1
|
Dayarathne LA, Jasmadi, Ko SC, Yim MJ, Lee JM, Kim JY, Oh GW, Lee DS, Jung WK, Lee SJ, Je JY. Strongylocentrotus intermedius Extract Suppresses Adiposity by Inhibiting Adipogenesis and Promoting Adipocyte Browning via AMPK Activation in 3T3-L1 Cells. J Microbiol Biotechnol 2024; 34:1688-1697. [PMID: 39086228 PMCID: PMC11380521 DOI: 10.4014/jmb.2404.04041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
The current study aimed to determine whether Strongylocentrotus intermedius (S. intermedius) extract (SIE) exerts anti-obesity potentials employing 3T3-L1 cells as in vitro model. Herein we reported that treatment of SIE for 6 days reduced lipid accretion and triglyceride content whereas it increased the release of free glycerol. The inhibited lipid accumulation and induced lipolysis were evidenced by the downregulation of lipogenesis proteins, such as fatty acid synthase and lipoprotein lipase, and the upregulation of hormone-sensitive lipase expression. Furthermore, the downregulation of adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein α, and sterol regulatory element-binding protein 1, highlights that reduced lipid accumulation is supported by lowering adipocyte differentiation. Additionally, treatment activates brown adipocyte phenotype in 3T3-L1 cells by inducing expression of brown adipose tissue-specific proteins, such as uncoupling protein 1 and peroxisome proliferator-activated receptor-γ coactivator 1α. Moreover, SIE induced the phosphorylation of AMP-activated protein kinase (AMPK). The pharmacological approach using AMPK inhibitor revealed that the restraining effect of SIE on adipogenesis and promotion of adipocyte browning were blocked. In GC-MS analysis, SIE was mainly composed of cholest-5-en-3-ol (36.71%) along with saturated and unsaturated fatty acids which have favorable anti-obesity potentials. These results reveal that SIE has the possibility as a lipid-lowering agent for the intervention of obesity.
Collapse
Affiliation(s)
- Lakshi A Dayarathne
- Department of Food and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Jasmadi
- Department of Food and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
- National Research and Innovation Agency, Research Center for Food Technology and Processing, Gunungkidul, 55861, Indonesia
| | - Seok-Chun Ko
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea
| | - Mi-Jin Yim
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea
| | - Jeong Min Lee
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea
| | - Ji-Yul Kim
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea
| | - Gun-Woo Oh
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea
| | - Dae-Sung Lee
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea
| | - Won-Kyo Jung
- Major of Biomedical Engineering, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | | | | |
Collapse
|
2
|
Yang Z, Lu Y, Li T, Zhou X, Yang J, Yang S, Bu S, Duan Y. Osmanthus fragrans Flavonoid Extract Inhibits Adipogenesis and Induces Beiging in 3T3-L1 Adipocytes. Foods 2024; 13:1894. [PMID: 38928836 PMCID: PMC11202805 DOI: 10.3390/foods13121894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Osmanthus fragrans has a long history of cultivation in Asia and is widely used in food production for its unique aroma, which has important cultural and economic values. It is rich in flavonoids with diverse pharmacological properties, such as antioxidant, anti-tumor, and anti-lipid activities. However, little is known regarding the effects of Osmanthus fragrans flavonoid extract (OFFE) on adipogenesis and pre-adipocyte transdifferentiation. Herein, this research aimed to investigate the effect of OFFE on the differentiation, adipogenesis, and beiging of 3T3-L1 adipocytes and to elucidate the underlying mechanism. Results showed that OFFE inhibited adipogenesis, reduced intracellular reactive oxygen species levels in mature adipocytes, and promoted mitochondrial biogenesis as well as beiging/browning in 3T3-L1 adipocytes. This effect was accompanied by increased mRNA and protein levels of the brown adipose-specific marker gene Pgc-1a, and the upregulation of the expression of UCP1, Cox7A1, and Cox8B. Moreover, the research observed a dose-dependent reduction in the mRNA expression of adipogenic genes (C/EBPα, GLUT-4, SREBP-1C, and FASN) with increasing concentrations of OFFE. Additionally, OFFE activated the AMPK signaling pathway to inhibit adipogenesis. These findings elucidate that OFFE has an inhibitory effect on adipogenesis and promotes browning in 3T3-L1 adipocytes, which lays the foundation for further investigation of the lipid-lowering mechanism of OFFE in vivo in the future.
