1
|
Takahashi A. Associations of the immune system in aggression traits and the role of microglia as mediators. Neuropharmacology 2024; 256:110021. [PMID: 38825308 DOI: 10.1016/j.neuropharm.2024.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
There is an important relationship between the immune system and aggressive behavior. Aggressive encounters acutely increase the levels of proinflammatory cytokines, and there are positive correlations between aggressive traits and peripheral proinflammatory cytokines. Endotoxin lipopolysaccharide (LPS) treatment, which results in peripheral immune activation, decreases aggressive behavior as one of the sickness behavioral symptoms. In contrast, certain brain infections and chronic interferon treatment are associated with increased aggression. Indeed, the effects of proinflammatory cytokines on the brain in aggressive behavior are bidirectional, depending on the type and dose of cytokine, target brain region, and type of aggression. Some studies have suggested that microglial activation and neuroinflammation influence intermale aggression in rodent models. In addition, pathological conditions as well as physiological levels of cytokines produced by microglia play an important role in social and aggressive behavior in adult animals. Furthermore, microglial function in early development is necessary for the establishment of the social brain and the expression of juvenile social behaviors, including play fighting. Overall, this review discusses the important link between the immune system and aggressive traits and the role of microglia as mediators of this link.
Collapse
Affiliation(s)
- Aki Takahashi
- Laboratory of Behavioral Neurobiology, Institute of Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
2
|
Lopes PC, French SS, Woodhams DC, Binning SA. Sickness behaviors across vertebrate taxa: proximate and ultimate mechanisms. J Exp Biol 2021; 224:260576. [PMID: 33942101 DOI: 10.1242/jeb.225847] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is nothing like a pandemic to get the world thinking about how infectious diseases affect individual behavior. In this respect, sick animals can behave in ways that are dramatically different from healthy animals: altered social interactions and changes to patterns of eating and drinking are all hallmarks of sickness. As a result, behavioral changes associated with inflammatory responses (i.e. sickness behaviors) have important implications for disease spread by affecting contacts with others and with common resources, including water and/or sleeping sites. In this Review, we summarize the behavioral modifications, including changes to thermoregulatory behaviors, known to occur in vertebrates during infection, with an emphasis on non-mammalian taxa, which have historically received less attention. We then outline and discuss our current understanding of the changes in physiology associated with the production of these behaviors and highlight areas where more research is needed, including an exploration of individual and sex differences in the acute phase response and a greater understanding of the ecophysiological implications of sickness behaviors for disease at the population level.
Collapse
Affiliation(s)
- Patricia C Lopes
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Susannah S French
- Department of Biology and The Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Sandra A Binning
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada, H3C 3J7
| |
Collapse
|
3
|
Neonatal immune challenge induces female-specific changes in social behavior and somatostatin cell number. Brain Behav Immun 2020; 90:332-345. [PMID: 32860938 PMCID: PMC7556772 DOI: 10.1016/j.bbi.2020.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022] Open
Abstract
Decreases in social behavior are a hallmark aspect of acute "sickness behavior" in response to infection. However, immune insults that occur during the perinatal period may have long-lasting consequences for adult social behavior by impacting the developmental organization of underlying neural circuits. Microglia, the resident immune cells of the central nervous system, are sensitive to immune stimulation and play a critical role in the developmental sculpting of neural circuits, making them likely mediators of this process. Here, we investigated the impact of a postnatal day (PND) 4 lipopolysaccharide (LPS) challenge on social behavior in adult mice. Somewhat surprisingly, neonatal LPS treatment decreased sociability in adult female, but not male mice. LPS-treated females also displayed reduced social interaction and social memory in a social discrimination task as compared to saline-treated females. Somatostatin (SST) interneurons within the anterior cingulate cortex (ACC) have recently been suggested to modulate a variety of social behaviors. Interestingly, the female-specific changes in social behavior observed here were accompanied by an increase in SST interneuron number in the ACC. Finally, these changes in social behavior and SST cell number do not appear to depend on microglial inflammatory signaling, because microglia-specific genetic knock-down of myeloid differentiation response protein 88 (MyD88; the removal of which prevents LPS from increasing proinflammatory cytokines such as TNFα and IL-1β) did not prevent these LPS-induced changes. This study provides novel evidence for enduring effects of neonatal immune activation on social behavior and SST interneurons in females, largely independent of microglial inflammatory signaling.
