1
|
Moran KM, Jarrell L, Khashchuluun M, Moran KR, Rodriguez J, Tran A, Delville Y. Blunted food conditioned place preference-like behavior in adolescent-stressed male hamsters. Behav Brain Res 2025; 476:115234. [PMID: 39233144 DOI: 10.1016/j.bbr.2024.115234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/01/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Social stress during adolescence results in long lasting weight gain, obesity, and enhanced food hoarding behavior in hamsters. We wanted to determine whether stress also enhanced conditioned place preference-like behavior (CPP-like) for food reward, as would be expected from studies with substances like cocaine. Our experimental animals were exposed daily to aggressive adults for two weeks in early puberty, while also trained to explore a V-shaped maze containing a food reward at one end. They were tested for CPP-like behavior on the last day of social stress. Our results showed that while stress enhanced weight gain, food intake, food efficiency, and body fat, it caused a reduction of Place Preference as compared to controls. In fact, the correlated relationship between Place Preference and body fat was inverted by stress exposure: while it was positively correlated in controls, it was mildly negatively correlated in stressed hamsters. These unexpected data illustrate the extent of adaptive behavior in foraging animals once a resource has become untrustworthy.
Collapse
Affiliation(s)
- Kevin M Moran
- Psychology Department, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Leah Jarrell
- Psychology Department, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Kurt R Moran
- Psychology Department, The University of Texas at Austin, Austin, TX 78712, USA
| | - Julia Rodriguez
- Psychology Department, The University of Texas at Austin, Austin, TX 78712, USA
| | - Anna Tran
- Psychology Department, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yvon Delville
- Psychology Department, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
2
|
Moran KM, Enstrom AE, Jarrell L, Khashchuluun M, Tran A, Delville Y. Adolescent social stress alters the role of orexin innervation in the hindbrain in male hamsters. J Neuroendocrinol 2024:e13457. [PMID: 39462511 DOI: 10.1111/jne.13457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/05/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Juvenile male hamsters exposed to chronic social stress eat more, gain weight, and have larger fat pads. The purpose of the present study was to address possible changes in food hoarding and orexin/hypocretin innervation in response to social stress. Male hamsters in early adolescence were exposed to a resident-intruder social stress paradigm or control condition daily for 2 weeks. Metabolism-related physiological measures and behaviors were tracked, and brains were immunocytochemically labeled for orexin-A. Our data confirm our previous observations on appetite, weight gain, and obesity, and showed a strong trend toward enhanced food hoarding as in prior studies. In addition, there were no statistically significant differences in orexin innervation in any brain area analyzed. However, unique correlation patterns were observed between orexin innervation and appetite or metabolic outcome. In particular, opposite correlations were observed between groups within the dorsal raphe nucleus, lateral parabrachial nucleus, and nucleus of the solitary tract. These opposite patterns of correlations suggest chronic social stress causes site-specific alterations in synaptic activity in relation with these behaviors.
Collapse
Affiliation(s)
- Kevin M Moran
- Psychology Department, The University of Texas at Austin, Austin, Texas, USA
| | - Ava Elana Enstrom
- Psychology Department, The University of Texas at Austin, Austin, Texas, USA
| | - Leah Jarrell
- Psychology Department, The University of Texas at Austin, Austin, Texas, USA
| | | | - Anna Tran
- Psychology Department, The University of Texas at Austin, Austin, Texas, USA
| | - Yvon Delville
- Psychology Department, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
3
|
Haller J. Aggression, Aggression-Related Psychopathologies and Their Models. Front Behav Neurosci 2022; 16:936105. [PMID: 35860723 PMCID: PMC9289268 DOI: 10.3389/fnbeh.2022.936105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Neural mechanisms of aggression and violence are often studied in the laboratory by means of animal models. A multitude of such models were developed over the last decades, which, however, were rarely if ever compared systematically from a psychopathological perspective. By overviewing the main models, I show here that the classical ones exploited the natural tendency of animals to defend their territory, to fight for social rank, to defend themselves from imminent dangers and to defend their pups. All these forms of aggression are functional and adaptive; consequently, not necessarily appropriate for modeling non-natural states, e.g., aggression-related psychopathologies. A number of more psychopathology-oriented models were also developed over the last two decades, which were based on the etiological factors of aggression-related mental disorders. When animals were exposed to such factors, their aggressiveness suffered durable changes, which were deviant in the meaning that they broke the evolutionarily conserved rules that minimize the dangers associated with aggression. Changes in aggression were associated with a series of dysfunctions that affected other domains of functioning, like with aggression-related disorders where aggression is just one of the symptoms. The comparative overview of such models suggests that while the approach still suffers from a series of deficits, they hold the important potential of extending our knowledge on aggression control over the pathological domain of this behavior.
Collapse
|
4
|
Abstract
The effects of glucocorticoids on aggression can be conceptualized based on its mechanisms of action. These hormones can affect cell function non-genomically within minutes, primarily by affecting the cell membrane. Overall, such effects are activating and promote both metabolic preparations for the fight and aggressive behavior per se. Chronic increases in glucocorticoids activate genomic mechanisms and are depressing overall, including the inhibition of aggressive behavior. Finally, excessive stressors trigger epigenetic phenomena that have a large impact on brain programming and may also induce the reprogramming of neural functions. These induce qualitative changes in aggression that are deemed abnormal in animals, and psychopathological and criminal in humans. This review aims at deciphering the roles of glucocorticoids in aggression control by taking in view the three mechanisms of action often categorized as acute, chronic, and toxic stress based on the duration and the consequences of the stress response. It is argued that the tripartite way of influencing aggression can be recognized in all three animal, psychopathological, and criminal aggression and constitute a framework of mechanisms by which aggressive behavior adapts to short-term and log-term changes in the environment.
Collapse
|
5
|
Miczek KA, DiLeo A, Newman EL, Akdilek N, Covington HE. Neurobiological Bases of Alcohol Consumption After Social Stress. Curr Top Behav Neurosci 2022; 54:245-281. [PMID: 34964935 PMCID: PMC9698769 DOI: 10.1007/7854_2021_273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The urge to seek and consume excessive alcohol is intensified by prior experiences with social stress, and this cascade can be modeled under systematically controlled laboratory conditions in rodents and non-human primates. Adaptive coping with intermittent episodes of social defeat stress often transitions to maladaptive responses to traumatic continuous stress, and alcohol consumption may become part of coping responses. At the circuit level, the neural pathways subserving stress coping intersect with those for alcohol consumption. Increasingly discrete regions and connections within the prefrontal cortex, the ventral and dorsal striatum, thalamic and hypothalamic nuclei, tegmental areas as well as brain stem structures begin to be identified as critical for reacting to and coping with social stress while seeking and consuming alcohol. Several candidate molecules that modulate signals within these neural connections have been targeted in order to reduce excessive drinking and relapse. In spite of some early clinical failures, neuropeptides such as CRF, opioids, or oxytocin continue to be examined for their role in attenuating stress-escalated drinking. Recent work has focused on neural sites of action for peptides and steroids, most likely in neuroinflammatory processes as a result of interactive effects of episodic social stress and excessive alcohol seeking and drinking.
Collapse
Affiliation(s)
- Klaus A. Miczek
- Department of Psychology, Tufts University, Medford, MA, USA,Department of Neuroscience, Tufts University, Boston, MA, USA
| | - Alyssa DiLeo
- Department of Neuroscience, Tufts University, Boston, MA, USA
| | - Emily L. Newman
- Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Naz Akdilek
- Department of Psychology, Tufts University, Medford, MA, USA
| | | |
Collapse
|
6
|
Moran KM, González-Martínez LF, Delville Y. Lifelong enhancement of body mass from adolescent stress in male hamsters. Horm Behav 2021; 133:105004. [PMID: 34062278 DOI: 10.1016/j.yhbeh.2021.105004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
In hamsters, exposure to stress in adulthood causes increased body weight. We addressed how social stress during puberty would impact food intake and body weight. Stressed hamsters started gaining significantly more weight than controls after only two days of stress exposure. Over a two-week period, stressed subjects gained 10% more weight and consumed more food than controls. At the end of the stress period, stressed hamsters collected nearly twice as many palatable sugar pellets from an arena than controls. Stressed subjects presented 15-20% more body fat in mesenteric, inguinal, and retroperitoneal fat pads. In order to assess the duration of these effects, we analyzed data from previous studies keeping hamsters for over two months past the stress period in puberty. Our analysis shows that stressed hamsters stopped gaining more weight after the stress period, but their body weights remained elevated for over two months, consistently weighing 10% more than their non-stressed counterparts. We also analyzed conditioning training data collected after the period of stress in late puberty and early adulthood (P56 to P70) that was part of the original studies. Training consisted of lever pressing for palatable food rewards. At these times, previously stressed hamsters retrieved similar numbers of food pellets from the conditioning chambers, suggesting no difference in appetite after the stress period. These data showing a long-lasting effect of stress on body weight may be relevant to studies on the ontogeny of lifelong obesity.
