1
|
Torres-García VM, Rodríguez-Nava E, Alcántara-Rivas RI, Picazo O, Roldán-Roldán G, Morin JP. Scopolamine infusion in the basolateral amygdala after saccharin intake induces conditioned taste avoidance in rats. Psychopharmacology (Berl) 2024; 241:2133-2144. [PMID: 38822849 PMCID: PMC11442510 DOI: 10.1007/s00213-024-06624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
RATIONALE Muscarinic receptor activity in the basolateral amygdala (BLA) is known to be involved in plasticity mechanisms that underlie emotional learning. The BLA is involved in the Attenuation of Neophobia, an incidental taste learning task in which a novel taste becomes familiar and recognized as safe. OBJECTIVE Here we assessed the role of muscarinic receptor activity in the BLA in incidental taste learning. METHODS Young adult male Wistar rats were bilaterally implanted with cannulas aimed at BLA. After recovery, rats were randomly assigned to either vehicle or muscarinic antagonist group, for each experiment. We tested the effect of specific and non-specific muscarinic antagonists administered either 1) 20 min before novel taste presentation; 2) immediately after novel taste presentation; 3) immediately after retrieval (the second taste presentation on Day 5 -S2-) or immediately after the fifth taste presentation on Day 8 (S5). RESULTS Non-specific muscarinic receptor antagonist scopolamine infused prior to novel taste, while not affecting novel taste preference, abolished AN, i.e., the increased preference observed in control animals on the second presentation. When administered after taste consumption, intra-BLA scopolamine not only prevented AN but caused a steep decrease in the taste preference on the second presentation. This scopolamine-induced taste avoidance was not dependent on taste novelty, nor did it generalize to another novel taste. Targeting putative postsynaptic muscarinic receptors with specific M1 or M3 antagonists appeared to produce a partial taste avoidance, while M2 antagonism had no effect. CONCLUSION These data suggest that if a salient gustatory experience is followed by muscarinic receptors antagonism in the BLA, it will be strongly and persistently avoided in the future. The study also shows that scopolamine is not just an amnesic drug, and its cognitive effects may be highly dependent on the task and the structure involved.
Collapse
Affiliation(s)
- Víctor Manuel Torres-García
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Emmanuel Rodríguez-Nava
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- Section of Postgraduate Studies and Research, Higher School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - Rosa Itzel Alcántara-Rivas
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Ofir Picazo
- Section of Postgraduate Studies and Research, Higher School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - Gabriel Roldán-Roldán
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Jean-Pascal Morin
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico.
| |
Collapse
|
2
|
Vishnoi S, Raisuddin S, Parvez S. Behavioral Tagging: Role of Neurotransmitter Receptor Systems in Novel Object Recognition Long-Term Memory. ACS OMEGA 2022; 7:11587-11595. [PMID: 35449908 PMCID: PMC9017113 DOI: 10.1021/acsomega.1c05865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Strong training is known to form long-term memory (LTM) as it is an inducer for both a learning tag (just like a synaptic tag/molecular tag) and plasticity-related proteins (PRPs), while weak training is an inducer of only a learning tag. However, weak training can also lead to LTM if paired with another behavioral task (open field in our study-a representative of a novel environment) around the time of PRP arrival. Weak behavioral training is a learning tag inducer, while the open field is a PRP inducer. The learning tag then captures these PRPs to form LTM. This is the basis of behavioral tagging (BT). BT is a well-known model for the evaluation of a few learning and memory forms. In this work, we examined the role of glutamate and D1/D5 (dopamine) receptors in the synthesis of a novel object recognition (NOR) tag (learning) as well as in PRP arrival, which come together to form NOR-LTM. Employing antagonists and/or agonists preceding or proceeding the open field and/or NOR training, it was revealed that the activation/stimulation of D1/D5 (dopamine) receptors and glutamatergic NMDA receptors plays a critical part in PRP arrival. We found that the activation/stimulation of NMDA receptors also contributes to the setting of the learning tag. Moreover, changes in glutamate, dopamine, and GABA neurotransmitter levels were also analyzed. These findings thus demonstrate the critical time window required for NOR-LTM formation based on the process of BT along with the role of activation/stimulation of D1/D5 (dopamine) receptors and NMDA receptors in the arrival of PRPs and learning tags for NOR-LTM formation.
