1
|
Jiang GZ, Ma ZY, Hou HD, Zhou J, Long F, Xu JD, Zhou SS, Shen H, Mao Q, Li SL, Wu CY. Gastrointestinal motility modulation efficacy-related chemical marker findings and QAMS-based quality control of Agastache rugosa. J Pharm Biomed Anal 2025; 256:116680. [PMID: 39854932 DOI: 10.1016/j.jpba.2025.116680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Agastache rugosa (AR), a traditional edible and medicinal herb, is often used for treating gastrointestinal (GI) motility disorder. But little effort has been done on its gastrointestinal motility modulation (GMM) efficacy-related components and quality control of AR. In this study, a novel strategy was proposed to find GMM efficacy-related chemical markers for the quality control of AR. Firstly, network pharmacology and serum pharmacochemistry were applied to predict potential GMM efficacy-related marker components. Secondly, the GMM efficacy-related marker components were verified through literature matching, target isolation/identification and activity evaluation. Lastly, a quantitative analysis of multiple components by a single marker (QAMS)-based method for simultaneous quantification of marker components was established and validated by HPLC-DAD. The results showed that nine components in AR were screened as potential GMM related components, five of which (rosmarinic acid, tilianin, apigenin, acacetin, and cirsimaritin) were matched by literatures, and four (acacetin-7-O-(6''-O-malonyl)-β-D-glucopyranoside, agastachoside, acacetin-7-O-(2''-O-acetyl-6''-O-malonyl)-β-D-glucopyranoside, and isoagastachoside) were chemically identified and newly evaluated on zebrafish model. The nine components were used as marker compounds to develop an effective QAMS-based method for the quantitative evaluation of 26 batches of commercial AR samples.
Collapse
Affiliation(s)
- Guo-Zhen Jiang
- Department of Pharmaceutical Analysis, Affiliated hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Zhen-Yue Ma
- Department of Pharmaceutical Analysis, Affiliated hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Hui-Dan Hou
- Department of Pharmaceutical Analysis, Affiliated hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jing Zhou
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, China
| | - Fang Long
- Department of Pharmaceutical Analysis, Affiliated hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jin-Di Xu
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, China
| | - Shan-Shan Zhou
- Department of Pharmaceutical Analysis, Affiliated hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Hong Shen
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, China
| | - Qian Mao
- Department of Pharmaceutical Analysis, Affiliated hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, China.
| | - Cheng-Ying Wu
- Department of Pharmaceutical Analysis, Affiliated hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, China.
| |
Collapse
|
2
|
Li ZT, Zhao PC, Wang XX, Xie LQ, Li Y, Zhang SX, Tang XY, Dai Y. Insights into Q-marker of Shensong Yangxin capsule in treating cardiac arrhythmias based on a linear substitution strategy in quantification of multiple components. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156382. [PMID: 39842371 DOI: 10.1016/j.phymed.2025.156382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/17/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND The concept of a Quality marker (Q-marker) has emerged as a crucial tool for ensuring the safety and efficacy of Traditional Chinese Medicine (TCM) formulas. However, significant challenges remained in the identification and practical application of Q-marker, particularly due to the scarcity of reference standards. PURPOSE This study aimed to achieve a multidimensional integration of chemical profiling, target tissue distribution and in vivo high-throughput screening model to effectively identify the Q-marker of Shensong Yangxin Capsule (SSYX) and propose a linear substitution strategy for the quantification of multiple components. METHODS First, the chemical constituents of SSYX were detected and systematically characterized using UHPLC/Q-TOF MS. Next, through heart distribution study, high-exposure components in vivo were identified after the oral administration of SSYX. Third, a high-throughput arrhythmia zebrafish model was employed to further screen for key constituents. Finally, potential Q-marker were selected by integrating the aforementioned studies, and a quantification method for the Q-marker was developed using UHPLC-TQ-MS. RESULTS The results of chemical profiling, heart tissue distribution and anti-arrhythmic activities were integrated into four properties: specificity, traceability from prescription to in vivo, effectiveness and prescription compatibility, which led to the identification of 30 ingredients as potential Q-marker of SSYX. Subsequently, an external standard method (ESM) was developed for these 30 components and applied to the analysis of 10 commercial batches of SSYX. In addition, the feasibility of multi-marker detection via a linear substitution method (LSM) was explored for the first time using SSYX as a case study for method development, based on the stability of linear equations of the compounds in single standard solutions and multi-component mixed standard solutions. The simultaneous quantification of 30 components in SSYX was achieved by employing two linearly stable substances, greatly reducing the amount of standard substances used while maintaining measurability and convenience. A comparison of LSM and ESM revealed no significant difference in the component contents calculated by the two methods, with relative errors within ± 4 %. CONCLUSION Our results suggested that 30 ingredients, including six key elements, could be considered as Q-marker of SSYX. Moreover, the LSM strategy offered a novel approach for developing environmentally friendly and convenient methods for the quality control of multi-index components in TCM formulas.
Collapse
Affiliation(s)
- Zi-Ting Li
- Department of Cardiology, Chaoshan Hospital, The First Affiliated Hospital of Jinan University, No. 1 Hukeng South, Huancheng North Road, Raopin, Chaozhou, 515600, Guangdong, China.; Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China; Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510627, China
| | - Peng-Cheng Zhao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China
| | - Xiao-Xing Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China
| | - Lv-Qi Xie
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China
| | - Yan Li
- Department of Cardiology, Chaoshan Hospital, The First Affiliated Hospital of Jinan University, No. 1 Hukeng South, Huancheng North Road, Raopin, Chaozhou, 515600, Guangdong, China.; Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Shui-Xing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510627, China.
| | - Xi-Yang Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China
| | - Yi Dai
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Jiang M, Sha Y, Zou Y, Xu X, Ding M, Lian X, Wang H, Wang Q, Li K, Guo DA, Yang W. Integration of deep neural network modeling and LC-MS-based pseudo-targeted metabolomics to discriminate easily confused ginseng species. J Pharm Anal 2025; 15:101116. [PMID: 39902459 PMCID: PMC11788866 DOI: 10.1016/j.jpha.2024.101116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 02/05/2025] Open
Abstract
Metabolomics covers a wide range of applications in life sciences, biomedicine, and phytology. Data acquisition (to achieve high coverage and efficiency) and analysis (to pursue good classification) are two key segments involved in metabolomics workflows. Various chemometric approaches utilizing either pattern recognition or machine learning have been employed to separate different groups. However, insufficient feature extraction, inappropriate feature selection, overfitting, or underfitting lead to an insufficient capacity to discriminate plants that are often easily confused. Using two ginseng varieties, namely Panax japonicus (PJ) and Panax japonicus var. major (PJvm), containing the similar ginsenosides, we integrated pseudo-targeted metabolomics and deep neural network (DNN) modeling to achieve accurate species differentiation. A pseudo-targeted metabolomics approach was optimized through data acquisition mode, ion pairs generation, comparison between multiple reaction monitoring (MRM) and scheduled MRM (sMRM), and chromatographic elution gradient. In total, 1980 ion pairs were monitored within 23 min, allowing for the most comprehensive ginseng metabolome analysis. The established DNN model demonstrated excellent classification performance (in terms of accuracy, precision, recall, F1 score, area under the curve, and receiver operating characteristic (ROC)) using the entire metabolome data and feature-selection dataset, exhibiting superior advantages over random forest (RF), support vector machine (SVM), extreme gradient boosting (XGBoost), and multilayer perceptron (MLP). Moreover, DNNs were advantageous for automated feature learning, nonlinear modeling, adaptability, and generalization. This study confirmed practicality of the established strategy for efficient metabolomics data analysis and reliable classification performance even when using small-volume samples. This established approach holds promise for plant metabolomics and is not limited to ginseng.
Collapse
Affiliation(s)
- Meiting Jiang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yuyang Sha
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, 999078, China
| | - Yadan Zou
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xiaoyan Xu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Mengxiang Ding
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xu Lian
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, 999078, China
| | - Hongda Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Qilong Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Kefeng Li
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, 999078, China
| | - De-an Guo
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenzhi Yang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
4
|
Hanif S, Shahzadi Z, Anjum I, Yousaf Z, Aftab A, Javed S, Maqboo Z, Ullah R, Iqbal Z, Raza MA. Colchicine, serotobenine, and kinobeon A: novel therapeutic compounds in Carthamus tinctorius L. for the management of diabetes. APPLIED BIOLOGICAL CHEMISTRY 2024; 67:86. [DOI: 10.1186/s13765-024-00939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/30/2024] [Indexed: 01/03/2025]
Abstract
AbstractDiabetes, a global health concern, poses increasing mortality risks. The pathogenesis of diabetes involves multiple mechanisms, with oxidative stress being one of the key contributors. As synthetic drugs have various side effects, which can be minimized by using herbal plants. This study focuses on the In vitro antioxidant potential, α-amylase inhibition potential, identification of bioactive compounds, and hub genes in diabetes treatment mechanism by using C. tinctorius Extraction of C. tinctorious lead and flower was performed using different solvents (Distilled water, methanol, chloroform, and Dimethyl ether). After extraction different concentrations range from 25–200 mg/mL) was made and checked against activities. The antioxidant potential was assessed using 2, 2-diphenyl-1-picrylhydrazyl (DPPH), total phenolic contents (TPC), and total antioxidant capacity (TAC) assays, while antidiabetic activity was evaluated through α-amylase inhibition assay. Phytochemicals was identified by GC–MS analysis, followed by ADMET screening and network pharmacology analysis using Swiss Target Prediction, Gene Card, DesGeNet, DAVID, STRING, Cytoscape, and drug revitalization databases. Results revealed positive correlations with DPPH, TAC, and TPC. Methanol extract exhibited the highest inhibitory concentration. Screening of 46 compounds was performed by studying their pharmacokinetic properties which revealed 9 compounds effective against 204 diabetes targets. Moreover, their network analysis identified four hub genes, including AKT1, JUN, EGFR, and MMP9. These genes found highly associated with drugs like Colchicine and Serotobenine. Revitalization analysis also highlighted four genes (EGFR, PTGS2, AKT1, and MMP9) strongly correlated with FDA-approved drugs. The study suggests C. tinctorius methanol extract is a potential source for novel drugs.
Graphical Abstract
Collapse
|
5
|
Wang J, Wu M, Liu J, Mao X, Cui W, Lei C, Huang C, Hu X. An integrated strategy for quality control of Pseudobulbus Cremastrae seu Pleiones based on Q-marker. J Chromatogr A 2024; 1730:465105. [PMID: 38908999 DOI: 10.1016/j.chroma.2024.465105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Pseudobulbus Cremastrae seu Pleiones (PCsP), a traditional Chinese medicine known as ‶Shan-Ci-Gu″, possesses properties for clearing heat, counteracting toxicity, dissipating phlegm, and resolving masses. As a TCM with multiple bases, the dried pseudobulbs of Pleione bulbocodioides (PB), Pleione yunnanensis (PY) and Cremastra appendiculata (CA) are considered to be the official sources of PCsP. Additionally, several unofficial substitutes are also available in the market. To enhance the quality control of PCsP, an integrated strategy based on Q-marker was proposed. Initially, a study of integrating plant metabolomics, target isolation, structure identification, and activity testing afforded five Q-markers, including three new compounds. Furthermore, a quality evaluation method using a single standard to determine multi-components (SSDMC) based on Q-marker was established, which could effectively distinguish PB from CA and the counterfeit herbs. Finally, the transitivity of Q-markers was explored through a representative Chinese compound prescription containing PCsP. The results indicated that the identified Q-markers together with the established analysis methods could be effectively applied for quality control of PCsP and its preparations.
Collapse
Affiliation(s)
- Jiawei Wang
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, No. 285, Gebaini Road, Shanghai 201203, China; School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Man Wu
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, No. 285, Gebaini Road, Shanghai 201203, China
| | - Jiakang Liu
- Shuguang Hospital affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Xudong Mao
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, No. 285, Gebaini Road, Shanghai 201203, China
| | - Weiqiang Cui
- Shijiazhuang Ke-di Pharmaceutical Co., Ltd., Shijiazhuang 050090, China
| | - Chun Lei
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Chunyue Huang
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, No. 285, Gebaini Road, Shanghai 201203, China
| | - Xiao Hu
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, No. 285, Gebaini Road, Shanghai 201203, China.
| |
Collapse
|
6
|
Wang X, Zhang J, He F, Jing W, Li M, Guo X, Cheng X, Wei F. Differential Chemical Components Analysis of Periplocae Cortex, Lycii Cortex, and Acanthopanacis Cortex Based on Mass Spectrometry Data and Chemometrics. Molecules 2024; 29:3807. [PMID: 39202886 PMCID: PMC11357377 DOI: 10.3390/molecules29163807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Background:Periplocae Cortex (PC), Acanthopanacis Cortex (AC), and Lycii Cortex (LC), as traditional Chinese medicines, are all dried root bark, presented in a roll, light and brittle, easy to break, have a fragrant scent, etc. Due to their similar appearances, it is tough to distinguish them, and they are often confused and adulterated in markets and clinical applications. To realize the identification and quality control of three herbs, in this paper, Ultra Performance Liquid Chromatography-Quadrupole Time of Flight Mass Spectrometry Expression (UHPLC-QTOF-MSE) combined with chemometric analysis was used to explore the different chemical compositions. Methods: LC, AC, and PC were analyzed by UHPLC-QTOF-MSE, and the quantized MS data combined with Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) were used to explore the different chemical compositions with Variable Importance Projection (VIP) > 1.0. Further, the different chemical compositions were identified according to the chemical standard substances, related literature, and databases. Results: AC, PC, and LC can be obviously distinguished in PCA and PLS-DA analysis with the VIP of 2661 ions > 1.0. We preliminarily identified 17 differential chemical constituents in AC, PC, and LC with significant differences (p < 0.01) and VIP > 1.0; for example, Lycium B and Periploside H2 are LC and PC's proprietary ingredients, respectively, and 2-Hydroxy-4-methoxybenzaldehyde, Periplocoside C, and 3,5-Di-O-caffeoylquinic acid are the shared components of the three herbs. Conclusions: UHPLC-QTOF-MSE combined with chemometric analysis is conducive to exploring the differential chemical compositions of three herbs. Moreover, the proprietary ingredients, Lycium B (LC) and Periploside H2 (PC), are beneficial in strengthening the quality control of AC, PC, and LC. In addition, limits on the content of shared components can be set to enhance the quality control of LC, PC, and AC.
Collapse
Affiliation(s)
- Xianrui Wang
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; (X.W.); (J.Z.); (F.H.); (W.J.); (M.L.); (X.G.)
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Jiating Zhang
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; (X.W.); (J.Z.); (F.H.); (W.J.); (M.L.); (X.G.)
