1
|
Yang C, Lai H, Yang X, Huang Y, Shi Y, Ke L, Chen L, Chen M, Chen H, Wang Q. Unveiling an indole derivative YM818 as a novel tyrosinase inhibitor with anti-melanogenic and anti-melanin transfer effects. Int J Biol Macromol 2025; 306:141557. [PMID: 40020832 DOI: 10.1016/j.ijbiomac.2025.141557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/05/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Indole and its derivatives, heterocyclic compounds with broad therapeutic potential, have seen limited study in melanogenesis. Here, our virtual screening identified 15 indole derivatives that potentially interacted with tyrosinase (TYR), a key enzyme in melanogenesis. Nine of the 15 indole derivatives tested significantly decreased tyrosinase activity, and 3-hydroxy-5-bromo-(3-indolyl)-2‑carbonyl indole (designated as YM818) exhibited highest inhibitory rate at 74.28 % with IC50 of 0.372 mmol/L. Surface plasmon resonance and fluorescence quenching assays demonstrated the direct interaction between YM818 and TYR with KD value 94.84 ± 45.27 μmol/L. YM818 treatment reduced cellular melanin content to 35.8 %. Furthermore, YM818 treatment enhanced AKT protein phosphorylation, leading to the downregulation of melanogenesis-related proteins, including MITF, TYR and TRP1. In vivo zebrafish studies confirmed the inhibitory effects of YM818 on melanogenesis. Additionally, YM818 disrupted melanin transfer by suppressing the expression of protease-activated receptor-2 (PAR-2) gene, a G protein-coupled receptor that plays a crucial role in mediating cellular responses to serine proteases, including keratinocyte phagocytosis and melanin transfer. YM818 also exhibited robust antioxidant activity, with 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging IC50 values comparable to vitamin C and significantly reducing intracellular ROS levels in a dose-dependent manner. Taken together, these findings highlight YM818 as a promising anti-melanogenic agent, offering valuable insights into the development of novel anti-melanin drugs and tyrosinase inhibitors.
Collapse
Affiliation(s)
- Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Huixian Lai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyu Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yuehong Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yan Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lina Ke
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lizhu Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Mingliang Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China; Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu, China.
| | - Hongbin Chen
- Raybow (Hangzhou) Pharmaceutical co., Ltd, Hangzhou, Zhejiang, China.
| | - Qin Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
2
|
Wu D, Fan J, Pang Y, Wen B, Li W, Yang G, Cheng H, Shi J, Wang T, Hu S, Li C, Liu B, Yin J, Wu J. Identification and Expression Patterns of Critical Genes Related to Coat Color in Cashmere Goats. Genes (Basel) 2025; 16:222. [PMID: 40004551 PMCID: PMC11855694 DOI: 10.3390/genes16020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Research on cashmere goat coat color is crucial for optimizing cashmere goat breeds and increasing their economic value. To identify key genes associated with the formation of cashmere goat coat color and to provide molecular markers for breeding purposes, three healthy, 3-year-old does with similar weights and distinct coat colors-white, black, and light brown-were selected. Methods: Skin samples were collected for transcriptome sequencing, and bioinformatics methods were applied to screen for differentially expressed genes (DEGs) in the skin of cashmere goats with varying coat colors. Real-time fluorescence quantitative PCR (qRT-PCR) and immunofluorescence were subsequently conducted to examine the expression patterns of these DEGs. Results: The results showed that a total of 1153 DEGs were identified across the three groups of cashmere goats. According to GO and KEGG analyses, these DEGs were involved in key biological processes and structures, such as the melanin biosynthetic process (GO:0042438), melanosome membrane (GO:0033162), and melanin biosynthesis from tyrosine (GO:0006583). Employing Cytoscape, a gene interaction network was plotted, highlighting a compact network of DEGs associated with coat color formation. Critical genes identified included TYRP1, TYR, DCT, ASIP, PMEL, LOC102180584, MLANA, TSPAN10, TRPM1, CLDN16, AHCY, LOC106503350, and LOC102175263. qRT-PCR and fluorescence immunohistochemistry further determined that TYRP1, TYR, DCT, and PMEL expression levels were high in black goats (BGs), while ASIP and AHCY expression levels were high in white goats (WGs). The expression levels of these six genes in light brown goats (RGs) were intermediate between those in BGs and WGs. Conclusions:TYRP1, TYR, DCT, and PMEL were believed to play pivotal roles in the formation of black coat color, while ASIP and AHCY regulated the formation of white coat color in cashmere goats.
