1
|
Franco-Pérez J. Mechanisms Underlying Memory Impairment Induced by Fructose. Neuroscience 2024; 548:27-38. [PMID: 38679409 DOI: 10.1016/j.neuroscience.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Fructose consumption has increased over the years, especially in adolescents living in urban areas. Growing evidence indicates that daily fructose consumption leads to some pathological conditions, including memory impairment. This review summarizes relevant data describing cognitive deficits after fructose intake and analyzes the underlying neurobiological mechanisms. Preclinical experiments show sex-related deficits in spatial memory; that is, while males exhibit significant imbalances in spatial processing, females seem unaffected by dietary supplementation with fructose. Recognition memory has also been evaluated; however, only female rodents show a significant decline in the novel object recognition test performance. According to mechanistic evidence, fructose intake induces neuroinflammation, mitochondrial dysfunction, and oxidative stress in the short term. Subsequently, these mechanisms can trigger other long-term effects, such as inhibition of neurogenesis, downregulation of trophic factors and receptors, weakening of synaptic plasticity, and long-term potentiation decay. Integrating all these neurobiological mechanisms will help us understand the cellular and molecular processes that trigger the memory impairment induced by fructose.
Collapse
Affiliation(s)
- Javier Franco-Pérez
- Laboratorio Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Insurgentes Sur 3877, Col. La Fama, C.P. 14269, CDMX, México, Mexico.
| |
Collapse
|
2
|
Mikkelsen ACD, Kjærgaard K, Mookerjee RP, Vilstrup H, Wegener G, Bay-Richter C, Thomsen KL. Non-alcoholic Fatty Liver Disease: Also a Disease of the Brain? A Systematic Review of the Preclinical Evidence. Neurochem Res 2024; 49:1468-1488. [PMID: 35230646 DOI: 10.1007/s11064-022-03551-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/19/2021] [Accepted: 02/05/2022] [Indexed: 12/09/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) currently affects 25% of the global adult population. Cognitive impairment is a recently recognised comorbidity impeding memory, attention, and concentration, affecting the patients' activities of daily living and reducing their quality of life. This systematic review provides an overview of the evidence for, and potential pathophysiological mechanisms behind brain dysfunction at a neurobiological level, in preclinical NAFLD. We performed a systematic literature search for animal models of NAFLD studying intracerebral conditions using PubMed, Embase and Scopus. We included studies that reported data on neurobiology in rodent and pig models with evidence of steatosis or steatohepatitis assessed by liver histology. 534 unique studies were identified, and 30 studies met the selection criteria, and were included. Findings of neurobiological changes were divided into five key areas: (1) neuroinflammation, (2) neurodegeneration, (3) neurotransmitter alterations, (4) oxidative stress, and (5) changes in proteins and synaptic density. Despite significant heterogeneity in the study designs, all but one study of preclinical NAFLD reported changes in one or more of the above key areas when compared to control animals. In conclusion, this systematic review supports an association between all stages of NAFLD (from simple steatosis to non-alcoholic steatohepatitis (NASH)) and neurobiological changes in preclinical models.
Collapse
Affiliation(s)
| | - Kristoffer Kjærgaard
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
| | - Rajeshwar Prosad Mookerjee
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
- UCL Institute of Liver and Digestive Health, University College London, London, UK
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Cecilie Bay-Richter
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Karen Louise Thomsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
- UCL Institute of Liver and Digestive Health, University College London, London, UK
| |
Collapse
|
3
|
Vratarić M, Šenk V, Bursać B, Gligorovska L, Ignjatović D, Kovačević S, Veličković N, Djordjevic A. Fructose diet ameliorate effects of macrophage migration inhibitory factor deficiency on prefrontal cortex inflammation, neural plasticity, and behavior in male mice. Biofactors 2023; 49:90-107. [PMID: 34767656 DOI: 10.1002/biof.1802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that represents a link between diet-induced inflammation and insulin resistance. Our aim was to examine whether fructose diet affects inflammation and insulin signaling in the prefrontal cortex (PFC) of Mif knockout mice (MIF-KO), and their possible link to neural plasticity and behavior. We analyzed nuclear factor κB (NF-κB) and glucocorticoid signaling, expression of F4/80, IL-1β, TNF-α, TLR-4, MyD88, arginase 1 (Arg-1), mannose receptor (Mrc-1), and leukemia inhibitory factor (Lif) to assess inflammation in the PFC of C57/BL6J and MIF-KO mice consuming 20% fructose solution for 9 weeks. Insulin receptor (IR), IRS-1 serine phosphorylations (307 and 1101) and activity of PKCα, Akt, GSK-3β and AMPKα were used to analyze insulin signaling. Brain-derived neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1) mRNA levels, together with synapthophysin and PSD-95 protein level and calcium calmodulin-dependent kinase 2 (CaMKII) activity, were used as plasticity markers. Behavior was examined in elevated plus maze, light dark box and novel object recognition test. The results showed concomitant increase of Tnf-α, Tlr-4, MyD88 and M2 microglia markers (Arg-1, Mrc-1, Lif) in the PFC of MIF-KO, paralleled with unchanged glucocorticoid and insulin signaling. Increase of BDNF and IGF-1 was paralleled with increased CaMKII activity, decreased PSD-95 protein level, anxiogenic behavior, and impaired memory in MIF-KO mice. Fructose feeding restored these parameters in the PFC to the control level and mitigated behavioral changes, suggesting that ameliorating effects of fructose on neuroinflammation and behavior depend on the presence of MIF.