Collapse
Affiliation(s)
- Kevin M Moran
- Psychology Department, The University of Texas at Austin, Austin, TX 78712, USA.
| | | | - Yvon Delville
- Psychology Department, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
7
|
Lee TJ, Zanello AF, Morrison TR, Ricci LA, Melloni RH. Valproate selectively suppresses adolescent anabolic/androgenic steroid-induced aggressive behavior: implications for a role of hypothalamic γ-aminobutyric acid neural signaling. Behav Pharmacol 2021; 32:295-307. [PMID: 33595952 DOI: 10.1097/fbp.0000000000000616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pubertal male Syrian hamsters (Mesocricetus auratus) treated with anabolic/androgenic steroids (AASs) during adolescence (P27-P56) display a highly intense aggressive phenotype that shares many behavioral similarities with pathological aggression in youth. Anticonvulsant drugs like valproate that enhance the activity of the γ-aminobutyric acid (GABA) neural system in the brain have recently gained acceptance as a primary treatment for pathological aggression. This study examined whether valproate would selectively suppress adolescent AAS-induced aggressive behavior and whether GABA neural signaling through GABAA subtype receptors in the latero-anterior hypothalamus (LAH; an area of convergence for developmental and neuroplastic changes that underlie aggression in hamsters) modulate the aggression-suppressing effect of this anticonvulsant medication. Valproate (1.0-10.0 mg/kg, intraperitoneal) selectively suppressed the aggressive phenotype in a dose-dependent fashion, with the effective anti-aggressive effects beginning at 5 mg/kg, intraperitoneally. Microinfusion of the GABAA receptor antagonist bicuculline (7.0-700 ng) into the LAH reversed valproate's suppression of AAS-induced aggression in a dose-dependent fashion. At the 70 ng dose of bicuculline, animals expressed the highly aggressive baseline phenotype normally observed in AAS-treated animals. These studies provide preclinical evidence that the anticonvulsant valproate selectively suppresses adolescent, AAS-induced aggression and that this suppression is modulated, in part, by GABA neural signaling within the LAH.
Collapse
Affiliation(s)
- Terrence J Lee
- Program in Behavioral Neuroscience, Department of Psychology, Northeastern University, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
8
|
Liu CY, Lai WS. Functional neuroanatomy and neural oscillations during social eavesdropping in male golden hamsters. Horm Behav 2021; 127:104881. [PMID: 33127368 DOI: 10.1016/j.yhbeh.2020.104881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/06/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
Social eavesdropping is a low-cost learning mechanism by which individuals extract relevant social information from social interactions between conspecifics, thereby gaining subsequent advantages in information gathering and usage. The aim of this study was to take advantage of a new hamster model of social eavesdropping to investigate behavioral consequences and neural activity in male hamsters during social eavesdropping. Bystander hamsters with a defeat experience were exposed to either a fighting interaction, a neutral encounter, or control conditions for 3 days of social eavesdropping. In Experiment 1, bystanders in the fight and neutral groups displayed more information gathering behaviors and less nonsocial behavior than control hamsters. The fight group displayed significant increases in c-Fos-positive neurons in the anterior mid-cingulate cortex (aMCC) and the piriform cortex. A slight but not significant group difference was found in their serum cortisol levels. In vivo local field potential oscillation recordings in Experiment 2 revealed that bystanders in the fight group had more delta oscillations in the aMCC during information gathering across 3-day social eavesdropping than those in the other 2 groups. Experiment 3 confirmed that 20 min of social eavesdropping on Day 1 was sufficient to evoke differential behavioral outcomes, and the behavioral responses became more prominent after 3 days of social eavesdropping. Collectively, our study confirmed that male golden hamsters are capable of social eavesdropping and indicated the involvement of aMCC delta oscillations in social eavesdropping.
Collapse
Affiliation(s)
- Ching-Yi Liu
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Wen-Sung Lai
- Department of Psychology, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
9
|
Einberger C, Puckett A, Ricci L, Melloni R. Contemporary Pharmacotherapeutics and the Management of Aggressive Behavior in an Adolescent Animal Model of Maladaptive Aggression. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:188-202. [PMID: 32329300 PMCID: PMC7236798 DOI: 10.9758/cpn.2020.18.2.188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/02/2019] [Accepted: 09/21/2019] [Indexed: 12/28/2022]
Abstract
Objective Antipsychotic and anticonvulsant medications are increasingly being used as pharmacotherapeutic treatments for maladaptive aggression in youth, yet no information is available regarding whether these drugs exhibit aggression- specific suppression in preclinical studies employing adolescent animal models of maladaptive aggression. This study examined whether the commonly used antipsychotics medications haloperidol and risperidone and the anticonvulsant medication valproate exert selective aggression-suppressing effects using a validated adolescent animal model of maladaptive aggression. Methods Twenty-seven-day old Syrian hamsters (Mesocricetus auratus) were administered testosterone for 30 consecutive days during the first 4 weeks of adolescent development. The following day (during late adolescence), experimental animals received a single dose of haloperidol (0.00, 0.025, 0.50, 1.0 mg/kg), risperidone (0.00, 0.01, 0.03, 1.0 mg/kg), or valproate (0.00, 1.0, 5.0, 10.0 mg/kg) and tested for offensive aggression using the Resident/Intruder Paradigm. As a baseline, non-aggressive behavioral control, a separate set of pubertal hamsters was treated with sesame oil vehicle during the first 4 weeks of adolescence and then tested for aggression during late adolescence in parallel with the haloperidol, risperidone or valproate-treated experimental animals. Results Risperidone and valproate selectively reduced the highly impulsive and intense maladaptive aggressive phenotype in a dose-dependent fashion. While haloperidol marginally reduced aggressive responding, its effects were non-specific as the decrease in aggression was concurrent with reductions in a several ancillary (non-aggressive) behaviors. Conclusion These studies provide pre-clinical evidence that the contemporary pharmacotherapeutics risperidone and valproate exert specific aggression-suppressing effects in an adolescent animal model of maladaptive aggression.
Collapse
Affiliation(s)
- Clare Einberger
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Amanda Puckett
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Lesley Ricci
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Richard Melloni
- Department of Psychology, Northeastern University, Boston, MA, USA.,Program in Behavioral Neuroscience, Northeastern University, Boston, MA, USA
| |
Collapse
|
10
|
Morrison TR, Ricci LA, Puckett AS, Joyce J, Curran R, Davis C, Melloni RH. Serotonin type-3 receptors differentially modulate anxiety and aggression during withdrawal from adolescent anabolic steroid exposure. Horm Behav 2020; 119:104650. [PMID: 31805280 DOI: 10.1016/j.yhbeh.2019.104650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/16/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
Abstract
Male Syrian hamsters (Mesocricetus auratus) administered anabolic/androgenic steroids during adolescent development display increased aggression and decreased anxious behavior during the adolescent exposure period. Upon withdrawal from anabolic/androgenic steroids, this neurobehavioral relationship shifts and hamsters exhibit decreased aggression and increased anxious behavior. This study investigated the hypothesis that alterations in anterior hypothalamic signaling through serotonin type-3 receptors modulate the behavioral shift between adolescent anabolic/androgenic steroid-induced aggressive and anxious behaviors during the withdrawal period. To test this, hamsters were administered anabolic/androgenic steroids during adolescence then withdrawn from drug exposure for 21 days and tested for aggressive and anxious behaviors following direct pharmacological manipulation of serotonin type-3 receptor signaling within the latero-anterior hypothalamus. Blockade of latero-anterior hypothalamic serotonin type-3 receptors both increased aggression and decreased anxious behavior in steroid-treated hamsters, effectively reversing the pattern of behavioral responding normally observed during anabolic/androgenic steroid withdrawal. These findings suggest that the state of serotonin neural signaling within the latero-anterior hypothalamus plays an important role in behavioral shifting between aggressive and anxious behaviors following adolescent exposure to anabolic/androgenic steroids.