Collapse
Affiliation(s)
- Dubala Wu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (D.W.); (J.F.); (Y.P.)
| | - Jing Fan
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (D.W.); (J.F.); (Y.P.)
| | - Yue Pang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (D.W.); (J.F.); (Y.P.)
| | - Binhong Wen
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (D.W.); (J.F.); (Y.P.)
| | - Wei Li
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (D.W.); (J.F.); (Y.P.)
| | - Guanghao Yang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (D.W.); (J.F.); (Y.P.)
| | - Huiyu Cheng
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (D.W.); (J.F.); (Y.P.)
| | - Jiahui Shi
- College of Life Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ting Wang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (D.W.); (J.F.); (Y.P.)
| | - Sile Hu
- College of Life Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Chun Li
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (D.W.); (J.F.); (Y.P.)
| | - Bin Liu
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
| | - Jun Yin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jianghong Wu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (D.W.); (J.F.); (Y.P.)
| |
Collapse
|
3
|
Wu X, Xu L, Zhang H, Zhu Y, Zhang Q, Zhang C, E G. Genome-Wide Selection Sweep Analysis to Identify Candidate Genes with Black and Brown Color in Tibetan Sibu Yaks. Animals (Basel) 2024; 14:2458. [PMID: 39272243 PMCID: PMC11394208 DOI: 10.3390/ani14172458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Although coat color is an important economic phenotype in domesticated yaks (Bos grunniens), its genetic basis is not yet fully understood. In this study, a genome-wide selective sweep and high-frequency runs of homozygosity (ROH) identification were performed on 50 yaks with different coat colors to investigate candidate genes (CDGs) related to coat color. The results suggested that 2263 CDGs were identified from the 5% interaction windows of the FST and θπ ratio, along with 2801 and 2834 CDGs from black and brown yaks with iHS, respectively. Furthermore, 648 and 691 CDGs from black and brown yaks, which were widely enriched in pathways related to melanogenesis, melanocyte differentiation, and melanosome organization via GO and KEGG functional enrichment, respectively, were confirmed on the basis of the intersection of three parameters. Additionally, the genome of brown yaks presented more ROH, longer ROH fragments, and higher inbreeding levels than those of black yaks. Specifically, a large number of genes related to melanin synthesis and regulation (e.g., UST, TCF25, and AHRR) from the ROH islands were confirmed to be under strong selection. In summary, the results of this study enhance the understanding of the genetic basis for determining yak coat color.
Collapse
Affiliation(s)
- Xinming Wu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Lu Xu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Haoyuan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yong Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa 850009, China
| | - Qiang Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa 850009, China
| | - Chengfu Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa 850009, China
| | - Guangxin E
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Yuan B, Qi Y, Zhang X, Hu J, Fan Y, Ji X. The relationship of MITF gene expression and promoter methylation with plumage colour in quail. Br Poult Sci 2024; 65:259-264. [PMID: 38578288 DOI: 10.1080/00071668.2024.2326962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/16/2024] [Indexed: 04/06/2024]
Abstract
1. This study focused on the relationship between MITF mRNA expression and plumage colour in quail and the effect of promoter methylation on the expression of MITF mRNA.2. The CDS region of MITF mRNA was cloned by RT-PCR, followed by DNA sequencing. The RT-qPCR method was used to analyse the expression levels of MITF mRNA in dorsal skin tissue in Korean quail and Beijing white quail. The promoter region of the MITF gene was cloned, and the CpG island was predicted by the CpGplot program. The methylation levels of the CpG island were analysed using BS-PCR technology.3. Quail MITF mRNA contains a 1,476 bp complete ORF, which encodes a 492 amino acid residue protein. The MITF protein has no signal peptide or transmembrane region. The expression of MITF mRNA in dorsal tissue of Korean quail was significantly higher than that in Beijing white quail (p < 0.01). Abundant cis-elements and a 346 bp CpG island were found in the promoter region of the MITF gene. The average methylation level of the CpG island was 22 (22%) in Korean quail, and 46 (30%) in Beijing white quail (p < 0.05).4. The hypermethylation of the MITF gene promoter region in Beijing white quail resulted in a decrease in expression level, which was related to white feather colour.
