1
|
Latoch A, Stasiak DM, Siczek P. Edible Offal as a Valuable Source of Nutrients in the Diet-A Review. Nutrients 2024; 16:1609. [PMID: 38892542 PMCID: PMC11174546 DOI: 10.3390/nu16111609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The global increase in demand for meat leads to substantial quantities of by-products, including edible offal from both wild and domesticated animals raised for diversified consumption products within an agricultural framework. Information on the nutritional value of offal is scattered and limited. This review aims to synthesize scientific publications on the potential of offal as a source of nutrients and bioactive substances in human diets. The literature review included publications available in ISI Web of Science and Google Scholar published between 2014 and 2024. Findings indicate that edible offal is characterized by a nutrient concentration often surpassing that found in skeletal muscle. This review discusses the yield of edible offal and explores factors influencing human consumption. Selected factors affecting the nutritional value of offal of various animals and the importance of individual nutrients in ensuring the proper functioning of the human body were analyzed. The optimal use of offal in processing and catering can significantly benefit aspects of human life, including diet quality, food security, and conservation of natural resources.
Collapse
Affiliation(s)
- Agnieszka Latoch
- Department of Animal Food Technology, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland;
| | - Dariusz Mirosław Stasiak
- Department of Animal Food Technology, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland;
| | - Patryk Siczek
- Department of Plant Food Technology and Gastronomy, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland;
| |
Collapse
|
2
|
Lauritsen JV, Bergmann N, Junker AE, Gyldenløve M, Skov L, Gluud LL, Hartmann B, Holst JJ, Vilsbøll T, Knop FK. Oral glucose has little or no effect on appetite and satiety sensations despite a significant gastrointestinal response. Eur J Endocrinol 2023; 189:619-626. [PMID: 38035766 DOI: 10.1093/ejendo/lvad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
OBJECTIVE The effect of oral glucose-induced release of gastrointestinal hormones on satiety and appetite independently of prevailing plasma glucose excursions is unknown. The objective is to investigate the effect of oral glucose on appetite and satiety sensations as compared to isoglycemic IV glucose infusion (IIGI) in healthy volunteers. DESIGN A crossover study involving two study days for each participant. PARTICIPANTS Nineteen healthy participants (6 women, mean age 55.1 [SD 14.2] years; mean body mass index 26.7 [SD 2.2] kg/m2). INTERVENTIONS Each participant underwent a 3-h 50-g oral glucose tolerance test (OGTT) and, on a subsequent study day, an IIGI mimicking the glucose excursions from the OGTT. On both study days, appetite and satiety were indicated regularly on visual analog scale (VAS), and blood was drawn regularly for measurement of pancreatic and gut hormones. PRIMARY OUTCOMES Difference in appetite and satiety sensations during OGTT and IIGI. RESULTS Circulating concentrations of glucose-dependent insulinotropic polypeptide (P < .0001), glucagon-like peptide 1 (P < .0001), insulin (P < .0001), C-peptide (P < .0001), and neurotensin (P = .003) increased significantly during the OGTT as compared to the IIGI, whereas glucagon responses were similarly suppressed (P = .991). Visual analog scale-assessed ratings of hunger, satiety, fullness, thirst, well-being, and nausea, respectively, were similar during OGTT and IIGI whether assessed as mean 0-3-h values or area under the curves. For both groups, a similar, slow increase in appetite and decrease in satiation were observed. Area under the curve, for prospective food consumption (P = .049) and overall appetite score (P = .044) were slightly lower during OGTT compared to IIGI, whereas mean 0-3-h values were statistically similar for prospective food consumption (P = .053) and overall appetite score (P = .063). CONCLUSIONS Despite eliciting robust responses of appetite-reducing and/or satiety-promoting gut hormones, we found that oral glucose administration has little or no effect on appetite and satiety as compared to an IIGI, not affecting the release of appetite-modulating hormones. TRIAL REGISTRY NO ClinicalTrials.gov: NCT01492283 and NCT06064084.
Collapse
Affiliation(s)
- Julius V Lauritsen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
| | - Natasha Bergmann
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
| | - Anders E Junker
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Gastro Unit, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Mette Gyldenløve
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Lone Skov
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lise L Gluud
- Gastro Unit, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| |
Collapse
|
3
|
Vitale NL, Lewon M. A preliminary evaluation of habituation and dishabituation of operant responding in mice. Behav Processes 2023; 213:104967. [PMID: 37979922 DOI: 10.1016/j.beproc.2023.104967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/17/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Previous research has suggested that operant response decrements within experimental sessions are due in part to habituation to the repeated presentation of reinforcers. One way to assess the role of habituation in within-session response decrements is to conduct a test for dishabituation, a phenomenon in which a habituated response to a given stimulus recovers following the presentation of some strong or novel stimulus other than the habituated stimulus. Dishabituation of operant responding has been demonstrated on several occasions in the literature, but studies with non-human subjects have thus far been limited to those using rats and pigeons. Two experiments attempting to replicate these findings with mice were conducted. Two groups of mice nose-poked for a sweetened condensed milk/water reinforcer on either a fixed-ratio 4 or variable-interval 15 s schedule of reinforcement. During testing, baseline sessions were then alternated with two test conditions and a control condition. Test conditions included a 5 s auditory stimulus or flashing of the house light presented mid-session. Control conditions were identical to baseline. Dishabituation was not observed for either group in Experiment 1. In Experiment 2, dishabituation was not observed for the fixed-ratio 4 group but was observed for the variable interval 15 s group. Considerations for further study of operant dishabituation in mice are discussed.
Collapse
Affiliation(s)
| | - Matthew Lewon
- Department of Psychology, University of Nevada, Reno, USA
| |
Collapse
|
4
|
Lim JJ, Liu Y, Lu LW, Sequeira IR, Poppitt SD. No Evidence That Circulating GLP-1 or PYY Are Associated with Increased Satiety during Low Energy Diet-Induced Weight Loss: Modelling Biomarkers of Appetite. Nutrients 2023; 15:nu15102399. [PMID: 37242282 DOI: 10.3390/nu15102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Bariatric surgery and pharmacology treatments increase circulating glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), in turn promoting satiety and body weight (BW) loss. However, the utility of GLP-1 and PYY in predicting appetite response during dietary interventions remains unsubstantiated. This study investigated whether the decrease in hunger observed following low energy diet (LED)-induced weight loss was associated with increased circulating 'satiety peptides', and/or associated changes in glucose, glucoregulatory peptides or amino acids (AAs). In total, 121 women with obesity underwent an 8-week LED intervention, of which 32 completed an appetite assessment via a preload challenge at both Week 0 and Week 8, and are reported here. Visual analogue scales (VAS) were administered to assess appetite-related responses, and blood samples were collected over 210 min post-preload. The area under the curve (AUC0-210), incremental AUC (iAUC0-210), and change from Week 0 to Week 8 (∆) were calculated. Multiple linear regression was used to test the association between VAS-appetite responses and blood biomarkers. Mean (±SEM) BW loss was 8.4 ± 0.5 kg (-8%). Unexpectedly, the decrease in ∆AUC0-210 hunger was best associated with decreased ∆AUC0-210 GLP-1, GIP, and valine (p < 0.05, all), and increased ∆AUC0-210 glycine and proline (p < 0.05, both). The majority of associations remained significant after adjusting for BW and fat-free mass loss. There was no evidence that changes in circulating GLP-1 or PYY were predictive of changes in appetite-related responses. The modelling suggested that other putative blood biomarkers of appetite, such as AAs, should be further investigated in future larger longitudinal dietary studies.