Collapse
Affiliation(s)
- Thomas R Morrison
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America
| | - Lesley A Ricci
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America
| | - Amanda S Puckett
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America
| | - Jillian Joyce
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America
| | - Riley Curran
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America
| | - Courtney Davis
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America
| | - Richard H Melloni
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America.
| |
Collapse
|
11
|
Munley KM, Deyoe JE, Ren CC, Demas GE. Melatonin mediates seasonal transitions in aggressive behavior and circulating androgen profiles in male Siberian hamsters. Horm Behav 2020; 117:104608. [PMID: 31669179 PMCID: PMC6980702 DOI: 10.1016/j.yhbeh.2019.104608] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 01/12/2023]
Abstract
Some seasonally-breeding animals are more aggressive during the short, "winter-like" days (SD) of the non-breeding season, despite gonadal regression and reduced circulating androgen levels. While the mechanisms underlying SD increases in aggression are not well understood, previous work from our lab suggests that pineal melatonin (MEL) and the adrenal androgen dehydroepiandrosterone (DHEA) are important in facilitating non-breeding aggression in Siberian hamsters (Phodopus sungorus). To characterize the role of MEL in modulating seasonal transitions in aggressive behavior, we housed male hamsters in long days (LD) or SD, treated them with timed MEL (M) or saline injections, and measured aggression after 3, 6, and 9 weeks. Furthermore, to assess whether MEL mediates seasonal shifts in gonadal and adrenal androgen synthesis, serum testosterone (T) and DHEA concentrations were quantified 36 h before and immediately following an aggressive encounter. LD-M and SD males exhibited similar physiological and behavioral responses to treatment. Specifically, both LD-M and SD males displayed higher levels of aggression than LD males and reduced circulating DHEA and T in response to an aggressive encounter, whereas LD males elevated circulating androgens. Interestingly, LD and SD males exhibited distinct relationships between circulating androgens and aggressive behavior, in which changes in serum T following an aggressive interaction (∆T) were negatively correlated with aggression in LD males, while ∆DHEA was positively correlated with aggression in SD males. Collectively, these findings suggest that SD males transition from synthesis to metabolism of circulating androgens following an aggressive encounter, a mechanism that is modulated by MEL.
Collapse
Affiliation(s)
- Kathleen M Munley
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Jessica E Deyoe
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Clarissa C Ren
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Gregory E Demas
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
12
|
Papilloud A, Guillot de Suduiraut I, Zanoletti O, Grosse J, Sandi C. Peripubertal stress increases play fighting at adolescence and modulates nucleus accumbens CB1 receptor expression and mitochondrial function in the amygdala. Transl Psychiatry 2018; 8:156. [PMID: 30111823 PMCID: PMC6093900 DOI: 10.1038/s41398-018-0215-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/09/2018] [Accepted: 07/14/2018] [Indexed: 12/22/2022] Open
Abstract
Play fighting is a highly rewarding behavior that helps individuals to develop social skills. Early-life stress has been shown to alter play fighting in rats and hamsters as well as to increase aggressive behaviors at adulthood. However, it is not known whether individual differences in stress-induced play fighting are related to differential developmental trajectories towards adult aggression. To address this question, we used a rat model of peripubertal stress (PPS)-induced psychopathology that involves increased aggression at adulthood. We report that, indeed, PPS leads to enhanced play fighting at adolescence. Using a stratification approach, we identify individuals with heightened levels of play fighting as the ones that show abnormal forms of aggression at adulthood. These animals showed as well a rapid habituation of their corticosterone responsiveness to repeated stressor exposure at peripuberty. They also showed a striking increase in mitochondrial function in the amygdala-but not nucleus accumbens-when tested ex vivo. Conversely, low, but not high players, displayed increased expression of the CB1 cannabinoid receptor in the nucleus accumbens shell. Our results highlight adolescence as a potential critical period in which aberrant play fighting is linked to the emergence of adult aggression. They also point at brain energy metabolism during adolescence as a possible target to prevent adult aggression.
Collapse
Affiliation(s)
- Aurélie Papilloud
- 0000000121839049grid.5333.6Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Isabelle Guillot de Suduiraut
- 0000000121839049grid.5333.6Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Olivia Zanoletti
- 0000000121839049grid.5333.6Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jocelyn Grosse
- 0000000121839049grid.5333.6Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
13
|
Walker SE, Papilloud A, Huzard D, Sandi C. The link between aberrant hypothalamic–pituitary–adrenal axis activity during development and the emergence of aggression—Animal studies. Neurosci Biobehav Rev 2018; 91:138-152. [DOI: 10.1016/j.neubiorev.2016.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 10/09/2016] [Accepted: 10/12/2016] [Indexed: 11/29/2022]
|
14
|
Paul MJ, Probst CK, Brown LM, de Vries GJ. Dissociation of Puberty and Adolescent Social Development in a Seasonally Breeding Species. Curr Biol 2018; 28:1116-1123.e2. [PMID: 29551412 DOI: 10.1016/j.cub.2018.02.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 01/09/2023]
Abstract
Alongside the development of sexual characteristics and reproductive competence, adolescents undergo marked cognitive, social, and emotional development [1]. A fundamental question is whether these changes are triggered by activation of the hypothalamic-pituitary-gonadal (HPG) axis at puberty (puberty dependent) or whether they occur independently of HPG activation (puberty independent). Disentangling puberty-dependent from puberty-independent mechanisms is difficult because puberty and adolescence typically proceed concurrently. Here, we test a new approach that leverages natural adaptations of a seasonally breeding species to dissociate pubertal status from chronological age. Siberian hamsters (Phodopus sungorus) reared in a long, summer-like day length (LD) exhibit rapid pubertal development, whereas those reared in a short, winter-like day length (SD) delay puberty by several months to synchronize breeding with the following spring [2, 3]. We tested whether the SD-induced delay in puberty delays the peri-adolescent decline in juvenile social play and the rise in aggression that characterizes adolescent social development in many species [4-6] and compared the results to those obtained after prepubertal gonadectomy. Neither SD rearing nor prepubertal gonadectomy altered the age at which hamsters transitioned from play to aggression; SD-reared hamsters completed this transition prior to puberty. SD rearing and prepubertal gonadectomy, however, increased levels of play in male and female juveniles, implicating a previously unknown role for prepubertal gonadal hormones in juvenile social behavior. Levels of aggression were also impacted (decreased) in SD-reared and gonadectomized males. These data demonstrate that puberty-independent mechanisms regulate the timing of adolescent social development, while prepubertal and adult gonadal hormones modulate levels of age-appropriate social behaviors.
Collapse
Affiliation(s)
- Matthew J Paul
- Department of Psychology, University at Buffalo, SUNY, Buffalo, NY 14260, USA; Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Amherst, MA 01003, USA.
| | - Clemens K Probst
- Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Lauren M Brown
- Department of Psychology, University at Buffalo, SUNY, Buffalo, NY 14260, USA
| | - Geert J de Vries
- Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Amherst, MA 01003, USA; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| |
Collapse
|
15
|
Wang L, Hou W, He Z, Yuan W, Yang J, Yang Y, Jia R, Zhu Z, Zhou Y, Tai F. Effects of chronic social defeat on social behaviors in adult female mandarin voles (Microtus mandarinus): Involvement of the oxytocin system in the nucleus accumbens. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:278-288. [PMID: 29126982 DOI: 10.1016/j.pnpbp.2017.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 01/31/2023]
Abstract
Chronic social defeat affects many aspects of behavior. Most previous studies have focused on effects on males and defeat during adolescence. The extents to which chronic social defeat can impact female social behavior in adulthood and the neural mechanisms of such effects are poorly understood. Using highly social and aggressive female mandarin voles (Microtus mandarinus), the present study found that chronic social defeat reduced social preference in adult females, and that the defeated voles exhibited a high level of freeze, self-grooming and defensive behavior, as well as reduced exploration, intimacy and aggression during social interactions. Furthermore, chronic social defeat reduced levels of oxytocin (OT) and OT receptors (OTR) in the shell region of the nucleus accumbens (NACC). Intra-NACC shell OT microinjections reversed alterations in social behavior induced by chronic social defeat, whereas injections of an OTR antagonist (OTR-A) blocked the effects of OT. Taken together, our data demonstrate that chronic social defeat suppresses measures of sociability, and that these effects are mediated by the action of OT on the OTR in the NACC. NACC OT may be a promising target to treat socio-emotional disorders induced by chronic social stress.
Collapse
Affiliation(s)
- Limin Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Yuan
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jinfeng Yang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yang Yang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Rui Jia
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhenxiang Zhu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yue Zhou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
16
|
Heshmati M, Aleyasin H, Menard C, Christoffel DJ, Flanigan ME, Pfau ML, Hodes GE, Lepack AE, Bicks LK, Takahashi A, Chandra R, Turecki G, Lobo MK, Maze I, Golden SA, Russo SJ. Cell-type-specific role for nucleus accumbens neuroligin-2 in depression and stress susceptibility. Proc Natl Acad Sci U S A 2018; 115:1111-1116. [PMID: 29339486 PMCID: PMC5798379 DOI: 10.1073/pnas.1719014115] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Behavioral coping strategies are critical for active resilience to stress and depression; here we describe a role for neuroligin-2 (NLGN-2) in the nucleus accumbens (NAc). Neuroligins (NLGN) are a family of neuronal postsynaptic cell adhesion proteins that are constituents of the excitatory and inhibitory synapse. Importantly, NLGN-3 and NLGN-4 mutations are strongly implicated as candidates underlying the development of neuropsychiatric disorders with social disturbances such as autism, but the role of NLGN-2 in neuropsychiatric disease states is unclear. Here we show a reduction in NLGN-2 gene expression in the NAc of patients with major depressive disorder. Chronic social defeat stress in mice also decreases NLGN-2 selectively in dopamine D1-positive cells, but not dopamine D2-positive cells, within the NAc of stress-susceptible mice. Functional NLGN-2 knockdown produces bidirectional, cell-type-specific effects: knockdown in dopamine D1-positive cells promotes subordination and stress susceptibility, whereas knockdown in dopamine D2-positive cells mediates active defensive behavior. These findings establish a behavioral role for NAc NLGN-2 in stress and depression; provide a basis for targeted, cell-type specific therapy; and highlight the role of active behavioral coping mechanisms in stress susceptibility.