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Fangliang He
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; (X.W.); (J.Z.); (F.H.); (W.J.); (M.L.); (X.G.)
- Institute for College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Wenguang Jing
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; (X.W.); (J.Z.); (F.H.); (W.J.); (M.L.); (X.G.)
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Minghua Li
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; (X.W.); (J.Z.); (F.H.); (W.J.); (M.L.); (X.G.)
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Xiaohan Guo
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; (X.W.); (J.Z.); (F.H.); (W.J.); (M.L.); (X.G.)
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Xianlong Cheng
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; (X.W.); (J.Z.); (F.H.); (W.J.); (M.L.); (X.G.)
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Feng Wei
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; (X.W.); (J.Z.); (F.H.); (W.J.); (M.L.); (X.G.)
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China
| |
Collapse
|
7
|
Wang S, Du DF, Li F, Chen MY, Sheng HG, Zhang C, Guo F, Chen Z, Cao GS. "UHPLC-Q-TOF/MS-chemometrics-network pharmacology" integrated strategy to discover quality markers of raw and stir-fried Fructus Tribuli and process optimization of stir-fried Fructus Tribuli. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1036-1051. [PMID: 38487966 DOI: 10.1002/pca.3339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 07/03/2024]
Abstract
INTRODUCTION Fructus Tribuli, the dried ripe fruit of Tribulus terrestris L., has various beneficial effects, including liver-calming and depression-relieving effects. Raw Fructus Tribuli (RFT) and stir-fried Fructus Tribuli (SFT) are included in the Chinese Pharmacopoeia 2020 edition (Ch. P 2020). However, owing to the lack of specific regulations on SFT-processing parameters in Ch. P 2020, it is difficult to ensure the quality of commercially available SFT. OBJECTIVE The present study aimed to screen the quality markers (Q-markers) of RFT and SFT and optimize the processing technology of SFT based on the identified Q-markers. METHODS First, the ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) technology as well as multiple statistical analysis along with network pharmacology was used to comprehensively identify the Q-markers of RFT and SFT. Then, based on single-factor experiments, the Box-Behnken design (BBD) response surface methodology (RSM) was used to optimize the processing technology of SFT and perform process validation. RESULTS A total of 63 components were identified in RFT and SFT extracts. Terrestrosin D and Terrestrosin K were initially considered the Q-markers of RFT and SFT, respectively. The optimum processing technology conditions were 208°C, 14 min, and 60 r·min-1. Three batches of process validation were performed, and the mean composite score was 56.87, with a relative standard deviation (RSD) value of 1.13%. CONCLUSION The content of steroidal saponin components in RFT was significantly different before and after stir-frying. Terrestrosin D and Terrestrosin K were validated as the Q-markers of RFT and SFT, respectively. The identification of Q-markers for RFT and SFT offered a clear index for optimizing the SFT-processing technology and provided a basis for the quality control of RFT and SFT decoction pieces.
Collapse
Affiliation(s)
- Shuai Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - De-Feng Du
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fei Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ming-Yue Chen
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hua-Gang Sheng
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fei Guo
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhi Chen
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guang-Shang Cao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Qiong J, Yang H, Xie Y, Zhu P, Chen G, Zhou Q, Yang Z, Tan W, Liu L. Evaluation of comparative chemical profiling and bioactivities of medicinal and non-medicinal parts of Ampelopsis delavayana. Heliyon 2024; 10:e32408. [PMID: 39183833 PMCID: PMC11341298 DOI: 10.1016/j.heliyon.2024.e32408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/05/2024] [Accepted: 06/03/2024] [Indexed: 08/27/2024] Open
Abstract
Ampelopsis delavayana, a distinctive Yi medicine, utilized the roots as an essential medicinal substance for trauma treatment of the "Yunnan Hong Yao". A. delavayana, however, cannot be cultivated artificially presently, and it has been described with a phenomenon of mixed utilization of roots and stems, impeding pharmaceutical quality control. In response to resource scarcity and standardization issues, the research comprehensively compares the material basis and efficacy of medicinal (roots) and non-medicinal (stems) parts by using chemical profiling and pharmacological methodologies. Chemical disparity between two parts was compared by TLC and HPLC. Analgesia and anti-inflammatory capabilities of both parts were comprehensively evaluated through acetic acid writhing test, hot plate test, and xylene-induced mouse ear swelling test. Additionally, all the extracts were evaluated for anti-inflammatory activities by monitoring regulation of the levels of TNF-α, IL-1β, IL-6, and IgE in ear tissue. Consequently, the findings of TLC and HPLC revealed substantial similarity in the material basis of the medicinal and non-medicinal parts of A. delavayana, and pharmacological activities of anti-inflammatory and analgesic between two parts were consistent. Different extracts remarkably reduced the levels of TNF-α, IL-1β, IL-6, and IgE, demonstrating no discernible differences. Collectively, the comprehensive exploitation indicated that the medicinal and non-medicinal parts of A. delavayana exhibited identical chemical profiling and bioactivities, providing a theoretical rationale and scientific evidence for using stems as a therapeutic part, thereby holding considerable potential for ameliorating the current status of its medicinal reserves.
Collapse
Affiliation(s)
| | | | - Yanqing Xie
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, 650500, People's Republic of China
| | - Peifeng Zhu
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, 650500, People's Republic of China
| | - Gong Chen
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, 650500, People's Republic of China
| | - Qixiu Zhou
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, 650500, People's Republic of China
| | - Zhuya Yang
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, 650500, People's Republic of China
| | - Wenhong Tan
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, 650500, People's Republic of China
| | - Lu Liu
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, 650500, People's Republic of China
| |
Collapse
|
9
|
Huang S, Chen Z, Chen H, Quan C, Xu M, Wei F, Tang D. Widely targeted metabolomics reveals the phytoconstituent changes in Platostoma palustre leaves and stems at different growth stages. FRONTIERS IN PLANT SCIENCE 2024; 15:1378881. [PMID: 38957601 PMCID: PMC11217517 DOI: 10.3389/fpls.2024.1378881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/02/2024] [Indexed: 07/04/2024]
Abstract
Platostoma palustre (Blume) A. J. Paton is an important edible and medicinal plant. To gain a comprehensive and clear understanding of the variation patterns of metabolites in P. palustre, we employed the UPLC-MS platform along with widely targeted metabolomics techniques to analyze the metabolites in the stems and leaves of P. palustre at different stages. Our results revealed a total of 1228 detected metabolites, including 241 phenolic acids, 203 flavonoids, 152 lipids, 128 terpenes, 106 amino acids, 79 organic acids, 74 saccharides, 66 alkaloids, 44 lignans, etc. As the growth time increased, the differential metabolites (DAMs) mainly enriched in P. palustre leaves were terpenoids, phenolic acids, and lipids, while the DAMs primarily enriched in stems were terpenoids. Compared to stems, there were more differential flavonoids in leaves, and saccharides and flavonoids were significantly enriched in leaves during the S1 and S2 stages. Additionally, we identified 13, 10, and 23 potential markers in leaf, stem, and leaf vs. stem comparison groups. KEGG enrichment analysis revealed that arginine biosynthesis was the common differential metabolic pathway in different growth stages and tissues. Overall, this study comprehensively analyzed the metabolic profile information of P. palustre, serving as a solid foundation for its further development and utilization.
Collapse
Affiliation(s)
- Suhua Huang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Zhining Chen
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Hao Chen
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Changqian Quan
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Meihua Xu
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Fan Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Danfeng Tang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- College of Pharmacy, Guangxi Medical University, Nanning, China
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
10
|
Zheng X, Li L, Liu Z, Zou H, Zhou X. Study on the quality evaluation of the leaves of Croton tiglium from different regions based on quality markers. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:817-824. [PMID: 38279571 DOI: 10.1002/pca.3330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
METHODOLOGY The chemical constituents of LCT were identified and quantified using high-performance liquid chromatography with a diode array detector. A characteristic fingerprint was then established and combined with multivariate statistical analysis of 16 common peaks and eight diterpenoids to identify the quality markers. INTRODUCTION The leaves of Croton tiglium (LCT) have long been used in folk and ethnic medicine in China. Owing to the various regions, the chemical composition and content of LCT may differ, and hence, the quality of medicinal materials may be different. However, quality standards have not yet been established, although some studies have been conducted on their composition. OBJECTIVES To quantitatively compare the chemical constituents of LCT from different areas and establish a quality evaluation of LCT based on quality markers. RESULTS Eight quality markers selected based on 16 common peaks and three quality markers selected based on eight diterpenoids can distinguish LCT from three regions. The diterpenoids, including 12-O-acetylphorbol-13-(2-methylbutyrate) (3), 12-O-tiglyl-4-deoxy-4α-phorbol-13-acetate (6), and 12-O-(2-methyl)butyrylphorbol-13-tiglate (8), can be used as potential quality markers for the quality evaluation of LCT. CONCLUSION Diterpenoids are highly efficient markers for quality evaluation. This study provides robust identification data and lays the foundation for formulating quality standards for LCT.
Collapse
Affiliation(s)
- Xiaoxiao Zheng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Li Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Zhaohui Liu
- Hengxiu Tang Pharmaceutical Co., Ltd., Changsha, P. R. China
| | - Huan Zou
- Hengxiu Tang Pharmaceutical Co., Ltd., Changsha, P. R. China
| | - Xiaojiang Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| |
Collapse
|
11
|
Gao M, Meng T, Chen F, Peng M, Li Q, Li L, Yang L, Yan Y, Deng T, Pan X, Luo Z, Yang J, Yang X. Inhibitory effect of Incarvillea diffusa Royle extract in the formation of calcium oxalate nephrolithiasis by regulating ROS-induced Nrf2/HO-1 pathway in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117619. [PMID: 38272103 DOI: 10.1016/j.jep.2023.117619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Calcium oxalate (CaOx) kidney stones are widely acknowledged as the most prevalent type of urinary stones, with high incidence and recurrence rates. Incarvillea diffusa Royle (ID) is a traditionally used medicinal herb in the Miao Minzu of Guizhou province, China, for treating urolithiasis. However, the active components and the underlying mechanism of its pharmacodynamic effects remain unclear. AIM OF THE STUDY This study aimed to investigate the potential inhibitory effect of the active component of ID on the formation of CaOx nephrolithiasis and elucidate the underlying mechanism. MATERIALS AND METHODS In vivo, a CaOx kidney stone model was induced in Sprague-Dawley (SD) rats using an ethylene glycol and ammonium chloride protocol for four weeks. Forty-eight male SD rats were randomly assigned to 6 groups (n = 8): blank group, model group, apocynin group, and low, medium, and high dose of ID's active component (IDW) groups. After three weeks of administration, rat urine, serum, and kidney tissues were collected. Renal tissue damage and crystallization, Ox, BUN, Ca2+, CRE, GSH, MDA, SOD contents, and levels of IL-1β, IL-18, MCP-1, caspase-1, IL-6, and TNF-α in urine, serum, and kidney tissue were assessed using HE staining and relevant assay kits, respectively. Protein expression of Nrf2, HO-1, p38, p65, and Toll-4 in kidney tissues was quantified via Western blot. The antioxidant capacities of major compounds were evaluated through DPPH, O2·-, and ·OH radical scavenging assays, along with their effects on intracellular ROS production in CaOx-induced HK-2 cells. RESULTS We found that IDW could significantly reduce the levels of CRE, GSH, MDA, Ox, and BUN, and enhancing SOD activity. Moreover, it could inhibit the secretion of TNF-α, IL-1β, IL-18, MCP-1, caspase-1, and decreased protein expression of Nrf2, HO-1, p38, p65, and Toll-4 in renal tissue. Three major compounds isolated from IDW exhibited promising antioxidant activities and inhibited intracellular ROS production in CaOx-induced HK-2 cells. CONCLUSIONS IDW facilitated the excretion of supersaturated Ca2+ and decreased the production of Ox, BUN in SD rat urine, and mitigated renal tissue damage by regulating Nrf2/HO-1 signaling pathway. Importantly, the three major compounds identified as active components of IDW contributed to the inhibition of CaOx nephrolithiasis formation. Overall, IDW holds significant potential for treating CaOx nephrolithiasis.
Collapse
Affiliation(s)
- Ming Gao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Tengteng Meng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Faju Chen
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Mei Peng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Qiji Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Liangqun Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Lishou Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Yanfang Yan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Tingfei Deng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Xiong Pan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Zhongsheng Luo
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Juan Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Xiaosheng Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China.
| |
Collapse
|
12
|
Lin C, Tian Q, Guo S, Xie D, Cai Y, Wang Z, Chu H, Qiu S, Tang S, Zhang A. Metabolomics for Clinical Biomarker Discovery and Therapeutic Target Identification. Molecules 2024; 29:2198. [PMID: 38792060 PMCID: PMC11124072 DOI: 10.3390/molecules29102198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
As links between genotype and phenotype, small-molecule metabolites are attractive biomarkers for disease diagnosis, prognosis, classification, drug screening and treatment, insight into understanding disease pathology and identifying potential targets. Metabolomics technology is crucial for discovering targets of small-molecule metabolites involved in disease phenotype. Mass spectrometry-based metabolomics has implemented in applications in various fields including target discovery, explanation of disease mechanisms and compound screening. It is used to analyze the physiological or pathological states of the organism by investigating the changes in endogenous small-molecule metabolites and associated metabolism from complex metabolic pathways in biological samples. The present review provides a critical update of high-throughput functional metabolomics techniques and diverse applications, and recommends the use of mass spectrometry-based metabolomics for discovering small-molecule metabolite signatures that provide valuable insights into metabolic targets. We also recommend using mass spectrometry-based metabolomics as a powerful tool for identifying and understanding metabolic patterns, metabolic targets and for efficacy evaluation of herbal medicine.
Collapse
Affiliation(s)
- Chunsheng Lin
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
| | - Qianqian Tian
- Faculty of Social Sciences, The University of Hong Kong, Hong Kong 999077, China;
| | - Sifan Guo
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Dandan Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Ying Cai
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Zhibo Wang
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Hang Chu
- Department of Biomedical Sciences, Beijing City University, Beijing 100193, China;
| | - Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Aihua Zhang
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| |
Collapse
|
13
|
Zhu L, Xu J, Gan R, Xu D, Wang J, Zhou J, Ma H. Exploring peptides from toad venom for source identification by LC-MS/MS using MRM method. J Pharm Biomed Anal 2024; 239:115901. [PMID: 38091819 DOI: 10.1016/j.jpba.2023.115901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Toad venom is a traditional Chinese medicine (TCM) with various sources and wide-ranging preparations. Previous quality assessment studies primarily concentrated on small molecular compounds like toad dienolactones and indole alkaloids, studies on macromolecular peptides and proteins as quality assessment standards remained at the qualitative stage, lacking the development of practical and convenient quantitative methods. In this study, to explore the peptides from toad venom as a new method for identifying and evaluating its source, a complete scan of the water extract of peptides from toad venom was conducted using HPLC-Quadrupole Time-of-Flight Mass Spectrometer (Q-TOF) 5600, leading to the identification of peptides based on mass spectrometry data. Subsequently, HPLC- Quadrupole-Linear Ion Trap Mass Spectrometer (Q-Trap) 5500 employing Multiple Reaction Monitoring (MRM) mode was utilized to quantitatively analyze peptides in various sources of toad venom, followed by Partial Least Squares Discriminant Analysis (PLS-DA) to further analyze the data and evaluate the effectiveness. This study highlights the importance of exploring macromolecular substance in natural products research and provides a foundation for further studies on toad venom.