Collapse
Affiliation(s)
- Zhiying Yang
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (Z.Y.); (Y.L.); (J.Y.); (S.Y.); (Y.D.)
| | - Yuxin Lu
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (Z.Y.); (Y.L.); (J.Y.); (S.Y.); (Y.D.)
| | - Tingting Li
- Department of Food Science and Technology, College of Light Industry and Food Engineer, Nanjing Forestry University, Nanjing 210037, China;
| | - Xunyong Zhou
- HC Enzyme (Shenzhen) Biotech. Co., Ltd., Shenzhen 518112, China;
| | - Jia Yang
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (Z.Y.); (Y.L.); (J.Y.); (S.Y.); (Y.D.)
| | - Shuwen Yang
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (Z.Y.); (Y.L.); (J.Y.); (S.Y.); (Y.D.)
| | - Su Bu
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (Z.Y.); (Y.L.); (J.Y.); (S.Y.); (Y.D.)
| | - Yifan Duan
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (Z.Y.); (Y.L.); (J.Y.); (S.Y.); (Y.D.)
- International Cultivar Registration Center for Osmanthus, Nanjing 210037, China
| |
Collapse
|
3
|
Li X, Han H, Ma Y, Wang X, Lü X. Identification of phenolic compounds from fermented Moringa oleifera Lam. leaf supplemented with Fuzhuan brick tea and their volatile composition and anti-obesity activity. J Food Sci 2024; 89:3094-3109. [PMID: 38634238 DOI: 10.1111/1750-3841.17060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
As a nutritious plant with valuable potential, the Moringa oleifera Lam. (MOL) leaf addition on Fuzhuan brick tea (FBT) for the co-fermentation (MOL-FBT) was an industry innovation and a new route to make full use of MOL leaf. After optimization of the extraction conditions, the best conditions for the polyphenols extraction method from MOL-FBT (MFP) were 60°C for 40 min (1:80, V/W) using response surface methodology. A total of 30 phenolics were identified and quantified. Most of the polyphenols were increased after adding MOL leaf for co-fermentation compared to FBT polyphenols. In particular, caffeic acids were found only in MFP. Moreover, the MFP received high value in taste, aroma, and color. In total, 62 volatile flavor compounds, consisting of 3 acids, 5 alcohols, 15 aldehydes, 4 esters, 20 hydrocarbons, 10 ketones, and 5 others, were identified in MFP. In addition, MFP inhibited 3T3-L1 preadipocyte differentiation in a dose-dependent manner and decreased lipid accumulation via the peroxisome proliferator-activated receptor gamma (PPARγ)/CCAAT/enhancer binding protein alpha (CEBPα)/cluster of differentiation 36 (CD36) axis and induced a brown adipocyte-like phenotype. In vivo experiments were further conducted to confirm the in vitro results. MFP regulated lipid accumulation, glucose/insulin tolerance, improved liver and kidney function, and inhibited the secretion of pro-inflammatory factors by the PPARγ/CEBPα/CD36 axis and alleviated inflammation in high fat and high fructose diet-induced obese mice. In summary, MFP possesses high-quality properties and anti-obesity effects, as well as the great potential to be used as a novel functional food product.
Collapse
Affiliation(s)
- Xin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Haoyue Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Maisto M, Marzocchi A, Keivani N, Piccolo V, Summa V, Tenore GC. Natural Chalcones for the Management of Obesity Disease. Int J Mol Sci 2023; 24:15929. [PMID: 37958912 PMCID: PMC10648025 DOI: 10.3390/ijms242115929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
In the last decade, the incidence of obesity has increased dramatically worldwide, reaching a dangerous pandemic spread. This condition has serious public health implications as it significantly increases the risk of chronic diseases such as type 2 diabetes, fatty liver, hypertension, heart attack, and stroke. The treatment of obesity is therefore the greatest health challenge of our time. Conventional therapeutic treatment of obesity is based on the use of various synthetic molecules belonging to the class of appetite suppressants, lipase inhibitors, hormones, metabolic regulators, and inhibitors of intestinal peptide receptors. The long-term use of these molecules is generally limited by various side effects and tolerance. For this reason, the search for natural alternatives to treat obesity is a current research goal. This review therefore examined the anti-obesity potential of natural chalcones based on available evidence from in vitro and animal studies. In particular, the results of the main in vitro studies describing the principal molecular therapeutic targets and the mechanism of action of the different chalcones investigated were described. In addition, the results of the most relevant animal studies were reported. Undoubtedly, future clinical studies are urgently needed to confirm and validate the potential of natural chalcones in the clinical prophylaxis of obesity.