Collapse
Affiliation(s)
- Miloš Vratarić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vladimir Šenk
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Biljana Bursać
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ljupka Gligorovska
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Djurdjica Ignjatović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nataša Veličković
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Parent MB, Higgs S, Cheke LG, Kanoski SE. Memory and eating: A bidirectional relationship implicated in obesity. Neurosci Biobehav Rev 2022; 132:110-129. [PMID: 34813827 PMCID: PMC8816841 DOI: 10.1016/j.neubiorev.2021.10.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/17/2021] [Accepted: 10/28/2021] [Indexed: 01/03/2023]
Abstract
This paper reviews evidence demonstrating a bidirectional relationship between memory and eating in humans and rodents. In humans, amnesia is associated with impaired processing of hunger and satiety cues, disrupted memory of recent meals, and overconsumption. In healthy participants, meal-related memory limits subsequent ingestive behavior and obesity is associated with impaired memory and disturbances in the hippocampus. Evidence from rodents suggests that dorsal hippocampal neural activity contributes to the ability of meal-related memory to control future intake, that endocrine and neuropeptide systems act in the ventral hippocampus to provide cues regarding energy status and regulate learned aspects of eating, and that consumption of hypercaloric diets and obesity disrupt these processes. Collectively, this evidence indicates that diet-induced obesity may be caused and/or maintained, at least in part, by a vicious cycle wherein excess intake disrupts hippocampal functioning, which further increases intake. This perspective may advance our understanding of how the brain controls eating, the neural mechanisms that contribute to eating-related disorders, and identify how to treat diet-induced obesity.
Collapse
Affiliation(s)
- Marise B Parent
- Neuroscience Institute & Department of Psychology, Georgia State University, Box 5030, Atlanta, GA 30303-5030, United States.
| | - Suzanne Higgs
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, BI5 2TT, United Kingdom.
| | - Lucy G Cheke
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, United Kingdom.
| | - Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, 90089-0371, United States.
| |
Collapse
|
5
|
Sefiani A, Geoffroy CG. The Potential Role of Inflammation in Modulating Endogenous Hippocampal Neurogenesis After Spinal Cord Injury. Front Neurosci 2021; 15:682259. [PMID: 34220440 PMCID: PMC8249862 DOI: 10.3389/fnins.2021.682259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Currently there are approximately 291,000 people suffering from a spinal cord injury (SCI) in the United States. SCI is associated with traumatic changes in mobility and neuralgia, as well as many other long-term chronic health complications, including metabolic disorders, diabetes mellitus, non-alcoholic steatohepatitis, osteoporosis, and elevated inflammatory markers. Due to medical advances, patients with SCI survive much longer than previously. This increase in life expectancy exposes them to novel neurological complications such as memory loss, cognitive decline, depression, and Alzheimer's disease. In fact, these usually age-associated disorders are more prevalent in people living with SCI. A common factor of these disorders is the reduction in hippocampal neurogenesis. Inflammation, which is elevated after SCI, plays a major role in modulating hippocampal neurogenesis. While there is no clear consensus on the mechanism of the decline in hippocampal neurogenesis and cognition after SCI, we will examine in this review how SCI-induced inflammation could modulate hippocampal neurogenesis and provoke age-associated neurological disorders. Thereafter, we will discuss possible therapeutic options which may mitigate the influence of SCI associated complications on hippocampal neurogenesis.