Collapse
Affiliation(s)
- Lei Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Junde Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rui Gan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dihui Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiaojiao Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hongyue Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
14
|
Xie M, Lu W, Gu S, Lu J, Wu H, Yao L, Du M, Zhang J, Liu Y, Wang Q. A rapid localization and analysis method for isoquinoline alkaloids with fluorescence in Coptis chinensis Franch. By fabricating the nano-silver sol as a substrate for surface-enhanced Raman spectroscopy. Anal Chim Acta 2024; 1287:342067. [PMID: 38182374 DOI: 10.1016/j.aca.2023.342067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/09/2023] [Accepted: 11/22/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND The quality of traditional Chinese medicines (TCMs) directly impacts their clinical efficacy and drug safety, making standardization a critical component of modern TCMs. Surface-enhanced Raman spectroscopy (SERS) is an effective physical detection method with speed, sensitivity, and suitability for large sample analyses. In this study, a SERS analysis method was developed using a nano-silver sol as the matrix to address the interference of fluorescence components in TCMs and overcome the limitations of traditional detection methods. RESULTS The higher sensitivity and efficiency of SERS was used, enabling detection of a single sample within 30 s. Coptis chinensis Franch. (CCF) was chosen as the model medicine, the nano-silver sol was used as the matrix, and CCF's fourteen main fluorescent alkaloids were tested as index components. Typical signal peaks of the main components in CCF corresponded to the bending deformation of the nitrogen-containing ring plane outer ring system, methoxy stretching vibration, and isoquinoline ring deformation vibration. Through SERS detection of different parts, the distribution content of the main active components in the cortex of CCF was found to be lower than that in the xylem and phloem. Additionally, rapid quality control analyses indicated that among the nine batches of original medicinal materials purchased from Emei and Guangxi, the main active ingredient showed a higher content. SIGNIFICANCE A SERS-based method for the rapid localization and analysis of multiple components of TCMs was established. The findings highlight the potential of SERS as a valuable tool for the analysis and quality control of TCMs, especially for fluorescent components.
Collapse
Affiliation(s)
- Minzhen Xie
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, 150081, China
| | - Wanying Lu
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, 150081, China
| | - Siqi Gu
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, 150081, China
| | - Junzhong Lu
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, 150081, China
| | - Haotian Wu
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, 150081, China
| | - Le Yao
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, 150081, China
| | - Menghan Du
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, 150081, China
| | - Jianjia Zhang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin City, Heilongjiang Province, 150040, China
| | - Yan Liu
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin City, Heilongjiang Province, 150040, China.
| | - Qi Wang
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, 150081, China.
| |
Collapse
|
15
|
Dong S, Tian Q, Hui M, Zhang S. Revealing the Antiperspirant Components of Floating Wheat and Their Mechanisms of Action through Metabolomics and Network Pharmacology. Molecules 2024; 29:553. [PMID: 38338298 PMCID: PMC10856516 DOI: 10.3390/molecules29030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
Floating wheat is a classical herbal with potential efficacy in the treatment of hyperhidrosis. Aiming at revealing the main components and potential mechanisms of floating wheat, a comprehensive and unique phytopharmacology profile study was carried out. First, common wheat was used as a control to look for chemical markers of floating wheat. In the screening analysis, a total of 180 shared compounds were characterized in common wheat and floating wheat, respectively. The results showed that floating wheat and common wheat contain similar types of compounds. In addition, in non-targeted metabolomic analysis, when taking the contents of the constituents into account, it was found that there indeed existed quite a difference between floating wheat and common wheat and 17 potential biomarkers for floating wheat. Meanwhile, a total of seven components targeted for hyperhidrosis were screened out based on network pharmacology. Seven key differential components were screened, among which kaempferol, asiatic acid, sclareol, enoxolone, and secoisolariciresinol had higher degree values than the others. The analysis of interacting genes revealed three key genes, namely, MAP2K1, ESR1, and ESR2. The Kyoto Encyclopaedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses showed that various signaling pathways were involved. Prolactin signaling, thyroid cancer, endocrine resistance, gonadotropin secretion, and estrogen signaling pathways were the main pathways of the intervention of floating wheat in excessive sweating, which was associated with the estrogenic response, hormone receptor binding, androgen metabolism, apoptosis, cancer, and many other biological processes. Molecular docking showed that the screened key components could form good bindings with the target proteins through intermolecular forces. This study reveals the active ingredients and potential molecular mechanism of floating wheat in the treatment of hyperhidrosis and provides a reference for subsequent basic research.
Collapse
Affiliation(s)
- Shengnan Dong
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China;
| | - Qing Tian
- Industrial Microorganism Preservation and Breeding Henan Engineering Laboratory, Zhengzhou 450001, China;
| | - Ming Hui
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China;
- Industrial Microorganism Preservation and Breeding Henan Engineering Laboratory, Zhengzhou 450001, China;
| | - Shouyu Zhang
- College of Smart Health, Henan Polytechnic, Zhengzhou 450046, China
| |
Collapse
|
16
|
Zhang X, Wang L, Li R, Wang L, Fu Z, He F, Liu E, Han L. Identification strategy of Fructus Gardeniae and its adulterant based on UHPLC/Q-orbitrap-MS and UHPLC-QTRAP-MS/MS combined with PLS regression model. Talanta 2024; 267:125136. [PMID: 37703778 DOI: 10.1016/j.talanta.2023.125136] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023]
Abstract
Fructus Gardeniae (FG) is the desiccative and ripe fruits of Gardenia jasminoides Ellis in the Rubiaceae family, which is a commonly used in traditional Chinese medicine (TCM) for clearing away heat, detoxification, relieving restlessness, and eliminating blood stasis. At the same time, it has also been announced as the first batch of TCM with homology of medicine and food. Fructus Gardeniae Grandiflorae (FGG), the fruit of Gardenia jasminoides Ellis var. grandiflora Nakai (Rubiaceae), is a common counterfeit herbal medicine of FG, which still appears in the TCM market, and causes a certain degree of confusion. In order to effectively distinguish FG and its adulterant, the compounds in these two species were thoroughly characterized firstly by ultrahigh-performance liquid chromatography/quadrupole-orbitrap mass spectrometry (UHPLC/Q-Orbitrap MS). Furthermore, a pseudo-targeted metabonomics method with 60 targeted ion pairs was established based on UHPLC-triple quadrupole-linear ion trap mass spectrometry (UHPLC-QTRAP-MS) for discrimination. Multivariate statistical analysis showed that FG and FGG were clustered obviously, and 13 significantly differential markers were screened out by variable importance for projection (VIP) > 1 and p < 0.05 for the construction of the partial least squares (PLS) regression prediction model. The validation of the model proved that its prediction ability was quite satisfactory. Moreover, based on the absolute quantitative analysis of these 13 characteristics, the quality control standards of FG and FFG were established. In summary, an integral method of pseudo-targeted metabonomics combined with chemometrics analysis and a PLS regression model was proposed to provide an effective identification strategy for discrimination FG and FGG.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China
| | - Lei Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China
| | - Rongrong Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China
| | - Liming Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China
| | - Zhifei Fu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China
| | - Feng He
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Erwei Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin, 301617, China.
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China.
| |
Collapse
|
17
|
Jiang J, Zhao B, Xiao J, Shi L, Shang W, Shu Y, Zhao Z, Shen J, Xu J, Cai H. Exploring the boost of steaming with wine on Ligustri Lucidi Fructus in treating postmenopausal osteoporosis based on superior "multi-component structure" and iron/bone metabolism coregulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155275. [PMID: 38142661 DOI: 10.1016/j.phymed.2023.155275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/07/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Clinical studies indicated that postmenopausal osteoporosis (PMOP) often accompanied by iron overload risk factor, which exacerbated bone metabolism disorders and accelerated PMOP. Previous research found that multicomponent in Ligustri Lucidi Fructus (FLL) or wine-steamed FLL (WFLL) acted on the common targets of iron overload and PMOP simultaneously, which indicated that FLL and WFLL probably regulated iron/bone metabolism dually. Additionally, WFLL had more superior effect according to the theory of Chinese medicine for thousands of years. PURPOSE To reveal the "superior multi-component structure (SMCS)" and its molecular mechanisms in parallelly down-regulating iron overload and rescuing bone metabolism by WFLL. DESIGNS AND METHODS HPLC fingerprinting was established to compare the chemical profiles of FLL and WFLL; Then, the chemical compositions and quality markers of FLL and WFLL were analyzed by UPLC-Orbitrap-MS/MS coupled with OPLS-DA; the dynamic contents of quality markers and the multi-component structure at different wine steaming times (WST) were simultaneously determined by HPLC-DAD. Meanwhile, the dynamic efficacy of FLL at different WST were hunt by systematic zebrafish model. Subsequently, potential mechanism of WFLL in treating PMOP accompanied with iron overload was obtained from network pharmacology (NP) and molecular docking (MD). Finally, zebrafish and ovariectomy rat model were carried out to validate this potential mechanism. RESULTS HPLC fingerprints similarity of 15 batches in FLL and WFLL were among 0.9-1.0. 126 compositions were identified, including 58 iridoids, 25 terpenes, 30 phenylethanoids, 7 flavonoids and 6 others. 20 quality markers associated with WFLL was revealed, and the ratio of phenylethanols: Iridoids: Triterpenes (P/I/T) was converted from 1: 15: 4.5 to 1: 0.8: 0.9 during steaming (0 - 24 h) calculated by the quantification of 11 quality markers; the bone mineralization and motor performance of zebrafish larvae indicated that the optimum efficacy of WFLL at 12 h (p < 0.05) in which the SMCS of P/I/T was converted to 1: 4: 1.8. NP discovered that BMP-Smad pathway is one of the potential mechanisms of FLL in anti PMOP and then regulated bone formation and iron overload simultaneously. MD revealed that 17 active ingredients and 10 core targets genes could spontaneously bind with appropriate affinity. Rats model verified that FLL and WFLL significantly reversed PMOP, based on the improvement in bone formation indexes (ALP, OPG, OGN), iron metabolism indicators (hepcidin, ferritin), bone microstructure (BMD, BV/TV, Tb. Th, Tb. N); Moreover, WFLL significant enhanced reversal effect in anti-PMOP compared to FLL (p < 0.05). FLL and WFLL increased genes and proteins expression (Hep, BMP-6, p-Smad1/5, Smad4) related to BMP-Smad pathway compared with model group, and WFLL was more superior than FLL (p< 0.05). CONCLUSION The SMCS of FLL was optimized by wine-steam, WFLL represented a dual effect in downregulating iron overload and promoting bone formation, and the BMP-Smad pathway is one of the potential molecular mechanisms.
Collapse
Affiliation(s)
- Jun Jiang
- School of Pharmacy, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu 212013, China; Department of TCM, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Baixiu Zhao
- School of Pharmacy, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jianpeng Xiao
- School of Pharmacy, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Liang Shi
- Nanjing first hospital, No.68 Changle Road, Qinhuai District, Nanjing, Jiangsu 210006, China
| | - Wei Shang
- Department of TCM, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Ye Shu
- School of Pharmacy, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Zhiming Zhao
- Department of TCM, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Junyi Shen
- Department of TCM, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jingjuan Xu
- Department of TCM, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Hui Cai
- Department of TCM, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.
| |
Collapse
|
18
|
Li Y, Zhang Y, Cao R, Niu J, Bian T, Ma D, Wang Z, Wang M, Yan X. Identifications of metabolic differences between Hedysari Radix Praeparata Cum Melle and Astragali Radix Praeparata Cum Melle for spleen-qi deficiency rats: A comparative study. J Pharm Biomed Anal 2023; 236:115689. [PMID: 37677887 DOI: 10.1016/j.jpba.2023.115689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/12/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Hedysari Radix Praeparata Cum Melle (HRPCM) and Astragali Radix Praeparata Cum Melle (ARPCM) are capable of improving spleen-qi deficiency (SQD) syndrome especially in the gastrointestinal dysfunction and decreased immunity in traditional Chinese medicine clinically. This study aims to compare and reveal the metabolic differences between HRPCM and ARPCM for SQD rats. Firstly, HRPCM (12.6 g/kg) and ARPCM (12.6 g/kg) were used to intervene SQD rats to further evaluate the effect. The results showed that HRPCM and ARPCM were able to improve the spleen pathology, increase the body weight, the rectal temperature, the spleen index, the thymus index, the levels of GAS and D-xylose in serum, and decrease the levels of IL-2, IL-6 and TNF-α in serum for SQD rats. Then, the studies of metabolic differences in serum and spleen were carried out using UPLC-Q-TOF-MS. The findings emphasized that HRPCM and ARPCM not only regulated metabolic profiling of serum and spleen in SQD rats, but also existed differences. HRPCM and ARPCM regulated metabolic pathways mainly including lipid metabolism, energy metabolism, amino acid metabolism, nucleotide metabolism, sugar metabolism and other types of metabolism for SQD rats. However, the metabolite profiles in SQD rats changed significantly, mainly involving abnormal glycine synthesis occurred in SQD rats. The expression trends of metabolites in HRPCM and ARPCM intervention for SQD rats were partly the same. Interestingly, there are similarities and differences in metabolic profiling between HRPCM and ARPCM for SQD rats. The differences were mainly in the synthesis of L-glutamine in amino acid metabolism.