Collapse
Affiliation(s)
- Maria Maisto
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 59, 80131 Naples, Italy; (A.M.); (N.K.); (V.P.); (V.S.); (G.C.T.)
| | | | | | | | | | | |
Collapse
|
5
|
Kong L, Zhang W, Liu S, Zhong Z, Zheng G. Quercetin, Engelitin and Caffeic Acid of Smilax china L. Polyphenols, Stimulate 3T3-L1 Adipocytes to Brown-like Adipocytes Via β3-AR/AMPK Signaling Pathway. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:529-537. [PMID: 35986845 DOI: 10.1007/s11130-022-00996-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The aim of the present study was to investigate the browning effects mechanism of Smilax china L. polyphenols (SCLP) and its monomer. In this study, polyphenols (SCLP, engeletin, quercetin and caffeic acid) markedly suppressed lipid accumulation. Polyphenols significantly up-graded the expression of protein kinase A (PKA), adipose triglyceride lipase (ATGL), peroxisome proliferators-activated receptors alpha (PPARα), carnitine palmitoyl transferase (CPT) and acyl-CoA oxidase (ACO) to promote lipolysis and β-oxidation. Moreover, polyphenols greatly enhanced mitochondrial biogenesis in adipocytes, as demonstrated by the expression of Nrf1 and Tfam were up-regulated. Furthermore, polyphenols treatment greatly up-regulated the browning program in adipocytes by increased brown-specific genes and proteins uncoupling protein 1 (UCP-1), peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) and PR domain containing 16 (PRDM16), as well as beige-specific genes (Tmem26, Tbx1, CD137, Cited1), especially engeletin. Further research found that the brown-specific markers were decreased by antagonist treatment of AMPK or β3-AR, but polyphenols treatment reversed the effect of antagonists and improved the expression of UCP-1, PRDM16 and PGC-1α. In conclusion, these results indicated that polyphenols stimulate browning in adipocytes via activation of the β3-AR/AMPK signaling pathway, and SCLP and its monomer may be worth investigating to prevent obesity.
Collapse
Affiliation(s)
- Li Kong
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, 330045, Nanchang, Jiangxi Province, P.R. China
| | - Wenkai Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, 330045, Nanchang, Jiangxi Province, P.R. China
| | - Shanshan Liu
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, 330045, Nanchang, Jiangxi Province, P.R. China
| | - Zhen Zhong
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, 330045, Nanchang, Jiangxi Province, P.R. China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, 330045, Nanchang, Jiangxi Province, P.R. China.
| |
Collapse
|
6
|
Factors Associated with White Fat Browning: New Regulators of Lipid Metabolism. Int J Mol Sci 2022; 23:ijms23147641. [PMID: 35886989 PMCID: PMC9325132 DOI: 10.3390/ijms23147641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
Abstract
Mammalian adipose tissue can be divided into white and brown adipose tissue based on its colour, location, and cellular structure. Certain conditions, such as sympathetic nerve excitement, can induce the white adipose adipocytes into a new type of adipocytes, known as beige adipocytes. The process, leading to the conversion of white adipocytes into beige adipocytes, is called white fat browning. The dynamic balance between white and beige adipocytes is closely related to the body’s metabolic homeostasis. Studying the signal transduction pathways of the white fat browning might provide novel ideas for the treatment of obesity and alleviation of obesity-related glucose and lipid metabolism disorders. This article aimed to provide an overview of recent advances in understanding white fat browning and the role of BAT in lipid metabolism.
Collapse
|
7
|
Anti-Obesity Activities of Standardized Ecklonia stolonifera Extract in 3T3-L1 Preadipocytes and High-Fat-Diet-Fed ICR Mice. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to prepare a clinical trial test material (ESETM, test material of Ecklonia stolonifera extract) to develop a health functional food based on its anti-obesity effect. The anti-obesity effect of ESETM was evaluated in 3T3-L1 adipocytes and obese mice fed a high-fat diet (HFD) to confirm its nonclinical trial effect before application in clinical trial. Adipogenesis is a process of preadipocyte differentiation that causes an increase in the production of reactive oxygen species (ROS) and lipid accumulation. In vitro study results indicated that ESETM outstandingly inhibits the production of ROS and lipid accumulation during adipogenesis and lipogenesis. In vivo, ESETM-treated ICR mice had reduced HFD-induced weight change, food efficiency ratio, adipose tissue weight, liver weight and showed improved serum lipid profiles. Our results show that ESETM inhibits weight change by regulating the adipogenesis, lipogenesis, lipolysis, and thermogenesis pathways.
