and apoptosis and inhibition of cell proliferation induced by Ang II. Knockdown of Cyr61 in HEK293T cells promoted cell cycle procession, decreased apoptosis, and promoted cell proliferation. CONCLUSIONS The Cyr61 gene is involved in Ang II-induced injury in HEK293T cells. Functional mechanisms of the differentially expressed lncRNAs and mRNAs as well as identification of metabolic pathways will provide new therapeutic targets for Cyr61-realated diseases.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, China
| | - Dongdong Fu
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, China
| | - Soulixay Senouthai
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, China
| | - Yan Jiang
- Department of Clinical Laboratories, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, China
| | - Rentong Hu
- Science Lab Center, Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, China
| | - Yanwu You
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|