Collapse
Affiliation(s)
- Yuefeng Li
- Pharmacy of College, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Quality and Standard of Traditional Chinese Medicine of Gansu Province, Lanzhou 730000, China; Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yugui Zhang
- Pharmacy of College, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Quality and Standard of Traditional Chinese Medicine of Gansu Province, Lanzhou 730000, China
| | - Rui Cao
- Pharmacy of College, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Quality and Standard of Traditional Chinese Medicine of Gansu Province, Lanzhou 730000, China
| | - Jiangtao Niu
- Pharmacy of College, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Quality and Standard of Traditional Chinese Medicine of Gansu Province, Lanzhou 730000, China
| | - Tiantian Bian
- Pharmacy of College, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Quality and Standard of Traditional Chinese Medicine of Gansu Province, Lanzhou 730000, China
| | - Dingcai Ma
- Pharmacy of College, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Quality and Standard of Traditional Chinese Medicine of Gansu Province, Lanzhou 730000, China
| | - Zhe Wang
- Pharmacy of College, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Quality and Standard of Traditional Chinese Medicine of Gansu Province, Lanzhou 730000, China
| | - Maomao Wang
- Pharmacy of College, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Quality and Standard of Traditional Chinese Medicine of Gansu Province, Lanzhou 730000, China
| | - Xingke Yan
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| |
Collapse
|
19
|
Ge S, Liu J, Liu Y, Song J, Wu H, Li L, Zhu H, Feng B. Chemical Profiling, Quantitation, and Bioactivities of Ginseng Residue. Molecules 2023; 28:7854. [PMID: 38067583 PMCID: PMC10708035 DOI: 10.3390/molecules28237854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Ginseng residue is a by-product stemming from the commercial extraction of ginsenosides. To assess the disparities between ginseng residue and ginseng tablet, we employed the ultra-high-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry (UPLC-Q-TOF/MS) technique for sample analysis. The analyses revealed the presence of 39 compounds in both ginseng residue and ginseng tablets. Subsequently, the contents of total ginsenosides and total ginseng polysaccharides in the ginseng residue and ginseng tablet were determined. The results indicate that while only a small fraction of ginsenosides remained in the ginseng residue, a significant amount of polysaccharides was retained. Furthermore, our evaluation encompassed the antioxidant activities of both ginseng residue and ginseng tablets. Notably, ginseng residue exhibited robust antioxidant effects, thereby showcasing its potential for recycling as a functional food raw material.
Collapse
Affiliation(s)
- Shengyu Ge
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (S.G.); (J.L.); (Y.L.); (J.S.); (H.W.); (B.F.)
- School of Pharmacy, Yanbian University, Yanji 133002, China
| | - Jinlong Liu
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (S.G.); (J.L.); (Y.L.); (J.S.); (H.W.); (B.F.)
| | - Yang Liu
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (S.G.); (J.L.); (Y.L.); (J.S.); (H.W.); (B.F.)
| | - Jiaqi Song
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (S.G.); (J.L.); (Y.L.); (J.S.); (H.W.); (B.F.)
| | - Hongfeng Wu
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (S.G.); (J.L.); (Y.L.); (J.S.); (H.W.); (B.F.)
| | - Lele Li
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (S.G.); (J.L.); (Y.L.); (J.S.); (H.W.); (B.F.)
| | - Heyun Zhu
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (S.G.); (J.L.); (Y.L.); (J.S.); (H.W.); (B.F.)
| | - Bo Feng
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (S.G.); (J.L.); (Y.L.); (J.S.); (H.W.); (B.F.)
| |
Collapse
|
20
|
Li L, Yang L, Yang L, He C, He Y, Chen L, Dong Q, Zhang H, Chen S, Li P. Network pharmacology: a bright guiding light on the way to explore the personalized precise medication of traditional Chinese medicine. Chin Med 2023; 18:146. [PMID: 37941061 PMCID: PMC10631104 DOI: 10.1186/s13020-023-00853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
Network pharmacology can ascertain the therapeutic mechanism of drugs for treating diseases at the level of biological targets and pathways. The effective mechanism study of traditional Chinese medicine (TCM) characterized by multi-component, multi-targeted, and integrative efficacy, perfectly corresponds to the application of network pharmacology. Currently, network pharmacology has been widely utilized to clarify the mechanism of the physiological activity of TCM. In this review, we comprehensively summarize the application of network pharmacology in TCM to reveal its potential of verifying the phenotype and underlying causes of diseases, realizing the personalized and accurate application of TCM. We searched the literature using "TCM network pharmacology" and "network pharmacology" as keywords from Web of Science, PubMed, Google Scholar, as well as Chinese National Knowledge Infrastructure in the last decade. The origins, development, and application of network pharmacology are closely correlated with the study of TCM which has been applied in China for thousands of years. Network pharmacology and TCM have the same core idea and promote each other. A well-defined research strategy for network pharmacology has been utilized in several aspects of TCM research, including the elucidation of the biological basis of diseases and syndromes, the prediction of TCM targets, the screening of TCM active compounds, and the decipherment of mechanisms of TCM in treating diseases. However, several factors limit its application, such as the selection of databases and algorithms, the unstable quality of the research results, and the lack of standardization. This review aims to provide references and ideas for the research of TCM and to encourage the personalized and precise use of Chinese medicine.
Collapse
Affiliation(s)
- Ling Li
- School of Comprehensive Health Management, Xihua University, Chengdu, Sichuan, China.
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Lele Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai, Guangdong, China
| | - Liuqing Yang
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, China
| | - Chunrong He
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, China
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, China
| | - Liping Chen
- School of Comprehensive Health Management, Xihua University, Chengdu, Sichuan, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qin Dong
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, China
| | - Huaiying Zhang
- School of Comprehensive Health Management, Xihua University, Chengdu, Sichuan, China
| | - Shiyun Chen
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
21
|
Nong Y, Zhang C, Guo Y, Qin Y, Zhong X, Feng L, Pan Z, Deng L, Guo H, Su Z. Quality control for a traditional Chinese medicine, Millettia speciosa Champ, using ultra-high-performance liquid chromatography fingerprint, serum pharmacochemistry and network pharmacology. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5166-5180. [PMID: 37753596 DOI: 10.1039/d3ay01051a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Millettia speciosa (M. speciosa) Champ (MSC) is a healthy food type with medicinal and edible homology, which is now considered a clinically significant anti-rheumatoid arthritis medicine. However, there is currently no standardized or generally accepted research strategy by which we can assess M. speciosa. Thus, it is essential to develop novel theories, strategies and evaluation methods for the scientific quality control of M. speciosa. Herein, our use ultra-high-performance liquid chromatography (UPLC)-MS/MS analysis identified 12 common bioactive components absorbed into MSC serum. Next, network pharmacology analysis exhibited that 5 MSC components may be those active components in treating rheumatoid arthritis and may be considered potential quality markers. These 5 components were then quantified using a fast UPLC approach, based on the quality marker of measurability, showing that lenticin can be regarded as the MSC quality marker. The cumulative study findings, based on systematic assessment of chemical composition both in vivo and in vitro, and the potential efficacy of M. speciosa, provide a novel approach for M. speciosa quality control.
Collapse
Affiliation(s)
- Yunyuan Nong
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Chi Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Yue Guo
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, Guangxi, 530022, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yuelian Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Xinyu Zhong
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Linlin Feng
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Ziping Pan
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Lijun Deng
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Hongwei Guo
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, Guangxi, 530021, China
- Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, Guangxi Medical University, Nanning, Guangxi, 530021, China
| |
Collapse
|
22
|
Chen Z, Vong CT, Zhang T, Yao C, Wang Y, Luo H. Quality evaluation methods of chinese medicine based on scientific supervision: recent research progress and prospects. Chin Med 2023; 18:126. [PMID: 37777788 PMCID: PMC10543864 DOI: 10.1186/s13020-023-00836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023] Open
Abstract
Traditional Chinese medicine (TCM) is increasingly getting attention worldwide, as it has played a very satisfactory role in treating COVID-19 during these past 3 years, and the Chinese government highly supports the development of TCM. The therapeutical theory and efficacies of Chinese medicine (CM) involve the safety, effectiveness and quality evaluation of CM, which requires a standard sound system. Constructing a scientific and reasonable CM quality and safety evaluation system, and establishing high-quality standards are the key cores to promote the high-quality development of CM. Through the traditional quality control methods of CM, the progress of the Q-marker research and development system proposed in recent years, this paper integrated the research ideas and methods of CM quality control and identified effective quality parameters. In addition, we also applied these effective quality parameters to create a new and supervision model for the quality control of CM. In conclusion, this review summarizes the methods and standards of quality control research used in recent years, and provides references to the quality control of CM and how researchers conduct quality control experiments.
Collapse
Affiliation(s)
- Zhangmei Chen
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, People's Republic of China
| | - Chi Teng Vong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, People's Republic of China
| | - Tiejun Zhang
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research Co., Ltd, Tianjin, 300462, People's Republic of China
| | - Chun Yao
- Guangxi University of Chinese Medicine, Nanning, 530001, People's Republic of China.
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, People's Republic of China.
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, People's Republic of China.
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, People's Republic of China.
| |
Collapse
|
23
|
Zhou Y, Xue Q, Wang M, Mu L, Chen D, Liu Q, Liu X, Yin W, Yin F. Analysis of quality differences between Scutellaria baicalensis Georgi and Scutellaria rehderiana Diels based on phytochemistry and bioactivity evaluation. J Pharm Biomed Anal 2023; 234:115481. [PMID: 37413917 DOI: 10.1016/j.jpba.2023.115481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/29/2023] [Accepted: 05/23/2023] [Indexed: 07/08/2023]
Abstract
Scutellaria baicalensis Georgi (SG) and Scutellaria rehderiana Diels (SD) belong to the same genus of Scutellaria in the Labiatae (Lamiaceae) family. SG is confirmed as the medicinal source according to the Chinese Pharmacopeia, but SD is often used as a substitute for SG due to its abundant plant resources. However, the current quality standards are far from sufficient to judge the quality differences between SG and SD. In this study, an integrated strategy of "biosynthetic pathway (specificity) - plant metabolomics (difference) - bioactivity evaluation (effectiveness)" was established to evaluate this quality differences. First, an ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q/TOF-MS/MS) method was developed for the identification of chemical components. The abundant components information was obtained and the characteristic constituents were screened according to the location in the biosynthetic pathway as well as species specificity. Then, plant metabolomics combined with multivariate statistical analysis to find differential components between SG and SD. The chemical markers for quality analysis were determined based on the differential and characteristic components, and the content of each marker was tentatively evaluated through the semi-quantitative analysis of UHPLC-Q/TOF-MS/MS. Finally, the anti-inflammatory activity of SG and SD was compared by measuring the inhibitory effect on the release of NO from lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Under this analytical strategy, a total of 113 compounds were tentatively identified in both SG and SD, among which baicalein, wogonin, chrysin, oroxylin A 7-O-β-D-glucuronoside, pinocembrin and baicalin were selected as chemical markers due to their species characteristics and differentiation. The contents of oroxylin A 7-O-β-D-glucuronoside and baicalin was higher in SG, and the others were higher in SD. In addition, both SG and SD exhibited prominent anti-inflammatory activity, but SD was less effective. The analysis strategy combining phytochemistry and bioactivity evaluation realized the scientific evaluation of the intrinsic quality differences between SG and SD, which provides a reference for fully utilizing and expanding the medicinal resources, and also provides a reference for the comprehensive quality control of herbal medicines.
Collapse
Affiliation(s)
- Yaqian Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R.China
| | - Qianqian Xue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R.China
| | - Miaomiao Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R.China
| | - Liyan Mu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R.China
| | - Danni Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R.China
| | - Qiao Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R.China
| | - Xun Liu
- School of Pharmacy, Suzhou Vocational Health College, Suzhou, 215009, P.R.China.
| | - Wu Yin
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, 210093, P.R. China
| | - Fangzhou Yin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R.China.
| |
Collapse
|
24
|
Hu J, Feng Y, Li B, Wang F, Qian Q, Tian W, Niu L, Wang X. Identification of quality markers for Cyanotis arachnoidea and analysis of its physiological mechanism based on chemical pattern recognition, network pharmacology, and experimental validation. PeerJ 2023; 11:e15948. [PMID: 37719108 PMCID: PMC10501370 DOI: 10.7717/peerj.15948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/01/2023] [Indexed: 09/19/2023] Open
Abstract
Cyanotis arachnoidea C. B. Clarke is a traditional Chinese medicinal herb that has a limited clinical use in the treatment of diabetes mellitus (DM) in minority areas of Guizhou in China. However, few prior reports are available on the quality control of Cyanotis arachnoidea, and its quality markers and hypoglycemic mechanism are still unclear. The purpose of this study is to explore the quality markers (Q-markers) of Cyanotis arachnoidea and predict its hypoglycemic mechanism. In this study, ultra-high-performance liquid chromatography (UHPLC) fingerprint combined with chemical pattern recognition were performed, and four differential components were screened out as quality markers, including 20-Hydroxyecdysone, 3-O-acetyl-20-hydroxyecdysone, Ajugasterone C, and 2-O-acetyl-20-hydroxyecdysone. Network pharmacology analysis revealed 107 therapeutic target genes of Cyanotis arachnoidea in DM treatment, and the key targets were Akt1, TNF, IL-6, MAPK3, and JUN. The hypoglycemic mode of action of Cyanotis arachnoidea may be mediated by tumor necrosis factor (TNF) signaling, cancer, insulin resistance, and JAK-STAT pathways. Molecular docking analysis disclosed that the foregoing quality markers effectively bound their key target genes. An in vitro experiment conducted on pancreatic islet β-cells indicated that the forenamed active components of Cyanotis arachnoidea had hypoglycemic efficacy by promoting PI3K/Akt and inhibiting MAPK signaling. UHPLC also accurately quantified the quality markers. The identification and analysis of quality markers for Cyanotis arachnoidea is expected to provide references for the establishment of a quality control evaluation system and clarify the material basis and hypoglycemic mechanisms of this traditional Chinese medicine (TCM).
Collapse
Affiliation(s)
- Jingnan Hu
- Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yu Feng
- Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Baolin Li
- Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Fengxia Wang
- Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qi Qian
- Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Traditional Chinese Medicine Formula Granule Engineering & Technology Innovate Center, Shijiazhuang, China
- Quality Evaluation & Standardization Hebei Province Engineering Research Center of Traditional Chinese Medicine, Shijiazhuang, China
| | - Wei Tian
- Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Traditional Chinese Medicine Formula Granule Engineering & Technology Innovate Center, Shijiazhuang, China
- Quality Evaluation & Standardization Hebei Province Engineering Research Center of Traditional Chinese Medicine, Shijiazhuang, China
| | - Liying Niu
- Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Traditional Chinese Medicine Formula Granule Engineering & Technology Innovate Center, Shijiazhuang, China
- Quality Evaluation & Standardization Hebei Province Engineering Research Center of Traditional Chinese Medicine, Shijiazhuang, China
| | - Xinguo Wang
- Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Traditional Chinese Medicine Formula Granule Engineering & Technology Innovate Center, Shijiazhuang, China
- Quality Evaluation & Standardization Hebei Province Engineering Research Center of Traditional Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
25
|
Xu L, Zuo SM, Liu M, Wang T, Li Z, Yun YH, Zhang W. Integrated Analysis of Metabolomics Combined with Network Pharmacology and Molecular Docking Reveals the Effects of Processing on Metabolites of Dendrobium officinale. Metabolites 2023; 13:886. [PMID: 37623830 PMCID: PMC10456568 DOI: 10.3390/metabo13080886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Dendrobium officinale (D. officinale) is a precious medicinal species of Dendrobium Orchidaceae, and the product obtained by hot processing is called "Fengdou". At present, the research on the processing quality of D. officinale mainly focuses on the chemical composition indicators such as polysaccharides and flavonoids content. However, the changes in metabolites during D. officinale processing are still unclear. In this study, the process was divided into two stages and three important conditions including fresh stems, semiproducts and "Fengdou" products. To investigate the effect of processing on metabolites of D. officinale in different processing stages, an approach of combining metabolomics with network pharmacology and molecular docking was employed. Through UPLC-MS/MS analysis, a total of 628 metabolites were detected, and 109 of them were identified as differential metabolites (VIP ≥ 1, |log2 (FC)| ≥ 1). Next, the differential metabolites were analyzed using the network pharmacology method, resulting in the selection of 29 differential metabolites as they have a potential pharmacological activity. Combining seven diseases, 14 key metabolites and nine important targets were screened by constructing a metabolite-target-disease network. The results showed that seven metabolites with potential anticoagulant, hypoglycemic and tumor-inhibiting activities increased in relative abundance in the "Fengdou" product. Molecular docking results indicated that seven metabolites may act on five important targets. In general, processing can increase the content of some active metabolites of D. officinale and improve its medicinal quality to a certain extent.