Collapse
|
8
|
Jin H, Oh HJ, Cho S, Lee OH, Lee BY. Okra ( Abelmoschus esculentus L. Moench) prevents obesity by reducing lipid accumulation and increasing white adipose browning in high-fat diet-fed mice. Food Funct 2022; 13:11840-11852. [DOI: 10.1039/d2fo02790a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anti-obesity effects of OKC in HFD-fed obese mice. Treatment with OKC reduced lipid accumulation and promoted energy expenditure through browning. This was associated with improvements in the hyperglycemia, dyslipidemia, and hepatic steatosis.
Collapse
Affiliation(s)
- Heegu Jin
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Hyun-Ji Oh
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Sehaeng Cho
- Syspang Co. Ltd, Seoul 06211, Republic of Korea
- Yonsei Medical Clinic, Seoul 04379, Republic of Korea
| | - Ok-Hwan Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Boo-Yong Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| |
Collapse
|
9
|
Li J, Gong L, Xu Q. Purinergic 2X7 receptor is involved in adipogenesis and lipid degradation. Exp Ther Med 2021; 23:81. [PMID: 34934450 PMCID: PMC8652400 DOI: 10.3892/etm.2021.11004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/20/2021] [Indexed: 12/03/2022] Open
Abstract
Obesity and dyslipidemia are two metabolic syndrome disorders that have serious effects on the health of patients. Purinergic 2X receptor ligand-gated ion channel 7 (P2X7R) has been reported to play a role in regulating lipid storage and metabolism. However, the role and potential mechanism of P2X7R in adipogenesis and lipid degradation remain unknown. In the present study, a mouse model of obesity was established by feeding mice a high-fat diet, and the 3T3-L1 cell line was used to analyze the function of P2X7R in vitro. Reverse transcription-quantitative PCR and western blot analyses were performed to detect the expression levels of P2X7R, sterol regulatory element-binding protein 1 (SREBP1) and other associated transcription factors. Bioinformatics analysis was used to predict the potential target gene of P2X7R and a dual luciferase reporter assay was used to confirm this prediction. Oil Red O staining was used to evaluate the adipogenic capacity of preadipocytes. AdipoRed assay, cholesterol assay and a free glycerol reagent were used to measure the expression levels of triglyceride (TGs), total cholesterol (TC) and glycerin, respectively. The results indicated that P2X7R was highly expressed in obese mice and that it was involved in adipogenic differentiation in vitro. SREBP1 enhanced the transcription activities of P2X7R to promote its expression. Inhibition of P2X7R significantly reduced the adipogenic capacity of preadipocytes, decreased the expression levels of adipogenesis-associated transcription factors (peroxisome proliferator-activated receptor γ, CCAAT-enhancer-binding protein α and fatty-acid-binding protein 4), enhanced the expression levels of lipolytic enzymes (adipose triglyceride lipase, phosphorylated hormone-sensitive lipase and monoacylglycerol lipase) and regulated the expression of TG, TC and glycerin in mature 3T3-L1 cells. These effects were reversed by a small interfering RNA targeting Wnt3a. Therefore, the results suggested that P2X7R, the transcription activities of which were regulated by SREBP1, regulated adipogenesis and lipid degradation by targeting SREBP1, indicating its potential effects on obesity-associated metabolism.
Collapse
Affiliation(s)
- Jing Li
- Pediatric Department, Yancheng Third People's Hospital, Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, Jiangsu 224000, P.R. China
| | - Linxia Gong
- Pediatric Department, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu 210024, P.R. China
| | - Qiaolan Xu
- Pediatric Department, Yancheng Third People's Hospital, Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, Jiangsu 224000, P.R. China
| |
Collapse
|
10
|
Cheng L, Wang J, Dai H, Duan Y, An Y, Shi L, Lv Y, Li H, Wang C, Ma Q, Li Y, Li P, Du H, Zhao B. Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte 2021; 10:48-65. [PMID: 33403891 PMCID: PMC7801117 DOI: 10.1080/21623945.2020.1870060] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mammalian adipose tissue can be divided into two major types, namely, white adipose tissue (WAT) and brown adipose tissue (BAT). According to classical view, the main function of WAT is to store excess energy in the form of triglycerides, while BAT is a thermogenic tissue that acts a pivotal part in maintaining the core body temperature. White adipocytes display high plasticity and can transdifferentiate into beige adipocytes which have many similar morphological and functional properties with brown adipocytes under the stimulations of exercise, cold exposure and other factors. This phenomenon is also known as 'browning of WAT'. In addition to transdifferentiation, beige adipocytes can also come from de novo differentiation from tissue-resident progenitors. Activating BAT and inducing browning of WAT can accelerate the intake of glycolipids and reduce the insulin secretion requirement, which may be a new strategy to improve glycolipids metabolism and insulin resistance of obese and type 2 diabetes mellitus (T2DM) patients. This review mainly discusses the significance of brown and beige adipose tissues in the treatment of obesity and T2DM, and focuses on the effect of the browning agent on obesity and T2DM, which provides a brand-new theoretical reference for the prevention and treatment of obesity and T2DM.