Collapse
|
4
|
Stockmaier S, Bolnick DI, Page RA, Carter GG. Sickness effects on social interactions depend on the type of behaviour and relationship. J Anim Ecol 2020; 89:1387-1394. [DOI: 10.1111/1365-2656.13193] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Sebastian Stockmaier
- Department of Integrative Biology University of Texas at Austin Austin TX USA
- Smithsonian Tropical Research Institute Balboa Panama
| | - Daniel I. Bolnick
- Department of Integrative Biology University of Texas at Austin Austin TX USA
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT USA
| | | | - Gerald G. Carter
- Smithsonian Tropical Research Institute Balboa Panama
- Department of Evolution, Ecology and Organismal Biology The Ohio State University Columbus OH USA
| |
Collapse
|
5
|
|
6
|
Cytokine variations within brain structures in rats selected for differences in aggression. Neurosci Lett 2019; 692:193-198. [PMID: 30423398 DOI: 10.1016/j.neulet.2018.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/15/2018] [Accepted: 11/06/2018] [Indexed: 01/30/2023]
Abstract
The present study examined the content of cytokines (IL-1β, IL-2, IL-6, IL-10) in the brain structures (the hypothalamus, striatum, frontal cortex, and hippocampus) in two rat lines selected for differences in fear-induced aggression at 2, 4, and 24 h after a peripheral injection of saline or lipopolysaccharide (LPS, 250 μg/kg). LPS stimulation elevated cytokine activity above baseline levels in both aggressive and nonaggressive rats, but the pattern, time course of cytokine changes, and their regional characteristics varied according to the animal aggressiveness. After LPS administration, aggressive rats showed increased levels of IL-1β in the hypothalamus at 2 and 4 h and in the frontal cortex at 4 and 24 h compared to LPS-treated nonaggressive line. IL-2 was increased in the frontal cortex and striatum of aggressive rats within 24 h, while IL-6 elevation in the hypothalamus was found at 4 h and in the frontal cortex at 2 and 4 h. In the hippocampus, the levels of IL-1β, IL-2, and IL-6 were lower in LPS-treated aggressive rats than in nonaggressive animals. The levels of anti-inflammatory cytokine IL-10 were also decreased in all brain structures of aggressive rats receiving LPS. The results indicate that genetic predisposition to increased aggression is associated with a time and region-dependent changes in the levels of pro- and anti-inflammatory cytokines.
Collapse
|
7
|
Sylvia KE, Demas GE. A Return to Wisdom: Using Sickness Behaviors to Integrate Ecological and Translational Research. Integr Comp Biol 2017; 57:1204-1213. [PMID: 28992281 PMCID: PMC5886345 DOI: 10.1093/icb/icx051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sickness is typically characterized by fever, anorexia, cachexia, and reductions in social, pleasurable, and sexual behaviors. These responses can be displayed at varying intensities both within and among individuals, and the adaptive nature of sickness responses can be demonstrated by the context-dependent nature of their expression. The study of sickness has become an important area of investigation for researchers in a wide range of areas, including psychoneuroimmunology (PNI) and ecoimmunology (EI). The general goal of PNI is to identify key interactions among the nervous, endocrine and immune systems and behavior, and how disruptions in these processes might contribute to disease states. EI, in turn, has been established more recently within the perspectives of ecology and evolutionary biology, and is aimed more at understanding natural variation in immune function and sickness responses within a broadly integrative, organismal, and evolutionary context. The goal of this review is to examine the literature on sickness from both basic and biomedical perspectives within PNI and EI and to demonstrate how the integrative study of sickness behavior can serve as an integrating agent to connect ecological and translational approaches to the study of disease. By focusing on a set of specific exemplars, including the energetics of sickness, social context, and environmental influences on sickness, we hope to accomplish the larger goal of developing a common synthetic framework to understand sickness from multiple levels of analysis and varying perspectives across the fields of PNI and EI. By applying this integrative approach to sickness, we will be able to develop a more comprehensive view of sickness as a suite of adaptive responses rather than the simply deleterious consequences of illness.