Collapse
MESH Headings
- Aggression
- Animals
- Antidepressive Agents/pharmacology
- Behavior, Animal
- Cell Adhesion Molecules, Neuronal/metabolism
- Cell Line
- Depressive Disorder, Major/physiopathology
- Disease Models, Animal
- Dominance-Subordination
- Heterozygote
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- MicroRNAs/metabolism
- Nerve Tissue Proteins/metabolism
- Nucleus Accumbens/metabolism
- RNA, Messenger/metabolism
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/metabolism
- Social Behavior
- Stress, Psychological/physiopathology
- Synapses/metabolism
Collapse
Affiliation(s)
- Mitra Heshmati
- Fishberg Department of Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Hossein Aleyasin
- Fishberg Department of Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Caroline Menard
- Fishberg Department of Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Daniel J Christoffel
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | - Meghan E Flanigan
- Fishberg Department of Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Madeline L Pfau
- Fishberg Department of Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Georgia E Hodes
- Fishberg Department of Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ashley E Lepack
- Fishberg Department of Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Lucy K Bicks
- Fishberg Department of Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Aki Takahashi
- Fishberg Department of Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC H3A 0G4, Canada
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Ian Maze
- Fishberg Department of Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sam A Golden
- Behavioral Neuroscience Branch, Intramural Research Program, NIDA-NIH, Baltimore, MD 21224
| | - Scott J Russo
- Fishberg Department of Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
17
|
Rambo CL, Mocelin R, Marcon M, Villanova D, Koakoski G, de Abreu MS, Oliveira TA, Barcellos LJ, Piato AL, Bonan CD. Gender differences in aggression and cortisol levels in zebrafish subjected to unpredictable chronic stress. Physiol Behav 2017; 171:50-54. [DOI: 10.1016/j.physbeh.2016.12.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/07/2016] [Accepted: 12/23/2016] [Indexed: 12/20/2022]
|
18
|
De novo assembly, annotation, and characterization of the whole brain transcriptome of male and female Syrian hamsters. Sci Rep 2017; 7:40472. [PMID: 28071753 PMCID: PMC5223125 DOI: 10.1038/srep40472] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/06/2016] [Indexed: 01/11/2023] Open
Abstract
Hamsters are an ideal animal model for a variety of biomedical research areas such as cancer, virology, circadian rhythms, and behavioural neuroscience. The use of hamsters has declined, however, most likely due to the dearth of genetic tools available for these animals. Our laboratory uses hamsters to study acute social stress, and we are beginning to investigate the genetic mechanisms subserving defeat-induced behavioural change. We have been limited, however, by the lack of genetic resources available for hamsters. In this study, we sequenced the brain transcriptome of male and female Syrian hamsters to generate the necessary resources to continue our research. We completed a de novo assembly and after assembly optimization, there were 113,329 transcripts representing 14,530 unique genes. This study is the first to characterize transcript expression in both female and male hamster brains and offers invaluable information to promote understanding of a host of important biomedical research questions for which hamsters are an excellent model.
Collapse
|
19
|
Long-lasting monoaminergic and behavioral dysfunctions in a mice model of socio-environmental stress during adolescence. Behav Brain Res 2016; 317:132-140. [PMID: 27641324 DOI: 10.1016/j.bbr.2016.09.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/06/2016] [Accepted: 09/11/2016] [Indexed: 11/22/2022]
Abstract
Adolescence is one of the critical periods of development and has great importance to health for an individual as an adult. Stressors or traumatic events during this period are associated with several psychiatric disorders as related to anxiety or depression and cognitive impairments, but whether negative experiences continue to hinder individuals as they age is not as well understood. We determined how stress during adolescence affects behavior and neurochemistry in adulthood. Using an unpredictable paradigm (2 stressors per day for 10days) in Balb/c mice, behavioral, hormonal, and neurochemical changes were identified 20days after the cessation of treatment. Adolescent stress increased motor activity, emotional arousal and vigilance, together with a reduction in anxiety, and also affected recognition memory. Furthermore, decreased serotonergic activity on hippocampus, hypothalamus and cortex, decreased noradrenergic activity on hippocampus and hypothalamus, and increased the turnover of dopamine in cortex. These data suggest behavioral phenotypes associated with emotional arousal, but not depression, emerge after cessation of stress and remain in adulthood. Social-environmental stress can induce marked and long-lasting changes in HPA resulting from monoaminergic neurotransmission, mainly 5-HT activity.
Collapse
|
20
|
Yu WC, Liu CY, Lai WS. Repeated, Intermittent Social Defeat across the Entire Juvenile Period Resulted in Behavioral, Physiological, Hormonal, Immunological, and Neurochemical Alterations in Young Adult Male Golden Hamsters. Front Behav Neurosci 2016; 10:110. [PMID: 27375450 PMCID: PMC4901039 DOI: 10.3389/fnbeh.2016.00110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/23/2016] [Indexed: 12/14/2022] Open
Abstract
The developing brain is vulnerable to social defeat during the juvenile period. As complements of human studies, animal models of social defeat provide a straightforward approach to investigating the functional and neurobiological consequences of social defeats. Taking advantage of agonist behavior and social defeat in male golden hamster, a set of 6 experiments was conducted to investigate the consequences at multiple levels in young adulthood resulting from repeated, intermittent social defeats or “social threats” across the entire juvenile period. Male hamsters at postnatal day 28 (P28) were randomly assigned to either the social defeat, “social threat”, or arena control group, and they correspondingly received a series of nine social interaction trials (i.e., either social defeat, “social threat”, or arena control conditions) from P33 to P66. At the behavioral level (Experiment 1), we found that repeated social defeats (but not “social threats”) significantly impacted locomotor activity in the familiar context and social interaction in the familiar/unfamiliar social contexts. At the physiological and hormonal levels (Experiments 2 and 3), repeated social defeat significantly enhanced the cortisol and norepinephrine concentrations in blood. Enlargement of the spleen was also found in the social defeat and “social threat” groups. At the immunological level (Experiment 4), the social defeat group showed lower levels of pro-inflammatory cytokines in the hypothalamus and hippocampus but higher concentration of IL-6 in the striatum compared to the other two groups. At the neurochemical level (Experiment 5), the socially defeated hamsters mainly displayed reductions of dopamine, dopamine metabolites, and 5-HT levels in the striatum and decreased level of 5-HT in the hippocampus. In Experiment 6, an increase in the spine density of hippocampal CA1 pyramidal neurons was specifically observed in the “social threat” group. Collectively, our findings indicate that repeated, intermittent social defeats throughout entire adolescence in hamsters impact their adult responses at multiple levels. Our results also suggest that the “social threat” group may serve as an appropriate control. This study further suggest that the alterations of behavioral responses and neurobiological functions in the body and brain might provide potential markers to measure the negative consequences of chronic social defeats.
Collapse
Affiliation(s)
- Wei-Chun Yu
- Department of Psychology, National Taiwan University Taipei, Taiwan
| | - Ching-Yi Liu
- Department of Psychology, National Taiwan University Taipei, Taiwan
| | - Wen-Sung Lai
- Department of Psychology, National Taiwan UniversityTaipei, Taiwan; Graduate Institute of Brain and Mind Sciences, National Taiwan UniversityTaipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan UniversityTaipei, Taiwan
| |
Collapse
|
21
|
Latsko MS, Farnbauch LA, Gilman TL, Lynch JF, Jasnow AM. Corticosterone may interact with peripubertal development to shape adult resistance to social defeat. Horm Behav 2016; 82:38-45. [PMID: 27108196 DOI: 10.1016/j.yhbeh.2016.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 01/06/2023]
Abstract
Studies of social stress in adult mice have revealed two distinct defeat-responsive behavioral phenotypes; "susceptible" and "resistant," characterized by social avoidance and social interaction, respectively. Typically, these phenotypes are observed at least 1day after the last defeat in adults, but may extend up to 30days later. The current study examined the impact of peripubertal social defeat on immediate (1day) and adult (30day) social stress phenotypes and neuroendocrine function in male C57BL/6 mice. Initially, peripubertal (P32) mice were resistant to social defeat. When the same mice were tested for social interaction again as adults (P62), two phenotypes emerged; a group of mice were characterized as susceptible evidenced by significantly lower social interaction, whereas the remaining mice exhibited normal social interaction, characteristic of resistance. A repeated analysis of corticosterone revealed that the adult (P62) resistant mice had elevated corticosterone following the social interaction test as juveniles. This was when all mice, regardless of adult phenotype, displayed equivalent levels of social interaction. Peripubertal corticosterone was positively correlated with adult social interaction levels in defeated mice, suggesting early life stress responsiveness impacts adult social behavior. In addition, adult corticotropin-releasing factor (CRF) mRNA in the paraventricular nucleus of the hypothalamus (PVN) was elevated in all defeated mice, but there were no differences in CRF mRNA expression between the phenotypes. Thus, there is a delayed appearance of social stress-responsive phenotypes suggesting that early life stress exposure, combined with the resultant physiological responses, may interact with pubertal development to influence adult social behavior.