Collapse
Affiliation(s)
- Long Cheng
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Jingkang Wang
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Hongyu Dai
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Yuhui Duan
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Yongcheng An
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Shi
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Yinglan Lv
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Huimin Li
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Chen Wang
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Quantao Ma
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Yaqi Li
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Pengfei Li
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Haifeng Du
- The Third Municipal Hospital of Chengde, Chengde, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing China
| |
Collapse
|
11
|
Borah AK, Sharma P, Singh A, Kalita KJ, Saha S, Chandra Borah J. Adipose and non-adipose perspectives of plant derived natural compounds for mitigation of obesity. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114410. [PMID: 34273447 DOI: 10.1016/j.jep.2021.114410] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyto-preparations and phyto-compounds, by their natural origin, easy availability, cost-effectiveness, and fruitful traditional uses based on accumulated experiences, have been extensively explored to mitigate the global burden of obesity. AIM OF THIS REVIEW The review aimed to analyse and critically summarize the prospect of future anti-obesity drug leads from the extant array of phytochemicals for mitigation of obesity, using adipose related targets (adipocyte formation, lipid metabolism, and thermogenesis) and non-adipose targets (hepatic lipid metabolism, appetite, satiety, and pancreatic lipase activity). Phytochemicals as inhibitors of adipocyte differentiation, modulators of lipid metabolism, and thermogenic activators of adipocytes are specifically discussed with their non-adipose anti-obesogenic targets. MATERIALS AND METHODS PubMed, Google Scholar, Scopus, and SciFinder were accessed to collect data on traditional medicinal plants, compounds derived from plants, their reported anti-obesity mechanisms, and therapeutic targets. The taxonomically accepted name of each plant in this review has been vetted from "The Plant List" (www.theplantlist.org) or MPNS (http://mpns.kew.org). RESULTS Available knowledge of a large number of phytochemicals, across a range of adipose and non-adipose targets, has been critically analysed and delineated by graphical and tabular depictions, towards mitigation of obesity. Neuro-endocrinal modulation in non-adipose targets brought into sharp dual focus, both non-adipose and adipose targets as the future of anti-obesity research. Numerous phytochemicals (Berberine, Xanthohumol, Ursolic acid, Guggulsterone, Tannic acid, etc.) have been found to be effectively reducing weight through lowered adipocyte formation, increased lipolysis, decreased lipogenesis, and enhanced thermogenesis. They have been affirmed as potential anti-obesity drugs of future because of their effectiveness yet having no threat to adipose or systemic insulin sensitivity. CONCLUSION Due to high molecular diversity and a greater ratio of benefit to risk, plant derived compounds hold high therapeutic potential to tackle obesity and associated risks. This review has been able to generate fresh perspectives on the anti-diabetic/anti-hyperglycemic/anti-obesity effect of phytochemicals. It has also brought into the focus that many phytochemicals demonstrating in vitro anti-obesogenic effects are yet to undergo in vivo investigation which could lead to potential phyto-molecules for dedicated anti-obesity action.
Collapse
Affiliation(s)
- Anuj Kumar Borah
- Dept. of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Pranamika Sharma
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Archana Singh
- Dept. of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Kangkan Jyoti Kalita
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Sougata Saha
- Dept. of Biotechnology, NIT Durgapur, West Bengal, 713209, India
| | - Jagat Chandra Borah
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India.