Collapse
Affiliation(s)
| | | | - Suhel Parvez
- . Tel: +91 11 26059688, ext. 5573. Fax: +91 11
26059663
| |
Collapse
|
3
|
Radiske A, Gonzalez MC, Nôga DA, Rossato JI, Bevilaqua LRM, Cammarota M. GluN2B and GluN2A-containing NMDAR are differentially involved in extinction memory destabilization and restabilization during reconsolidation. Sci Rep 2021; 11:186. [PMID: 33420399 PMCID: PMC7794413 DOI: 10.1038/s41598-020-80674-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/24/2020] [Indexed: 12/01/2022] Open
Abstract
Extinction memory destabilized by recall is restabilized through mTOR-dependent reconsolidation in the hippocampus, but the upstream pathways controlling these processes remain unknown. Hippocampal NMDARs drive local protein synthesis via mTOR signaling and may control active memory maintenance. We found that in adult male Wistar rats, intra dorsal-CA1 administration of the non-subunit selective NMDAR antagonist AP5 or of the GluN2A subunit-containing NMDAR antagonist TCN201 after step down inhibitory avoidance (SDIA) extinction memory recall impaired extinction memory retention and caused SDIA memory recovery. On the contrary, pre-recall administration of AP5 or of the GluN2B subunit-containing NMDAR antagonist RO25-6981 had no effect on extinction memory recall or retention per se but hindered the recovery of the avoidance response induced by post-recall intra-CA1 infusion of the mTOR inhibitor rapamycin. Our results indicate that GluN2B-containing NMDARs are necessary for extinction memory destabilization whereas GluN2A-containing NMDARs are involved in its restabilization, and suggest that pharmacological modulation of the relative activation state of these receptor subtypes around the moment of extinction memory recall may regulate the dominance of extinction memory over the original memory trace.
Collapse
Affiliation(s)
- Andressa Radiske
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, Natal, RN, 59056-450, Brazil
| | - Maria Carolina Gonzalez
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, Natal, RN, 59056-450, Brazil.,Edmond and Lily Safra International Institute of Neuroscience, Av. Alberto Santos Dumont 1560, Macaiba, RN, 59280-000, Brazil
| | - Diana A Nôga
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, Natal, RN, 59056-450, Brazil
| | - Janine I Rossato
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, Natal, RN, 59056-450, Brazil.,Department of Physiology, Federal University of Rio Grande do Norte, Av. Sen. Salgado Filho 3000, Natal, RN, 59064-741, Brazil
| | - Lia R M Bevilaqua
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, Natal, RN, 59056-450, Brazil
| | - Martín Cammarota
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, Natal, RN, 59056-450, Brazil.
| |
Collapse
|
4
|
Portero-Tresserra M, Martí-Nicolovius M, Tarrés-Gatius M, Candalija A, Guillazo-Blanch G, Vale-Martínez A. Intra-hippocampal D-cycloserine rescues decreased social memory, spatial learning reversal, and synaptophysin levels in aged rats. Psychopharmacology (Berl) 2018; 235:1463-1477. [PMID: 29492616 DOI: 10.1007/s00213-018-4858-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 02/15/2018] [Indexed: 01/08/2023]
Abstract
RATIONALE Aging is characterized by a decrease in N-methyl-D-aspartate receptors (NMDARs) in the hippocampus, which might be one of the factors involved in the age-dependent cognitive decline. D-Cycloserine (DCS), a partial agonist of the NMDAR glycine recognition site, could improve memory deficits associated to neurodegenerative disorders and cognitive deficits observed in normal aging. OBJECTIVES AND METHODS The aim of the present study was to explore whether DCS would reverse age-dependent memory deficits and decreases in NMDA receptor subunits (GluN1, GluN2A, and GluN2B) and the presynaptic protein synaptophysin in Wistar rats. We investigated the effects of pre-training infusions of DCS (10 μg/hemisphere) in the ventral hippocampus on two hippocampal-dependent learning tasks, the social transmission of food preference (STFP), and the Morris water maze (MWM). RESULTS The results revealed that infusions of DCS administered before the acquisition sessions rescued deficits in the STFP retention and MWM reversal learning in old rats. DCS also significantly increased the hippocampal levels of synaptophysin in old rats, which correlated with STFP and MWM performance in all tests. Moreover, although the levels of the GluN1 subunit correlated with the MWM acquisition and reversal, DCS did not enhance the expression of such synaptic protein. CONCLUSIONS The present behavioral results support the role of DCS as a cognitive enhancer and suggest that enhancing the function of NMDARs and synaptic plasticity in the hippocampus may be related to improvement in social memory and spatial learning reversal in aged animals.