Collapse
Affiliation(s)
- Jia Jiet Lim
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- Riddet Institute, Palmerston North 4442, New Zealand
| | - Yutong Liu
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- Department of Medicine, University of Auckland, Auckland 1010, New Zealand
| | - Louise W Lu
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
| | - Ivana R Sequeira
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
| | - Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- Riddet Institute, Palmerston North 4442, New Zealand
- Department of Medicine, University of Auckland, Auckland 1010, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
| |
Collapse
|
5
|
Lim JJ, Liu Y, Lu LW, Barnett D, Sequeira IR, Poppitt SD. Does a Higher Protein Diet Promote Satiety and Weight Loss Independent of Carbohydrate Content? An 8-Week Low-Energy Diet (LED) Intervention. Nutrients 2022; 14:nu14030538. [PMID: 35276894 PMCID: PMC8838013 DOI: 10.3390/nu14030538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/18/2022] Open
Abstract
Both higher protein (HP) and lower carbohydrate (LC) diets may promote satiety and enhance body weight (BW) loss. This study investigated whether HP can promote these outcomes independent of carbohydrate (CHO) content. 121 women with obesity (BW: 95.1 ± 13.0 kg, BMI: 35.4 ± 3.9 kg/m2) were randomised to either HP (1.2 g/kg BW) or normal protein (NP, 0.8 g/kg BW) diets, in combination with either LC (28 en%) or normal CHO (NC, 40 en%) diets. A low-energy diet partial diet replacement (LEDpdr) regime was used for 8 weeks, where participants consumed fixed-energy meal replacements plus one ad libitum meal daily. Four-day dietary records showed that daily energy intake (EI) was similar between groups (p = 0.744), but the difference in protein and CHO between groups was lower than expected. Following multiple imputation (completion rate 77%), decrease in mean BW, fat mass (FM) and fat-free mass (FFM) at Week 8 in all was 7.5 ± 0.7 kg (p < 0.001), 5.7 ± 0.5 kg (p < 0.001), and 1.4 ± 0.7 kg (p = 0.054) respectively, but with no significant difference between diet groups. LC (CHO×Week, p < 0.05), but not HP, significantly promoted postprandial satiety during a preload challenge. Improvements in blood biomarkers were unrelated to LEDpdr macronutrient composition. In conclusion, HP did not promote satiety and BW loss compared to NP LEDpdr, irrespective of CHO content.
Collapse
Affiliation(s)
- Jia Jiet Lim
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand; (Y.L.); (L.W.L.); (I.R.S.); (S.D.P.)
- Riddet Institute, Palmerston North 4474, New Zealand
- Correspondence:
| | - Yutong Liu
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand; (Y.L.); (L.W.L.); (I.R.S.); (S.D.P.)
- Department of Medicine, University of Auckland, Auckland 1010, New Zealand
| | - Louise Weiwei Lu
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand; (Y.L.); (L.W.L.); (I.R.S.); (S.D.P.)
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Daniel Barnett
- Department of Statistics, University of Auckland, Auckland 1010, New Zealand;
| | - Ivana R. Sequeira
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand; (Y.L.); (L.W.L.); (I.R.S.); (S.D.P.)
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Sally D. Poppitt
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand; (Y.L.); (L.W.L.); (I.R.S.); (S.D.P.)
- Riddet Institute, Palmerston North 4474, New Zealand
- Department of Medicine, University of Auckland, Auckland 1010, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| |
Collapse
|
6
|
Lim JJ, Sequeira IR, Yip WCY, Lu LW, Barnett D, Cameron-Smith D, Poppitt SD. Postprandial glycine as a biomarker of satiety: A dose-rising randomised control trial of whey protein in overweight women. Appetite 2021; 169:105871. [PMID: 34915106 DOI: 10.1016/j.appet.2021.105871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 01/09/2023]
Abstract
This study aimed to identify biomarkers of appetite response, modelled using a dose-rising whey protein preload intervention. Female participants (n = 24) with body mass index (BMI) between 23 and 40 kg/m2 consumed preload beverages (0 g protein water control, WC; 12.5 g low-dose protein, LP; or 50.0 g high-dose protein, HP) after an overnight fast, in a randomised cross over design. Repeated venous blood samples were collected to measure plasma biomarkers of appetite response, including glucose, glucoregulatory peptides, gut peptides, and amino acids (AAs). Appetite was assessed using Visual Analogue Scales (VAS) and ad libitum energy intake (EI). Dose-rising protein beverage significantly changed the postprandial trajectory of almost all biomarkers (treatment*time, p < 0.05), but did not suppress postprandial appetite (treatment*time, p > 0.05) or EI (ANOVA, p = 0.799). Circulating glycine had the strongest association with appetite response. Higher area under the curve (AUC0-240) glycine was associated with lower EI (p = 0.026, trend). Furthermore, circulating glycine was associated with decreased Hunger in all treatment groups, whereas the associations of glucose, alanine and amylin with appetite were dependent on treatment groups. Multivariate models, incorporating multiple biomarkers, improved the estimation of appetite response (marginal R2, range: 0.13-0.43). In conclusion, whilst glycine, both alone and within a multivariate model, can estimate appetite response to both water and whey protein beverage consumption, a large proportion of variance in appetite response remains unexplained. Most biomarkers, when assessed in isolation, are poor predictors of appetite response, and likely of utility only in combination with VAS and EI.
Collapse
Affiliation(s)
- Jia Jiet Lim
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Riddet Institute, Palmerston North, New Zealand.
| | - Ivana R Sequeira
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; High Value Nutrition, National Science Challenge, Auckland, New Zealand
| | - Wilson C Y Yip
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; High Value Nutrition, National Science Challenge, Auckland, New Zealand
| | - Louise W Lu
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; High Value Nutrition, National Science Challenge, Auckland, New Zealand
| | - Daniel Barnett
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - David Cameron-Smith
- Riddet Institute, Palmerston North, New Zealand; Liggins Institute, University of Auckland, Auckland, New Zealand; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Riddet Institute, Palmerston North, New Zealand; High Value Nutrition, National Science Challenge, Auckland, New Zealand; Department of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Radcliffe PN, Whitney CC, Fagnant HS, Wilson MA, Finlayson G, Smith TJ, Karl JP. Severe sleep restriction suppresses appetite independent of effects on appetite regulating hormones in healthy young men without obesity. Physiol Behav 2021; 237:113438. [PMID: 33940082 DOI: 10.1016/j.physbeh.2021.113438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Several nights of moderate (4-5 hr/night) sleep restriction increases appetite and energy intake, and may alter circulating concentrations of appetite regulating hormones. Whether more severe sleep restriction has similar effects is unclear. This study aimed to determine the effects of severe, short-term sleep restriction on appetite, ad libitum energy intake during a single meal, appetite regulating hormones, and food preferences. METHODS Randomized, crossover study in which 18 healthy men (mean ± SD: BMI 24.4 ± 2.3 kg/m2, 20 ± 2 yr) were assigned to three consecutive nights of sleep restriction (SR; 2 hr sleep opportunity/night) or adequate sleep (AS; 7-9 hr sleep opportunity/night) with controlled feeding and activity designed to maintain energy balance throughout the 3-day period. On day 4, participants consumed a standardized breakfast. Appetite, assessed by visual analogue scales, and circulating ghrelin, peptide-YY (PYY), glucagon-like peptide (GLP-1), insulin, and glucose concentrations were measured before and every 20-60 min for 4hr after the meal. Ad libitum energy and macronutrient intakes were then measured at a provided buffet lunch. Food preferences were measured by Leeds Food Preference Questionnaire (LFPQ) administered before and after the lunch. RESULTS Area under the curve (AUC) of postprandial hunger (-23%), desire to eat (-23%), and prospective consumption (-18%) ratings were all lower, and postprandial fullness AUC (25%) was higher after SR relative to after AS (p ≤ 0.02). Ad libitum energy intake at the lunch meal was 332 kcal [95% CI: -479, -185] (p<0.001) lower after SR relative to after AS, but relative macronutrient intakes and LFPQ scores did not differ. Postprandial glucose, insulin, PYY, GLP-1, and ghrelin AUCs did not differ between phases. However, mean concentrations of PYY (-11%) and GLP-1 (-4%) over the 4-hr testing period were lower, and glucose concentrations were 6% higher, after SR relative to after AS (p ≤ 0.01). CONCLUSION In contrast with reported effects of moderate sleep restriction, severe sleep restriction reduced appetite and energy intake, had no impact food preferences, and had little impact on appetite regulating hormones. Findings suggest that severe sleep restriction may suppress appetite and food intake, at least at a single meal, by a mechanism independent of changes in food preference or appetite regulating hormones.