Collapse
Affiliation(s)
- B Yuan
- College of Animal Science, Henan University of Science and Technology, Luoyang, P.R.China
| | - Y Qi
- College of Animal Science, Henan University of Science and Technology, Luoyang, P.R.China
| | - X Zhang
- College of Animal Science, Henan University of Science and Technology, Luoyang, P.R.China
| | - J Hu
- College of Animal Science, Henan University of Science and Technology, Luoyang, P.R.China
| | - Y Fan
- College of Animal Science, Henan University of Science and Technology, Luoyang, P.R.China
| | - Xingyu Ji
- College of Animal Science, Henan University of Science and Technology, Luoyang, P.R.China
| |
Collapse
|
5
|
Liu X, Lv X, Ji T, Hu H, Chang L. Gynostemma pentaphyllum Makino extract induces hair growth and exhibits an anti-graying effect via multiple mechanisms. J Cosmet Dermatol 2024; 23:648-657. [PMID: 37649302 DOI: 10.1111/jocd.15963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND In traditional Asian medicine, Gynostemma pentaphyllum Makino leaf extract (Gp) is used to treat aging, metabolic syndrome, diabetes, and neurodegenerative diseases. Hair loss and hair-graying are common phenomena that haunt everyone. However, whether Gp activities on inhibition of hair loss and getting gray have been rarely studied. AIM Study the Gp activity and mechanism by in vivo and in vitro experiments to explore its application on hair health. METHODS In the present study, we determined the effects of Gp on the expression of hair growth-related genes and proliferation of human dermal papilla cells (hDPCs). Furthermore, Gp was topically applied to the hair-shaved skin of male C57BL/6 mice, and the histological profile of the skin was studied. Because emotional stress may lead to melanocyte disappearance, norepinephrine-exposed mice B16 melanocytes were treated with Gp to elucidate the anti-hair graying capacity of Gp in response to this stress type. RESULTS Gp stimulated the proliferation of hDPCs and the Wnt signaling pathways associated with hair growth; furthermore, the expression of the hair loss-related gene transforming growth factor-β1 was suppressed. Gp treatment significantly increased the size of hair follicles in the treated mice and stimulated them. Moreover, Gp not only increased melanin synthesis but also tyrosinase activity in B16 cells. Quantitative real-time polymerase chain reaction revealed that Gp increased melanin synthesis by increasing the expression of tyrosine-related protein-1, tyrosine-related protein-2, tyrosinase, and microphthalmia-associated transcription factor. CONCLUSION Our study provides preclinical evidence regarding the potential of Gp as a promising hair growth and anti-graying agent.
Collapse
Affiliation(s)
- Xiaojin Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Xiaobing Lv
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Tiancheng Ji
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Haoya Hu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Lei Chang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
6
|
Hu S, Wang L. The potential role of ubiquitination and deubiquitination in melanogenesis. Exp Dermatol 2023; 32:2062-2071. [PMID: 37846904 DOI: 10.1111/exd.14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Melanogenesis is a critical biochemical process in which melanocytes produce melanin, a crucial element involved in the formation of coat colour in mammals. According to several earlier studies, melanocytes' post-translational modifications of proteins primarily control melanogenesis. Among the many post-translational changes that can affect melanin production, ubiquitination and deubiquitination can keep melanin production going by changing how proteins that are related to melanin are broken down or kept stable. Ubiquitination and deubiquitination maintain ubiquitin homeostasis, which is a highly dynamic process in balance under the action of E3 ubiquitin ligase and deubiquitinating enzymes. However, the regulatory mechanisms underlying ubiquitination and deubiquitination in melanogenesis are yet to be thoroughly investigated. As a result, there has been a growing focus on exploring the potential correlation between melanogenesis, ubiquitination and deubiquitination. This study discusses the mechanisms of ubiquitination and deubiquitination in the context of melanogenesis, a crucial process for enhancing mammalian coat coloration and addressing pigment-related diseases.
Collapse
Affiliation(s)
- Shuaishuai Hu
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Lu Wang
- College of Life Science, Luoyang Normal University, Luoyang, China
| |
Collapse
|
7
|
Liu J, Xu X, Zhou J, Sun G, Li Z, Zhai L, Wang J, Ma R, Zhao D, Jiang R, Sun L. Phenolic acids in Panax ginseng inhibit melanin production through bidirectional regulation of melanin synthase transcription via different signaling pathways. J Ginseng Res 2023; 47:714-725. [PMID: 38107393 PMCID: PMC10721457 DOI: 10.1016/j.jgr.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 12/19/2023] Open
Abstract
Background Our previous investigation indicated that the preparation of Panax ginseng Meyer (P. ginseng) inhibited melanogenesis. It comprised salicylic acid (SA), protocatechuic acid (PA), p-coumaric acid (p-CA), vanillic acid (VA), and caffeic acid (CA). In this investigation, the regulatory effects of P. ginseng phenolic acid monomers on melanin production were assessed. Methods In vitro and in vivo impact of phenolic acid monomers were assessed. Results SA, PA, p-CA and VA inhibited tyrosinase (TYR) to reduce melanin production, whereas CA had the opposite effects. SA, PA, p-CA and VA significantly downregulated the melanocortin 1 receptor (MC1R), cycle AMP (cAMP), protein kinase A (PKA), cycle AMP-response element-binding protein (CREB), microphthalmia-associated transcription factor (MITF) pathway, reducing mRNA and protein levels of TYR, tyrosinase-related protein 1 (TYRP1), and TYRP2. Moreover, CA treatment enhanced the cAMP, PKA, and CREB pathways to promote MITF mRNA level and phosphorylation. It also alleviated MITF protein level in α-MSH-stimulated B16F10 cells, comparable to untreated B16F10, increasing the expression of phosphorylation glycogen synthase kinase 3β (p-GSK3β), β-catenin, p-ERK/ERK, and p-p38/p38. Furthermore, the GSK3β inhibitor promoted p-GSK3β and p-MITF expression, as observed in CA-treated cells. Moreover, p38 and ERK inhibitors inhibited CA-stimulated p-p38/p38, p-ERK/ERK, and p-MITF increase, which had negative binding energies with MC1R, as depicted by molecular docking. Conclusion P. ginseng roots' phenolic acid monomers can safely inhibit melanin production by bidirectionally regulating melanin synthase transcription. Furthermore, they reduced MITF expression via MC1R/cAMP/PKA signaling pathway and enhanced MITF post-translational modification via Wnt/mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Jianzeng Liu