Collapse
Affiliation(s)
- Kristyn E Sylvia
- Department of Biology, Center for the Integrative Study of Animal Behavior, and Program in Neuroscience Indiana University, Bloomington, IN 47405, USA
| | - Gregory E Demas
- Department of Biology, Center for the Integrative Study of Animal Behavior, and Program in Neuroscience Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
8
|
Abstract
Disease is a ubiquitous and powerful evolutionary force. Hosts have evolved behavioural and physiological responses to disease that are associated with increased survival. Behavioural modifications, known as 'sickness behaviours', frequently involve symptoms such as lethargy, somnolence and anorexia. Current research has demonstrated that the social environment is a potent modulator of these behaviours: when conflicting social opportunities arise, animals can decrease or entirely forgo experiencing sickness symptoms. Here, I review how different social contexts, such as the presence of mates, caring for offspring, competing for territories or maintaining social status, affect the expression of sickness behaviours. Exploiting the circumstances that promote this behavioural plasticity will provide new insights into the evolutionary ecology of social behaviours. A deeper understanding of when and how this modulation takes place may lead to better tools to treat symptoms of infection and be relevant for the development of more efficient disease control programmes.
Collapse
Affiliation(s)
- Patricia C Lopes
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
9
|
Shattuck EC, Muehlenbein MP. Human sickness behavior: Ultimate and proximate explanations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 157:1-18. [DOI: 10.1002/ajpa.22698] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/27/2014] [Accepted: 12/28/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Eric C. Shattuck
- Evolutionary Physiology and Ecology Laboratory; Department of Anthropology; Indiana University; Bloomington IN
| | - Michael P. Muehlenbein
- Evolutionary Physiology and Ecology Laboratory; Department of Anthropology; Indiana University; Bloomington IN
| |
Collapse
|
10
|
Nascimento AF, Alves GJ, Massoco CO, Teodorov E, Felicio LF, Bernardi MM. Lipopolysaccharide-induced sickness behavior in lactating rats decreases ultrasonic vocalizations and exacerbates immune system activity in male offspring. Neuroimmunomodulation 2015; 22:213-21. [PMID: 25139475 DOI: 10.1159/000363350] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/01/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The present study analyzed the effects of lipopolysaccharide (LPS) on maternal behavior during lactation and possible correlations with changes in emotional and immune responses in offspring. METHODS Lactating rats received 100 μg/kg LPS, and the control group received saline solution on lactation day (LD) 3. Maternal general activity and maternal behavior were observed on LD5 (i.e. the day that the peak of fever occurred). In male pups, hematological parameters and ultrasonic vocalizations (USVs) were assessed on LD5. At weaning, an additional dose of LPS (50 µg/kg, i.p.) was administered in male pups, and open-field behavior, oxidative burst and phagocytosis were evaluated. RESULTS A reduction in the time in which dams retrieved the pups was observed, whereas no effects on maternal aggressive behavior were found. On LD5, a reduction of the frequency of USVs was observed in pups, but no signs of inflammation were found. At weaning, an increase in immune system activity was observed, but no differences in open-field behavior were found. CONCLUSION These results indicate that inflammation in lactating mothers disrupted mother/pup interactions and may have produced short- and long-term effects on pup behavior as well as biological pathways that modulate inflammatory responses to bacterial endotoxin challenge in pups.