Collapse
Affiliation(s)
- Patrick N Radcliffe
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA; Oak Ridge Institute of Science and Education, Oak Ridge, TN, USA
| | - Claire C Whitney
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Heather S Fagnant
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Marques A Wilson
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Graham Finlayson
- Oak Ridge Institute of Science and Education, Oak Ridge, TN, USA; School of psychology, University of Leeds, Leeds, UK
| | - Tracey J Smith
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - J Philip Karl
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA.
| |
Collapse
|
8
|
Ben-Harchache S, Roche HM, Corish CA, Horner KM. The Impact of Protein Supplementation on Appetite and Energy Intake in Healthy Older Adults: A Systematic Review with Meta-Analysis. Adv Nutr 2020; 12:490-502. [PMID: 33037427 PMCID: PMC8009738 DOI: 10.1093/advances/nmaa115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 08/25/2020] [Indexed: 01/04/2023] Open
Abstract
Protein supplementation is an attractive strategy to prevent loss of muscle mass in older adults. However, it could be counterproductive due to adverse effects on appetite. This systematic review and meta-analysis aimed to determine the effects of protein supplementation on appetite and/or energy intake (EI) in healthy older adults. MEDLINE, The Cochrane Library, CINAHL, and Web of Science were searched up to June 2020. Acute and longitudinal studies in healthy adults ≥60 y of age that reported effects of protein supplementation (through supplements or whole foods) compared with control and/or preintervention (for longitudinal studies) on appetite ratings, appetite-related peptides, and/or EI were included. Random-effects model meta-analysis was performed on EI, with other outcomes qualitatively reviewed. Twenty-two studies (9 acute, 13 longitudinal) were included, involving 857 participants (331 males, 526 females). In acute studies (n = 8), appetite ratings were suppressed in 7 out of 24 protein arms. For acute studies reporting EI (n = 7, n = 22 protein arms), test meal EI was reduced following protein preload compared with control [mean difference (MD): -164 kJ; 95% CI: -299, -29 kJ; P = 0.02]. However, when energy content of the supplement was accounted for, total EI was greater with protein compared with control (MD: 649 kJ; 95% CI: 438, 861 kJ; P < 0.00001). Longitudinal studies (n = 12 protein arms) showed a higher protein intake (MD: 0.29 g ⋅ kg-1 ⋅ d-1; 95% CI: 0.14, 0.45 g ⋅ kg-1 ⋅ d-1; P < 0.001) and no difference in daily EI between protein and control groups at the end of trials (MD: -54 kJ/d; 95% CI: -300, 193 kJ/d; P = 0.67). While appetite ratings may be suppressed with acute protein supplementation, there is either a positive effect or no effect on total EI in acute and longitudinal studies, respectively. Therefore, protein supplementation may represent an effective solution to increase protein intakes in healthy older adults without compromising EI through appetite suppression. This trial was registered at PROSPERO as https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42019125771 (CRD42019125771).
Collapse
Affiliation(s)
- Sana Ben-Harchache
- School of Public Health, Physiotherapy and Sport Science, University College Dublin, Belfield, Dublin, Ireland,Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland
| | - Helen M Roche
- School of Public Health, Physiotherapy and Sport Science, University College Dublin, Belfield, Dublin, Ireland,Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland,Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland,Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland
| | - Clare A Corish
- School of Public Health, Physiotherapy and Sport Science, University College Dublin, Belfield, Dublin, Ireland,Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland
| | | |
Collapse
|
9
|
Lasschuijt MP, Mars M, de Graaf C, Smeets PAM. Endocrine Cephalic Phase Responses to Food Cues: A Systematic Review. Adv Nutr 2020; 11:1364-1383. [PMID: 32516803 PMCID: PMC7490153 DOI: 10.1093/advances/nmaa059] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/10/2020] [Accepted: 04/29/2020] [Indexed: 01/16/2023] Open
Abstract
Cephalic phase responses (CPRs) are conditioned anticipatory physiological responses to food cues. They occur before nutrient absorption and are hypothesized to be important for satiation and glucose homeostasis. Cephalic phase insulin responses (CPIRs) and pancreatic polypeptide responses (CPPPRs) are found consistently in animals, but human literature is inconclusive. We performed a systematic review of human studies to determine the magnitude and onset time of these CPRs. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to develop a search strategy. The terms included in the search strategy were cephalic or hormone response or endocrine response combined with insulin and pancreatic polypeptide (PP). The following databases were searched: Scopus (Elsevier), Science Direct, PubMed, Google Scholar, and The Cochrane Library. Initially, 582 original research articles were found, 50 were included for analysis. An insulin increase (≥1μIU/mL) was observed in 41% of the treatments (total n = 119). In 22% of all treatments the increase was significant from baseline. The median (IQR) insulin increase was 2.5 (1.6-4.5) μIU/mL, 30% above baseline at 5± 3 min after food cue onset (based on study treatments that induced ≥1 μIU/mL insulin increase). A PP increase (>10 pg/mL) was found in 48% of the treatments (total n = 42). In 21% of the treatments, the increase was significant from baseline. The median (IQR) PP increase was 99 (26-156) pg/mL, 68% above baseline at 9± 4 min after food cue onset (based on study treatments that induced ≥1 μIU/mL insulin increase). In conclusion, CPIRs are small compared with spontaneous fluctuations. Although CPPPRs are of a larger magnitude, both show substantial variation in magnitude and onset time. We found little evidence for CPIR or CPPPR affecting functional outcomes, that is, satiation and glucose homeostasis. Therefore, CPRs do not seem to be biologically meaningful in daily life.
Collapse
Affiliation(s)
- Marlou P Lasschuijt
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Monica Mars
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Cees de Graaf
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Paul A M Smeets
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
- Image Sciences Institute, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
10
|
San-Cristobal R, Navas-Carretero S, Martínez-González MÁ, Ordovas JM, Martínez JA. Contribution of macronutrients to obesity: implications for precision nutrition. Nat Rev Endocrinol 2020; 16:305-320. [PMID: 32235875 DOI: 10.1038/s41574-020-0346-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/04/2020] [Indexed: 01/03/2023]
Abstract
The specific metabolic contribution of consuming different energy-yielding macronutrients (namely, carbohydrates, protein and lipids) to obesity is a matter of active debate. In this Review, we summarize the current research concerning associations between the intake of different macronutrients and weight gain and adiposity. We discuss insights into possible differential mechanistic pathways where macronutrients might act on either appetite or adipogenesis to cause weight gain. We also explore the role of dietary macronutrient distribution on thermogenesis or energy expenditure for weight loss and maintenance. On the basis of the data discussed, we describe a novel way to manage excessive body weight; namely, prescribing personalized diets with different macronutrient compositions according to the individual's genotype and/or enterotype. In this context, the interplay of macronutrient consumption with obesity incidence involves mechanisms that affect appetite, thermogenesis and metabolism, and the outcomes of these mechanisms are altered by an individual's genotype and microbiota. Indeed, the interactions of the genetic make-up and/or microbiota features of a person with specific macronutrient intakes or dietary pattern consumption help to explain individualized responses to macronutrients and food patterns, which might represent key factors for comprehensive precision nutrition recommendations and personalized obesity management.
Collapse
Affiliation(s)
- Rodrigo San-Cristobal
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, Madrid, Spain
| | - Santiago Navas-Carretero
- Centre for Nutrition Research, University of Navarra, Pamplona, Spain.
- CIBERobn, Centro de Investigacion Biomedica en Red Area de Fisiologia de la Obesidad y la Nutricion, Madrid, Spain.