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaohao Xu
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jingyuan Zhou
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Guang Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Zhenzhuo Li
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Lu Zhai
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Jing Wang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Rui Ma
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Jiang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China
| |
Collapse
|
8
|
Cheng ZJ, Dai GF, Hsu JL, Lin JJ, Wu WT, Su CC, Wu YJ. Antimelanogenesis Effect of Methyl Gallate through the Regulation of PI3K/Akt and MEK/ERK in B16F10 Melanoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5092655. [PMID: 36532851 PMCID: PMC9750762 DOI: 10.1155/2022/5092655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/08/2022] [Accepted: 11/25/2022] [Indexed: 07/30/2023]
Abstract
Methyl gallate is a polyphenolic compound found in many plants, and its antioxidant, antitumor, antibacterial, and anti-inflammatory effects have been extensively studied. More recently, antidepressant-like effects of methyl gallate have been demonstrated in some studies. In the present study, we examined the effects of methyl gallate on melanogenesis, including the tyrosinase inhibitory effect, the melanin content, and the molecular signaling pathways involved in this inhibition. The results showed that methyl gallate inhibited tyrosinase activity and significantly downregulated the expressions of melanin synthesis-associated proteins, including microphthalmia-associated transcription factor (MITF), tyrosinase, dopachrome tautomerase (Dct), and tyrosinase-related protein-1 (TRP1). In conclusion, our findings indicated that activation of MEK/ERK and PI3K/Akt promoted by methyl gallate caused downregulation of MITF and triggered its downstream signaling pathway, thereby inhibiting the production of melanin. In summary, methyl gallate showed significant inhibitory activity against melanin formation, implying that it may be a potential ingredient for application in skin-whitening cosmetics.
Collapse
Affiliation(s)
- Zhi Jiao Cheng
- Department of Beauty Science, Meiho University, Pingtung 91202, Taiwan
| | - Guo Fong Dai
- Yu Jun Biotechnology Co., Ltd., Kaoshiung, Taiwan
| | - Jue Liang Hsu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Austronesian Medicine and Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Jen Jie Lin
- Yu Jun Biotechnology Co., Ltd., Kaoshiung, Taiwan
- Department of Food and Nutrition, Meiho University, Pingtung 91202, Taiwan
| | - Wen Tung Wu
- Department of Food and Nutrition, Meiho University, Pingtung 91202, Taiwan
| | - Ching Chyuan Su
- Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung 928, Taiwan
| | - Yu Jen Wu
- Department of Beauty Science, Meiho University, Pingtung 91202, Taiwan
- Yu Jun Biotechnology Co., Ltd., Kaoshiung, Taiwan
- Department of Food and Nutrition, Meiho University, Pingtung 91202, Taiwan
| |
Collapse
|
9
|
Yoon JH, Youn K, Jun M. Discovery of Pinostrobin as a Melanogenic Agent in cAMP/PKA and p38 MAPK Signaling Pathway. Nutrients 2022; 14:nu14183713. [PMID: 36145089 PMCID: PMC9504415 DOI: 10.3390/nu14183713] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Melanogenesis is the process of melanin synthesis to protect the skin against ultraviolet radiation and other external stresses. The loss of skin pigmentation is closely related to depigmented skin disorders. The melanogenic effects of pinostrobin, an active flavanone found in honey, were evaluated. B16F10 cells were used for melanin content, tyrosinase activity, and the expression of melanogenesis-related markers. Moreover, computational simulations were performed to predict docking and pharmacokinetics. Pinostrobin increased melanin levels and tyrosinase activity by stimulating the expression of melanogenic regulatory factors including tyrosinase, tyrosinase-related protein (TRP) 1 and microphthalmia transcription factor (MITF). Specifically, the phosphorylation of cAMP response element binding (CREB) involved in the MITF activation was augmented by pinostrobin. Moreover, the compound upregulated the β-catenin by cAMP/PKA-mediated GSK-3β inactivation. Co-treatment with a PKA inhibitor, inhibited melanin production, tyrosinase activity, and expression of MITF, p-CREB, p-GSK-3β and p-β-catenin, demonstrating that pinostrobin-stimulated melanogenesis was closely related to cAMP/PKA signaling pathway. Furthermore, the combination of pinostrobin and a specific p38 inhibitor, showed that MITF upregulation by pinostrobin was partly associated with the p38 signaling pathway. Docking simulation exhibited that the oxygen group at C-4 and the hydroxyl group at C-5 of pinostrobin may play an essential role in melanogenesis. In silico analysis revealed that pinostrobin had the optimal pharmacokinetic profiles including gastrointestinal absorption, skin permeability, and inhibition of cytochrome (CYP) enzymes. From the present results, it might be suggested that pinostrobin could be useful as a potent and safe melanogenic agent in the depigmentation disorder, vitiligo.