Collapse
Affiliation(s)
| | | | | | | | | | - Yong-Huan Yun
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (L.X.)
| | | |
Collapse
|
26
|
Zhou N, Wang Y, Zhang Z, Liu T, Zhang J, Cao Y, Zhang B, Feng W, Zheng X, Li K. Exploring the efficacy mechanism and material basis of three processed Coptidis Rhizoma via metabolomics strategy. J Pharm Biomed Anal 2023; 232:115450. [PMID: 37196375 DOI: 10.1016/j.jpba.2023.115450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023]
Abstract
Wine/zingiberis rhizoma recens/euodiae fructus processed Coptidis Rhizoma (wCR/zCR/eCR) are the major processed products of CR in clinic, and the role of CR is highlighted in different aspects after being processed with different excipients. To explore the mechanism and material basis for the highlighted efficacy of wCR/zCR/eCR, the metabolomics strategy was introduced to the comparative study between wCR/zCR/eCR and CR. Firstly, the metabolomics approach was applied to compare the chemical profiling and differential components between wCR/zCR/eCR and CR extract. Secondly, the rats were treated with CR/wCR/zCR/eCR extracts and a serum metabolomics approach was adopted to compare the metabolic profiling and significantly changed metabolites in CR/wCR/zCR/eCR groups, base on which the metabolic pathways were enriched, the metabolic network was constructed and the highlighted efficacy wCR/zCR/eCR was investigated. Lastly, the pathological and biochemical assessments (VIP, COX, HSL and HMGR) were implemented to validate the results inferred from metabolomics study. In chemical research, 23 differential components between wCR/zCR/eCR and CR extracts were identified. Thereinto, the content of alkaloids and organic acids decreased in wCR extract, the content of partial alkaloids and most organic acids increased in zCR extract, the content of alkaloids decreased, and partial organic acids increased in eCR extract. In serum metabolomics study, wCR had no outstanding effect, zCR played a more prominent role in resisting inflammation of gastrointestinal tissue by interfering with arachidonic acid metabolism, eCR exhibited the hottest drug property and the strongest effect on smoothing the liver and harmonizing the stomach by interfering with of bile acids biosynthesis. Based on the changes in chemical composition and efficacy before and after processing, as well as biochemical validation, it can be concluded that the above activity of zCR might be related to the increased alkaloids and organic acids in zCR extract, and the prominent role of eCR may be related to the increased organic acids in eCR extract. In brief, hot processing excipients could alleviate the cold property of CR, and different excipients have different effects on the chemical composition and efficacy mechanism. The present study fully reflects the advantage of metabolomics and provides guidance for the rational use of CR.
Collapse
Affiliation(s)
- Ning Zhou
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou 450046, PR China
| | - Yongxiang Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Zhenkai Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Tong Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Jinying Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Yumin Cao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Bingxian Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, PR China.
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou 450046, PR China.
| | - Kai Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; Henan Research Center for Special Processing Technology of Chinese Medicine, Zhengzhou 450046, PR China.
| |
Collapse
|
27
|
Zhao F, Peng C, Li H, Chen H, Yang Y, Ai Q, Chen N, Liu F. Paeoniae Radix Rubra extract attenuates cerebral ischemia injury by inhibiting ferroptosis and activating autophagy through the PI3K/Akt signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023:116567. [PMID: 37172921 DOI: 10.1016/j.jep.2023.116567] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/31/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeoniae Radix Rubra (PRR), the root of Paeonia lactiflora Pall. or Paeonia veitchii Lynch, has been widely used to promote blood circulation and eliminate blood stasis in Chinese clinical practice, but its effect on cerebral ischemia is still rarely reported. AIM OF THE STUDY The present study aimed to assess the potential therapeutic possibilities of the extract of PRR (PRRE) on cerebral ischemia, further exploring the underlying mechanism, and preliminary screening of the corresponding active components. MATERIALS AND METHODS The neuroprotective effects of PRRE in Sprague-Dawley (SD) rats with middle cerebral artery occlusion (MCAO) injury and mouse hippocampal neuronal cells (HT22 cell line) following oxidative stress were confirmed. The mechanism was investigated using immunohistochemical staining, western blotting, transmission electron microscopy (TEM), and immunofluorescence. The active components of PRRE were analysed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and molecular docking. RESULTS The in vivo study showed that PRRE reduced infarct volume and improved neurological deficits in rats, and the expression of GPX4, FTH1, Beclin1, LC3 II, and p-Akt was upregulated in the rat hippocampi. In addition, the vitro research indicated that PRRE can also alleviate H2O2-induced HT22 cell damage by regulating cytokines such as malondialdehyde (MDA), reduced glutathione (GSH) and reactive oxygen species (ROS), and the expressions of GPX4 and Beclin1 were observed to be elevated. The PI3K/Akt signalling pathway was inhibited by LY294002, an inhibitor of phosphoinositide 3-kinase (PI3K). Furthermore, the effective components of PRRE in regulating ferroptosis and autophagy are mainly defined as albiflorin, paeoniflorin, benzoyl paeoniflorin, oleanolic acid, and hederagenin. CONCLUSION PRRE exerts neuroprotective effects against cerebral ischaemic injury by inhibiting ferroptosis and activating autophagy through the PI3K/Akt signalling pathway. This study provides an experimental basis for the potential application of PRRE as a novel therapeutic drug, and PI3K/Akt-associated ferroptosis and autophagy as therapeutic targets for cerebral ischemia.
Collapse
Affiliation(s)
- Fengyan Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China
| | - Caiwang Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China
| | - Hengli Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China
| | - Haodong Chen
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China
| | - Yantao Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China
| | - Qidi Ai
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China
| | - Naihong Chen
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Fang Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China.
| |
Collapse
|
28
|
Yu T, Wu L, Zhang T, Hao H, Dong J, Xu Y, Yang H, Liu H, Xie L, Wang G, Liang Y. Insights into Q-markers and molecular mechanism of Sanguisorba saponins in treating ulcerative colitis based on lipid metabolism regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154870. [PMID: 37207387 DOI: 10.1016/j.phymed.2023.154870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Sanguisorba saponin extract (SSE) is the main active part of Sanguisorba officinalis with various pharmacological activities such as anti-inflammatory, anti-bacterial and anti-oxidant. However, its therapeutic role and underlying mechanisms for ulcerative colitis (UC) still need to be elucidated. PURPOSE This study aims to explore the therapeutic effect, effectiveness-material basis-quality markers (Q-markers) and prospective mechanism of function of SSE on UC. METHODS Fresh 2.5% dextran sulfate sodium salt (DSS) solution was placed in drinking bottles for 7 days to induce a mouse model of UC. SSE and sulfasalazine (SASP) were supplemented to mice by gavage for consecutive 7 days to investigate the therapeutic role of SSE on UC. Mouse monocyte macrophages (RAW264.7) and human normal colonic epithelial (NCM460) cells were treated with LPS to induce inflammatory responses, followed by pharmacodynamic examination with different concentrations of SSE. Hematoxylin-eosin (HE) and Alcian blue staining were conducted to evaluate the pathological damage of mice colon. Lipidomic technology was conducted to explore the differential lipids closely related to the disease process of UC. Quantitative PCR analysis, immunohistochemistry and ELISA kit were used to measure the expression levels of the corresponding proteins and pro-inflammatory factors. RESULTS SSE treatment could effectively reduce the elevated expressions of pro-inflammatory factors in RAW264.7 and NCM460 cells due to LPS stimulation. Intragastric administration of SSE was found to significantly alleviate the symptoms of DSS-induced colon injury and low-polar saponins in SSE. Low polarity saponins, especially ZYS-II, were proved to be the main active substances of SSE in treating UC. In addition, SSE could significantly ameliorate the aberrant lipid metabolism in UC mice. The role of phosphatidylcholine (PC)34:1 in the UC pathogenesis has been fully verified in our previous studies. Herein, SSE-dosing effectively reversed the metabolic disorder of PCs in UC mice, and increased the PC34:1 level to normal via up-regulating the expression of phosphocholine cytidylyltransferase (PCYT1α). CONCLUSION Our data innovatively revealed that SSE could significantly alleviate the symptoms of UC by reversing the disorder of PC metabolism induced by DSS modeling. SSE was proved for the first time to be a promising and effective candidate for UC treatment.
Collapse
Affiliation(s)
- Tengjie Yu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China
| | - Linlin Wu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China
| | - Tingting Zhang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China
| | - Hongyuan Hao
- Analytical Applications Center, Shimadzu (China) Co., Ltd., Yizou 180, Shanghai 200233, PR. China
| | - Jing Dong
- Analytical Applications Center, Shimadzu (China) Co., Ltd., Yizou 180, Shanghai 200233, PR. China
| | - Yexin Xu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China
| | - Huizhu Yang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China
| | - Huafang Liu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China
| | - Lin Xie
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China
| | - Guangji Wang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China.
| | - Yan Liang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China.
| |
Collapse
|
29
|
Guo S, Qiu S, Cai Y, Wang Z, Yang Q, Tang S, Xie Y, Zhang A. Mass spectrometry-based metabolomics for discovering active ingredients and exploring action mechanism of herbal medicine. Front Chem 2023; 11:1142287. [PMID: 37065828 PMCID: PMC10102349 DOI: 10.3389/fchem.2023.1142287] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Natural products derived from herbal medicine are a fruitful source of lead compounds because of their structural diversity and potent bioactivities. However, despite the success of active compounds derived from herbal medicine in drug discovery, some approaches cannot effectively elucidate the overall effect and action mechanism due to their multi-component complexity. Fortunately, mass spectrometry-based metabolomics has been recognized as an effective strategy for revealing the effect and discovering active components, detailed molecular mechanisms, and multiple targets of natural products. Rapid identification of lead compounds and isolation of active components from natural products would facilitate new drug development. In this context, mass spectrometry-based metabolomics has established an integrated pharmacology framework for the discovery of bioactivity-correlated constituents, target identification, and the action mechanism of herbal medicine and natural products. High-throughput functional metabolomics techniques could be used to identify natural product structure, biological activity, efficacy mechanisms, and their mode of action on biological processes, assisting bioactive lead discovery, quality control, and accelerating discovery of novel drugs. These techniques are increasingly being developed in the era of big data and use scientific language to clarify the detailed action mechanism of herbal medicine. In this paper, the analytical characteristics and application fields of several commonly used mass spectrometers are introduced, and the application of mass spectrometry in the metabolomics of traditional Chinese medicines in recent years and its active components as well as mechanism of action are also discussed.
Collapse
Affiliation(s)
- Sifan Guo
- International Advanced Functional Omics Platform, Scientific Experiment Center and Hainan General Hospital, College of Chinese Medicine, Hainan Medical University, Haikou, China
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center and Hainan General Hospital, College of Chinese Medicine, Hainan Medical University, Haikou, China
- *Correspondence: Shi Qiu, ; Songqi Tang, ; Yiqiang Xie, ; Aihua Zhang,
| | - Ying Cai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhibo Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Yang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center and Hainan General Hospital, College of Chinese Medicine, Hainan Medical University, Haikou, China
- *Correspondence: Shi Qiu, ; Songqi Tang, ; Yiqiang Xie, ; Aihua Zhang,
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center and Hainan General Hospital, College of Chinese Medicine, Hainan Medical University, Haikou, China
- *Correspondence: Shi Qiu, ; Songqi Tang, ; Yiqiang Xie, ; Aihua Zhang,
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center and Hainan General Hospital, College of Chinese Medicine, Hainan Medical University, Haikou, China
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Shi Qiu, ; Songqi Tang, ; Yiqiang Xie, ; Aihua Zhang,
| |
Collapse
|
30
|
Multi-component immune knockout: A strategy for studying the effective components of traditional Chinese medicine. J Chromatogr A 2023; 1692:463853. [PMID: 36780848 DOI: 10.1016/j.chroma.2023.463853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/09/2023]
Abstract
Periploca forrestii Schltr., a traditional Chinese medicine (TCM), is commonly used to treat autoimmune diseases such as rheumatoid arthritis (RA). However, its mechanism, involving a variety of cardiac glycosides, remains largely unknown. The immune knockout strategy can highly selectively deplete target components by immunoaffinity chromatography (IAC). We aimed to identify the common structural features of cardiac glycosides in P. forrestii and design IAC to specifically recognize these features to achieve the multi-component knockout of potential active substances from the extracts of P. forrestii. A content detection experiment confirmed that the content of a compound with periplogenin structure (CPS) in the extract of P. forrestii was reduced by 45% by IAC of periplogenin. The immunosuppressive ability of the extract on H9 human T lymphocytic cells was weakened after CPS knockout from P. forrestii extract. Molecular biology experiments showed that mRNA expression of interferon-γ (IFN-γ), interleukin-2 (IL-2), and interleukin-6 (IL-6) in H9 cells was up-regulated after CPS knockout, while no significant changes in the expression of interleukin-4 (IL-4) were found. CPS knockout from P. forrestii extract did not cause significant changes in the proliferation of lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells incubated with this extract. These results indicate that CPS exhibited immunosuppressive effects via inhibiting the T helper 1 (Th1) cell immune response and not via the anti-inflammatory components in P. forrestii. This is the first use of IAC to achieve multi-component knockout in TCM extracts for identifying effective compounds. This method is effective and reliable and warrants further exploration.