| |
Collapse
|
12
|
Zhao B, Liu M, Liu H, Xie J, Yan J, Hou X, Liu J. Zeaxanthin promotes browning by enhancing mitochondrial biogenesis through the PKA pathway in 3T3-L1 adipocytes. Food Funct 2021; 12:6283-6293. [PMID: 34047728 DOI: 10.1039/d1fo00524c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Obesity is closely associated with maintaining mitochondrial homeostasis, and mitochondrial dysfunction can lead to systemic lipid metabolism disorders. Zeaxanthin (ZEA) is a kind of carotenoid with potent antioxidant activity and has been reported to promote mitochondrial biogenesis. Nevertheless, the molecular mechanism has not been explained. In this study, we first discovered that ZEA stimulated 3T3-L1 adipocyte browning by increasing the expression of specific markers (Cd137, Tbx1, Sirt1, Cidea, Ucp1, Tmem26, and Cited1), thereby reducing lipid accumulation. Besides, ZEA promoted mitochondrial biogenesis by increasing the expression of PRDM16, UCP1, NRF2, PGC-1α, and SIRT1. Moreover, the uncoupled oxygen consumption rate (OCR) of protons leaked in 3T3-L1 adipocytes was rapidly increased by ZEA treatment, which improved mitochondrial respiration and energy metabolism. Furthermore, we found that ZEA promotes browning by enhancing mitochondrial biogenesis partly through the protein kinase A (PKA) pathway. This study provided new insight into the promotion of browning and mitochondrial biogenesis by ZEA, suggesting that ZEA probably has potential therapeutic effects on obesity.
Collapse
Affiliation(s)
- Bailing Zhao
- National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Lin C, Chen J, Hu M, Zheng W, Song Z, Qin H. Sesamol promotes browning of white adipocytes to ameliorate obesity by inducing mitochondrial biogenesis and inhibition mitophagy via β3-AR/PKA signaling pathway. Food Nutr Res 2021; 65:7577. [PMID: 34262421 PMCID: PMC8254468 DOI: 10.29219/fnr.v65.7577] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/10/2021] [Accepted: 03/26/2021] [Indexed: 12/29/2022] Open
Abstract
Background Obesity is defined as an imbalance between energy intake and expenditure, and it is a serious risk factor of non-communicable diseases. Recently many studies have shown that promoting browning of white adipose tissue (WAT) to increase energy consumption has a great therapeutic potential for obesity. Sesamol, a lignan from sesame oil, had shown potential beneficial functions on obesity treatment. Objective In this study, we used C57BL/6J mice and 3T3-L1 adipocytes to investigate the effects and the fundamental mechanisms of sesamol in enhancing the browning of white adipocytes to ameliorate obesity. Methods Sixteen-week-old C57BL/6J male mice were fed high-fat diet (HFD) for 8 weeks to establish the obesity models. Half of the obese mice were administered with sesamol (100 mg/kg body weight [b.w.]/day [d] by gavage for another 8 weeks. Triacylglycerol (TG) and total cholesterol assay kits were used to quantify serum TG and total cholesterol (TC). Oil red O staining was used to detect lipid droplet in vitro. Mito-Tracker Green was used to detect the mitochondrial content. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the levels of beige-specific genes. Immunoblotting was used to detect the proteins involved in beige adipocytes formation. Results Sesamol decreased the content of body fat and suppressed lipid accumulation in HFD-induced obese mice. In addition, sesamol significantly upregulated uncoupling protein-1 (UCP1) protein in adipose tissue. Further research found that sesamol also significantly activated the browning program in mature 3T3-L1 adipocytes, manifested by the increase in beige-specific genes and proteins. Moreover, sesamol greatly increased mitochondrial biogenesis, as proved by the upregulated protein levels of mitochondrial biogenesis, and the inhibition of the proteins associated with mitophagy. Furthermore, β3-adrenergic receptor (β3-AR), protein kinase A-C (PKA-C) and Phospho-protein kinase A (p-PKA) substrate were elevated by sesamol, and these effects were abolished by the pretreatment of antagonists β3-AR. Conclusion Sesamol promoted browning of white adipocytes by inducing mitochondrial biogenesis and inhibiting mitophagy through the β3-AR/PKA pathway. This preclinical data promised the potential to consider sesamol as a metabolic modulator of HFD-induced obesity.