Collapse
Affiliation(s)
- Maeson S Latsko
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, United States
| | - Laure A Farnbauch
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, United States
| | - T Lee Gilman
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, United States
| | - Joseph F Lynch
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, United States
| | - Aaron M Jasnow
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, United States.
| |
Collapse
|
22
|
Morrison TR, Ricci LA, Melloni RH. Dopamine D2 receptors act upstream of AVP in the latero-anterior hypothalamus to modulate adolescent anabolic/androgenic steroid-induced aggression in Syrian hamsters. Behav Neurosci 2015; 129:197-204. [PMID: 25798632 DOI: 10.1037/bne0000044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In pubertal male Syrian hamsters, exposure to anabolic/androgenic steroids (AAS) during adolescence facilitates a high level of offensive aggression modulated by the enhanced development and activity of the vasopressin (AVP) and dopamine (DA) neural systems within the latero-anterior hypothalamus (LAH), that is, a brain region implicated in the control of aggression. The present studies provide a detailed report of the pharmacologic interactions between AVP and DA D2 receptor signaling within the LAH in the control of adolescent AAS-induced offensive aggression. Male Syrian hamsters were treated with AAS throughout adolescence and tested for aggression after local infusion of the DA D2 receptor antagonist eticlopride (ETIC) alone, or in combination with AVP in the LAH in an effort to determine the influence of DA D2 receptors relative to AVP-receptor mediated aggression mechanisms. As previously shown, ETIC infusion into the LAH suppressed adolescent AAS-induced aggressive responding; however, the AAS-induced aggressive phenotype was rescued by the coinfusion of AVP into the LAH. These behavioral data indicate that interactions between AVP and DA neural systems within the LAH modulate the control of aggression following adolescent exposure to AAS and that DA D2 receptor signaling functions upstream of AVP in the LAH to control this behavioral response.
Collapse
|
23
|
γ-Aminobutyric acid neural signaling in the lateroanterior hypothalamus modulates aggressive behavior in adolescent anabolic/androgenic steroid-treated hamsters. Behav Pharmacol 2015; 25:673-83. [PMID: 25171080 DOI: 10.1097/fbp.0000000000000083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Male Syrian hamsters (Mesocricetus auratus) treated with anabolic/androgenic steroids (AAS) during adolescence (P27-P56) display highly escalated and mature forms of offensive aggression correlated with increased γ-aminobutyric acid (GABA) afferent development as well as decreased GABAA receptors in the lateroanterior hypothalamus (LAH) - an area of convergence for developmental and neuroplastic changes that underlie offensive aggressive behaviors in hamsters. This study investigated whether microinfusion of a GABAA receptor agonist (muscimol; 0.01-1.0 pmol/l) or antagonist (bicuculline; 0.04-4.0 pmol/l) directly into the LAH modulate adolescent AAS-induced offensive aggression. Activation of LAH GABAA receptors enhanced adolescent AAS-induced offensive aggression, beginning at the 0.1 pmol/l dose, when compared with AAS-treated animals injected with saline into the LAH. Importantly, GABAA receptor agonism within the LAH significantly increased the frequency of belly/rear attacks, while simultaneously decreasing the frequency of frontal attacks. These data identify a neuroanatomical locus where GABAA receptor activation functions to enhance aggression in adolescent AAS-treated animals, while also promoting the display of mature forms of aggression and suppressing juvenile play behaviors.
Collapse
|
24
|
Social Neuroendocrinology of Status: A Review and Future Directions. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2015. [DOI: 10.1007/s40750-015-0025-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Scotti MAL, Rendon NM, Greives TJ, Romeo RD, Demas GE. Short-day aggression is independent of changes in cortisol or glucocorticoid receptors in male Siberian hamsters (Phodopus sungorus). ACTA ACUST UNITED AC 2015; 323:331-41. [DOI: 10.1002/jez.1922] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 01/21/2015] [Indexed: 11/07/2022]
Affiliation(s)
| | - Nikki M. Rendon
- Department of Biology; Program in Neuroscience; Center for the Integrative Study of Animal Behavior, Indiana University; Bloomington Indiana
| | - Timothy J. Greives
- Department of Biological Sciences; North Dakota State University; Fargo North Dakota
| | - Russell D. Romeo
- Department of Psychology and Neuroscience and Behavior Program; Barnard College of Columbia University; New York New York
| | - Gregory E. Demas
- Department of Biology; Program in Neuroscience; Center for the Integrative Study of Animal Behavior, Indiana University; Bloomington Indiana
| |
Collapse
|
26
|
Tzanoulinou S, Sandi C. The Programming of the Social Brain by Stress During Childhood and Adolescence: From Rodents to Humans. Curr Top Behav Neurosci 2015; 30:411-429. [PMID: 26728172 DOI: 10.1007/7854_2015_430] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The quality and quantity of social experience is fundamental to an individual's health and well-being. Early life stress is known to be an important factor in the programming of the social brain that exerts detrimental effects on social behaviors. The peri-adolescent period, comprising late childhood and adolescence, represents a critical developmental window with regard to the programming effects of stress on the social brain. Here, we discuss social behavior and the physiological and neurobiological consequences of stress during peri-adolescence in the context of rodent paradigms that model human adversity, including social neglect and isolation, social abuse, and exposure to fearful experiences. Furthermore, we discuss peri-adolescent stress as a potent component that influences the social behaviors of individuals in close contact with stressed individuals and that can also influence future generations. We also discuss the temporal dynamics programmed by stress on the social brain and debate whether social behavior alterations are adaptive or maladaptive. By revising the existing literature and defining open questions, we aim to expand the framework in which interactions among peri-adolescent stress, the social brain, and behavior can be better conceptualized.
Collapse
Affiliation(s)
- Stamatina Tzanoulinou
- Department of Fundamental Neurosciences, University of Lausanne, Rue Du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Carmen Sandi
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1050, Lausanne, Switzerland.
| |
Collapse
|
27
|
Coppens CM, Coolen A, de Boer SF, Koolhaas JM. Adolescent social defeat disturbs adult aggression-related impulsivity in wild-type rats. Behav Processes 2014; 108:191-6. [PMID: 25444778 DOI: 10.1016/j.beproc.2014.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 11/16/2022]
Abstract
Adolescence is generally considered as a developmental period during which adverse social experiences may have lasting consequences in terms of an increased vulnerability to affective disorders. This study aimed at determining the individual susceptibility to adolescent social stress using a rat model. We used rats of the Wild-type Groningen strain, which are characterized by a broad variation in adult levels of aggression and impulsivity. We hypothesized that experience of social defeat in adolescence results in heightened aggression and impulsivity levels in adulthood. In contrast to our expectation, adolescent social defeat did not lead to a difference in the average adult level of aggression and impulsivity, but the significant correlation between offensive aggression and impulsivity found in control animals was not present in animals defeated during adolescence.
Collapse
Affiliation(s)
- Caroline M Coppens
- Department of Behavioural Physiology, University of Groningen, PO Box 11103, 9700 CC Groningen, The Netherlands.
| | - Alex Coolen
- Department of Behavioural Physiology, University of Groningen, PO Box 11103, 9700 CC Groningen, The Netherlands
| | - Sietse F de Boer
- Department of Behavioural Physiology, University of Groningen, PO Box 11103, 9700 CC Groningen, The Netherlands
| | - Jaap M Koolhaas
- Department of Behavioural Physiology, University of Groningen, PO Box 11103, 9700 CC Groningen, The Netherlands
| |
Collapse
|
28
|
Lai WS, Yu WC, Liu CY, Kuo MT, Huang CH. A new method for studying social eavesdropping using male golden hamsters. Physiol Behav 2014; 128:202-11. [DOI: 10.1016/j.physbeh.2014.01.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/03/2013] [Accepted: 01/26/2014] [Indexed: 10/25/2022]
|
29
|
Schwartzer JJ, Ricci LA, Melloni RH. Prior fighting experience increases aggression in Syrian hamsters: implications for a role of dopamine in the winner effect. Aggress Behav 2013; 39:290-300. [PMID: 23519643 DOI: 10.1002/ab.21476] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 02/02/2013] [Indexed: 01/25/2023]
Abstract
Winning an aggressive encounter enhances the probability of winning future contests. This phenomenon, known as the winner effect, has been well studied across vertebrate species. While numerous animal models have been developed to study the winner effect in the laboratory setting, large variation in experimental design, choice of species, and housing conditions have resulted in conflicting reports on the behavioral outcomes. The Syrian hamster (Mesocricetus auratus) presents as a novel species with face validity to study the effects of repeated fighting on subsequent agonistic encounters. After a 14-day training period, "trained fighter" hamsters displayed elevated fighting behaviors characterized by more intense and severe displays of aggression along with increased displays of dominant postures compared to naïve residents with no prior social experience. To determine whether these phenotypic changes in fighting behavior reflect alterations in neurochemistry, brains of aggressive and naïve hamsters were examined for changes in dopaminergic innervation in key regions known to control social and motivational behavior. Interestingly, changes in tyrosine hydroxylase, the rate limiting enzyme for dopamine production, were observed in brain regions within the social decision-making network. These increases in aggression observed after repeated winning may reflect a learned behavior resulting from increases in neurotransmitter activity which serve to reinforce the behavior. The data implicate the presence of a winner effect in hamsters and provide evidence for a neural mechanism underlying the changes in aggressive behavior after repeated agonistic encounters.