Collapse
Affiliation(s)
- Marta Portero-Tresserra
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Margarita Martí-Nicolovius
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Mireia Tarrés-Gatius
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Candalija
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gemma Guillazo-Blanch
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Vale-Martínez
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Forsyth JK, Bachman P, Mathalon DH, Roach BJ, Ye E, Asarnow RF. Effects of Augmenting N-Methyl-D-Aspartate Receptor Signaling on Working Memory and Experience-Dependent Plasticity in Schizophrenia: An Exploratory Study Using Acute d-cycloserine. Schizophr Bull 2017; 43:1123-1133. [PMID: 28338977 PMCID: PMC5581900 DOI: 10.1093/schbul/sbw193] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Cognitive deficits in schizophrenia have been hypothesized to reflect N-methyl-D-aspartate receptor (NMDAR) dysfunction. However, the mechanisms through which the NMDAR contributes to individual cognitive functions differ. To explore how NMDAR signaling relates to specific cognitive deficits in schizophrenia, we tested the effects of enhancing NMDAR signaling on working memory and experience-dependent plasticity using d-cycloserine (DCS). Plasticity was assessed using an EEG paradigm that utilizes high-frequency visual stimulation (HFvS) to induce neural potentiation, and 2 learning tasks, the information integration (IIT) and weather prediction (WPT) tasks. Working memory was assessed using an N-back task. Forty-five schizophrenia patients were randomized to receive a single 100 mg DCS dose (SZ-DCS; n = 24) or placebo (SZ-PLC; n = 21) in a double-blind, between-groups design. Testing occurred on a single day after placebo or DCS administration; baseline values were not obtained. DCS did not affect plasticity, as indicated by similar neural potentiation, and similar IIT and WPT learning between groups. However, among patients who successfully engaged in the working memory task (ie, performed above chance), SZ-DCS (n = 17) showed superior 2-back performance compared to SZ-PLC (n = 16). Interestingly, SZ-DCS also showed larger pre-HFvS neural responses during the LTP task. Notably, this pattern of DCS effects is the opposite of those found in our prior study of healthy adults. Results are consistent with target engagement of the NMDAR by DCS, but suggest that NMDAR signaling was not translated into synaptic plasticity changes in schizophrenia. Results highlight the importance of considering how distinct NMDAR-associated processes contribute to individual cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Jennifer K Forsyth
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA
| | - Peter Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Daniel H Mathalon
- Department of Psychiatry and Biomedical Sciences, University of California, San Francisco, San Francisco, CA;,San Francisco Veterans Affairs Medical Center, San Francisco, CA
| | - Brian J Roach
- San Francisco Veterans Affairs Medical Center, San Francisco, CA
| | - Elissa Ye
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA
| | - Robert F Asarnow
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA;,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA,To whom correspondence should be addressed; Department of Psychology, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095; tel: (310) 825-0394, fax: (310) 206-4446, e-mail:
| |
Collapse
|
6
|
Goodman J, Ressler RL, Packard MG. Enhancing and impairing extinction of habit memory through modulation of NMDA receptors in the dorsolateral striatum. Neuroscience 2017; 352:216-225. [DOI: 10.1016/j.neuroscience.2017.03.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/22/2017] [Accepted: 03/26/2017] [Indexed: 01/20/2023]
|
7
|
Schayek R, Maroun M. Dissociation in the effects of stress and D1 receptors activation on basolateral amygdalar LTP in juvenile and adult animals. Neuropharmacology 2017; 113:511-518. [DOI: 10.1016/j.neuropharm.2016.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 01/08/2023]
|
8
|
Clem RL, Schiller D. New Learning and Unlearning: Strangers or Accomplices in Threat Memory Attenuation? Trends Neurosci 2016; 39:340-351. [PMID: 27079843 DOI: 10.1016/j.tins.2016.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 10/21/2022]
Abstract
To achieve greatest efficacy, therapies for attenuating fear and anxiety should preclude the re-emergence of emotional responses. Of relevance to this aim, preclinical models of threat memory reduction are considered to engage one of two discrete neural processes: either establishment of a new behavioral response that competes with, and thereby temporarily interferes with the expression of, threat memory (new learning) or one that modifies and thereby disrupts threat memory (unlearning). We contend that a strict dichotomy of new learning and unlearning does not provide a compelling explanation for current data. Instead, we suggest that the evidence warrants consideration of alternative models that assume cooperation rather than competition between formation of new cellular traces and the modification of preexisting ones.