Collapse
Affiliation(s)
- Cui Lin
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jihua Chen
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Minmin Hu
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Wenya Zheng
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ziyu Song
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Hong Qin
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Wang Z, Liu H, Hu Q, Shi L, Lü M, Deng M, Luo G. Cardamonin inhibits the progression of oesophageal cancer by inhibiting the PI3K/AKT signalling pathway. J Cancer 2021; 12:3597-3610. [PMID: 33995637 PMCID: PMC8120183 DOI: 10.7150/jca.55519] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/05/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Oesophageal cancer is the most common malignant tumour with a poor prognosis, and the current treatment methods are limited. Therefore, identifying effective treatment methods has become a research hotspot. Cardamonin (CAR) is a natural chalcone compound and has been reported to play an anticancer role in several cancers. However, its function in oesophageal cancer and the possible underlying mechanism are still unclear. The purpose of this study was to demonstrate the anticancer effect of CAR on oesophageal cancer in vivo and in vitro and to explore the underlying mechanism. Materials and Methods: MTT, crystal violet, and colony formation assays were used to detect oesophageal cancer cell proliferation. The effects of CAR on oesophageal cancer cell migration and invasion were detected by wound healing assay and Transwell assay. Hoechst 33258 staining and flow cytometry were used to detect cell apoptosis. Protein expression levels were detected by Western blot. A tumour xenograft model was established to further test the effect of CAR on the growth of oesophageal cancer in vivo. Results: The results showed that CAR inhibited the proliferation, migration, and invasion of oesophageal cancer cells in a concentration-dependent manner and induced apoptosis. Furthermore, the Western blot assay showed that CAR could suppress metastasis by inhibiting epithelial-mesenchymal transition (EMT) as indicated by downregulated expression of the mesenchymal markers N-cadherin and vimentin, the EMT transcription factor Snail, and matrix metalloproteinases (MMPs) and upregulated expression of the epithelial marker E-cadherin. CAR was associated with upregulation of the pro-apoptotic proteins Bax and Bad and downregulation of the anti-apoptotic protein Bcl-2 and triggered the mitochondrial apoptosis pathway, which in turn promoted caspase-3 activation and subsequent cleavage of PARP; however, the mitochondria-related apoptotic effects induced by CAR were blocked by caspase inhibitor Z-VAD-FMK pretreatment, which prevented programmed cell death triggered by CAR. In addition, CAR reduced the phosphorylation level of downstream effector molecules of phosphatidylinositol 3 kinase (PI3K) in a dose-dependent manner, and treatment with the PI3K agonist 740Y-P could partially reverse the anticancer effect of CAR, demonstrating that CAR played an antitumour role by inhibiting the PI3K/AKT signalling pathway in oesophageal cancer cells. Moreover, the EC9706 xenograft model further confirmed that CAR can significantly inhibit tumour growth in vivo. Conclusion: In summary, CAR exhibited a strong anticancer effect on human oesophageal cancer cells and promoted apoptosis by inhibiting the PI3K/AKT signalling pathway, suggesting that CAR can be used as new strategy for oesophageal cancer treatment.
Collapse
Affiliation(s)
- Zijie Wang
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Hui Liu
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qing Hu
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Lei Shi
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Muhan Lü
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mingming Deng
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Gang Luo
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
| |
Collapse
|
15
|
The Gintonin-Enriched Fraction of Ginseng Regulates Lipid Metabolism and Browning via the cAMP-Protein Kinase a Signaling Pathway in Mice White Adipocytes. Biomolecules 2020; 10:biom10071048. [PMID: 32679738 PMCID: PMC7407952 DOI: 10.3390/biom10071048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Obesity is a major health concern and is becoming an increasingly serious societal problem worldwide. The browning of white adipocytes has received considerable attention because of its potential protective effect against obesity-related metabolic disease. The gintonin-enriched fraction (GEF) is a non-saponin, glycolipoprotein component of ginseng that is known to have neuroprotective and anti-inflammatory effects. However, the anti-obesity and browning effects of GEF have not been explored to date. Therefore, we aimed to determine whether GEF has a preventive effect against obesity. We differentiated 3T3-L1 cells and mouse primary subcutaneous adipocytes for 8 days in the presence or absence of GEF, and then measured the expression of intermediates in signaling pathways that regulate triglyceride (TG) synthesis and browning by Western blotting and immunofluorescence analysis. We found that GEF reduced lipid accumulation by reducing the expression of pro-adipogenic and lipogenic factors, and increased lipolysis and thermogenesis, which may be mediated by an increase in the phosphorylation of protein kinase A. These findings suggest that GEF may induce fat metabolism and energy expenditure in white adipocytes and therefore may represent a potential treatment for obesity.