Collapse
|
6
|
Jakhmola-Mani R, Islam A, Katare DP. Liver-Brain Axis in Sporadic Alzheimer's Disease: Role of Ten Signature Genes in a Mouse model. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 20:871-885. [PMID: 33297922 DOI: 10.2174/1871527319666201209111006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/23/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
AIM Poor nutritional effect of junk food induces injurious adversities to the liver and brain but still most of the developing nations survives on these diets to compensate for fast-paced lifestyle. Aim of the study is to infer the proteinconnections behind liver-brain axis and identify the role of these proteins in causing neurodegenerative disorders. BACKGROUND Chronic consumption of fructose and fat rich food works as a toxin in body and have the ability to cause negative metabolic shift. Recently a study was published in Annals of Internal Medicine (2019) citing the loss of vision and hearing in a 14-year-old boy whose diet was strictly restricted to fries and junk-food for almost a decade. This puts the entire body on insulin resistance and related co-morbidities and causes simultaneous damaging effects in liver as well brain. This work provides insights into liver-brain axis and explains how liver is involved in brain related disorders. OBJECTIVE In this study transcriptomic data relating to chronic eating of junk-food was analyzed and simultaneous damage that happens in liver and brain was assessed at molecular level. METHOD Transcriptomic study was taken from GEO database and analysed to find out the genes dysregulated in both liver and brain during this metabolic stress. Cytoscapev3.7 was used to decipher the signalling between liver and brain. This connection between both was called as Liver-Brain axis. RESULT The results obtained from our study indicates the role of TUBB5-HYOU1-SDF2L1-DECR1-CDH1-EGFR-SKP2- SOD1-IRAK1-FOXO1 gene signature towards the decline of concurrent liver and brain health. Dysregulated levels of these genes are linked to molecular processes like cellular senescence, hypoxia, glutathione synthesis, amino acid modification, increased nitrogen content, synthesis of BCAAs, cholesterol biosynthesis, steroid hormone signalling and VEGF pathway. CONCLUSION We strongly advocate that prolonged consumption of junk food is a major culprit in brain related disorders like Alzheimer's disease and propose that receptors for brain diseases lie outside the brain and aiming them for drug discovery and design may be beneficial in future clinical studies. This study also discusses the connection between NAFLD (nonalcoholic fatty liver disease) and sAD (sporadic Alzheimer's disease) owing to liver-brain axis.
Collapse
Affiliation(s)
- Ruchi Jakhmola-Mani
- Proteomics and Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida. India
| | - Anam Islam
- Proteomics and Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida. India
| | - Deepshikha Pande Katare
- Proteomics and Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida. India
| |
Collapse
|
7
|
Nitzan K, Benhamron S, Valitsky M, Kesner EE, Lichtenstein M, Ben-Zvi A, Ella E, Segalstein Y, Saada A, Lorberboum-Galski H, Rosenmann H. Mitochondrial Transfer Ameliorates Cognitive Deficits, Neuronal Loss, and Gliosis in Alzheimer's Disease Mice. J Alzheimers Dis 2020; 72:587-604. [PMID: 31640104 DOI: 10.3233/jad-190853] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pathogenesis of neurodegenerative diseases involves dysfunction of mitochondria, one of the most important cell organelles in the brain, with its most prominent roles in producing energy and regulating cellular metabolism. Here we investigated the effect of transferring active intact mitochondria as a potential therapy for Alzheimer's disease (AD), in order to correct as many mitochondrial functions as possible, rather than a mono-drug related therapy. For this purpose, AD-mice (amyloid-β intracerebroventricularly injected) were treated intravenously (IV) with fresh human isolated mitochondria. One to two weeks later, a significantly better cognitive performance was noticed in the mitochondria treated AD-mice relative to vehicle treated AD-mice, approaching the performance of non-AD mice. We also detected a significant decrease in neuronal loss and reduced gliosis in the hippocampus of treated mice relative to untreated AD-mice. An amelioration of the mitochondrial dysfunction in brain was noticed by the increase of citrate-synthase and cytochrome c oxidase activities relative to untreated AD-mice, reaching activity levels of non-AD-mice. Increased mitochondrial activity was also detected in the liver of mitochondria treated mice. No treatment-related toxicity was noted. Thus, IV mitochondrial transfer may possibly offer a novel therapeutic approach for AD.