- IdisNA, Navarra Institute for Health Research, Pamplona, Spain.
| | - Miguel Ángel Martínez-González
- CIBERobn, Centro de Investigacion Biomedica en Red Area de Fisiologia de la Obesidad y la Nutricion, Madrid, Spain
- IdisNA, Navarra Institute for Health Research, Pamplona, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, Pamplona, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - José María Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
- Department of Cardiovascular Epidemiology and Population Genetics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Nutritional Genomics of Cardiovascular Disease and Obesity Fundation IMDEA Food, Campus of International Excellence, Spanish National Research Council, Madrid, Spain
| | - José Alfredo Martínez
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, Madrid, Spain
- Centre for Nutrition Research, University of Navarra, Pamplona, Spain
- CIBERobn, Centro de Investigacion Biomedica en Red Area de Fisiologia de la Obesidad y la Nutricion, Madrid, Spain
- IdisNA, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
11
|
Abstract
The enteroendocrine system is located in the gastrointestinal (GI) tract, and makes up the largest endocrine system in the human body. Despite that, its roles and functions remain incompletely understood. Gut regulatory peptides are the main products of enteroendocrine cells, and play an integral role in the digestion and absorption of nutrients through their effect on intestinal secretions and gut motility. Several peptides, such as cholecystokinin, polypeptide YY and glucagon-like peptide-1, have traditionally been reported to suppress appetite following food intake, so-called satiety hormones. In this review, we propose that, in the healthy individual, this system to regulate appetite does not play a dominant role in normal food intake regulation, and that there is insufficient evidence to wholly link postprandial endogenous gut peptides with appetite-related behaviours. Instead, or additionally, top-down, hedonic drive and neurocognitive factors may have more of an impact on food intake. In GI disease however, supraphysiological levels of these hormones may have more of an impact on appetite regulation as well as contributing to other unpleasant abdominal symptoms, potentially as part of an innate response to injury. Further work is required to better understand the mechanisms involved in appetite control and unlock the therapeutic potential offered by the enteroendocrine system in GI disease and obesity.
Collapse
|
12
|
How Satiating Are the 'Satiety' Peptides: A Problem of Pharmacology versus Physiology in the Development of Novel Foods for Regulation of Food Intake. Nutrients 2019; 11:nu11071517. [PMID: 31277416 PMCID: PMC6682889 DOI: 10.3390/nu11071517] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022] Open
Abstract
Developing novel foods to suppress energy intake and promote negative energy balance and weight loss has been a long-term but commonly unsuccessful challenge. Targeting regulation of appetite is of interest to public health researchers and industry in the quest to develop ‘functional’ foods, but poor understanding of the underpinning mechanisms regulating food intake has hampered progress. The gastrointestinal (GI) or ‘satiety’ peptides including cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) secreted following a meal, have long been purported as predictive biomarkers of appetite response, including food intake. Whilst peptide infusion drives a clear change in hunger/fullness and eating behaviour, inducing GI-peptide secretion through diet may not, possibly due to modest effects of single meals on peptide levels. We conducted a review of 70 dietary preload (DIET) and peptide infusion (INFUSION) studies in lean healthy adults that reported outcomes of CCK, GLP-1 and PYY. DIET studies were acute preload interventions. INFUSION studies showed that minimum increase required to suppress ad libitum energy intake for CCK, GLP-1 and PYY was 3.6-, 4.0- and 3.1-fold, respectively, achieved through DIET in only 29%, 0% and 8% of interventions. Whether circulating ‘thresholds’ of peptide concentration likely required for behavioural change can be achieved through diet is questionable. As yet, no individual or group of peptides can be measured in blood to reliably predict feelings of hunger and food intake. Developing foods that successfully target enhanced secretion of GI-origin ‘satiety’ peptides for weight loss remains a significant challenge.
Collapse
|
13
|
Habitual Breakfast Patterns Do Not Influence Appetite and Satiety Responses in Normal vs. High-Protein Breakfasts in Overweight Adolescent Girls. Nutrients 2019; 11:nu11061223. [PMID: 31146440 PMCID: PMC6628162 DOI: 10.3390/nu11061223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/25/2022] Open
Abstract
Differences in postprandial insulin, glucose, and/or free fatty acid concentrations, following the consumption of breakfast, have been demonstrated to be dependent on habitual breakfast patterns. This study examined the effects of habitual breakfast patterns on postprandial appetite, satiety, and hormonal responses along with daily food intake following the consumption of normal-protein (NP) vs. higher-protein (HP) breakfasts in overweight adolescents. Thirty-seven girls (age: 19 ± 1 year; BMI: 29.0 ± 3.4 kg/m2) participated in the semi-randomized crossover design study. Participants were grouped according to whether they habitually skipped (SKIP, n = 18) or consumed breakfast (CONSUME, n = 19), and consumed a NP (350 kcal; 13 g protein) or HP (350 kcal; 35 g protein) breakfast for 3 days/pattern. On day 4, breakfast was provided, and appetite questionnaires and blood samples were collected throughout an 8 h testing day. Daily food intake was also assessed. Regardless of habitual breakfast patterns, the consumption of HP breakfast led to greater daily fullness (29,030 ± 6,010 min × mm) vs. NP breakfast (26,910 ± 5580 min × mm; p = 0.03). Daily protein consumption was greater (98 ± 15 g vs. 78 ± 15 g), and carbohydrate consumption was lower (331 ± 98 g vs. 367 ± 94 g) with HP vs. NP (both, p < 0.001). No other differences were observed. These data suggest that the recommendation to consume a HP breakfast for improved satiety and ingestive behavior is appropriate for overweight adolescent girls, regardless of habitual breakfast patterns.
Collapse
|
14
|
Higgins KA, Mattes RD. A randomized controlled trial contrasting the effects of 4 low-calorie sweeteners and sucrose on body weight in adults with overweight or obesity. Am J Clin Nutr 2019; 109:1288-1301. [PMID: 30997499 DOI: 10.1093/ajcn/nqy381] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/11/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Low-calorie sweeteners (LCSs) provide sweetness with little or no energy. However, each LCS's unique chemical structure has potential to elicit different sensory, physiological, and behavioral responses that affect body weight. OBJECTIVE The purpose of this trial was to compare the effects of consumption of 4 LCSs and sucrose on body weight, ingestive behaviors, and glucose tolerance over a 12-wk intervention in adults (18-60 y old) with overweight or obesity (body mass index 25-40 kg/m2). METHODS In a parallel-arm design, 154 participants were randomly assigned to consume 1.25-1.75 L of beverage sweetened with sucrose (n = 39), aspartame (n = 30), saccharin (n = 29), sucralose (n = 28), or rebaudioside A (rebA) (n = 28) daily for 12 wk. The beverages contained 400-560 kcal/d (sucrose treatments) or <5 kcal/d (LCS treatments). Anthropometric indexes, energy intake, energy expenditure, appetite, and glucose tolerance were measured at baseline. Body weight was measured every 2 wk with energy intake, expenditure, and appetite assessed every 4 wk. Twenty-four-hour urine collections were completed every 4 wk to determine study compliance via para-aminobenzoic acid excretion. RESULTS Of the participants enrolled in the trial, 123 completed the 12-wk intervention. Sucrose and saccharin consumption led to increased body weight across the 12-wk intervention (Δweight = +1.85 ± 0.36 kg and +1.18 ± 0.36 kg, respectively; P ≤ 0.02) and did not differ from each other. There was no significant change in body weight with consumption of the other LCS treatments compared with baseline, but change in body weight for sucralose was negative and significantly lower compared with all other LCSs at week 12 (weight difference ≥ 1.37 ± 0.52 kg, P ≤ 0.008). Energy intake decreased with sucralose consumption (P = 0.02) and ingestive frequency was lower for sucralose than for saccharin (P = 0.045). Glucose tolerance was not significantly affected by any of the sweetener treatments. CONCLUSIONS Sucrose and saccharin consumption significantly increase body weight compared with aspartame, rebA, and sucralose, whereas weight change was directionally negative and lower for sucralose compared with saccharin, aspartame, and rebA consumption. LCSs should be categorized as distinct entities because of their differing effects on body weight. This trial was registered at clinicaltrials.gov as NCT02928653.