Collapse
Affiliation(s)
- Roger L Clem
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Daniela Schiller
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
Vishnoi S, Raisuddin S, Parvez S. Modulatory effects of an NMDAR partial agonist in MK-801-induced memory impairment. Neuroscience 2015; 311:22-33. [PMID: 26454025 DOI: 10.1016/j.neuroscience.2015.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/29/2015] [Accepted: 10/04/2015] [Indexed: 12/22/2022]
Abstract
RATIONALE Acute administration of the N-methyl-d-aspartate (NMDA) non-competitive antagonist, MK-801, impairs novel object recognition (NOR), locomotor activity in open field (OF) and conditioned taste aversion (CTA) in rodents. NMDAR partial agonist d-cycloserine (DCS) reverses these effects in NOR and CTA via modulation of glutamatergic, cholinergic and dopaminergic systems. OBJECTIVES AND METHODS To test this hypothesis, we investigated the effects of DCS, a partial NMDAR agonist, on NOR memory, locomotor activity, and CTA memory in Wistar rats on NMDA-glutamate receptor antagonism by MK-801. The potential involvement of dopaminergic and cholinergic systems in improving cognitive functions was explored. MK-801-induced cognitive deficits were assessed using NOR, OF and CTA paradigms. MK-801-induced dopamine release increase in acetylcholinesterase (AChE), mono amine oxidase (MAO) activity and increase in c-fos expression were also investigated. RESULTS The effects caused by MK-801 (0.2 mg/kg) were inhibited by administration of the NMDA receptor agonist DCS (15 mg/kg). NOR and CTA paradigms inhibited by MK-801 were attenuated by DCS administration. Moreover, DCS also blocked the MK-801-induced abnormal increase in dopamine content, AChE activity and MAO activity. However, c-fos overexpression was controlled to some extent only. CONCLUSIONS Based on the NMDAR hypo function hypothesis in some neuropsychiatric disorders, our finding suggests that improving NMDAR hypo function by agonist DCS may play a significant role.
Collapse
Affiliation(s)
- S Vishnoi
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - S Raisuddin
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - S Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India.
| |
Collapse
|
10
|
Tsuboi H, Hirai Y, Maezawa H, Notani K, Inoue N, Funahashi M. Effects of treadmill exercise on the LiCl-induced conditioned taste aversion in rats. Physiol Behav 2014; 138:1-5. [PMID: 25447753 DOI: 10.1016/j.physbeh.2014.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
Abstract
Studies have shown that exercise can enhance learning and memory. Conditioned taste aversion (CTA) is an avoidance behavior induced by associative memory of the taste sensation for something pleasant or neutral with a negative visceral reaction caused by the coincident action of a toxic substance that is tasteless or administered systemically. We sought to measure the effects of treadmill exercise on CTA in rats by investigating the effects of exercise on acquisition, extinction and spontaneous recovery of CTA. We made two groups of rats: an exercise group that ran on a treadmill, and a control group that did not have structured exercise periods. To condition rats to disfavor a sweet taste, consumption of a 0.1% saccharin solution in place of drinking water was paired with 0.15M LiCl (2% body weight, i.p.) to induce visceral discomfort. We measured changes of saccharin consumption during acquisition and extinction of CTA. The exercise and no-exercise groups both acquired CTA to similar levels and showed maximum extinction of CTA around 6 days after acquisition. This result indicates that exercise affects neither acquisition nor extinction of CTA. However, in testing for preservation of CTA after much longer extinction periods that included exercise or not during the intervening period, exercising animals showed a significantly lower saccharin intake, irrespective of having exercised or not during the conditioning phase of the trial. This result suggests that exercise may help to preserve aversive memory (taste aversion in this example) as evidence by the significant spontaneous recovery of aversion in exercising animals.