Collapse
Affiliation(s)
- Keren Nitzan
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University medical center, Jerusalem, Israel
| | - Sandrine Benhamron
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University medical center, Jerusalem, Israel
| | - Michael Valitsky
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University medical center, Jerusalem, Israel
| | - Eyal E Kesner
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Michal Lichtenstein
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ayal Ben-Zvi
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ezra Ella
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University medical center, Jerusalem, Israel
| | - Yehudit Segalstein
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University medical center, Jerusalem, Israel
| | - Ann Saada
- Department of Genetic and Metabolic Diseases, Hadassah Hebrew University medical center, Jerusalem, Israel
| | - Haya Lorberboum-Galski
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hanna Rosenmann
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University medical center, Jerusalem, Israel
| |
Collapse
|
8
|
Prikhodko VA, Sysoev Y, Poveryaeva MA, Bunyat AV, Karev VE, Ivkin DY, Sukhanov DS, Shustov EB, Okovityi SV. Effects of empagliflozin and L-ornithine L-aspartate on behavior, cognitive functions, and physical performance in mice with experimentally induced steatohepatitis. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic condition characterized by disturbed carbohydrate and lipid metabolism and often complicated by psychoneurological symptoms, including anxiety, depression, memory deficit, and asthenia. Most studies of pharmacotherapy candidates for NAFLD focus on the ability of the tested drugs to restore the biochemical functions and morphology of the liver while their potential effects on the co-existing conditions remain overlooked. The aim of this paper was to investigate the effects of empagliflozin and L-ornithine L-aspartate (OA) on behavior, memory, and physical performance in C57BL/6 mice with experimentally induced NAFLD (6 months of a Western diet + weekly carbon tetrachloride injections). The disease affected animal behavior (locomotion speed decreased by 38% and 35%, p < 0.01; rearing increased by 432% and 279%, p < 0.05 etc.), induced long-term memory deficit (latency to find the target box increased by 108% in the Barnes maze, the number of errors increased by 439%, p < 0.05), and compromised physical performance (swimming time in the forced swim test dropped by 50%, p < 0.05 etc.). When administered during the high-calorie diet period, both drugs reduced anxiety (empagliflozin: the number of grooming bouts rose by 160%, p < 0.05 and 2173%, p < 0.01; time spent in the light compartment in the light/dark box test increased by 275%, p < 0.05, etc.; OA: time spent in the open arms of the maze increased by 267%, p < 0.05), and promoted memory retention in mice with NAFLD. OA improved physical performance (swimming time in the forced swimming test improved by 106%, p < 0.05, etc.). Thus, empagliflozin and OA can have a beneficial effect on cognitive functions, as well as behavior, and ameliorate asthenia in NAFLD.
Collapse
Affiliation(s)
- VA Prikhodko
- Saint Petersburg State Chemical and Pharmaceutical University, Saint Petersburg, Russia
| | - YuI Sysoev
- Saint Petersburg State Chemical and Pharmaceutical University, Saint Petersburg, Russia; Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - MA Poveryaeva
- Saint Petersburg State Chemical and Pharmaceutical University, Saint Petersburg, Russia
| | - AV Bunyat
- Saint Petersburg State Chemical and Pharmaceutical University, Saint Petersburg, Russia
| | - VE Karev
- Pediatric Research and Clinical Center for Infectious Diseases of FMBA, Saint Petersburg, Russia
| | - DYu Ivkin
- Saint Petersburg State Chemical and Pharmaceutical University, Saint Petersburg, Russia
| | - DS Sukhanov
- Saint Petersburg State Chemical and Pharmaceutical University, Saint Petersburg, Russia
| | - EB Shustov
- Saint Petersburg State Chemical and Pharmaceutical University, Saint Petersburg, Russia
| | - SV Okovityi
- Saint Petersburg State Chemical and Pharmaceutical University, Saint Petersburg, Russia
| |
Collapse
|
9
|