Collapse
Affiliation(s)
- Jeong-Hyun Yoon
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Korea
| | - Kumju Youn
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea
| | - Mira Jun
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Korea
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea
- Center for Food & Bio Innovation, Dong-A University, Busan 49315, Korea
- Correspondence: ; Tel.: +82-51-200-7323; Fax: +82-51-200-7535
| |
Collapse
|
10
|
Dammarane triterpenoids with rare skeletons from Gynostemma pentaphyllum and their cytotoxic activities. Fitoterapia 2022; 162:105280. [PMID: 35964850 DOI: 10.1016/j.fitote.2022.105280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022]
Abstract
Three unreported dammarane-type triterpenoids with rare skeletons (1-3), along with one undescribed gypenoside (4), were isolated from the aerial parts of Gynostemma pentaphyllum using diverse chromatographic materials and pre-HPLC. Their structures were elucidated on the basis of spectroscopic and spectrometric data, while the absolute configurations of 1-3 were assessed via electronic circular dichroism (ECD) analyses. Notably, compounds 1-3 possess a 3,19-hemiketal bridge in the A ring. Saponin 4 possesses an unreported 20,25-oxa structural moiety. Their antiproliferative effects against HepG2, MCF-7, and DU145 cell lines were screened. Compounds 1-3 displayed moderate cytotoxicity with IC50 values ranging from 13.7 ± 0.2 to 32.0 ± 1.7 μM.
Collapse
|
11
|
Eom YS, Jeong D, Ryu AR, Song KH, Im DS, Lee MY. Daphne odora Exerts Depigmenting Effects via Inhibiting CREB/MITF and Activating AKT/ERK-Signaling Pathways. Curr Issues Mol Biol 2022; 44:3312-3323. [PMID: 35892714 PMCID: PMC9332310 DOI: 10.3390/cimb44080228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 01/01/2023] Open
Abstract
Daphne odora, a blooming shrub, has been traditionally used for various medicinal purposes. However, information on its anti-melanogenic activity and dermal application is limited. In this study, the Daphne odora extract (DOE), with constituents including daphnetin, was used to investigate depigmenting activity and the underlying mechanism of Daphne odora. DOE inhibited in vitro and cellular tyrosinase activity in a dose-dependent manner, and reduced the α-MSH-induced melanin biosynthesis to a control level. The protein expressions of melanin synthesis-related enzymes were also significantly reduced by DOE. Moreover, DOE decreased the phosphorylation of cAMP-response element binding proteins (CREBs) induced by α-MSH in B16F10 cells, while it activated phosphorylated extra-cellular signal-regulated kinases (ERKs) and protein kinase B (AKT) expression. These results suggest that DOE might inhibit the melanogenesis signaling pathways by activating ERK- and AKT-signaling pathways to regulate the expression of CREB and MITF and its downstream pathways. Therefore, DOE could potentially be developed as a depigmenting agent.
Collapse
Affiliation(s)
- Young Sic Eom
- Department of Medical Science, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Chungnam, Korea; (Y.S.E.); (D.J.); (K.-H.S.)
| | - Dongho Jeong
- Department of Medical Science, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Chungnam, Korea; (Y.S.E.); (D.J.); (K.-H.S.)
| | - A-Reum Ryu
- Department of Medical Biotechnology, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Chungnam, Korea;
| | - Keon-Hyoung Song
- Department of Medical Science, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Chungnam, Korea; (Y.S.E.); (D.J.); (K.-H.S.)
- Department of Pharmaceutical Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Chungnam, Korea
| | - Dai Sig Im
- Department of SC Major on New Medicinal Materials, Division of Student Corporation, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Chungnam, Korea;
| | - Mi-Young Lee
- Department of Medical Science, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Chungnam, Korea; (Y.S.E.); (D.J.); (K.-H.S.)