Collapse
|
31
|
Zeng XT, Chen YY, Yue SJ, Xu DQ, Fu RJ, Jie-Yang, Tang YP. A three-dimensional integration strategy for Q-markers identification: Taken Euphorbia Pekinensis Radix as an example. J Pharm Biomed Anal 2023; 224:115170. [PMID: 36435085 DOI: 10.1016/j.jpba.2022.115170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Euphorbia Pekinensis Radix (EPR) is an important antitumor medicinal resource. However, quality control of EPR has not been well established due to the lack of quality markers (Q-markers) research. In this study, a three-dimensional integration strategy was developed to systematically characterize Q-markers and this method was successfully applied to identify Q-markers of EPR. Firstly, three core quality attributes-effectiveness, testability and specificity-were considered as three dimensions, and the weights of each dimension were calculated by analytical hierarch process. Then, the values of each dimension were evaluated by multi-indicators. For EPR with antitumor activity, cytotoxic assay and network pharmacology, UPLC analysis and literature search, compound belonging search were employed to calculate the values of effectiveness, testability and specificity, respectively. Finally, the weights and values were multiplied as the scores of each component on that dimension, and the total scores of the three dimensions were further integrated based on the radar plot and expressed as regression area, by which Q-markers were quantified and visualized. Five components were identified as Q-markers of EPR due to their high-ranked antitumor capacity, ease of measurement and excellent specificity, which laid an important foundation for the quality control improvement of EPR. Furthermore, the integrated strategy summarized here is helpful for the quantitative identification of Q-markers and promote the quality standard of traditional Chinese medicine.
Collapse
Affiliation(s)
- Xiao-Tao Zeng
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of New Drugs and Chinese Medicine Foundation Research, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Shaanxi Province, PR China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of New Drugs and Chinese Medicine Foundation Research, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Shaanxi Province, PR China; Wuxi Institute of Integrated Chinese and Western Medicine, and Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Jiangsu Province, PR China.
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of New Drugs and Chinese Medicine Foundation Research, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Shaanxi Province, PR China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of New Drugs and Chinese Medicine Foundation Research, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Shaanxi Province, PR China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of New Drugs and Chinese Medicine Foundation Research, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Shaanxi Province, PR China
| | - Jie-Yang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of New Drugs and Chinese Medicine Foundation Research, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Shaanxi Province, PR China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of New Drugs and Chinese Medicine Foundation Research, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Shaanxi Province, PR China.
| |
Collapse
|
32
|
Gu X, Jia S, Hu W, Cui M, Hou J, Wang R, Zhang M. Rapid quality evaluation of Chinese herbal medicines using a miniature mass spectrometer: Lygodium japonicum (Thunb.) Sw. as an example. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:430-435. [PMID: 36637180 DOI: 10.1039/d2ay01769e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The quality of Chinese herbal medicine (CHM) raw materials is essential, and mass spectrometry (MS)-based technologies have been playing key roles in the quality control of CHMs. However, the use of miniature mass spectrometry (mini-MS) for quality control of CHMs has rarely been reported. In this work, we developed a rapid analytical method for the quality evaluation of CHMs based on paper spray ionization (PSI)-mini-MS/MS. The quality evaluation of Lygodium japonicum (Thunb.) Sw. was used as an example. Following a "multi-component" quality evaluation strategy, nine active constituents of L. japonicum were selected to be used as analytes for quality control. We confirmed that the precursor-product ion information in the MS/MS spectra of each analyte in the herbal extracts was consistent with the standards. Also, we developed a mini-MS-based quantitative method for each analyte using its quantification ion. The quantitative methodology was rigorously validated using quality control samples. Finally, the quality evaluation of L. japonicum was carried out using the established MS/MS method combined with statistical analysis. A wide range of common quality issues with L. japonicum can be effectively determined, including whether it is adulterated with sand and distinguishing among different parts and species. This study demonstrates that mini-MS for quality evaluation of CHMs is feasible. Mini-MS for quality evaluation of herbal medicines will potentially have a good prospect due to its many advantages such as low cost, low power consumption, and portability in the future.
Collapse
Affiliation(s)
- Xuan Gu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Shanshan Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Wangmin Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Mengdi Cui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Junling Hou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Rufeng Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Mei Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
33
|
Wang C, Chen H, Song S, Chen B, Li R, Fu Z, Zhang Z, Wang Q, Han L. Discovery of metabolic markers for the discrimination of Helwingia species based on bioactivity evaluation, plant metabolomics, and network pharmacology. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9411. [PMID: 36195983 DOI: 10.1002/rcm.9411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
RATIONALE Helwingia japonica (HJ), a traditional medicinal plant, is commonly used for the treatment of dysentery, blood in the stool, and scald burns. Three major HJ species, Helwingia japonica (Thunb.) Dietr. (QJY), Helwingia himalaica Hook. f. et Thoms. ex C. B. Clarke, and Helwingia chinensis Batal., share great similarities in both morphology and chemical constituents. The discrimination of medicinal plants directly affects their pharmacological and clinical effects. Here, we solved the taxonomy uncertainty of these three HJ species and explored the discrimination and study of other traditional medicines (TMs). METHODS First, the anti-inflammatory effects of the three HJ species were compared using lipopolysaccharide (LPS)-induced inflammatory responses in mouse leukemia cells of monocyte macrophage (RAW) 264.7 cells. Then, plant metabolomics were performed in 48 batches of samples to discover chemical markers for discriminating different HJ species. Finally, network pharmacology was applied to explore the linkages among constituents, targets, and signaling pathways. RESULTS In vitro experiments showed that the QJY exhibited the most potential anti-inflammatory activities. Meanwhile, 172 compounds were tentatively identified and eight metabolites with higher relative content in QJY were designated as chemical markers to distinguish QJY and the other two species. According to the property of absorbed in vivo, threonic acid, arginine, and tyrosine were selected to construct a component-target-pathway network. The network pharmacology analysis confirmed that the chemotaxonomy differentiation was consistent with the bioactive assessment. CONCLUSIONS The present study demonstrates that bioactivity evaluation integrated with plant metabolomics and network pharmacology could be used as an effective approach to discriminate different TMs and discover the active compounds.
Collapse
Affiliation(s)
- Chenxi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Hao Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Shaofei Song
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Biying Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Rongrong Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Zhifei Fu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Zhonglian Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, China
| | - Qilong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
34
|
Sun L, Wu J, Wang K, Liang T, Liu Q, Yan J, Yang Y, Qiao K, Ma S, Wang D. Comparative Analysis of Acanthopanacis Cortex and Periplocae Cortex Using an Electronic Nose and Gas Chromatography-Mass Spectrometry Coupled with Multivariate Statistical Analysis. Molecules 2022; 27:molecules27248964. [PMID: 36558097 PMCID: PMC9781861 DOI: 10.3390/molecules27248964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Chinese Herbal Medicines (CHMs) can be identified by experts according to their odors. However, the identification of these medicines is subjective and requires long-term experience. The samples of Acanthopanacis Cortex and Periplocae Cortex used were dried cortexes, which are often confused in the market due to their similar appearance, but their chemical composition and odor are different. The clinical use of the two herbs is different, but the phenomenon of being confused with each other often occurs. Therefore, we used an electronic nose (E-nose) to explore the differences in odor information between the two species for fast and robust discrimination, in order to provide a scientific basis for avoiding confusion and misuse in the process of production, circulation and clinical use. In this study, the odor and volatile components of these two medicinal materials were detected by the E-nose and by gas chromatography-mass spectrometry (GC-MS), respectively. An E-nose combined with pattern analysis methods such as principal component analysis (PCA) and partial least squares (PLS) was used to discriminate the cortex samples. The E-nose was used to determine the odors of the samples and enable rapid differentiation of Acanthopanacis Cortex and Periplocae Cortex. GC-MS was utilized to reveal the differences between the volatile constituents of Acanthopanacis Cortex and Periplocae Cortex. In all, 82 components including 9 co-contained components were extracted by chromatographic peak integration and matching, and 24 constituents could be used as chemical markers to distinguish these two species. The E-nose detection technology is able to discriminate between Acanthopanacis Cortex and Periplocae Cortex, with GC-MS providing support to determine the material basis of the E-nose sensors' response. The proposed method is rapid, simple, eco-friendly and can successfully differentiate these two medicinal materials by their odors. It can be applied to quality control links such as online detection, and also provide reference for the establishment of other rapid detection methods. The further development and utilization of this technology is conducive to the further supervision of the quality of CHMs and the healthy development of the industry.
Collapse
|
35
|
Wang F, Chen L, Chen H, Yan Z, Liu Y. Discovery of the key active compounds in Citri Reticulatae Pericarpium ( Citrus reticulata "Chachi") and their therapeutic potential for the treatment of COVID-19 based on comparative metabolomics and network pharmacology. Front Pharmacol 2022; 13:1048926. [PMID: 36506534 PMCID: PMC9727096 DOI: 10.3389/fphar.2022.1048926] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
Edible herbal medicines contain macro- and micronutrients and active metabolites that can take part in biochemical processes to help achieve or maintain a state of well-being. Citri Reticulatae Pericarpium (CRP) is an edible and medicinal herb used as a component of the traditional Chinese medicine (TCM) approach to treating COVID-19 in China. However, the material basis and related mechanistic research regarding this herb for the treatment of COVID-19 are still unclear. First, a wide-targeted UPLC-ESI-MS/MS-based comparative metabolomics analysis was conducted to screen for the active metabolites of CRP. Second, network pharmacology was used to uncover the initial linkages among these metabolites, their possible targets, and COVID-19. Each metabolite was then further studied via molecular docking with the identified potential SARS-CoV-2 targets 3CL hydrolase, host cell target angiotensin-converting enzyme II, spike protein, and RNA-dependent RNA polymerase. Finally, the most potential small molecule compound was verified by in vitro and in vivo experiments, and the mechanism of its treatment of COVID-19 was further explored. In total, 399 metabolites were identified and nine upregulated differential metabolites were screened out as potential key active metabolites, among which isorhamnetin have anti-inflammatory activity in vitro validation assays. In addition, the molecular docking results also showed that isorhamnetin had a good binding ability with the key targets of COVID-19. Furthermore, in vivo results showed that isorhamnetin could significantly reduced the lung pathological injury and inflammatory injury by regulating ATK1, EGFR, MAPK8, and MAPK14 to involve in TNF signaling pathway, PI3K-Akt signalling pathway, and T cell receptor signaling pathway. Our results indicated that isorhamnetin, as screened from CRP, may have great potential for use in the treatment of patients with COVID-19. This study has also demonstrated that comparative metabolomics combined with network pharmacology strategy could be used as an effective approach for discovering potential compounds in herbal medicines that are effective against COVID-19.
Collapse
Affiliation(s)
| | | | | | - Zhuyun Yan
- *Correspondence: Zhuyun Yan, ; Youping Liu,
| | | |
Collapse
|
36
|
Wu YZ, Zhang Q, Wei XH, Jiang CX, Li XK, Shang HC, Lin S. Multiple anti-inflammatory mechanisms of Zedoary Turmeric Oil Injection against lipopolysaccharides-induced acute lung injury in rats elucidated by network pharmacology combined with transcriptomics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154418. [PMID: 36099655 DOI: 10.1016/j.phymed.2022.154418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Prospects for the drug treatment of acute lung injury (ALI) is unpromising. Managing inflammation can prevent ALI from progressing and minimize further deterioration. Zedoary turmeric oil injection (ZTOI), a patented traditional Chinese medicine (TCM) that has been used against ALI, has shown significant anti-inflammatory effects. However, the mechanisms underlying these effects remain unclear. PURPOSE Elucidate the anti-inflammatory mechanism by which ZTOI acts against ALI in rats using an ingredients-targets-pathways (I-T-P) interaction network. STUDY DESIGN AND METHODS The key ingredients of ZTOI were characterized using UPLC-MS/MS combined with literature mining. The target profiles of each ingredient were established using drug-target databases. The anti-inflammatory activity of ZTOI against lipopolysaccharides (LPS)-induced rat ALI was validated using histopathology and inflammatory factor assessments. The therapeutic targets of ZTOI were screened by integrating transcriptomic results of lung tissues with protein-protein interaction (PPI) expansion. Using KEGG pathway enrichment, an I-T-P network was established to determine the essential interactions among ingredients, targets, and pathways of ZTOI against lung inflammation in ALI. Molecular docking and immunofluorescence staining were utilized to confirm the accuracy of the I-T-P network. RESULTS A total of 11 sesquiterpenes, whose target profiles may characterize the potential function of ZTOI, were identified as key ingredients. In the ALI rat model, ZTOI can alleviate lung inflammation by decreasing the levels of C-reactive protein, interleukin-6, interleukin-1β, and tumor necrosis factor α both in serum and lung tissues. Based on our biological samples, transcriptomics, PPI network expansion, and KEGG pathway enrichment, 11 ingredients, 174 targets, and 8 signaling pathways were linked in the I-T-P networks. From these results, ZTOI could be inferred to exert multiple anti-inflammatory effects against ALI through Toll-like receptor, NF-kappa B, RIG-I-like receptor, TNF, NOD-like receptor, IL-17, MAPK, and the Toll and Imd signaling pathways. In addition, two significantly regulated targets in the transcriptome, Usp18 and Map3k7, could be the essential anti-inflammatory targets of ZTOI. CONCLUSION By integrating network pharmacology with ingredient identification and transcriptomics, we show the multiple anti-inflammatory mechanisms by which ZTOI acts against ALI on an I-T-P level. This work also provides a methodological reference for related research into TCM.
Collapse
Affiliation(s)
- Yu-Zhuo Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Qian Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiao-Hong Wei
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Cheng-Xi Jiang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Xiao-Kun Li
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Hong-Cai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
37
|
Liu J, Meng J, Li R, Jiang H, Fu L, Xu T, Zhu GY, Zhang W, Gao J, Jiang ZH, Yang ZF, Bai LP. Integrated network pharmacology analysis, molecular docking, LC-MS analysis and bioassays revealed the potential active ingredients and underlying mechanism of Scutellariae radix for COVID-19. FRONTIERS IN PLANT SCIENCE 2022; 13:988655. [PMID: 36186074 PMCID: PMC9520067 DOI: 10.3389/fpls.2022.988655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Scutellariae radix ("Huang-Qin" in Chinese) is a well-known traditional herbal medicine and popular dietary supplement in the world, extensively used in prescriptions of TCMs as adjuvant treatments for coronavirus pneumonia 2019 (COVID-19) patients in China. According to the differences in its appearance, Scutellariae radix can be classified into two kinds: ZiQin (1∼3 year-old Scutellariae baicalensis with hard roots) and KuQin (more than 3 year-old S. baicalensis with withered pithy roots). In accordance with the clinical theory of TCM, KuQin is superior to ZiQin in cooling down the heat in the lung. However, the potential active ingredients and underlying mechanisms of Scutellariae radix for the treatment of COVID-19 remain largely unexplored. It is still not clear whether there is a difference in the curative effect of ZiQin and KuQin for the treatment of COVID-19. In this research, network pharmacology, LC-MS based plant metabolomics, and in vitro bioassays were integrated to explore both the potential active components and mechanism of Scutellariae radix for the treatment of COVID-19. As the results, network pharmacology combined with molecular docking analysis indicated that Scutellariae radix primarily regulates the MAPK and NF-κB signaling pathways via active components such as baicalein and scutellarin, and blocks SARS-CoV-2 spike binding to human ACE2 receptors. In vitro bioassays showed that baicalein and scutellarein exhibited more potent anti-inflammatory and anti-infectious effects than baicalin, the component with the highest content in Scutellariae radix. Moreover, baicalein inhibited SARS-CoV-2's entry into Vero E6 cells with an IC50 value of 142.50 μM in a plaque formation assay. Taken together, baicalein was considered to be the most crucial active component of Scutellariae radix for the treatment of COVID-19 by integrative analysis. In addition, our bioassay study revealed that KuQin outperforms ZiQin in the treatment of COVID-19. Meanwhile, plant metabolomics revealed that baicalein was the compound with the most significant increase in KuQin compared to ZiQin, implying the primary reason for the superiority of KuQin over ZiQin in the treatment of COVID-19.