Collapse
Affiliation(s)
- Amanda F Nascimento
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Sandini TM, Udo MS, Reis‐Silva TM, Bernardi MM, Spinosa HDS. Prenatal exposure to integerrimine N‐oxide impaired the maternal care and the physical and behavioral development of offspring rats. Int J Dev Neurosci 2014; 36:53-63. [DOI: 10.1016/j.ijdevneu.2014.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/24/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022] Open
Affiliation(s)
- Thaísa M. Sandini
- Department of Clinical and Toxicological AnalysesFaculty of Pharmaceutical SciencesUniversity of São PauloAv. Prof. Dr. Lineu Prestes, 58005508‐000São PauloBrazil
| | - Mariana S.B. Udo
- Department of Clinical and Toxicological AnalysesFaculty of Pharmaceutical SciencesUniversity of São PauloAv. Prof. Dr. Lineu Prestes, 58005508‐000São PauloBrazil
| | - Thiago M. Reis‐Silva
- Department of NeuroscienceInstitute of PsychologyUniversity of São PauloAv. Prof. Dr. Melo de Morais, 172105508‐030São PauloBrazil
| | - Maria Martha Bernardi
- Graduate Program of Environmental and Experimental Pathology and Graduate Program DentistryPaulista University, UNIPRua Dr. Bacelar, 121204026‐002São PauloBrazil
| | - Helenice de S. Spinosa
- Department of PathologySchool of Veterinary MedicineUniversity of Sao PauloAv. Prof. Dr. Orlando Marques de Paiva, 8705508 270São PauloBrazil
| |
Collapse
|
12
|
MyD88 signaling is directly involved in the development of murine placental malaria. Infect Immun 2013; 82:830-8. [PMID: 24478096 DOI: 10.1128/iai.01288-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Malaria is a widespread infectious disease caused by the parasite Plasmodium. During pregnancy, malaria infection leads to a range of complications that can affect both the mother and fetus, including stillbirth, infant mortality, and low birth weight. In this study, we utilized a mouse model of placental malaria (PM) infection to determine the importance of the protein MyD88 in the host immune response to Plasmodium during pregnancy. Initially, we demonstrated that Plasmodium berghei NK65GFP adhered to placental tissue via chondroitin sulfate A and induced PM in mice with a C57BL/6 genetic background. To evaluate the involvement of MyD88 in the pathology of PM, we performed a histopathological analysis of placentas obtained from MyD88(-/-) and wild-type (WT) mice following infection on the 19th gestational day. Our data demonstrated that the detrimental placental alterations observed in the infected mice were correlated with the expression of MyD88. Moreover, in the absence of this protein, production of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) was significantly reduced in the infected mice. More importantly, in contrast to fetuses from infected WT mice, which exhibited a reduction in body weight, the fetuses from infected MyD88(-/-) mice did not display significant weight loss compared to their noninfected littermates. In addition, we observed a decrement of maternal care associated with malaria infection, which was attenuated in the MyD88-deficient mice. Collectively, the results of this study illustrate the pivotal importance of the MyD88 signaling pathway in the pathogenesis of placental malaria, thus presenting new possibilities for targeting MyD88 in therapeutic interventions.
Collapse
|
13
|
Soto AM, Kirsten TB, Reis-Silva TM, Martins MF, Teodorov E, Flório JC, Palermo-Neto J, Bernardi MM, Bondan EF. Single early prenatal lipopolysaccharide exposure impairs striatal monoamines and maternal care in female rats. Life Sci 2013; 92:852-8. [DOI: 10.1016/j.lfs.2013.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/19/2013] [Accepted: 03/02/2013] [Indexed: 11/30/2022]
|
14
|
Ashley NT, Weil ZM, Nelson RJ. Inflammation: Mechanisms, Costs, and Natural Variation. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2012. [DOI: 10.1146/annurev-ecolsys-040212-092530] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Noah T. Ashley
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky 42101;
| | - Zachary M. Weil
- Department of Neuroscience, Wexner College of Medicine, Ohio State University, Columbus, Ohio 43210; ,
| | - Randy J. Nelson
- Department of Neuroscience, Wexner College of Medicine, Ohio State University, Columbus, Ohio 43210; ,
| |
Collapse
|
15
|
Palacios MG, Winkler DW, Klasing KC, Hasselquist D, Vleck CM. Consequences of immune system aging in nature: a study of immunosenescence costs in free-living Tree Swallows. Ecology 2011; 92:952-66. [PMID: 21661557 DOI: 10.1890/10-0662.