Collapse
Affiliation(s)
- Hisanori Tsuboi
- Department of Gerodontology, Division of Oral Health Science, Hokkaido University Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan; Department of Oral Physiology, Division of Oral Functional Science, Hokkaido University Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan.
| | - Yoshiyuki Hirai
- Department of Oral Physiology, Division of Oral Functional Science, Hokkaido University Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan.
| | - Hitoshi Maezawa
- Department of Oral Physiology, Division of Oral Functional Science, Hokkaido University Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan.
| | - Kenji Notani
- Department of Gerodontology, Division of Oral Health Science, Hokkaido University Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan.
| | - Nobuo Inoue
- Department of Gerodontology, Division of Oral Health Science, Hokkaido University Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan.
| | - Makoto Funahashi
- Department of Oral Physiology, Division of Oral Functional Science, Hokkaido University Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan.
| |
Collapse
|
11
|
O'Neill CE, Hobson BD, Levis SC, Bachtell RK. Persistent reduction of cocaine seeking by pharmacological manipulation of adenosine A1 and A 2A receptors during extinction training in rats. Psychopharmacology (Berl) 2014; 231:3179-88. [PMID: 24562064 PMCID: PMC4111968 DOI: 10.1007/s00213-014-3489-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/06/2014] [Indexed: 01/01/2023]
Abstract
RATIONALE Adenosine receptor stimulation and blockade have been shown to modulate a variety of cocaine-related behaviors. OBJECTIVES These studies identify the direct effects of adenosine receptor stimulation on cocaine seeking during extinction training and the persistent effects on subsequent reinstatement to cocaine seeking. METHODS Rats self-administered cocaine on a fixed ratio one schedule in daily sessions over 3 weeks. Following a 1-week withdrawal, the direct effects of adenosine receptor modulation were tested by administering the adenosine A1 receptor agonist, N(6)-cyclopentyladenosine (CPA, 0.03 and 0.1 mg/kg), the adenosine A2A agonist, CGS 21680 (0.03 and 0.1 mg/kg), the presynaptic adenosine A2A receptor antagonist, SCH 442416 (0.3, 1, and 3 mg/kg), or vehicle prior to each of six daily extinction sessions. The persistent effects of adenosine receptor modulation during extinction training were subsequently tested on reinstatement to cocaine seeking induced by cues, cocaine, and the dopamine D2 receptor agonist, quinpirole. RESULTS All doses of CPA and CGS 21680 impaired initial extinction responding; however, only CPA treatment during extinction produced persistent impairment in subsequent cocaine- and quinpirole-induced seeking. Dissociating CPA treatment from extinction did not alter extinction responding or subsequent reinstatement. Administration of SCH 442416 had no direct effects on extinction responding but produced dose-dependent persistent impairment of cocaine- and quinpirole-induced seeking. CONCLUSIONS These findings demonstrate that adenosine A1 or A2A receptor stimulation directly impair extinction responding. Interestingly, adenosine A1 receptor stimulation or presynaptic adenosine A2A receptor blockade during extinction produces lasting changes in relapse susceptibility.