Higarza SG, Arboleya S, Gueimonde M, Gómez-Lázaro E, Arias JL, Arias N. Neurobehavioral dysfunction in non-alcoholic steatohepatitis is associated with hyperammonemia, gut dysbiosis, and metabolic and functional brain regional deficits. PLoS One 2019; 14:e0223019. [PMID: 31539420 PMCID: PMC6754158 DOI: 10.1371/journal.pone.0223019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is one of the most prevalent diseases worldwide. While it has been suggested to cause nervous impairment, its neurophysiological basis remains unknown. Therefore, the aim of this study is to unravel the effects of NASH, through the interrelationship of liver, gut microbiota, and nervous system, on the brain and human behavior. To this end, 40 Sprague-Dawley rats were divided into a control group that received normal chow and a NASH group that received a high-fat, high-cholesterol diet. Our results show that 14 weeks of the high-fat, high-cholesterol diet induced clinical conditions such as NASH, including steatosis and increased levels of ammonia. Rats in the NASH group also demonstrated evidence of gut dysbiosis and decreased levels of short-chain fatty acids in the gut. This may explain the deficits in cognitive ability observed in the NASH group, including their depressive-like behavior and short-term memory impairment characterized in part by deficits in social recognition and prefrontal cortex-dependent spatial working memory. We also reported the impact of this NASH-like condition on metabolic and functional processes. Brain tissue demonstrated lower levels of metabolic brain activity in the prefrontal cortex, thalamus, hippocampus, amygdala, and mammillary bodies, accompanied by a decrease in dopamine levels in the prefrontal cortex and cerebellum and a decrease in noradrenalin in the striatum. In this article, we emphasize the important role of ammonia and gut-derived bacterial toxins in liver-gut-brain neurodegeneration and discuss the metabolic and functional brain regional deficits and behavioral impairments in NASH.
Collapse
Affiliation(s)
- Sara G. Higarza
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Asturias, Spain
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Asturias, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Institute of Dairy Products of the Principality of Asturias (IPLA-CSIC), Asturias, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Institute of Dairy Products of the Principality of Asturias (IPLA-CSIC), Asturias, Spain
| | - Eneritz Gómez-Lázaro
- Department of Basic Psychological Processes and their Development, Basque Country University, San Sebastián, Basque Country, Spain
| | - Jorge L. Arias
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Asturias, Spain
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Asturias, Spain
| | - Natalia Arias
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Asturias, Spain
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England, United Kingdom
| |
Collapse
|
10
|
Tsai YC, Lin YC, Huang CC, Villaflores OB, Wu TY, Huang SM, Chin TY. Hericium erinaceus Mycelium and Its Isolated Compound, Erinacine A, Ameliorate High-Fat High-Sucrose Diet-Induced Metabolic Dysfunction and Spatial Learning Deficits in Aging Mice. J Med Food 2019; 22:469-478. [DOI: 10.1089/jmf.2018.4288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yun-Chieh Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Lin
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan
| | | | | | - Tzong-Yuan Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Shih-Ming Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Ting-Yu Chin
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan
| |
Collapse
|
11
|
Ross A, Barnett N, Faulkner A, Hannapel R, Parent MB. Sucrose ingestion induces glutamate AMPA receptor phosphorylation in dorsal hippocampal neurons: Increased sucrose experience prevents this effect. Behav Brain Res 2019; 359:792-798. [PMID: 30076854 PMCID: PMC6594687 DOI: 10.1016/j.bbr.2018.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/19/2018] [Accepted: 07/31/2018] [Indexed: 11/26/2022]
Abstract
Evidence suggests that meal-related memory influences later eating behavior. Memory can serve as a powerful mechanism for controlling eating behavior because it provides a record of recent intake that likely outlasts most physiological signals generated by ingestion. Dorsal (dHC) and ventral hippocampal (vHC) neurons are critical for memory, and we demonstrated previously that they limit energy intake during the postprandial period. If dHC or vHC neurons control intake through a process that requires memory, then ingestion should increase events necessary for synaptic plasticity in dHC and vHC during the postprandial period. To test this, we determined whether ingesting a sucrose solution induced posttranslational events critical for hippocampal synaptic plasticity: phosphorylation of AMPAR GluA1 subunits at 1) serine 831 (pSer831) and 2) serine 845 (pSer845). We also examined whether increasing the amount of previous experience with the sucrose solution, which would be expected to decrease the mnemonic demand involved in an ingestion bout, would also attenuate sucrose-induced phosphorylation. Quantitative immunoblotting of dHC and vHC membrane fractions demonstrated that sucrose ingestion increased postprandial pSer831 in dHC but not vHC. Increased previous sucrose experience prevented sucrose-induced dHC pSer831. Sucrose ingestion did not affect pSer845 in either dHC or vHC. Thus, the present findings show that ingestion activates a postranslational event necessary for synaptic plasticity in an experience-dependent manner, which is consistent with the hypothesis that dHC neurons form a memory of a meal during the postprandial period.