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Immunosenescence, the aging of the immune system, is well documented in humans and laboratory models and is known to increase infection risk, morbidity, and mortality among the old. Immunosenescence patterns have recently been unveiled in various free-living populations, but their consequences in the wild have not been explored. We investigated the consequences of immunosenescence in free-living Tree Swallows Tachycineta bicolor through a field experiment simulating a bacterial infection (challenge with lipopolysaccharide, LPS) in females of different ages during the nestling rearing period. We assessed behavioral and physiological responses of females, as well as growth and quality of their offspring, to determine the costs associated with the simulated infection. Results of the experiment differed between the two years of study. In the first year, old females challenged with LPS lost more body mass and reduced their nest visitation rates more, and their offspring tended to grow slower compared to similarly challenged younger females. In contrast, in the second year, old females did not appear to suffer larger costs than younger ones. Interestingly, immunosenescence was only detected during the first year of the study, suggesting that it is the dysregulated immune function characteristic of immunosenescent individuals rather than age per se that can lead to higher costs of immune defense in old individuals. These results provide the first evidence of costs of immunosenescence in free-living animals and support the hypothesis that old, immunosenescent individuals pay higher costs than younger ones when faced with a challenge to their immune system. Our results also suggest that these costs are mediated by an exaggerated sickness behavior, as seen in laboratory models, and can be modulated by ecological factors such as weather conditions and food availability.
Collapse
Affiliation(s)
- Maria G Palacios
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA.
| | | | | | | | | |
Collapse
|
16
|
Nephew BC, Caffrey MK, Felix-Ortiz AC, Ferris CF, Febo M. Blood oxygen level-dependent signal responses in corticolimbic 'emotions' circuitry of lactating rats facing intruder threat to pups. Eur J Neurosci 2009; 30:934-45. [PMID: 19709175 DOI: 10.1111/j.1460-9568.2009.06875.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lactating rats must continuously maintain a critical balance between caring for pups and aggressively responding to nest threats. We tested the neural response of lactating females to the presentation of their own pups and novel intruder males using blood oxygen level-dependent functional magnetic resonance imaging at 7 T. Dams were presented with a single sequence of a control stimulus, pups or a male intruder in one imaging session (n = 7-9). To further determine the selectivity of neural processing, dams were imaged for their response to a male intruder in both the absence and presence of their pups (n = 6). Several maternal cortical and limbic brain regions were significantly activated by intruder presentation but not by pups or a control stimulus. These included the nucleus accumbens, periaqueductal gray, anterior cingulate, anterior thalamus, basal nucleus of the amygdala, temporal cortex, prelimbic/orbital area and insula. The nucleus accumbens, periaqueductal gray, temporal cortex and mediodorsal thalamus still showed greater neural activity when compared with intruder presentation in the absence of pups. The present results suggest that the high emotional state generated by a threat to pups involves robust activation of classical limbic regions controlling emotional responses. This pattern of blood oxygen level-dependent activity may precede behavioral states upon which lactating rats initiate attacks against a potential threat to offspring.
Collapse
Affiliation(s)
- Benjamin C Nephew
- Department of Psychology and Center for Translational Neuroimaging, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
17
|
Wynne AM, Henry CJ, Godbout JP. Immune and behavioral consequences of microglial reactivity in the aged brain. Integr Comp Biol 2009; 49:254-66. [PMID: 21665818 DOI: 10.1093/icb/icp009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bidirectional communication between the immune system and the brain is essential for mounting the appropriate immunological, physiological, and behavioral responses to immune activation. Aging, however, may impair this important bi-directional interaction. In support of this notion, peripheral infection in the elderly is associated with an increased frequency of behavioral and cognitive complications. Recent findings in animal models of aging and neurodegenerative disease indicate that microglia, innate immune cells of the brain, become primed or reactive. Understanding age- and disease-associated alterations in microglia is important because glia (microglia and astrocytes) play an integral role in propagating inflammatory signals that are initiated in the periphery. In this capacity, brain glia produce inflammatory cytokines that target neuronal substrates and elicit a sickness-behavior syndrome that is normally beneficial to the host organism. Increased reactivity of microglia sets the stage for an exaggerated neuroinflammatory cytokine response following activation of the peripheral innate immune system, which may underlie subsequent long-lasting behavioral and cognitive deficits. In support of this premise, recent findings indicate that stimulation of the peripheral immune system in aged rodents causes exaggerated neuroinflammation that is paralleled by cognitive impairment, prolonged sickness, and depressive-like complications. Therefore, the purpose of this review is to discuss the new evidence that age-associated priming of microglia could play a pathophysiological role in exaggerated behavioral and cognitive sequelae to peripheral infection.