Collapse
Affiliation(s)
- Kelly A Higgins
- Departments of Food Science and Nutrition Science, Purdue University, West Lafayette, IN
| | - Richard D Mattes
- Departments of Nutrition Science, Purdue University, West Lafayette, IN
| |
Collapse
|
15
|
Hunter DC, Jones VS, Hedderley DI, Jaeger SR. The influence of claims of appetite control benefits in those trying to lose or maintain weight: The role of claim believability and attitudes to functional foods. Food Res Int 2018; 119:715-724. [PMID: 30884708 DOI: 10.1016/j.foodres.2018.10.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/13/2018] [Accepted: 10/16/2018] [Indexed: 11/19/2022]
Abstract
Functional foods which enhance satiety and hence offer appetite control can support weight loss efforts, but consumers' perceptions of such products are not fully understood. Urban-dwelling Australian consumers (n = 1629) trying to lose or to maintain weight rated written product concepts offering appetite control benefits for purchase intent and believability. In general, all product concepts were rated moderately for purchase intent, although products that were more likely to be commonly consumed, and that were a solid format received significantly higher ratings. Believability of product concept statements was found to vary significantly depending on product category. Compared to consumers trying to maintain their weight, consumers actively trying to lose weight tended to rate product concepts higher for purchase intent, despite similar scores for believability of concept. Age, gender and a sceptical attitude towards functional foods did not tend to strongly influence purchase intent and believability of product concepts offering appetite control. Actively trying to lose or maintain weight also had little influence over the degree to which consumers believed the product concept would deliver the benefits it was claiming. The association between a positive attitude towards functional foods and both purchase intent and believability was significant across all product concept categories, although the impact on purchase intent was largely mediated through believability. In assessing information provided about the active ingredients and functionality of the products, consumers rated as the two most important attributes that the products were clinically tested and that the active ingredient was derived from fruits and vegetables. In a broader perspective, careful communication of the clinical efficacy and effective consumption of appetite control products to assist with weight loss seems warranted.
Collapse
Affiliation(s)
- Denise C Hunter
- The New Zealand Institute for Plant & Food Research Ltd, 120 Mt Albert Road, Private Bag 92169, Auckland 1142, New Zealand
| | - Veronika S Jones
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North Research Centre, Tennent Drive, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Duncan I Hedderley
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North Research Centre, Tennent Drive, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Sara R Jaeger
- The New Zealand Institute for Plant & Food Research Ltd, 120 Mt Albert Road, Private Bag 92169, Auckland 1142, New Zealand.
| |
Collapse
|
16
|
Dougkas A, Östman E. Comparable effects of breakfast meals varying in protein source on appetite and subsequent energy intake in healthy males. Eur J Nutr 2018; 57:1097-1108. [PMID: 28243787 DOI: 10.1007/s00394-017-1392-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 02/02/2017] [Indexed: 10/20/2022]
Abstract
PURPOSE The satiating effect of animal vs plant proteins remains unknown. The present study examined the effects of breakfasts containing animal proteins [milk (AP)], a blend of plant proteins [oat, pea and potato (VP)] or 50:50 mixture of the two (MP) compared with a carbohydrate-rich meal (CHO) on appetite, energy intake (EI) and metabolic measures. METHODS A total of 28 males [mean age 27.4 (±SD 4.2) years, BMI 23.4 (±2.1) kg/m2] consumed three isoenergetic (1674 kJ) rice puddings matched for energy density and macronutrient content as breakfast (25% E from protein) in a single-blind, randomised, cross over design. Appetite ratings and blood samples were collected and assessed at baseline and every 30 and 60 min, respectively, until an ad libitum test meal was served 3.5 h later. Free-living appetite was recorded hourly and EI in weighed food records for the remainder of the day. RESULTS No differences in subjective appetite ratings were observed after consumption of the AP, VP and MP. Furthermore, there were no differences between the AP, VP, MP and CHO breakfasts in ad libitum EI and self-reported EI during the remainder of the day. Although insulin metabolism was not affected, CHO induced a higher glucose response (P = 0.001) and total amino acids concentration was in the order of AP = MP > VP > CHO breakfast (P = 0.001). CONCLUSION Manipulating the protein source of foods consumed as breakfast, elicited comparable effects on appetite and EI at both laboratory and free-living environment in healthy men.
Collapse
Affiliation(s)
- Anestis Dougkas
- Food for Health Science Center, Lund University, Lund, 221 00, Sweden.
- Institut Paul Bocuse Research Centre, 6913, Ecully, France.
| | - Elin Östman
- Food for Health Science Center, Lund University, Lund, 221 00, Sweden
| |
Collapse
|
17
|
Zanzer YC, Plaza M, Dougkas A, Turner C, Björck I, Östman E. Polyphenol-rich spice-based beverages modulated postprandial early glycaemia, appetite and PYY after breakfast challenge in healthy subjects: A randomized, single blind, crossover study. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
18
|
Abstract
AbstractA better understanding of the factors that influence eating behaviour is of importance as our food choices are associated with the risk of developing chronic diseases such as obesity, CVD, type 2 diabetes or some forms of cancer. In addition, accumulating evidence suggests that the industrial food production system is a major contributor to greenhouse gas emission and may be unsustainable. Therefore, our food choices may also contribute to climate change. By identifying the factors that influence eating behaviour new interventions may be developed, at the individual or population level, to modify eating behaviour and contribute to society’s health and environmental goals. Research indicates that eating behaviour is dictated by a complex interaction between physiology, environment, psychology, culture, socio-economics and genetics that is not fully understood. While a growing body of research has identified how several single factors influence eating behaviour, a better understanding of how these factors interact is required to facilitate the developing new models of eating behaviour. Due to the diversity of influences on eating behaviour this would probably necessitate a greater focus on multi-disciplinary research. In the present review, the influence of several salient physiological and environmental factors (largely related to food characteristics) on meal initiation, satiation (meal size) and satiety (inter-meal interval) are briefly discussed. Due to the large literature this review is not exhaustive but illustrates the complexity of eating behaviour. The present review will also highlight several limitations that apply to eating behaviour research.
Collapse
|
19
|
Obesity and Weight Control: Is There Light at the End of the Tunnel? Curr Nutr Rep 2017. [DOI: 10.1007/s13668-017-0206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Schauf S, Salas-Mani A, Torre C, Jimenez E, Latorre MA, Castrillo C. Effect of feeding a high-carbohydrate or a high-fat diet on subsequent food intake and blood concentration of satiety-related hormones in dogs. J Anim Physiol Anim Nutr (Berl) 2017; 102:e21-e29. [DOI: 10.1111/jpn.12696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 01/10/2017] [Indexed: 12/27/2022]
Affiliation(s)
- S. Schauf
- Department of Animal Production and Food Science; University of Zaragoza; Zaragoza Spain
| | - A. Salas-Mani
- Department of Research and Development; Affinity Petcare; Barcelona Spain
| | - C. Torre
- Department of Research and Development; Affinity Petcare; Barcelona Spain
| | - E. Jimenez
- Department of Physiology and Biochemistry of Animal Nutrition; Estación Experimental del Zaidín; Granada Spain
| | - M. A. Latorre
- Department of Animal Production and Food Science; University of Zaragoza; Zaragoza Spain
| | - C. Castrillo
- Department of Animal Production and Food Science; University of Zaragoza; Zaragoza Spain
| |
Collapse
|
21
|
Appetite responses to high-fat meals or diets of varying fatty acid composition: a comprehensive review. Eur J Clin Nutr 2017; 71:1154-1165. [DOI: 10.1038/ejcn.2016.250] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/02/2016] [Accepted: 09/26/2016] [Indexed: 02/08/2023]
|
22
|
van Avesaat M, Ripken D, Hendriks HFJ, Masclee AAM, Troost FJ. Small intestinal protein infusion in humans: evidence for a location-specific gradient in intestinal feedback on food intake and GI peptide release. Int J Obes (Lond) 2016; 41:217-224. [PMID: 27811949 DOI: 10.1038/ijo.2016.196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Protein infusion in the small intestine results in intestinal brake activation: a negative feedback mechanism that may be mediated by the release of gastrointestinal peptides resulting in a reduction in food intake. It has been proposed that duodenum, jejunum and ileum may respond differently to infused proteins. OBJECTIVE To investigate differences in ad libitum food intake, feelings of hunger and satiety and the systemic levels of cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), peptide YY (PYY), glucose and insulin after intraduodenal, intrajejunal and intraileal protein infusion. METHODS Fourteen subjects (four male, mean age: 23±2.1 years, mean body mass index: 21.6±1.8 kg m-2) were intubated with a naso-ileal catheter in this double-blind, randomized, placebo-controlled crossover study. Test days (four in total, executed on consecutive days) started with the ingestion of a standardized breakfast, followed by the infusion of 15 g of protein in the duodenum, jejunum or ileum over a period of 60 min. Food intake was measured by offering an ad libitum meal and Visual Analogue Scale (VAS) scores were used to assess feelings of hunger and satiety. Blood samples were drawn at regular intervals for CCK, GLP-1, PYY, glucose and insulin analyses. RESULTS Intraileal protein infusion decreased ad libitum food intake compared with both intraduodenal and placebo infusion (ileum: 628.5±63 kcal vs duodenum: 733.6±50 kcal, P<0.01 and placebo: 712.2±53 kcal, P<0.05). GLP-1 concentrations were increased after ileal infusion compared with jejunal and placebo infusion, whereas CCK concentrations were only increased after intraileal protein infusion compared with placebo. None of the treatments affected VAS scores for hunger and satiety nor plasma concentrations of PYY and glucose. CONCLUSIONS Protein infusion into the ileum decreases food intake during the next meal compared with intraduodenal infusion, whereas it increases systemic levels of GLP-1 compared with protein infusion into the jejunum and placebo respectively.