Collapse
Affiliation(s)
- Jiazheng Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jieru Meng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haiming Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lu Fu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Ting Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jin Gao
- Increasepharm (Hengqin) Institute Co., Ltd., Zhuhai, Guangdong, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Zi-Feng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou, Guangdong, China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
38
|
Xu L, Jiao Y, Cui W, Wang B, Guo D, Xue F, Mu X, Li H, Lin Y, Lin H. Quality Evaluation of Traditional Chinese Medicine Prescription in Naolingsu Capsule Based on Combinative Method of Fingerprint, Quantitative Determination, and Chemometrics. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:1429074. [PMID: 36046660 PMCID: PMC9424029 DOI: 10.1155/2022/1429074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/31/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Naolingsu capsule (NLSC) is a well-known traditional Chinese medicine (TCM) prescription in China. It is widely used to treat neurasthenia, insomnia, cardiovascular and cerebrovascular disease, and other diseases. However, its inalienable chemical groups have not been carried out. METHODS We first established the nontargeted investigation based on fingerprinting coupled with UHPLC-Q/TOF-MS/MS. Second, the quantitative methods based on HPLC-DAD and LC-MS/MS were connected to the synchronous quantitative assurance of eleven and fourteen marker compounds. Finally, the quantitative information was processed with SIMCA-P for differentiating the distinctive bunches of samples to screen the foremost appropriate chemical markers. RESULTS The similarity of HPLC fingerprints of 24 batches of NLSC samples was 0.645-0.992. In total, 37 flavonoids, 21 organic acids, 22 lignans, 13 saponins, and 20 other compounds were recognized in NLSC by the UHPLC-Q/TOF-MS/MS method. The quantitative determination was approved for linearity, discovery limits, accuracy, repeatability, soundness, and precision. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) models accomplished the great classification of the samples from the five enterprises, respectively. Rehmannioside D (RD), methylophiopogonanone A (MPA), 3,6'-disinapoyl sucrose (DS), schisandrin B (SSB), epimedin C (EC), icariin (ICA), and jujuboside B (JB) were considered as the potential chemical markers for NLSC quality control. CONCLUSION The experimental results illustrated that the combinative strategy was valuable for quick pharmaceutical quality assessment, which can potentially differentiate the origin, decide the realness, and assess the overall quality of the formulation.
Collapse
Affiliation(s)
- Lili Xu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
- Shandong Institute of Food and Drug Control, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center of Generic Technologies for TCM Formula Granules, Jinan 250101, Shandong, China
| | - Yang Jiao
- Shandong Institute of Food and Drug Control, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center of Generic Technologies for TCM Formula Granules, Jinan 250101, Shandong, China
| | - Weiliang Cui
- Shandong Institute of Food and Drug Control, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center of Generic Technologies for TCM Formula Granules, Jinan 250101, Shandong, China
| | - Bing Wang
- Shandong Institute of Food and Drug Control, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center of Generic Technologies for TCM Formula Granules, Jinan 250101, Shandong, China
| | - Dongxiao Guo
- Shandong Institute of Food and Drug Control, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center of Generic Technologies for TCM Formula Granules, Jinan 250101, Shandong, China
| | - Fei Xue
- Shandong Institute of Food and Drug Control, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center of Generic Technologies for TCM Formula Granules, Jinan 250101, Shandong, China
| | - Xiangrong Mu
- Shandong Institute of Food and Drug Control, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center of Generic Technologies for TCM Formula Granules, Jinan 250101, Shandong, China
| | - Huifen Li
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Yongqiang Lin
- Shandong Institute of Food and Drug Control, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center of Generic Technologies for TCM Formula Granules, Jinan 250101, Shandong, China
| | - Huibin Lin
- Shandong Academy of Chinese Medicine, Jinan 250014, Shandong, China
| |
Collapse
|
39
|
Wang F, Chen H, Hu Y, Chen L, Liu Y. Integrated comparative metabolomics and network pharmacology approach to uncover the key active ingredients of Polygonati rhizoma and their therapeutic potential for the treatment of Alzheimer’s disease. Front Pharmacol 2022; 13:934947. [PMID: 35991900 PMCID: PMC9385993 DOI: 10.3389/fphar.2022.934947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/29/2022] [Indexed: 01/12/2023] Open
Abstract
Alzheimer’s disease (AD) has become a worldwide disease affecting human health and resulting in a heavy economic burden on the healthcare system. Polygonati rhizoma (PR), a kind of traditional Chinese medicine (TCM), is known to improve learning and memory abilities. However, its AD-treating material basis and therapeutic potential for the treatment of AD have remained unclear. Therefore, the present study aimed to uncover the key active ingredients of PR and its therapeutic potential for the treatment of AD. First, we used comparative metabolomics to identify the potential key active ingredients in the edible and medicinal PR. Second, network pharmacology was used to decipher the effects and potential targets of key active ingredients in the PR for the treatment of AD, and molecular docking was further used to identify the binding ability of those active ingredients with AD-related target of AChE. The rate of acetylcholinesterase (AChE) inhibition, oxidative stress, neuroprotective effects, and anti-inflammatory activity were assessed in vitro to screen the potential active ingredients in the PR with therapeutic potential against AD. Finally, APPswe/PS1dE9 AD mice were used to screen the therapeutic components in the PR. Seven overlapping upregulated differential metabolites were identified as the key active ingredients, among which cafestol, isorhamnetin, and rutin have AChE inhibitory activity, anti-inflammatory activity, and neuroprotective effects in vitro validation assays. Furthermore, in vivo results showed that cafestol, isorhamnetin, and rutin displayed several beneficial effects in AD transgenic mice by reducing the number of Aβ-positive spots and the levels of inflammatory cytokines, inhibiting the AChE activity, and increasing the antioxidant levels. Each compound is involved in a different function in the early stages of AD. In conclusion, our results corroborate the current understanding of the therapeutic effects of PR on AD. In addition, our work demonstrated that the proposed network pharmacology-integrated comparative metabolomics strategy is a powerful way of identifying key active ingredients and mechanisms contributing to the pharmacological effects of TCM.
Collapse
Affiliation(s)
| | | | | | - Lin Chen
- *Correspondence: Lin Chen, ; Youping Liu,
| | | |
Collapse
|
40
|
Wang G, Yan M, Hao R, Lv P, Wang Y, Man S, Gao W. Q-marker identification of Paris polyphylla var. yunnanensis (Franch.) Hand.-Mazz. in pulmonary metastasis of liver cancer mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115311. [PMID: 35461989 DOI: 10.1016/j.jep.2022.115311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhizoma Paridis saponins (RPS) as the mainly active components of Paris polyphylla var. yunnanensis (Franch.) Hand.-Mazz., possess tumor therapeutic potential. However, the anti-tumor material basis of RPS in liver cancer pulmonary metastasis remains poorly understood. The objective of this study was to identify the distribution and anti-cancer effects of RPS in liver cancer pulmonary metastatic model. MATERIALS AND METHODS In this study, a mouse liver cancer pulmonary metastasis model was established to determine the distribution of different saponins in the tissues by UPLC-MS and plasma protein binding rate. RESULTS As a result, RPS prolonged the survival time and inhibited the pulmonary metastasis in H22 injected mice through its underlying mechanism. UPLC-MS identified saponins from RPS such as PVII, PH, PVI, PII, gracillin and PI in tissues, which may be regarded as the Q-markers in RPS. Surprisingly, the concentration of PI, PII and gracillin as diosgenyl saponins was higher than that of pennogenyl saponins in the liver and lung. Besides, plasma protein binding rate of PII was higher than that of PVII. CONCLUSION These findings suggested that PVII, PH, PVI, PI, PII and gracillin are regarded as the Q-markers of RPS in liver cancer pulmonary metastasis. The concentration of PI, PII and gracillin as diosgenyl saponins was higher than that of pennogenyl saponins in the liver and lung. It would be helpful for understanding the importance of RPS with anticancer activities in the future.
Collapse
Affiliation(s)
- Genbei Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin, 300072, China; State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China; Tasly Academy, Tasly Holding Group Co., Ltd., No.2 Pujihe East Road, Tasly TCM Garden, Beichen District, Tianjin, 300410, China
| | - Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ruijia Hao
- Tasly Academy, Tasly Holding Group Co., Ltd., No.2 Pujihe East Road, Tasly TCM Garden, Beichen District, Tianjin, 300410, China
| | - Panpan Lv
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yu Wang
- Tasly Academy, Tasly Holding Group Co., Ltd., No.2 Pujihe East Road, Tasly TCM Garden, Beichen District, Tianjin, 300410, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
41
|
Li Y, Ju S, Lin Z, Wu H, Wang Y, Jin H, Ma S, Zhang B. Bioactive-Chemical Quality Markers Revealed: An Integrated Strategy for Quality Control of Chicory. Front Nutr 2022; 9:934176. [PMID: 35859756 PMCID: PMC9292578 DOI: 10.3389/fnut.2022.934176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
As a miraculous Xinjiang Uyghur customary traditional Chinese medicine (TCM), Chicory (Cichorium glandulosum Boiss.et Huet and Cichorium intybus L.) has been found to have therapeutic potential for metabolic diseases in recent years. Although it is widely used as an ethnic medicine, there is still a lack of targeted quality control indicators in quality standards. Hence, this study was conducted to further develop a strategy to reveal bioactive-chemical quality markers based on the existing foundation. First, through the comparative screening of fingerprint profiles of a large amount of Cichorium glandulosum Boiss.et Huet and Cichorium intybus L., superiority components were found to be potential indicators of chemical quantitative properties for the roots and above-ground parts. The results of content determination showed that their contents differed among different species and parts. Second, the potential dominant components were further confirmed using network pharmacology and molecular docking techniques. Again, the results of RAW264.7 cells and L02 cells experiments showed that chicory acid and lactucin were the main components that could reflect the anti-inflammatory and uric acid-lowering potential of chicory. Finally, under this strategy, this study reveals that cichoric acid and lactucin have the properties of quality markers and quality control of chicory. In a word, this work contributes to the quality control, standard improvement, and rational clinical use of chicory.
Collapse
Affiliation(s)
- Yaolei Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Ju
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Zhijian Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Hongyu Jin
- National Institutes for Food and Drug Control, Beijing, China
| | - Shuangcheng Ma
- National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Shuangcheng Ma,
| | - Bing Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
- Bing Zhang,
| |
Collapse
|
42
|
Ta-Xi-San Suppresses Atopic Dermatitis Involved in Multitarget Mechanism Using Experimental and Network Pharmacology Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8441938. [PMID: 35646146 PMCID: PMC9132654 DOI: 10.1155/2022/8441938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022]
Abstract
Atopic dermatitis (AD) is a relapsing and chronic skin inflammation with a common incidence worldwide. Ta-Xi-San (TXS) is a Chinese herbal formula usually used for atopic dermatitis in clinic; however, its active compounds and mechanisms of action are still unclear. Our study was designed to reveal the pharmacological activities, the active compounds, and the pharmacological mechanisms of TXS for atopic dermatitis. Mice were induced by 2,4-dinitrocluorobenzene (DNCB) to build atopic dermatitis model. The pathological evaluation, enzyme-linked immunosorbent assay (ELISA), and hematoxylin and eosin (H&E) assay were performed. The UPLC-Q-Exactive-MSE and network pharmacology analysis were performed to explore active ingredients and therapeutic mechanisms of TXS. TXS treatment decreased levels of immunoglobulin E (IgE), interleukin-4 (IL-4), and tumor necrosis factor-α (TNF-α) in serum induced by DNCB. TXS reduced scratching behavior and alleviated inflammatory pathology of skin and ear. Meanwhile, TXS decreased the spleen index and increased spleen index. The UPLC-Q-Exactive-MSE results showed that 65 compounds of TXS were detected and 337 targets were fished. We collected 1371 AD disease targets, and the compound-target gene network reveled that the top 3 active ingredients were (−)-epigallocatechin gallate, apigenin, and esculetin, and the core target genes were PTGS2, PTGS1, and HSP90AA1. The KEGG pathway and GO analysis showed that TXS remedied atopic dermatitis via PI3K-Akt signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, and Toll-like receptor (TLR) signaling pathway with the regulation of inflammatory response and transcription. Further, we found that the targets of PTGS2 and HSP90AA1 were both elevated in ears and skin of AD model mouse; however, TXS decreased the elevated expressions of PTGS2 and HSP90AA1. Our study revealed that TXS ameliorated AD based on (−)-epigallocatechin gallate, apigenin, and esculetin via targeting PTGS2 and HSP90AA1.