Collapse
Affiliation(s)
- Angela M Wynne
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
18
|
Mouihate A, Harré EM, Martin S, Pittman QJ. Suppression of the febrile response in late gestation: evidence, mechanisms and outcomes. J Neuroendocrinol 2008; 20:508-14. [PMID: 18266941 PMCID: PMC3547979 DOI: 10.1111/j.1365-2826.2008.01666.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Fever is a beneficial host defence response. However, fever caused by the immune stimulant, lipopolysaccharide (LPS), are attenuated in many species during pregnancy, particularly near term. A number of parallel mechanisms may be responsible, and these vary in magnitude according to the time of gestation, type of inflammatory stimulus and species of animal. Some studies report a reduction in the plasma levels of circulating pro-inflammatory cytokines such as tumour necrosis factor-alpha, interleukin-1beta and interleukin-6 along with increased levels of anti-inflammatory cytokines such as interleukin-1 receptor antagonist. Associated with the attenuated febrile response to LPS is a reduction in the activation of the prostaglandin synthesising enzyme, cyclo-oxygenase 2, resulting in reduced levels of the obligatory prostaglandin mediators of the febrile response in the brain. There is also a reduction in the sensitivity of the brain to the pyrogenic action of prostaglandins, which does not appear to be due to a change in the levels of hypothalamic EP3 prostaglandin receptors. The suppression of fever at term may be important for the health of the neonate because fever in pregnant mothers may be harmful to the late-term foetus and neonate.
Collapse
Affiliation(s)
- A Mouihate
- Department of Physiology and Biophysics, Hotchkiss Brain Institute, Institutes of Infection, Immunity and Inflammation and Maternal and Child Health, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
19
|
Martin LB, Weil ZM, Nelson RJ. Seasonal changes in vertebrate immune activity: mediation by physiological trade-offs. Philos Trans R Soc Lond B Biol Sci 2008; 363:321-39. [PMID: 17638690 PMCID: PMC2606753 DOI: 10.1098/rstb.2007.2142] [Citation(s) in RCA: 370] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Animals living in temporally dynamic environments experience variation in resource availability, climate and threat of infection over the course of the year. Thus, to survive and reproduce successfully, these organisms must allocate resources among competing physiological systems in such a way as to maximize fitness in changing environments. Here, we review evidence supporting the hypothesis that physiological trade-offs, particularly those between the reproductive and immune systems, mediate part of the seasonal changes detected in the immune defences of many vertebrates. Abundant recent work has detected significant energetic and nutritional costs of immune defence. Sometimes these physiological costs are sufficiently large to affect fitness (e.g. reproductive output, growth or survival), indicating that selection for appropriate allocation strategies probably occurred in the past. Because hormones often orchestrate allocations among physiological systems, the endocrine mediators of seasonal changes in immune activity are discussed. Many hormones, including melatonin, glucocorticoids and androgens have extensive and consistent effects on the immune system, and they change in systematic fashions over the year. Finally, a modified framework within which to conduct future studies in ecological immunology is proposed, viz. a heightened appreciation of the complex but intelligible nature of the vertebrate immune system. Although other factors besides trade-offs undoubtedly influence seasonal variation in immune defence in animals, a growing literature supports a role for physiological trade-offs and the fitness consequences they sometimes produce.
Collapse
Affiliation(s)
- Lynn B Martin
- Departments of Psychology and Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|