Collapse
Affiliation(s)
- M van Avesaat
- Top Institute Food and Nutrition, Wageningen, The Netherlands.,Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - D Ripken
- Top Institute Food and Nutrition, Wageningen, The Netherlands.,The Netherlands Organization for Applied Scientific Research, TNO, Zeist, The Netherlands.,Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - H F J Hendriks
- Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - A A M Masclee
- Top Institute Food and Nutrition, Wageningen, The Netherlands.,Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - F J Troost
- Top Institute Food and Nutrition, Wageningen, The Netherlands.,Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
23
|
Carreiro AL, Dhillon J, Gordon S, Jacobs AG, Higgins KA, McArthur BM, Redan BW, Rivera RL, Schmidt LR, Mattes RD. The Macronutrients, Appetite, and Energy Intake. Annu Rev Nutr 2016; 36:73-103. [PMID: 27431364 PMCID: PMC4960974 DOI: 10.1146/annurev-nutr-121415-112624] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Each of the macronutrients-carbohydrate, protein, and fat-has a unique set of properties that influences health, but all are a source of energy. The optimal balance of their contribution to the diet has been a long-standing matter of debate. Over the past half century, thinking has progressed regarding the mechanisms by which each macronutrient may contribute to energy balance. At the beginning of this period, metabolic signals that initiated eating events (i.e., determined eating frequency) were emphasized. This was followed by an orientation to gut endocrine signals that purportedly modulate the size of eating events (i.e., determined portion size). Most recently, research attention has been directed to the brain, where the reward signals elicited by the macronutrients are viewed as potentially problematic (e.g., contribute to disordered eating). At this point, the predictive power of the macronutrients for energy intake remains limited.
Collapse
Affiliation(s)
- Alicia L Carreiro
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Jaapna Dhillon
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Susannah Gordon
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Ashley G Jacobs
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Kelly A Higgins
- Department of Food Science, Purdue University, West Lafayette, IN 47907
| | | | - Benjamin W Redan
- Department of Food Science, Purdue University, West Lafayette, IN 47907
| | - Rebecca L Rivera
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Leigh R Schmidt
- Department of Food Science, Purdue University, West Lafayette, IN 47907
| | - Richard D Mattes
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
24
|
Belguesmia Y, Domenger D, Caron J, Dhulster P, Ravallec R, Drider D, Cudennec B. Novel probiotic evidence of lactobacilli on immunomodulation and regulation of satiety hormones release in intestinal cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
25
|
Boland M. Human digestion--a processing perspective. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2275-2283. [PMID: 26711173 DOI: 10.1002/jsfa.7601] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/14/2015] [Accepted: 12/20/2015] [Indexed: 06/05/2023]
Abstract
The human digestive system is reviewed in the context of a process with four major unit operations: oral processing to reduce particle size and produce a bolus; gastric processing to initiate chemical and enzymatic breakdown; small intestinal processing to break down macromolecules and absorb nutrients; and fermentation and water removal in the colon. Topics are highlighted about which we need to know more, including effects of aging and dentition on particle size in the bolus, effects of different patterns of food and beverage intake on nutrition, changes in saliva production and composition, mechanical effects of gastric processing, distribution of pH in the stomach, physicochemical and enzymatic effects on nutrient availability and uptake in the small intestine, and the composition, effects of and changes in the microbiota of the colon. Current topics of interest including food synergy, gut-brain interactions, nutritional phenotype and digestion in the elderly are considered. Finally, opportunities for food design based on an understanding of digestive processing are discussed.
Collapse
Affiliation(s)
- Mike Boland
- Riddet Institute, Palmerston North, New Zealand
| |
Collapse
|
26
|
Park E, Edirisinghe I, Inui T, Kergoat S, Kelley M, Burton-Freeman B. Short-term effects of chewing gum on satiety and afternoon snack intake in healthy weight and obese women. Physiol Behav 2016; 159:64-71. [DOI: 10.1016/j.physbeh.2016.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 11/16/2022]
|
27
|
Gibbons C, Finlayson G, Caudwell P, Webb DL, Hellström PM, Näslund E, Blundell JE. Postprandial profiles of CCK after high fat and high carbohydrate meals and the relationship to satiety in humans. Peptides 2016; 77:3-8. [PMID: 26429068 DOI: 10.1016/j.peptides.2015.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
Abstract
CONTEXT CCK is understood to play a major role in appetite regulation. Difficulties in measuring CCK have limited the potential to assess its profile in relation to food-induced satiety. Improvements in methodology and progress in theoretical understanding of satiety/satiation make it timely for this to be revisited. OBJECTIVE First, examine how physiologically relevant postprandial CCK8/33(s) profiles are influenced by fat (HF) or carbohydrate (HCHO) meals. Second, to examine relationships between postprandial CCK and profiles of satiety (hunger/fullness) and satiation (meal size). PARTICIPANTS AND DESIGN Sixteen overweight/obese adults (11 females/5 males) participated in a randomised-crossover study (46 years, 29.8 kg/m(2)) in a university research centre. Plasma was collected preprandially and for 180 min postprandially. Simultaneously, ratings of hunger/fullness were tracked for 180 min before an ad libitum lunch was provided. RESULTS CCK8/33(s) levels increased more rapidly and reached a higher peak following HF compared to HCHO breakfast (F(1,15)=14.737, p<0.01). Profiles of hunger/fullness did not differ between conditions (F(1,15)=0.505, p=0.488; F(1,15)=2.277, p=0.152). There was no difference in energy intake from the ad libitum meal (HF-3958 versus HCHO-3925 kJ; t(14)=0.201, p=0.844). CCK8/33(s) profiles were not associated with subjective appetite during early and late phases of satiety; nor was there an association between CCK8/33(s) and meal size. CONCLUSIONS These results demonstrate CCK levels were higher after HF meal compared to HCHO isocaloric meal. There was no association between CCK levels and intensity of satiety, or with meal size. Under these circumstances, CCK does not appear to play a unique independent role in satiety/satiation. CCK probably acts in conjunction with other peptides and the action of the stomach.