Collapse
|
16
|
Jin H, Lee K, Chei S, Oh HJ, Lee KP, Lee BY. Ecklonia stolonifera Extract Suppresses Lipid Accumulation by Promoting Lipolysis and Adipose Browning in High-Fat Diet-Induced Obese Male Mice. Cells 2020; 9:E871. [PMID: 32252474 PMCID: PMC7226821 DOI: 10.3390/cells9040871] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity develops due to an energy imbalance and manifests as the storage of excess triglyceride (TG) in white adipose tissue (WAT). Recent studies have determined that edible natural materials can reduce lipid accumulation and promote browning in WAT. We aimed to determine whether Ecklonia stolonifera extract (ESE) would increase the energy expenditure in high-fat diet (HFD)-induced obese mice and 3T3-L1 cells by upregulating lipolysis and browning. ESE is an edible brown marine alga that belongs to the family Laminariaceae and contains dieckol, a phlorotannin. We report that ESE inhibits body mass gain by regulating the expression of proteins involved in adipogenesis and lipogenesis. In addition, ESE activates protein kinase A (PKA) and increases the expression of lipolytic enzymes including adipose triglyceride lipase (ATGL), phosphorylated hormone-sensitive lipase (p-HSL), and monoacylglycerol lipase (MGL) and also thermogenic genes, such as carnitine palmitoyltransferase 1 (CPT1), PR domain-containing 16 (PRDM16), and uncoupling protein 1 (UCP1). These findings indicate that ESE may represent a promising natural means of preventing obesity and obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Heegu Jin
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Korea; (H.J.); (K.L.); (S.C.); (H.-J.O.)
| | - Kippeum Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Korea; (H.J.); (K.L.); (S.C.); (H.-J.O.)
| | - Sungwoo Chei
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Korea; (H.J.); (K.L.); (S.C.); (H.-J.O.)
| | - Hyun-Ji Oh
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Korea; (H.J.); (K.L.); (S.C.); (H.-J.O.)
| | | | - Boo-Yong Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Korea; (H.J.); (K.L.); (S.C.); (H.-J.O.)
| |
Collapse
|
17
|
Pan MH, Koh YC, Lee TL, Wang B, Chen WK, Nagabhushanam K, Ho CT. Resveratrol and Oxyresveratrol Activate Thermogenesis via Different Transcriptional Coactivators in High-Fat Diet-Induced Obese Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13605-13616. [PMID: 31735033 DOI: 10.1021/acs.jafc.9b05963] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Obesity is a global public health issue. Thermogenesis is a novel way to promote anti-obesity by consuming energy as heat rather than storing it as triacylglycerols. The browning program allows mitochondrial biosynthesis and thermogenesis-related gene expression to occur in subcutaneous white adipose tissue, which results in the formation of beige adipose tissue. Some phytochemicals have exerted the capability to activate the fat browning process. Resveratrol and oxyresveratrol are both natural stilbenoids that have been reported for their anti-obesity efficacy. However, the comparison between the two as they relate to thermogenesis as well as the differences in their underlying mechanisms are still not widely discussed. Our result reveals that both resveratrol and oxyresveratrol could elevate the expression of thermogenesis-related protein expression including UCP1 (uncoupling protein-1) and PRDM (PR domain containing 16) via Sirt1/PGC-1α (sirtuin 1/peroxisome proliferation gamma coactivator-1 α) activation. However, it is suggested that the transcriptional factor PPARα (peroxisome proliferator-activator receptor α) was activated by resveratrol (1.38 ± 0.07 fold) but not oxyresveratrol. Conversely, C/EBPβ (CCAAT/enhancer-binding protein β) was upregulated by oxyresveratrol (1.58 ± 0.05 fold) but not by resveratrol. On the other hand, CPT1 (carnitine palmitoyltransferase) was found to be significantly activated at lower concentrations of oxyresveratrol up to 1.89 ± 0.04 fold as compared to high-fat diet, and it could be a leading reason for UCP1 activation. Lastly, adiponectin expression was promoted in all experimental groups (1.53 ± 0.08 and 1.49 ± 0.11-fold in resveratrol (RES) and high oxyresveratrol (HOXY), respectively), which could be an activator for mitochondrial biosynthesis and UCP1 expression.
Collapse
Affiliation(s)
- Min-Hsiung Pan
- College of Food Engineering and Nutritional Science , Shaanxi Normal University , Xi'an 710062 , China
- Institute of Food Sciences and Technology , National Taiwan University , Taipei 10617 , Taiwan
- Department of Medical Research , China Medical University Hospital, China Medical University , Taichung 40402 , Taiwan
- Department of Health and Nutrition Biotechnology , Asia University , Taichung 41354 , Taiwan
| | - Yen-Chun Koh
- Institute of Food Sciences and Technology , National Taiwan University , Taipei 10617 , Taiwan
| | - Tzu-Ling Lee
- Institute of Food Sciences and Technology , National Taiwan University , Taipei 10617 , Taiwan
| | - Bini Wang
- College of Food Engineering and Nutritional Science , Shaanxi Normal University , Xi'an 710062 , China
| | - Wen-Kang Chen
- Department of Applied Cosmetology , National Tainan Junior College of Nursing , Tainan 700 , Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science , Rutgers University , New Brunswick , New Jersey 08901 , United States
| |
Collapse
|