Collapse
Affiliation(s)
- Jared J. Schwartzer
- Behavioral Neuroscience Program, Department of Psychology; Northeastern University; Boston, Massachusetts
| | - Lesley A. Ricci
- Behavioral Neuroscience Program, Department of Psychology; Northeastern University; Boston, Massachusetts
| | - Richard H. Melloni
- Behavioral Neuroscience Program, Department of Psychology; Northeastern University; Boston, Massachusetts
| |
Collapse
|
30
|
Veenit V, Cordero MI, Tzanoulinou S, Sandi C. Increased corticosterone in peripubertal rats leads to long-lasting alterations in social exploration and aggression. Front Behav Neurosci 2013; 7:26. [PMID: 23576965 PMCID: PMC3616252 DOI: 10.3389/fnbeh.2013.00026] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/19/2013] [Indexed: 12/02/2022] Open
Abstract
Stress during childhood and adolescence enhances the risk of psychopathology later in life. We have previously shown that subjecting male rats to stress during the peripubertal period induces long-lasting effects on emotion and social behaviors. As corticosterone is increased by stress and known to exert important programming effects, we reasoned that increasing corticosterone might mimic the effects of peripubertal stress. To this end, we injected corticosterone (5 mg/kg) on 7 scattered days during the peripuberty period (P28-P30, P34, P36, P40, and P42), following the same experimental schedule as for stress administration in our peripubertal paradigm. We measured play behavior in the homecage and, at adulthood, the corticosterone response to novelty and behavioral responses in tests for anxiety- and depression-like behaviors, aggression, and social exploration. As compared to vehicle, corticosterone-treated animals exhibit more aggressive play behavior during adolescence, increased aggressive behavior in a resident-intruder (RI) test while reduced juvenile exploration and corticosterone reactivity at adulthood. Whereas the corticosterone treatment mimicked alterations induced by the peripuberty stress protocol in the social domain, it did not reproduce previously observed effects of peripuberty stress on increasing anxiety-like and depression-like behaviors, respectively evaluated in the elevated plus maze (EPM) and the forced swim tests. Our findings indicate that increasing corticosterone levels during peripuberty might be instrumental to program alterations in the social domain observed following stress, whereas other factors might need to be recruited for the programming of long-term changes in emotionality. Our study opens the possibility that individual differences on the degree of glucocorticoid activation during peripuberty might be central to defining differences in vulnerability to develop psychopathological disorders coursing with alterations in the social realm.
Collapse
Affiliation(s)
- Vandana Veenit
- Laboratory of Behavioral Genetics, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | | | | | | |
Collapse
|
31
|
Aggression is suppressed by acute stress but induced by chronic stress: Immobilization effects on aggression, hormones, and cortical 5-HT1B/ striatal dopamine D2 receptor density. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2012; 12:446-59. [DOI: 10.3758/s13415-012-0095-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Coppens CM, de Boer SF, Steimer T, Koolhaas JM. Impulsivity and aggressive behavior in Roman high and low avoidance rats: Baseline differences and adolescent social stress induced changes. Physiol Behav 2012; 105:1156-60. [DOI: 10.1016/j.physbeh.2011.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/09/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
|
33
|
Trainor BC. Stress responses and the mesolimbic dopamine system: social contexts and sex differences. Horm Behav 2011; 60:457-69. [PMID: 21907202 PMCID: PMC3217312 DOI: 10.1016/j.yhbeh.2011.08.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/19/2011] [Accepted: 08/20/2011] [Indexed: 10/17/2022]
Abstract
Organisms react to threats with a variety of behavioral, hormonal, and neurobiological responses. The study of biological responses to stress has historically focused on the hypothalamic-pituitary-adrenal axis, but other systems such as the mesolimbic dopamine system are involved. Behavioral neuroendocrinologists have long recognized the importance of the mesolimbic dopamine system in mediating the effects of hormones on species specific behavior, especially aspects of reproductive behavior. There has been less focus on the role of this system in the context of stress, perhaps due to extensive data outlining its importance in reward or approach-based contexts. However, there is steadily growing evidence that the mesolimbic dopamine neurons have critical effects on behavioral responses to stress. Most of these data have been collected from experiments using a small number of animal model species under a limited set of contexts. This approach has led to important discoveries, but evidence is accumulating that mesolimbic dopamine responses are context dependent. Thus, focusing on a limited number of species under a narrow set of controlled conditions constrains our understanding of how the mesolimbic dopamine system regulates behavior in response to stress. Both affiliative and antagonistic social interactions have important effects on mesolimbic dopamine function, and there is preliminary evidence for sex differences as well. This review will highlight the benefits of expanding this approach, and focus on how social contexts and sex differences can impact mesolimbic dopamine stress responses.
Collapse
Affiliation(s)
- Brian C Trainor
- Department of Psychology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| |
Collapse
|
34
|
Vidal J, Buwalda B, Koolhaas JM. Male Wistar rats are more susceptible to lasting social anxiety than Wild-type Groningen rats following social defeat stress during adolescence. Behav Processes 2011; 88:76-80. [PMID: 21854839 DOI: 10.1016/j.beproc.2011.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 07/19/2011] [Accepted: 08/02/2011] [Indexed: 12/15/2022]
Abstract
Adolescence is an important period for the development of adult social competences. Social stress during adolescence may contribute not only to an inadequate social development but also to adult vulnerability to social anxiety. There seems to be a clear individual differentiation, however, in the vulnerability to the long-term negative consequences of social stress. The current study further explores this individual vulnerability and is aimed at the influence of social stress during adolescence on adult social anxiety and its context specificity. Rats from different strains (Wistar and Wild-type Groningen rats) were exposed to the resident-intruder paradigm five times during 10 min each in the period between postnatal day 45 and 58. Three and 7 weeks later, the animals were re-exposed to the context in the presence of either a dominant male or an anestrous female behind a wire mesh screen. Wistar rats that were socially defeated spent less time exploring the social stimulus in comparison with socially defeated Wild-type rats and their non-defeated controls. We conclude that the stressed Wistar rat shows signs of generalized social anxiety indicating that the Wistar rat can be considered as a vulnerable phenotype to effects of adolescent social stress.
Collapse
Affiliation(s)
- Jose Vidal
- Behavioral Physiology, University of Groningen, The Netherlands.
| | | | | |
Collapse
|
35
|
Buwalda B, Geerdink M, Vidal J, Koolhaas JM. Social behavior and social stress in adolescence: A focus on animal models. Neurosci Biobehav Rev 2011; 35:1713-21. [DOI: 10.1016/j.neubiorev.2010.10.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 08/25/2010] [Accepted: 10/04/2010] [Indexed: 10/19/2022]
|
36
|
Bingham B, McFadden K, Zhang X, Bhatnagar S, Beck S, Valentino R. Early adolescence as a critical window during which social stress distinctly alters behavior and brain norepinephrine activity. Neuropsychopharmacology 2011; 36:896-909. [PMID: 21178981 PMCID: PMC3055730 DOI: 10.1038/npp.2010.229] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many neural programs that shape behavior become established during adolescence. Adverse events at this age can have enduring consequences for both adolescent and adult mental health. Here we show that repeated social stress at different stages of adolescent development differentially affects rat behavior and neuronal activity. Early-adolescent (PND 28, EA), mid-adolescent (PND 42, MA), and adult (PND 63) rats were subjected to resident-intruder social stress (7 days) and behavior was examined 24-72 h later. In EA rats selectively, resident-intruder stress increased proactive responses in the defensive burying and forced swim tests. In adult rats, resident-intruder stress decreased burying behavior regardless of whether the animal was stressed as an adult or during early adolescence. As the locus coeruleus (LC)-norepinephrine system has been implicated in proactive defense behaviors, LC neuronal activity was quantified in separate cohorts. Stressed EA rats had elevated spontaneous LC discharge rates and diminished responses to sensory stimuli compared with controls. Microinjection of a CRF antagonist into the LC selectively inhibited neurons of stressed EA rats, suggesting that EA social stress induces tonic CRF release onto LC neurons, shifting the mode of discharge to an activated state that promotes active defensive behaviors. In all adult groups, resident-intruder stress resulted in an increased phasic response to sensory stimuli with no change in spontaneous rates. MA was a transition period during which social stress did not affect behavior or LC activity. The results suggest that social stress interacts with the brain norepinephrine system to regulate defensive strategies in an age-dependent manner.