Collapse
Affiliation(s)
- Catherine Gibbons
- Biopsychology Group, School of Psychology, University of Leeds, Leeds, UK.
| | - Graham Finlayson
- Biopsychology Group, School of Psychology, University of Leeds, Leeds, UK
| | - Phillipa Caudwell
- Biopsychology Group, School of Psychology, University of Leeds, Leeds, UK
| | - Dominic-Luc Webb
- Department of Medical Sciences, Gastroenterology and Hepatology, Uppsala University, Uppsala, Sweden
| | - Per M Hellström
- Department of Medical Sciences, Gastroenterology and Hepatology, Uppsala University, Uppsala, Sweden
| | - Erik Näslund
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institute, Stockholm, Sweden
| | - John E Blundell
- Biopsychology Group, School of Psychology, University of Leeds, Leeds, UK
| |
Collapse
|
28
|
Liu AY, Silvestre MP, Poppitt SD. Prevention of type 2 diabetes through lifestyle modification: is there a role for higher-protein diets? Adv Nutr 2015; 6:665-73. [PMID: 26567192 PMCID: PMC4642418 DOI: 10.3945/an.115.008821] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Type 2 diabetes (T2D) incidence is increasing worldwide, driven by a rapidly changing environment and lifestyle and increasing rates of overweight and obesity. Prevention of diabetes is key and is most likely achieved through prevention of weight gain and/or successful long-term weight loss maintenance. Weight loss is readily achievable but there is considerable challenge in maintaining that weight loss over the long term. Lower-fat carbohydrate-based diets are widely used for T2D prevention. This is supported primarily by 3 successful long-term interventions, the US Diabetes Prevention Program, the Finnish Diabetes Prevention Study, and the Chinese Da Qing Study, but evidence is building in support of novel higher-protein (>20% of energy) diets for successful weight loss maintenance and prevention of T2D. Higher-protein diets have the advantage of having relatively low energy density, aiding longer-term appetite suppression, and preserving lean body mass, all central to successful weight loss and prevention of weight regain. Here, we review the carbohydrate-based intervention trials and present mechanistic evidence in support of increased dietary protein for weight loss maintenance and a possible novel role in prevention of dysglycemia and T2D.
Collapse
Affiliation(s)
- Amy Y Liu
- Human Nutrition Unit, Department of Medicine, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Marta P Silvestre
- Human Nutrition Unit, Department of Medicine, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Sally D Poppitt
- Human Nutrition Unit, Department of Medicine, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
29
|
Responses in gut hormones and hunger to diets with either high protein or a mixture of protein plus free amino acids supplied under weight-loss conditions. Br J Nutr 2015; 113:1254-70. [PMID: 25809236 DOI: 10.1017/s0007114515000069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High-protein diets are an effective means for weight loss (WL), but the mechanisms are unclear. One hypothesis relates to the release of gut hormones by either protein or amino acids (AA). The present study involved overweight and obese male volunteers (n 18, mean BMI 36·8 kg/m2) who consumed a maintenance diet for 7 d followed by fully randomised 10 d treatments with three iso-energetic WL diets, i.e. with either normal protein (NP, 15% of energy) or high protein (HP, 30%) or with a combination of protein and free AA, each 15% of energy (NPAA). Psychometric ratings of appetite were recorded hourly. On day 10, plasma samples were taken at 30 min intervals over two consecutive 5 h periods (covering post-breakfast and post-lunch) and analysed for AA, glucose and hormones (insulin, total glucose-dependent insulinotropic peptide, active ghrelin and total peptide YY (PYY)) plus leucine kinetics (first 5 h only). Composite hunger was 16% lower for the HP diet than for the NP diet (P<0·01) in the 5 h period after both meals. Plasma essential AA concentrations were greatest within 60 min of each meal for the NPAA diet, but remained elevated for 3-5 h after the HP diet. The three WL diets showed no difference for either fasting concentrations or the postprandial net incremental AUC (net AUCi) for insulin, ghrelin or PYY. No strong correlations were observed between composite hunger scores and net AUCi for either AA or gut peptides. Regulation of hunger may involve subtle interactions, and a range of signals may need to be integrated to produce the overall response.
Collapse
|
30
|
Spetter MS, Mars M, Viergever MA, de Graaf C, Smeets PA. Taste matters – effects of bypassing oral stimulation on hormone and appetite responses. Physiol Behav 2014; 137:9-17. [DOI: 10.1016/j.physbeh.2014.06.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 10/09/2013] [Accepted: 06/01/2014] [Indexed: 10/25/2022]
|
31
|
Lafarga T, Hayes M. Bioactive peptides from meat muscle and by-products: generation, functionality and application as functional ingredients. Meat Sci 2014; 98:227-39. [DOI: 10.1016/j.meatsci.2014.05.036] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/14/2014] [Accepted: 05/30/2014] [Indexed: 01/12/2023]
|
32
|
Solah VA, Brand-Miller JC, Atkinson FS, Gahler RJ, Kacinik V, Lyon MR, Wood S. Dose–response effect of a novel functional fibre, PolyGlycopleX®, PGX®, on satiety. Appetite 2014; 77:72-6. [DOI: 10.1016/j.appet.2014.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 02/19/2014] [Accepted: 02/28/2014] [Indexed: 12/23/2022]
|
33
|
The sum of its parts--effects of gastric distention, nutrient content and sensory stimulation on brain activation. PLoS One 2014; 9:e90872. [PMID: 24614074 PMCID: PMC3948722 DOI: 10.1371/journal.pone.0090872] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 02/06/2014] [Indexed: 12/15/2022] Open
Abstract
During food consumption the brain integrates multiple interrelated neural and hormonal signals involved in the regulation of food intake. Factors influencing the decision to stop eating include the foods' sensory properties, macronutrient content, and volume, which in turn affect gastric distention and appetite hormone responses. So far, the contributions of gastric distention and oral stimulation by food on brain activation have not been studied. The primary objective of this study was to assess the effect of gastric distention with an intra-gastric load and the additional effect of oral stimulation on brain activity after food administration. Our secondary objective was to study the correlations between hormone responses and appetite-related ratings and brain activation. Fourteen men completed three functional magnetic resonance imaging sessions during which they either received a naso-gastric infusion of water (stomach distention), naso-gastric infusion of chocolate milk (stomach distention + nutrients), or ingested chocolate-milk (stomach distention + nutrients + oral exposure). Appetite ratings and blood parameters were measured at several time points. During gastric infusion, brain activation was observed in the midbrain, amygdala, hypothalamus, and hippocampus for both chocolate milk and water, i.e., irrespective of nutrient content. The thalamus, amygdala, putamen and precuneus were activated more after ingestion than after gastric infusion of chocolate milk, whereas infusion evoked greater activation in the hippocampus and anterior cingulate. Moreover, areas involved in gustation and reward were activated more after oral stimulation. Only insulin responses following naso-gastric infusion of chocolate milk correlated with brain activation, namely in the putamen and insula. In conclusion, we show that normal (oral) food ingestion evokes greater activation than gastric infusion in stomach distention and food intake-related brain areas. This provides neural evidence for the importance of sensory stimulation in the process of satiation. Trial Registration ClinicalTrials.gov NCT01644539.
Collapse
|
34
|
Poppitt SD, Strik CM, McArdle BH, McGill AT, Hall RS. Evidence of enhanced serum amino acid profile but not appetite suppression by dietary glycomacropeptide (GMP): a comparison of dairy whey proteins. J Am Coll Nutr 2014; 32:177-86. [PMID: 23885991 DOI: 10.1080/07315724.2013.791186] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE There is evidence that high-protein foods increase satiety and may aid weight loss, yet little is known of differential effects of protein composition. The aim of the study was to compare the acute effects of 4 whey proteins on satiety and food intake and to evaluate possible relationships with postprandial serum amino acid concentrations. METHODS Isoenergetic high-protein shakes (∼1 MJ) containing 25 g whey protein were given to 18 lean male participants using a crossover design. Three protein fractions identified as satiating in a rat model, glycomacropeptide (GMP), beta-lactoglobulin (ß-lac), and colostrum whey protein concentrate (WPC), were compared with a WPC control. A standardized 2.5MJ breakfast was given at 0830 hours, followed by the preload beverages at 1130 hours. Participants rated appetite sensations using visual analogue scales (VAS) prior to the beverage (baseline, 0 minutes) and then at 15, 30, 45, 60, 90, 150, and 210 minutes. Energy and macronutrient intake was measured by covert weighing of an ad libitum lunch meal at 90 minutes. Repeat blood samples were collected via venous cannulation. RESULTS Serum amino acid (a.a.) concentrations differed between whey fractions (p=0.012) and were higher following GMP compared to ß-lac (p=0.051) and colostrum WPC (p=0.044) but not the WPC control (p=0.20). There was no difference in VAS-rated hunger, satisfaction, or thoughts of food between whey fractions, but fullness did differ (p=0.032) and was highest following the ß-lac beverage. Energy intake was not suppressed relative to control by any of the 3 whey fractions. CONCLUSIONS We conclude that total serum a.a. concentration was a poor indicator of satiety, with little evidence of differential satiety between these whey proteins other than a modest enhancement of fullness by ß-lac.