- Department of Medical Biotechnology, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Chungnam, Korea;
- Correspondence: ; Tel.: +82-41-530-1355
| |
Collapse
|
12
|
Jeon S, Kim MM. Creation of the Gain-of-Function Mutation of the MITF Gene Related to Melanogenesis Using the CRISPR-Cas9 System. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422070079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Huang G, Yasir M, Zheng Y, Khan I. Prebiotic properties of jiaogulan in the context of gut microbiome. Food Sci Nutr 2022; 10:731-739. [PMID: 35282005 PMCID: PMC8907712 DOI: 10.1002/fsn3.2701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
Jiaogulan (Gynostemma pentaphyllum) is a traditional Chinese medicinal herb that has been widely used in food and supplemental products. In the last 20 years, extensive research has been conducted to investigate the medicinal prospects of jiaogulan, and in this regard, more than 200 compounds have been isolated with various medicinal properties such as anticancer, anti-obesity, anti-inflammation, and antioxidation. In respect of potential benefits, jiaogulan market is likely growing, and various food items comprised of jiaogulan (beverage, sport drinks, cola, beer, tea, bread, and noodles) have been commercialized in the United States of America, China, and other Asian countries. More recently, there has been growing interest in the prebiotic potential of jiaogulan, especially at the interface of the gut microbiota. This review focuses on the prebiotic and therapeutic aspects of saponins and polysaccharides of jiaogulan tea by summarizing the literature on cancer, obesity, antioxidant activity, and immune-modulatory properties.
Collapse
Affiliation(s)
- Gouxin Huang
- Clinical Research CenterShantou Central HospitalShantouChina
| | - Muhammad Yasir
- Special Infectious Agents UnitKing Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Yilin Zheng
- Clinical Research CenterShantou Central HospitalShantouChina
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaChina
| |
Collapse
|
14
|
Calycosin, a Common Dietary Isoflavonoid, Suppresses Melanogenesis through the Downregulation of PKA/CREB and p38 MAPK Signaling Pathways. Int J Mol Sci 2022; 23:ijms23031358. [PMID: 35163281 PMCID: PMC8836186 DOI: 10.3390/ijms23031358] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 02/02/2023] Open
Abstract
Calycosin, a bioactive isoflavonoid isolated from root extracts of Astragalus membranaceus, has been reported to inhibit melanogenesis, the mechanism of which remains undefined. In this study, we interrogated the mechanistic basis by which calycosin inhibits melanin production in two model systems, i.e., B16F10 melanoma cells and zebrafish embryos. Calycosin was effective in protecting B16F10 cells from α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis and tyrosinase activity. This anti-melanogenic effect was accompanied by decreased expression levels of microphthalmia-associated transcription factor (MITF), a key protein controlling melanin synthesis, and its target genes tyrosinase and tyrosinase-related protein-2 (TRP-2) in calycosin-treated cells. Mechanistically, we obtained the first evidence that calycosin-mediated MITF downregulation was attributable to its ability to block signaling pathways mediated by cAMP response element-binding protein (CREB) and p38 MAP kinase. The protein kinase A (PKA) inhibitor H-89 and p38 inhibitor SB203580 validated the premise that calycosin inhibits melanin synthesis and tyrosinase activity by regulating the PKA/CREB and p38 MAPK signaling pathways. Moreover, the in vivo anti-melanogenic efficacy of calycosin was manifested by its ability to suppress body pigmentation and tyrosinase activity in zebrafish embryos. Together, these data suggested the translational potential of calycosin to be developed as skin-lightening cosmeceuticals.