Collapse
Affiliation(s)
- Brian Bingham
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kile McFadden
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiaoyan Zhang
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sheryl Beck
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rita Valentino
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA,Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Abramson Research Center Room 402D, 34th Street and Civic Ctr. Boulevard, Philadelphia PA 19104, USA. Tel: +1 215 590 0650; Fax: +1 215 590 3364; E-mail:
| |
Collapse
|
37
|
Characterization of behavioural responses in different test contexts after a single social defeat in male golden hamsters (Mesocricetus auratus). Behav Processes 2011; 86:94-101. [DOI: 10.1016/j.beproc.2010.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 09/17/2010] [Accepted: 10/18/2010] [Indexed: 11/23/2022]
|
38
|
Razzoli M, Andreoli M, Michielin F, Quarta D, Sokal DM. Increased phasic activity of VTA dopamine neurons in mice 3 weeks after repeated social defeat. Behav Brain Res 2010; 218:253-7. [PMID: 21129410 DOI: 10.1016/j.bbr.2010.11.050] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/19/2010] [Accepted: 11/23/2010] [Indexed: 01/09/2023]
Abstract
Social defeat is an ethologically relevant stress inducing neuroadaptive changes in the mesocorticolimbic dopaminergic system. Three weeks after 10 days of daily defeat salient behaviors and in vivo dopamine (DA) neuron firing were evaluated in mice. Prior defeat induced social avoidance and hyperphagia and increased ventral tegmental area (VTA) DA neuron bursting activity. These data extend previous studies and suggest that increased phasic DA neuron firing in the VTA could be considered amongst the features defining the lasting imprint of social defeat stress.
Collapse
Affiliation(s)
- Maria Razzoli
- Neurosciences CEDD, GlaxoSmithKline Medicine Research Centre, Via Fleming 4, Verona, Italy.
| | | | | | | | | |
Collapse
|
39
|
Frahm KA, Lumia AR, Fernandez E, Strong R, Roberts JL, McGinnis MY. Effects of anabolic androgenic steroids and social subjugation on behavior and neurochemistry in male rats. Pharmacol Biochem Behav 2010; 97:416-22. [PMID: 20932994 DOI: 10.1016/j.pbb.2010.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 09/17/2010] [Accepted: 09/20/2010] [Indexed: 10/19/2022]
Abstract
Early abuse and anabolic androgenic steroids (AAS) both increase aggression. We assessed the behavioral and neurochemical consequences of AAS, alone or in combination with social subjugation (SS), an animal model of child abuse. On P26, gonadally intact male rats began SS consisting of daily pairings with an adult male for 2 weeks followed by daily injections of the AAS, testosterone on P40. As adults, males were tested for sexual and aggressive behaviors towards females in various hormonal conditions and inter-male aggression in a neutral setting using home or opponent bedding. Neurotransmitter levels were assessed using HPLC. Results showed that AAS males displayed significantly more mounts toward sexually receptive, vaginally obstructed females (OBS) and displayed significantly more threats towards ovariectomized females. SS males mounted OBS females significantly less and were not aggressive toward females. The role of olfactory cues in a neutral setting did not affect aggression regardless of treatment. AAS significantly increased brainstem DOPAC and NE. SS decreased 5HIAA, DA, DOPAC, and NE in brainstem. 5HIAA was significantly increased in the prefrontal cortex of all experimental groups. We conclude that AAS and SS differentially affect behavior towards females as well as neurotransmitter levels.
Collapse
Affiliation(s)
- Krystle A Frahm
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | | | |
Collapse
|
40
|
Chronic passive exposure to aggression decreases D2 and 5-HT1B receptor densities. Physiol Behav 2010; 99:562-70. [DOI: 10.1016/j.physbeh.2010.01.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/14/2010] [Accepted: 01/15/2010] [Indexed: 11/22/2022]
|
41
|
Suzuki H, Lucas LR. Chronic passive exposure to aggression escalates aggressiveness of rat observers. Aggress Behav 2010; 36:54-66. [PMID: 19885909 DOI: 10.1002/ab.20333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previous studies have documented that exposure to aggression increases aggressiveness of human witnesses. However, the question of whether passive exposure to aggression can exclusively cause a risk of aggressive inclination for observers through a learning process, rather than mimicry effect, has not been readily addressed in the clinical literature. This study aimed to investigate this question by using a simple animal model to test the behavioral effect of chronic passive exposure to aggression. Our results indicate that observer rats that had been passively exposed to aggression for 10 min per day for 23 consecutive days exhibited more aggressive behavior than controls or those groups undergoing a single exposure to passive aggression. Furthermore, aggression levels in the group of 23-day chronic exposure to aggression lasted 16 days after the recovery from exposure to aggression. These data suggest that the development of aggression in this model occurred through a learning process because only chronic exposure to aggression resulted in this behavioral outcome in the long run.
Collapse
Affiliation(s)
- Hideo Suzuki
- Psychology Department, Loyola University Chicago, Chicago, Illinois 60660, USA.
| | | |
Collapse
|
42
|
Salas-Ramirez KY, Montalto PR, Sisk CL. Anabolic steroids have long-lasting effects on male social behaviors. Behav Brain Res 2009; 208:328-35. [PMID: 20036695 DOI: 10.1016/j.bbr.2009.11.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/21/2009] [Accepted: 11/16/2009] [Indexed: 12/17/2022]
Abstract
Anabolic androgenic steroids (AAS) use by adolescents is steadily increasing. Adolescence involves remodeling of steroid-sensitive neural circuits that mediate social behaviors, and previous studies using animal models document effects of AAS on male social behaviors. The present experiments tested whether AAS have persistent and more pronounced behavioral consequences when drug exposure occurs during adolescence as compared to exposure in adulthood. Male Syrian hamsters were injected daily for 14 days with either vehicle or an AAS cocktail containing testosterone cypionate (2 mg/kg), nandrolone decanoate (2 mg/kg), and boldenone undecylenate (1 mg/kg), either during adolescence (27-41 days of age) or adulthood (63-77 days of age). As adults, subjects were tested two or four weeks after the last injection for either sexual behavior with a receptive female or male-male agonistic behavior in a resident-intruder test. Compared with vehicle-treated males, AAS-treated males, regardless of age of treatment, displayed fewer long intromissions and a significant increase in latency to the first long intromission, indicative of reduced potential to reach sexual satiety. Increased aggression was observed in males exposed to AAS compared with males treated with vehicle, independently of age of AAS treatment. However, unlike hamsters exposed to AAS in adulthood, hamsters exposed to AAS during adolescence did not display any submissive or risk-assessment behaviors up to 4 weeks after discontinuation of AAS treatment. Thus, AAS have long-lasting effects on male sexual and agonistic behaviors, with AAS exposure during adolescence resulting in a more pronounced reduction in submissive behavior compared to AAS exposure in adulthood.
Collapse
|
43
|
Effects of exposure to a mobile phone on sexual behavior in adult male rabbit: an observational study. Int J Impot Res 2009; 22:127-33. [DOI: 10.1038/ijir.2009.57] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Veenema AH. Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: what can we learn from animal models? Front Neuroendocrinol 2009; 30:497-518. [PMID: 19341763 DOI: 10.1016/j.yfrne.2009.03.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 11/17/2022]
Abstract
Early life stress (child and adolescent abuse, neglect and trauma) induces robust alterations in emotional and social functioning resulting in enhanced risk for the development of psychopathologies such as mood and aggressive disorders. Here, an overview is given on recent findings in primate and rodent models of early life stress, demonstrating that chronic deprivation of early maternal care as well as chronic deprivation of early physical interactions with peers are profound risk factors for the development of inappropriate aggressive behaviors. Alterations in the hypothalamic-pituitary-adrenocortical (HPA), vasopressin and serotonin systems and their relevance for the regulation of aggression are discussed. Data suggest that social deprivation-induced inappropriate forms of aggression are associated with high or low HPA axis (re)activity and a generally lower functioning of the serotonin system in adulthood. Moreover, genetic and epigenetic modifications in HPA and serotonin systems influence the outcome of early life stress and may even moderate adverse effects of early social deprivation on aggression. A more comprehensive study of aggression, neuroendocrine, neurobiological and (epi)genetic correlates of early life stress using animal models is necessary to provide a better understanding of the invasive aggressive deficits observed in humans exposed to child maltreatment.