Collapse
Affiliation(s)
- Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, Department of Medicine, University of Auckland, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
35
|
Shin HS, Ingram JR, McGill AT, Poppitt SD. Lipids, CHOs, proteins: can all macronutrients put a 'brake' on eating? Physiol Behav 2013; 120:114-23. [PMID: 23911804 DOI: 10.1016/j.physbeh.2013.07.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/09/2013] [Accepted: 07/23/2013] [Indexed: 01/18/2023]
Abstract
The gastrointestinal (GI) tract and specifically the most distal part of the small intestine, the ileum, has become a renewed focus of interest for mechanisms targeting appetite suppression. The 'ileal brake' is stimulated when energy-containing nutrients are delivered beyond the duodenum and jejunum and into the ileum, and is named for the feedback loop which slows or 'brakes' gastric emptying and duodeno-jejunal motility. More recently it has been hypothesized that the ileal brake also promotes secretion of satiety-enhancing GI peptides and suppresses hunger, placing a 'brake' on food intake. Postprandial delivery of macronutrients to the ileum, other than unavailable carbohydrates (CHO) which bypass absorption in the small intestine en route to fermentation in the large bowel, is an uncommon event and hence this brake mechanism is rarely activated following a meal. However the ability to place a 'brake' on food intake through delivery of protected nutrients to the ileum is both intriguing and challenging. This review summarizes the current clinical and experimental evidence for activation of the ileal brake by the three food macronutrients, with emphasis on eating behavior and satiety as well as GI function. While clinical studies have shown that exposure of the ileum to lipids, CHOs and proteins may activate GI components of the ileal brake, such as decreased gut motility, gastric emptying and secretion of GI peptides, there is less evidence as yet to support a causal relationship between activation of the GI brake by these macronutrients and the suppression of food intake. The predominance of evidence for an ileal brake on eating comes from lipid studies, where direct lipid infusion into the ileum suppresses both hunger and food intake. Outcomes from oral feeding studies are less conclusive with no evidence that 'protected' lipids have been successfully delivered into the ileum in order to trigger the brake. Whether CHO or protein may induce the ileal brake and suppress food intake has to date been little investigated, although both clearly have GI mediated effects. This review provides an overview of the mechanisms and mediators of activation of the ileal brake and assesses whether it may play an important role in appetite suppression.
Collapse
Affiliation(s)
- H S Shin
- Human Nutrition Unit, University of Auckland, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
36
|
McGregor RA, Poppitt SD. Milk protein for improved metabolic health: a review of the evidence. Nutr Metab (Lond) 2013; 10:46. [PMID: 23822206 PMCID: PMC3703276 DOI: 10.1186/1743-7075-10-46] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/23/2013] [Indexed: 02/07/2023] Open
Abstract
Epidemiological evidence shows that consumption of dairy products is associated with decreased prevalence of metabolic related disorders, whilst evidence from experimental studies points towards dairy protein as a dietary component which may aid prevention of type 2 diabetes (T2DM). Poor metabolic health is a common characteristic of overweight, obesity and aging, and is the forerunner of T2DM and cardiovascular disease (CVD), and an ever increasing global health issue. Progressive loss of metabolic control is evident from a blunting of carbohydrate, fat and protein metabolism, which is commonly manifested through decreased insulin sensitivity, inadequate glucose and lipid control, accompanied by a pro-inflammatory environment and hypertension. Adverse physiological changes such as excess visceral adipose tissue deposition and expansion, lipid overspill and infiltration into liver, muscle and other organs, and sarcopaenia or degenerative loss of skeletal muscle mass and function all underpin this adverse profile. ‘Sarcobesity’ and sarcopaenic diabetes are rapidly growing health issues. As well as through direct mechanisms, dairy protein may indirectly improve metabolic health by aiding loss of body weight and fat mass through enhanced satiety, whilst promoting skeletal muscle growth and function through anabolic effects of dairy protein-derived branch chain amino acids (BCAAs). BCAAs enhance muscle protein synthesis, lean body mass and skeletal muscle metabolic function. The composition and processing of dairy protein has an impact on digestion, absorption, BCAA kinetics and function, hence the optimisation of dairy protein composition through selection and combination of specific protein components in milk may provide a way to maximize benefits for metabolic health.
Collapse
Affiliation(s)
- Robin A McGregor
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.
| | | |
Collapse
|
37
|
Karl JP, Young AJ, Rood JC, Montain SJ. Independent and combined effects of eating rate and energy density on energy intake, appetite, and gut hormones. Obesity (Silver Spring) 2013; 21:E244-52. [PMID: 23592679 DOI: 10.1002/oby.20075] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/02/2012] [Accepted: 08/27/2012] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Energy density (ED) and eating rate (ER) influence energy intake; their combined effects on intake and on postprandial pancreatic and gut hormone responses are undetermined. To determine the combined effects of ED and ER manipulation on voluntary food intake, subjective appetite, and postprandial pancreatic and gut hormone responses. DESIGN AND METHODS Twenty nonobese volunteers each consumed high (1.6 kcal g(-1) ; HED) and low (1.2 kcal g(-1) ; LED) ED breakfasts slowly (20 g min(-1) ; SR) and quickly (80 g min(-1) ; FR) ad libitum to satiation. Appetite, and pancreatic and gut hormone concentrations were measured periodically over 3 h. Ad libitum energy intake during the subsequent lunch was then measured. RESULTS Main effects of ED and ER on energy intake and a main effect of ER, but not ED, on mass of food consumed were observed, FR and HED being associated with increased intake (P < 0.05). Across all conditions, energy intake was highest during FR-HED (P ≤ 0.01). Area under the curve (AUC) of appetite ratings was not different between meals. Main effects of ED and ER on insulin, peptide-YY, and glucagon-like peptide-1 AUC (P < 0.05) were observed, FR and HED being associated with larger AUC. No effects on active or total ghrelin AUC were documented. Total energy intake over both meals was highest during the FR-HED trial with the greatest difference between FR-HED and SR-LED trials (P ≤ 0.01). CONCLUSION Consuming an energy dense meal quickly compounds independent effects of ER and ED on energy intake. Energy compensation at the following meal may not occur despite altered gut hormone responses.
Collapse
Affiliation(s)
- J Philip Karl
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA.
| | | | | | | |
Collapse
|
38
|
Satiety-enhancing products for appetite control: science and regulation of functional foods for weight management. Proc Nutr Soc 2012; 71:350-62. [PMID: 22401600 DOI: 10.1017/s0029665112000134] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The current review considers satiety-based approaches to weight management in the context of health claims. Health benefits, defined as beneficial physiological effects, are what the European Food Safety Authority bases their recommendations on for claim approval. The literature demonstrates that foods that target within-meal satiation and post-meal satiety provide a plausible approach to weight management. However, few ingredient types tested produce the sustainable and enduring effects on appetite accompanied by the necessary reductions in energy intake required to claim satiety/reduction in hunger as a health benefit. Proteins, fibre types, novel oils and carbohydrates resistant to digestion all have the potential to produce beneficial short-term changes in appetite (proof-of-concept). The challenge remains to demonstrate their enduring effects on appetite and energy intake, as well as the health and consumer benefits such effects provide in terms of optimising successful weight management. Currently, the benefits of satiety-enhancing ingredients to both consumers and their health are under researched. It is possible that such ingredients help consumers gain control over their eating behaviour and may also help reduce the negative psychological impact of dieting and the physiological consequences of energy restriction that ultimately undermine weight management. In conclusion, industry needs to demonstrate that a satiety-based approach to weight management, based on single-manipulated food items, is sufficient to help consumers resist the situational and personal factors that drive overconsumption. Nonetheless, we possess the methodological tools, which when employed in appropriate designs, are sufficient to support health claims.
Collapse
|