Collapse
|
43
|
Lu X, Jin Y, Wang Y, Chen Y, Fan X. Multimodal integrated strategy for the discovery and identification of quality markers in traditional Chinese medicine. J Pharm Anal 2022; 12:701-710. [PMID: 36320607 PMCID: PMC9615540 DOI: 10.1016/j.jpha.2022.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 01/19/2023] Open
Abstract
With the modernization and internationalization of traditional Chinese medicine (TCM), the requirement for quality control has increased. The quality marker (Q-marker) is an important standard in this field and has been implemented with remarkable success in recent years. However, the establishment of Q-markers remains fragmented and the process lacks systematicity, resulting in inconsistent quality control and insufficient correlation with clinical efficacy and safety of TCM. This review introduces four multimodal integrated approaches that contribute to the discovery of more comprehensive and accurate Q-markers, thus aiding in the establishment of new quality control patterns based on the characteristics and principles of TCM. These include the whole-process quality control strategy, chemical-activity-based screening method, efficacy, safety, and consistent combination strategy, and TCM theory-guided approach. Furthermore, methodologies and representative examples of these strategies are described, and important future directions and questions in this field are also proposed. Four multimodal integrated strategies were introduced to establish Q-markers. Quality control of TCM should focus on the entire process chain. The identification of Q-markers needs to be guided by TCM theory. Ensuring efficacy, safety, and consistency is an essential goal of Q-markers. Multidisciplinary techniques are the driving force for improving Q-markers.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321016, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310058, China
| | - Yanyan Jin
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuzhen Wang
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yunlong Chen
- Hangzhou Children's Hospital, Hangzhou, 310010, China
- Corresponding author.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321016, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310058, China
- Corresponding author. Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
44
|
Fan CL, Liang S, Ye MN, Cai WJ, Chen M, Hou YL, Guo J, Dai Y. Periplocymarin alleviates pathological cardiac hypertrophy via inhibiting the JAK2/STAT3 signalling pathway. J Cell Mol Med 2022; 26:2607-2619. [PMID: 35365949 PMCID: PMC9077305 DOI: 10.1111/jcmm.17267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 11/29/2022] Open
Abstract
Pathological cardiac hypertrophy is the most important risk factor for developing chronic heart failure. Therefore, the discovery of novel agents for treating pathological cardiac hypertrophy remains urgent. In the present study, we examined the therapeutic effect and mechanism of periplocymarin (PM)‐mediated protection against pathological cardiac hypertrophy using angiotensinII (AngII)‐stimulated cardiac hypertrophy in H9c2 cells and transverse aortic constriction (TAC)‐induced cardiac hypertrophy in mice. In vitro, PM treatment significantly reduced the surface area of H9c2 cells and expressions of hypertrophy‐related proteins. Meanwhile, PM markedly down‐regulated AngII‐induced translocation of p‐STAT3 into the nuclei and enhanced the phosphorylation levels of JAK2 and STAT3 proteins. The STAT3 specific inhibitor S3I‐201 or siRNA‐mediated depleted expression could alleviate AngII‐induced cardiac hypertrophy in H9c2 cells following PM treatment; however, PM failed to reduce the expressions of hypertrophy‐related proteins and phosphorylated STAT3 in STAT3‐overexpressing cells, indicating that PM protected against AngII‐induced cardiac hypertrophy by modulating STAT3 signalling. In vivo, PM reversed TAC‐induced cardiac hypertrophy, as determined by down‐regulating ratios of heart weight to body weight (HW/BW), heart weight to tibial length (HW/TL) and expressions of hypertrophy‐related proteins accompanied by the inhibition of the JAK2/STAT3 pathway. These results revealed that PM could effectively protect the cardiac structure and function in experimental models of pathological cardiac hypertrophy by inhibiting the JAK2/STAT3 signalling pathway. PM is expected to be a potential lead compound of the novel agents for treating pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Cai-Lian Fan
- Department of Cardiology, Jinan University First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Sui Liang
- Department of Cardiology, Jinan University First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Meng-Nan Ye
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Wan-Jun Cai
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Miao Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yun-Long Hou
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
| | - Jun Guo
- Department of Cardiology, Jinan University First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yi Dai
- College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
45
|
Li L, Wang Y, Li Y, Zhu H, Feng B. A pseudotargeted method based on sequential window acquisition of all theoretical spectra mass spectrometry acquisition and its application in quality assessment of traditional Chinese medicine preparation-Yuanhu Zhitong tablet. J Sep Sci 2021; 45:650-658. [PMID: 34794207 DOI: 10.1002/jssc.202100611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 11/07/2022]
Abstract
Quality control plays a key role in the application of Chinese materia medica, especially in the preparation of traditional Chinese medicine. A pseudotargeted analysis method using an ultra-high-performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry that was operated in the sequential window acquisition of all theoretical spectra mode was proposed to explore the chemical markers of traditional Chinese medicine preparation. Full-scan-based untargeted analysis was applied to extract the target ions. After data preprocessing, 302 target ions were extracted and used for the subsequent sequential window acquisition of all theoretical spectra analyses. The established sequential window acquisition of all theoretical spectra-based pseudotargeted approaches exhibited good repeatability and a wide linear range. The established method was successfully applied to discover analytical markers for the Yuanhu Zhitong tablet. After multivariate statistical analysis, 94 potential markers were identified. Ten markers were annotated by matching accurate m/z and product ion information obtained from previous reports. It is clearly indicated that the pseudotargeted analysis could make a great contribution to the quality assessment of traditional Chinese medicine preparation as a newly emerging technique.
Collapse
Affiliation(s)
- Lele Li
- School of Pharmacy, Jilin Medical University, Jilin, P. R. China
| | - Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Yuxuan Li
- School of Pharmacy, Jilin Medical University, Jilin, P. R. China
| | - Heyun Zhu
- School of Pharmacy, Jilin Medical University, Jilin, P. R. China
| | - Bo Feng
- School of Pharmacy, Jilin Medical University, Jilin, P. R. China
| |
Collapse
|
46
|
Liang H, Deng P, Ma YF, Wu Y, Ma ZH, Zhang W, Wu JD, Qi YZ, Pan XY, Huang FS, Lv SY, Han JL, Dai WD, Chen Z. Advances in Experimental and Clinical Research of the Gouty Arthritis Treatment with Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8698232. [PMID: 34721646 PMCID: PMC8550850 DOI: 10.1155/2021/8698232] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/27/2022]
Abstract
Gouty arthritis (GA) is a multifactorial disease whose pathogenesis is utterly complex, and the current clinical treatment methods cannot wholly prevent GA development. Western medicine is the primary treatment strategy for gouty arthritis, but it owns an unfavorable prognosis. Therefore, the prevention and treatment of GA are essential. In China, traditional Chinese medicine (TCM) has been adopted for GA prevention and treatment for thousands of years. Gout patients are usually treated with TCM according to their different conditions, and long-term results can be achieved by improving their physical condition. And TCM has been proved to be an effective method to treat gout in modern China. Nevertheless, the pharmacological mechanism of TCM for gout is still unclear, which limits its spread. The theory of prevention and treatment of gout with TCM is more well acknowledged in China than in abroad. In this article, Chinese herbs and ancient formula for gout were summarized first. A total of more than 570 studies published from 2004 to June 2021 in PubMed, Medline, CNKI, VIP, Web of Science databases and Chinese Pharmacopoeia and traditional Chinese books were searched; the current status of TCM in the treatment of GA was summarized from the following aspects: articular chondrocyte apoptosis inhibition, antioxidative stress response, inflammatory cytokine levels regulation, uric acid excretion promotion, immune function regulation, uric acid reduction, and intestinal flora improvement in subjects with gout. The literature review concluded that TCM has a specific curative effect on the prevention and treatment of GA, particularly when combined with modern medical approaches. However, lacking a uniform definition of GA syndrome differentiation and the support of evidence-based medicine in clinical practice have provoked considerable concern in previous studies, which needs to be addressed in future research.
Collapse
Affiliation(s)
- Huan Liang
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pin Deng
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu-Feng Ma
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Yan Wu
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhan-Hua Ma
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Wei Zhang
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Jun-De Wu
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Yin-Ze Qi
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Xu-Yue Pan
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Fa-Sen Huang
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Si-Yuan Lv
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing-Lu Han
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wen-Da Dai
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Zhaojun Chen
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| |
Collapse
|
47
|
Chen W, He L, Zhong L, Sun J, Zhang L, Wei D, Wu C. Identification of Active Compounds and Mechanism of Huangtu Decoction for the Treatment of Ulcerative Colitis by Network Pharmacology Combined with Experimental Verification. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:4125-4140. [PMID: 34616145 PMCID: PMC8487861 DOI: 10.2147/dddt.s328333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/17/2021] [Indexed: 01/08/2023]
Abstract
Introduction Huangtu decoction (HTD) has been widely used in the treatment of gastrointestinal bleeding, ulcerative colitis (UC) and gastrointestinal tumors in China, but its active compounds and mechanism are still not clear yet. The present research aimed to identify the active compounds and mechanism of HTD for the treatment of UC. Methods Firstly, the chemical compounds of HTD were qualitatively identified based on Q Exactive Orbitrap LC-MS/MS, and their potential targets were predicted through SwissTargetPrediction. Secondly, the differential expressed genes (DEGs) in colon tissues of UC patients and normal controls were retrieved from the GEO database. Thirdly, the overlapping targets of DEGs and the predicted targets were obtained and subjected to GO and KEGG analysis. Finally, the key targets in the most significantly enriched pathway were verified by in vivo experiment, and the protein and mRNA expressions of matrix metalloproteinase-1 (MMP1), MMP3, MMP7, MMP9 and MMP12 were determined by immunohistochemistry (IHC), Western blotting (WB) and quantitative real-time-PCR (qRT-PCR). Results A total of 47 compounds were identified and 29 overlapping targets were obtained from HTD extract. The most significantly enriched pathway of overlapping targets involved was MMP. HTD improved the pathological damage in colon tissues of DSS-induced UC model and significantly decreased the serum levels of IL-1β and IL-6. The protein and mRNA expressions of MMP1, MMP3 and MMP9 in colon tissues were significantly decreased after HTD treatment. Conclusion HTD treatment can alleviate the colonic inflammation via inhibiting MMPs including MMP1, MMP3 and MMP9.
Collapse
Affiliation(s)
- Wenwen Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,Department of Pharmacy, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610091, People's Republic of China
| | - Lin He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Lian Zhong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Lilin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Daneng Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| |
Collapse
|
48
|
Zhang H, Chen R, Xu C, Zhang G, Guan Y, Feng Q, Yao J, Yan J. An integrated approach to discriminate the quality markers of Traditional Chinese medicine preparation based on multi-dimensional characteristic network: Shenqi Jiangtang Granule as a case. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114277. [PMID: 34089811 DOI: 10.1016/j.jep.2021.114277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/23/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Due to the complexity of traditional Chinese medicine (TCM), the current quality evaluation of TCM are difficult to associate with clinical efficacy. Shenqi Jiangtang Granule (SJG), a classical TCM formula, is proven as a therapy for treatment of type II diabetes mellitus (DM) and complications while the substantial basis of the therapeutic effects is not clear. PURPOSE The present study proposed an integrated approach to discriminate the quality markers (Q-markers) based on multi-dimensional characteristic network for quality control of TCM. METHODS The multi-dimensional characteristic network was established by "Spider-web" mode, which was comprehensively integrating "compatibility-content-activity- efficiency-stability" of the candidate ingredients. The activity dimension was evaluated by the inhibitory activity of SJG on α-glucosidase and aldose reductase. The efficacy dimension was assessed through the association between the compounds and the target pathway of diabetic nephropathy (DN) based on integrated pharmacology platform. Each dimension for the feature network was quantified by multivariate statistical analysis, and regression area of the candidate compounds was constructed in the network. Finally, the candidate compounds were sorted comprehensively by the regression area. RESULTS A total of 30 chemical compounds with effective hypoglycemic activity were identified as the potential Q-markers. From the data analysis, three dimensions of activity, efficacy and content performed a greater impact on the regression area of the characteristic network. Among these compounds, ginsenoside Re, ginsenoside Rd, ginsenoside Rg1, calycosin, ginsenoside Rb1, formononetin, astragaloside IV, ginsenoside Rf, ginsenoside Rc, notoginsenoside Fe, schisandrol A, gomisin D were screened out as the candidate Q-markers of SJG. CONCLUSION The multi-dimensional characteristic network integrating compatibility, content, activity, efficiency and stability is efficient to discriminate the potential Q-markers of TCM prescription. Our results demonstrated that 12 candidate compounds from Panax Ginseng, Radix Astragali and Schisandrae Chinensis might select as Q-markers for qualitative evaluation of SJG.
Collapse
Affiliation(s)
- Hui Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou 310014, China.
| | - Ruoyu Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou 310014, China
| | - Cong Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou 310014, China
| | - Guimin Zhang
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Shandong, 276006, China; Lunan Pharmaceutical Group Co., Ltd., Shandong, 276006, China
| | - Yongxia Guan
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Shandong, 276006, China; Lunan Pharmaceutical Group Co., Ltd., Shandong, 276006, China
| | - Qun Feng
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Shandong, 276006, China; Lunan Pharmaceutical Group Co., Ltd., Shandong, 276006, China
| | - Jingchun Yao
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Shandong, 276006, China; Lunan Pharmaceutical Group Co., Ltd., Shandong, 276006, China
| | - Jizhong Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou 310014, China.
| |
Collapse
|
49
|
Zhang FX, Yuan YLL, Cui SS, Li M, Li RM. Characterization of metabolic fate of phellodendrine and its potential pharmacological mechanism against diabetes mellitus by ultra-high-performance liquid chromatography-coupled time-of-flight mass spectrometry and network pharmacology. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9157. [PMID: 34182613 DOI: 10.1002/rcm.9157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Characterizing the functional mechanism of quality control marker (Q-marker) was of great importance in revealing the primary pharmacological mechanism of herbs or the other complex system, and drug-related metabolites always contribute to the pharmacological functions. Cortex Phellodendri was used as a core herb in the treatment of diabetes mellitus (DM). As a Q-marker of Cortex Phellodendri, the role of phellodendrine in DM was still unclear. Thus, the characterization of phellodendrine-related metabolites in vivo and the subsequent induced functional mechanism exerted great importance in elucidating the anti-DM mechanism of Cortex Phellodendri. METHODS An ultra-high-performance liquid chromatography-coupled time-of-flight mass spectrometry (UHPLC/Q-TOF MS) method was developed to profile metabolites of phellodendrine in rats. The potential pharmacological mechanism against DM was predicted by network pharmacology. RESULTS A total of 19 phellodendrine-related metabolites were screened out in rats for the first time. Among them, M4, M5, M9, and M12 were regarded as the primary metabolites. Meanwhile, phase I metabolic reactions of hydroxylation, demethylation, and isomerization and phase II reactions of glucuronidation and sulfation occurred to phellodendrine; glucuronidation and hydroxylation were the two main metabolic reactions. Moreover, the potential targets of phellodendrine and three main metabolites (M4, M5, and M12) were predicted by a network pharmacological method, and they mainly shared 52 targets, including PDE5A, CHRNA3, SIGMAR1, F3, ESR1, DRD1, DRD2, DRD3, and DRD4. Furthermore, Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that calcium signaling pathway, cGMP-PKG signaling pathway, and cAMP signaling pathway were regarded as the core mechanism of phellodendrine to treat DM. CONCLUSION The metabolic feature of phellodendrine in vivo was revealed for the first time, and its anti-DM mechanism information for further pharmacological validations was also supplied. It also gave a direction to further elucidation of pharmacological mechanism of Cortex Phellodendri in treating DM.
Collapse
Affiliation(s)
- Feng-Xiang Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yu-Lin-Lan Yuan
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuang-Shuang Cui
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Min Li
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Rui-Man Li
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|