Collapse
Affiliation(s)
- Alexa H Veenema
- Department of Behavioral Neuroendocrinology, Institute of Zoology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
45
|
Molina JD, López-Muñoz F, Stein DJ, Martín-Vázquez MJ, Alamo C, Lerma-Carrillo I, Andrade-Rosa C, Sánchez-López MV, Calle-Real MDL. Borderline personality disorder: A review and reformulation from evolutionary theory. Med Hypotheses 2009; 73:382-6. [DOI: 10.1016/j.mehy.2009.03.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 03/02/2009] [Accepted: 03/04/2009] [Indexed: 11/17/2022]
|
46
|
Bastida CC, Puga F, Delville Y. Risk assessment and avoidance in juvenile golden hamsters exposed to repeated stress. Horm Behav 2009; 55:158-62. [PMID: 18948107 DOI: 10.1016/j.yhbeh.2008.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 09/18/2008] [Accepted: 09/19/2008] [Indexed: 10/21/2022]
Abstract
Juvenile hamsters are typically less vulnerable to social subjugation than adults, although they will avoid aggressive individuals in some situations. The purpose of this study was to determine the extent to which social subjugation stimulates fear- or anxiety-like behavior in juvenile hamsters in both social and non-social contexts. Social context testing was conducted in a Y-maze while the non-social context apparatus consisted of an open field arena and a lat-maze. In the Y-maze, subjects were exposed to an unfamiliar aggressive adult hamster. Compared with non-subjugated controls, subjugated juveniles spent significantly more time in the area furthest from the aggressive adult stimulus. In addition, socially stressed animals were more likely to avoid the arm of the maze containing the social stimulus. When they did walk in the arm containing the social stimulus, subjugated individuals were more likely to ambulate slowly. Subjugated hamsters also performed fewer olfactory investigations in the proximity of the unfamiliar aggressive individual. Despite these behavioral differences detected between groups during testing in a social context, we observed no differences between groups in the open field and lat-maze. This suggests that the effects of subjugation observed in the Y-maze are specific to exposure to a social context and that social subjugation in juvenile hamsters does not result in a generalized state of fear. Instead, subjugated juveniles learned to avoid adult males and were otherwise behaviorally similar to non-subjugated controls.
Collapse
Affiliation(s)
- C C Bastida
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | |
Collapse
|
47
|
Social defeat stress potentiates thermal sensitivity in operant models of pain processing. Brain Res 2008; 1251:112-20. [PMID: 19059227 DOI: 10.1016/j.brainres.2008.11.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 11/10/2008] [Accepted: 11/12/2008] [Indexed: 11/22/2022]
Abstract
Higher-order processing of nociceptive input is distributed in corticolimbic regions of the brain, including the anterior cingulate, parieto-insular and prefrontal cortices, as well as subcortical structures such as the bed nucleus of stria terminalis and amygdala. In addition to their role in pain processing, these regions encode or modulate emotional, motivational and sensory responses to stress. Thus, pain and stress pathways in the brain intersect at cortical and subcortical forebrain structures. Accordingly, previous work has shown that acute restraint stress in female rats induces heat hyperalgesia in a forebrain-dependent operant test of thermal escape. In the present study, we investigated the effects of social defeat stress in male rats on the operant escape task, as well as in a test of nociceptive thermal preference. After establishing baseline behaviors in these tests, separate groups of rats were socially defeated by dominant "resident" male rats. They were tested for thermal preference after 5 successive social defeat sessions. Escape from cold, heat and a neutral warm temperature also was evaluated after social defeat. Defeated rats exhibited a significant increase in cold preference after social defeat compared to the baseline. In the escape task, the rats exhibited increased escape from warm and nociceptive cold and heat temperatures. Thus, chronic social stress produces hyperalgesia for both hot and cold stimuli in male rats, suggesting a mutually facilitatory cross-regulation between central pathways regulating stress and pain.
Collapse
|
48
|
Soma KK, Scotti MAL, Newman AEM, Charlier TD, Demas GE. Novel mechanisms for neuroendocrine regulation of aggression. Front Neuroendocrinol 2008; 29:476-89. [PMID: 18280561 DOI: 10.1016/j.yfrne.2007.12.003] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 10/02/2007] [Accepted: 12/25/2007] [Indexed: 11/19/2022]
Abstract
In 1849, Berthold demonstrated that testicular secretions are necessary for aggressive behavior in roosters. Since then, research on the neuroendocrinology of aggression has been dominated by the paradigm that the brain receives gonadal hormones, primarily testosterone, which modulate relevant neural circuits. While this paradigm has been extremely useful, recent studies reveal important alternatives. For example, most vertebrate species are seasonal breeders, and many species show aggression outside of the breeding season, when gonads are regressed and circulating testosterone levels are typically low. Studies in birds and mammals suggest that an adrenal androgen precursor-dehydroepiandrosterone (DHEA)-may be important for the expression of aggression when gonadal testosterone synthesis is low. Circulating DHEA can be metabolized into active sex steroids within the brain. Another possibility is that the brain can autonomously synthesize sex steroids de novo from cholesterol, thereby uncoupling brain steroid levels from circulating steroid levels. These alternative neuroendocrine mechanisms to provide sex steroids to specific neural circuits may have evolved to avoid the "costs" of high circulating testosterone during particular seasons. Physiological indicators of season (e.g., melatonin) may allow animals to switch from one neuroendocrine mechanism to another across the year. Such mechanisms may be important for the control of aggression in many vertebrate species, including humans.
Collapse
Affiliation(s)
- Kiran K Soma
- Department of Psychology, Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
| | | | | | | | | |
Collapse
|
49
|
Cunningham RL, McGinnis MY. Prepubertal social subjugation and anabolic androgenic steroid-induced aggression in male rats. J Neuroendocrinol 2008; 20:997-1005. [PMID: 18510706 DOI: 10.1111/j.1365-2826.2008.01756.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abused children are more prone to abuse drugs, such as anabolic androgenic steroids (AAS), as teenagers and display violence as adults. AAS use has been linked with elevated aggression. Thus, exposure to child abuse and AAS may potentiate aggression. A social subjugation paradigm was used as an animal model of childhood abuse to determine whether prior subjugation increases AAS-induced aggression in male rats. Prepubertal gonadally intact male rats were exposed to social subjugation, a novel cage experience, or remained undisturbed in their home cages. Experimental males were socially subjugated by being placed in the home cage of an adult male. At puberty, both subjugated and nonsubjugated rats were injected with either the AAS testosterone or vehicle. AAS treatment continued for 5 weeks. Aggression was measured during the last week of AAS exposure. AAS was then discontinued. Aggression was again tested 12 weeks after AAS withdrawal. Aggression was tested under three conditions: (i) physical provocation of the experimental male; (ii) provocation of the intruder male; and (iii) without provocation. Both AAS-treated males and socially subjugated males displayed significantly more aggression than did controls. Elevated aggression by subjugated males was still present 17 weeks after social subjugation. AAS males also showed increased aggression 12 weeks after AAS withdrawal. However, exposure to both social subjugation and AAS had no long-term effects on aggression. The results of the present study indicate that social subjugation may have lasting consequences on the expression of adaptive social behaviours.
Collapse
Affiliation(s)
- R L Cunningham
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | |
Collapse
|
50
|
Wommack JC, Delville Y. Stress, aggression, and puberty: neuroendocrine correlates of the development of agonistic behavior in golden hamsters. BRAIN, BEHAVIOR AND EVOLUTION 2007; 70:267-73. [PMID: 17914258 DOI: 10.1159/000105490] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During puberty, agonistic behaviors undergo significant transitions. In golden hamsters, puberty is marked by a transition from play fighting to adult aggression. During early puberty, male golden hamsters perform play-fighting attacks. This response type is gradually replaced by adult attacks over the course of puberty. Interestingly, this behavioral transition does not appear to be controlled by changes in gonadal steroids. Instead, the shift from play fighting to adult aggression in male golden hamsters is driven by pubertal changes in glucocorticoid levels. Specifically, the transition from play fighting to adult aggression coincides with developmental increases in glucocorticoid levels, and external manipulations such as social stress or treatment with corticosteroid receptor agonists accelerate this behavioral shift. Moreover, the consequences of social stress differ greatly between juvenile and adult male golden hamsters. Although a single defeat during adulthood causes severe and long lasting behavioral and neuroendocrine consequences, socially subjugated juveniles show only transient behavioral effects. As such, it is likely that pubertal changes in the HPA axis are not only linked to the maturation of offensive responses but also determine the consequences of social stress. Combined, these studies in golden hamsters provide a novel mechanism for the development of agonistic behavior and suggest that age related differences in behavioral plasticity are mediated by the development of the HPA axis.
Collapse
Affiliation(s)
- Joel C Wommack
- Psychology Department and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA.
| | | |
Collapse
|