Collapse
|
15
|
Oh SY, Hyun CG. Chrysoeriol Enhances Melanogenesis in B16F10 Cells Through the Modulation of the MAPK, AKT, PKA, and Wnt/β-Catenin Signaling Pathways. Nat Prod Commun 2022. [DOI: 10.1177/1934578x211069204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chrysoeriol is a 3′-O-methoxy flavone, chemically a derivative of luteolin, which is commonly found across the plant kingdom. Chrysoeriol is of great scientific interest because of its promising anti-inflammatory, anti-cancer, antioxidative, anti-lipase, anti-xanthin oxidase, and antimicrobial activities against multidrug-resistant (MDR) bacterial pathogens; however, its effects on melanogenesis have not yet been elucidated. Here, we report a novel effect of chrysoeriol on melanogenesis in B16F10 cells. Chrysoeriol treatment significantly increased the expression of the melanogenic enzymes tyrosinase (TRY), tyrosinase-related protein-1 (TRP-1), and TRP-2 and upregulated the expression of microphthalmia-associated transcription factor (MITF) in a concentration-dependent manner. Furthermore, chrysoeriol suppressed the phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) in a concentration-dependent manner. In addition, chrysoeriol treatment increased the phosphorylation of p38 mitogen-activated protein kinase (MAPK), glycogen synthase kinase (GSK)-3β, β-catenin, and protein kinase A (PKA) and decreased the production of β-catenin, which is involved in the transcriptional activation of MITF in melanogenesis. Finally, the structure–activity relationship (SAR) of chrysoeriol and its derivatives, including luteolin and apigenin, with regard to their melanin inhibitory activity was also investigated; we identified the significance of the 4′-OH group and C-3′ methoxylation in melanogenesis. Together, these findings indicate that chrysoeriol promotes melanogenesis in B16F10 cells by upregulating the expression of melanogenic enzymes through the MAPK, phosphatidylinositol 3-kinase (PI3K)/AKT, PKA, and Wnt/β-catenin signaling pathways; thus, chrysoeriol may be used as a cosmetic ingredient to promote melanogenesis or as a therapeutic agent against hypopigmentation disorders.
Collapse
Affiliation(s)
- So-Yeon Oh
- Jeju Inside Agency and Cosmetic Science Center, Jeju National University, Jeju, Korea
| | - Chang-Gu Hyun
- Jeju Inside Agency and Cosmetic Science Center, Jeju National University, Jeju, Korea
| |
Collapse
|
16
|
Integrative mRNA-miRNA interaction analysis reveals the molecular mechanism of skin color variation between wild-type and yellow mutant rainbow trout (Oncorhynchus mykiss). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100914. [PMID: 34653947 DOI: 10.1016/j.cbd.2021.100914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022]
Abstract
Rainbow trout (Oncorhynchus mykiss) is an important economic fish in China. Skin color affects the economic value of trout. However, the molecular mechanism of the skin color variation between wild-type (WR) and yellow mutant rainbow trout (YR) is unclear. We sequenced mRNAs and miRNAs of dorsal skin to identify key color variation-associated mRNAs and miRNAs between WR and YR. Overall, 2060 out of 3625 differentially expressed genes were upregulated in YR, and 196 out of 275 differentially expressed miRNAs were downregulated in WR. We identified three key YR-upregulated genes related to the formation of xanthophores (GCH1, SLC2A11, and SOX10). Interestingly, several genes related to melanogenesis (TYR, TYRP1, TYRP2, MC1R, MITF, PMEL, SLC45A2, and OCA2) were downregulated in WR. Integrated analysis identified five miRNAs that target at least two skin color-related genes (miR-495-y, miR-543-y, miR-665-z, miR-433-y, and miR-382-x). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of target genes identified noncoding RNA metabolic process as the most significantly enriched GO term, and several metabolic pathways associated with skin color were enriched significantly, such as tyrosine metabolism, histidine metabolism, and vitamin B6 metabolism. Quantitative real-time PCR of selected mRNAs and miRNAs validated the reliability of the integrated analysis. This study provides in-depth insights into the molecular mechanism of skin color variation between WR and YR, which will accelerate the genetic selection and breeding of rainbow trout with consumer-favored traits.
Collapse
|
17
|
Cheng ZY, Sun Q, Yang PY, Huang XX, Song SJ. Isolation and structure elucidation of anti-tyrosinase compounds from the seeds of Crotalaria pallida. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:738-744. [PMID: 32627578 DOI: 10.1080/10286020.2020.1782386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Three new compounds, crotalariapallins A-C (1-3), were isolated from the 95% EtOH extract of the seeds of Crotalaria pallida. Their structures were established based on extensive spectroscopic methods, including HRESIMS, UV, 1D and 2D NMR. All compounds were evaluated for their inhibitory activities to tyrosinase. These compounds showed different degrees of inhibitory activities, among them, compound 3 exhibited the strongest inhibition activity (IC50 = 0.42 mM).
Collapse
Affiliation(s)
- Zhuo-Yang Cheng
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qian Sun
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Pei-Yuan Yang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
18
|
Morin Induces Melanogenesis via Activation of MAPK Signaling Pathways in B16F10 Mouse Melanoma Cells. Molecules 2021; 26:molecules26082150. [PMID: 33917985 PMCID: PMC8068350 DOI: 10.3390/molecules26082150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/25/2022] Open
Abstract
Morin is a well-known flavonoid, and has been reported to have various properties, such as anti-cell death, antioxidant, and anti-inflammatory properties. Although studies on the biochemical and biological actions of morin have been reported, the melanin biosynthesis effects and molecular mechanisms are unknown. In this study, we first found that morin has the effect of enhancing melanin biosynthesis in B16F10 mouse melanoma cells, and analyzed the molecular mechanism. In this study, we examined the effects of morin on the melanin contents and tyrosinase activity, as well as the protein expression levels of the melanogenic enzymes TRP-1, TRP-2, and microphtalmia-associated transcription factor (MITF) in B16F10 mouse melanoma cells. Morin showed no cytotoxicity in the concentration range of 5–100 μM, and significantly increased the intracellular tyrosinase activity and melanin contents. In mechanism analysis, morin increased the protein expression of TRP-1, TRP-2, and MITF associated with melanogenesis. Furthermore, morin increased phosphorylated ERK and p38 at the early time, and decreased phosphorylated ERK after 12 h. The results suggest that morin enhances melanin synthesis through the MAPK signaling pathways in B16F10 mouse melanoma cells.