Collapse
Affiliation(s)
- Casey E O'Neill
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, UCB 345, Boulder, CO, 80309-0345, USA
| | | | | | | |
Collapse
|
12
|
Mickley GA, Hoxha N, Luchsinger JL, Rogers MM, Wiles NR. Chronic dietary magnesium-L-threonate speeds extinction and reduces spontaneous recovery of a conditioned taste aversion. Pharmacol Biochem Behav 2013; 106:16-26. [PMID: 23474371 PMCID: PMC3668337 DOI: 10.1016/j.pbb.2013.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/07/2013] [Accepted: 02/16/2013] [Indexed: 10/27/2022]
Abstract
Elevation of brain magnesium enhances synaptic plasticity and extinction of conditioned fear memories. This experiment examined the generalizability of this phenomenon by studying the effects of a novel magnesium compound, magnesium-L-threonate (MgT), on conditioned taste aversion (CTA) extinction and spontaneous recovery (SR). Adult male Sprague-Dawley rats were maintained on a 23-hour water deprivation cycle and acquired a CTA following the taste of a CS [0.3% saccharin+16 mg/ml MgT (SAC+MgT)] paired with a US [81 mg/kg (i.p.) lithium chloride (LiCl)]. Following CTA acquisition, rats drank a water+MgT solution for up to 1 hour/day over the next 31 days. For 14 additional days, some animals continued water+MgT treatment, but others drank water only to allow MgT to be eliminated from the body. We then employed 2 different extinction paradigms: (1) CS-Only (CSO), in which SAC was presented, every-other day, or (2) Explicitly Unpaired (EU), in which both SAC and LiCl were presented, but on alternate days. EU extinction procedures have been shown to speed CTA extinction and reduce spontaneous recovery of the aversion. Throughout extinction, half of the rats in each group continued to drink MgT (now in SAC or supplemental water+MgT solution), whereas the other half drank SAC only/water only until SAC drinking reached ≥90% of baseline (asymptotic extinction). Rats receiving MgT just before/during extinction drank less SAC on the first day of extinction suggesting that they had retained a stronger CTA. MgT enhanced the rate of extinction. Furthermore, the MgT-treated rats showed a relatively modest SR of the CTA 30 days later - indicating that the extinction procedure was more effective for these animals. Our data suggest that long-term dietary MgT may enhance the consolidation/retention of a CTA, speed extinction, and inhibit SR of this learned aversion.
Collapse
Affiliation(s)
- G. Andrew Mickley
- The Neuroscience Program, Baldwin Wallace University, 275 Eastland Rd., Berea, OH, 44017, USA
| | - Nita Hoxha
- The Neuroscience Program, Baldwin Wallace University, 275 Eastland Rd., Berea, OH, 44017, USA
| | - Joseph L. Luchsinger
- The Neuroscience Program, Baldwin Wallace University, 275 Eastland Rd., Berea, OH, 44017, USA
| | - Morgan M. Rogers
- The Neuroscience Program, Baldwin Wallace University, 275 Eastland Rd., Berea, OH, 44017, USA
| | - Nathanael R. Wiles
- The Neuroscience Program, Baldwin Wallace University, 275 Eastland Rd., Berea, OH, 44017, USA
| |
Collapse
|
13
|
Portero-Tresserra M, Martí-Nicolovius M, Guillazo-Blanch G, Boadas-Vaello P, Vale-Martínez A. D-cycloserine in the basolateral amygdala prevents extinction and enhances reconsolidation of odor-reward associative learning in rats. Neurobiol Learn Mem 2012. [PMID: 23200640 DOI: 10.1016/j.nlm.2012.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It is well established that D-cycloserine (DCS), a partial agonist of the NMDA receptor glycine site, enhances learning and memory processes. Although the effects of DCS have been especially elucidated in the extinction and reconsolidation of aversive behavioral paradigms or drug-related behaviors, they have not been clearly determined in appetitive tasks using natural reinforcers. The current study examined the effects of pre-retrieval intra-basolateral amygdala (BLA) infusions of DCS on the extinction and reconsolidation of an appetitive odor discrimination task. Rats were trained to discriminate between three odors, one of which was associated with a palatable food reward, and, 20 min prior to extinction learning (experiment 1) or reactivation (experiment 2), they received bilateral intra-BLA infusions of DCS or vehicle. In experiment 1, DCS infusion reduced the rate of extinction learning, weakened extinction retention in a post-extinction test and enhanced reacquisition of the ODT task. In experiment 2, DCS improved subsequent memory expression in the reconsolidation test performed one day after the reactivation session. Such results indicate the involvement of BLA NMDA receptors in odor-food reward associative memory and suggest that DCS may potentiate the persistence or strength of the original memory trace.
Collapse
Affiliation(s)
- Marta Portero-Tresserra
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|