Collapse
|
19
|
Boo YC. Emerging Strategies to Protect the Skin from Ultraviolet Rays Using Plant-Derived Materials. Antioxidants (Basel) 2020; 9:E637. [PMID: 32708455 PMCID: PMC7402153 DOI: 10.3390/antiox9070637] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
Sunlight contains a significant amount of ultraviolet (UV) ray, which leads to various effects on homeostasis in the body. Defense strategies to protect from UV rays have been extensively studied, as sunburn, photoaging, and photocarcinogenesis are caused by excessive UV exposure. The primary lines of defense against UV damage are melanin and trans-urocanic acid, which are distributed in the stratum corneum. UV rays that pass beyond these lines of defense can lead to oxidative damage. However, cells detect changes due to UV rays as early as possible and initiate cell signaling processes to prevent the occurrence of damage and repair the already occurred damage. Cosmetic and dermatology experts recommend using a sunscreen product to prevent UV-induced damage. A variety of strategies using antioxidants and anti-inflammatory agents have also been developed to complement the skin's defenses against UV rays. Researchers have examined the use of plant-derived materials to alleviate the occurrence of skin aging, diseases, and cancer caused by UV rays. Furthermore, studies are also underway to determine how to promote melanin production to protect from UV-induced skin damage. This review provides discussion of the damage that occurs in the skin due to UV light and describes potential defense strategies using plant-derived materials. This review aims to assist researchers in understanding the current research in this area and to potentially plan future studies.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, BK21 Plus KNU Biomedical Convergence Program, Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
20
|
Song H, Hwang YJ, Ha JW, Boo YC. Screening of an Epigenetic Drug Library Identifies 4-((hydroxyamino)carbonyl)- N-(2-hydroxyethyl)- N-Phenyl-Benzeneacetamide that Reduces Melanin Synthesis by Inhibiting Tyrosinase Activity Independently of Epigenetic Mechanisms. Int J Mol Sci 2020; 21:ijms21134589. [PMID: 32605171 PMCID: PMC7370187 DOI: 10.3390/ijms21134589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to identify novel antimelanogenic drugs from an epigenetic screening library containing various modulators targeting DNA methyltransferases, histone deacetylases, and other related enzymes/proteins. Of 141 drugs tested, K8 (4-((hydroxyamino)carbonyl)-N-(2-hydroxyethyl)-N-phenyl-benzeneacetamide; HPOB) was found to effectively inhibit the α-melanocyte-stimulating hormone (α-MSH)-induced melanin synthesis in B16-F10 murine melanoma cells without accompanying cytotoxicity. Additional experiments showed that K8 did not significantly reduce the mRNA and protein level of tyrosinase (TYR) or microphthalmia-associated transcription factor (MITF) in cells, but it potently inhibited the catalytic activity TYR in vitro (IC50, 1.1-1.5 µM) as compared to β-arbutin (IC50, 500-700 µM) or kojic acid (IC50, 63 µM). K8 showed copper chelating activity similar to kojic acid. Therefore, these data suggest that K8 inhibits cellular melanin synthesis not by downregulation of TYR protein expression through an epigenetic mechanism, but by direct inhibition of TYR catalytic activity through copper chelation. Metal chelating activity of K8 is not surprising because it is known to inhibit histone deacetylase (HDAC) 6 through zinc chelation. This study identified K8 as a potent inhibitor of cellular melanin synthesis, which may be useful for the treatment of hyperpigmentation disorders.
Collapse
Affiliation(s)
- Hyerim Song
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.S.); (Y.J.H.); (J.W.H.)
- Brain Korea (BK) 21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
| | - Yun Jeong Hwang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.S.); (Y.J.H.); (J.W.H.)
- Brain Korea (BK) 21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
| | - Jae Won Ha
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.S.); (Y.J.H.); (J.W.H.)
- Brain Korea (BK) 21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
| | - Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.S.); (Y.J.H.); (J.W.H.)
- Brain Korea (BK) 21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-53-420-4946
| |
Collapse
|