Collapse
Affiliation(s)
- Amy Ross
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302, United States
| | - Nicolette Barnett
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302, United States
| | - Alexa Faulkner
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302, United States
| | - Reilly Hannapel
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302, United States
| | - Marise B Parent
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302, United States; Department of Psychology, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302, United States.
| |
Collapse
|
12
|
Hannapel R, Ramesh J, Ross A, LaLumiere RT, Roseberry AG, Parent MB. Postmeal Optogenetic Inhibition of Dorsal or Ventral Hippocampal Pyramidal Neurons Increases Future Intake. eNeuro 2019; 6:ENEURO.0457-18.2018. [PMID: 30693314 PMCID: PMC6348449 DOI: 10.1523/eneuro.0457-18.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 01/29/2023] Open
Abstract
Memory of a recently eaten meal can serve as a powerful mechanism for controlling future eating behavior because it provides a record of intake that likely outlasts most physiological signals generated by the meal. In support, impairing the encoding of a meal in humans increases the amount ingested at the next eating episode. However, the brain regions that mediate the inhibitory effects of memory on future intake are unknown. In the present study, we tested the hypothesis that dorsal hippocampal (dHC) and ventral hippocampal (vHC) glutamatergic pyramidal neurons play a critical role in the inhibition of energy intake during the postprandial period by optogenetically inhibiting these neurons at specific times relative to a meal. Male Sprague Dawley rats were given viral vectors containing CaMKIIα-eArchT3.0-eYFP or CaMKIIα-GFP and fiber optic probes into dHC of one hemisphere and vHC of the other. Compared to intake on a day in which illumination was not given, inhibition of dHC or vHC glutamatergic neurons after the end of a chow, sucrose, or saccharin meal accelerated the onset of the next meal and increased the amount consumed during that next meal when the neurons were no longer inhibited. Inhibition given during a meal did not affect the amount consumed during that meal or the next one but did hasten meal initiation. These data show that dHC and vHC glutamatergic neuronal activity during the postprandial period is critical for limiting subsequent ingestion and suggest that these neurons inhibit future intake by consolidating the memory of the preceding meal.
Collapse
Affiliation(s)
- Reilly Hannapel
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
| | - Janavi Ramesh
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
| | - Amy Ross
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
| | - Ryan T. LaLumiere
- Department of Psychological and Brain Sciences and Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
| | - Aaron G. Roseberry
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
- Department of Biology, Georgia State University, Atlanta, GA 30303
| | - Marise B. Parent
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
- Department of Psychology, Georgia State University, Atlanta, GA 30303
| |
Collapse
|
13
|
Abstract
OBJECTIVE The aim of this study was to investigate cognitive performance for the first time in participants with nonalcoholic fatty liver disease (NAFLD) using the Montreal Cognitive Assessment (MoCA). PARTICIPANTS AND METHODS In total, 70 participants with NAFLD and 73 age-matched and sex-matched healthy participants were enrolled in this prospective cross-sectional study. The diagnosis of NAFLD was made on the basis of abdominal ultrasonography findings. Anthropometric indices were calculated, and routine laboratory analyses were carried out for each participant. All participants provided sociodemographic data and completed the Beck Depression Inventory-II. Cognitive functions were evaluated using the Turkish version of the MoCA, with a cut-off score for mild cognitive impairment of less than 21 points. RESULTS The MoCA scores were significantly lower in participants with NAFLD than in the healthy group (P<0.05). In addition, more NAFLD participants than healthy participants presented with deficits in the visuospatial (P<0.05) and executive function domains (P<0.05). In the multivariate model, education level [2.79 (1.12-6.96); P<0.05] and area of residence [5.68 (2.24-14.38); P<0.001] were associated independently with cognitive dysfunction in both the NAFLD and the healthy groups. The MoCA scores were correlated negatively with fibrosis 4 scores in NAFLD participants (r=-0.359; P<0.05). However, hepatosteatosis grade and the presence of metabolic syndrome were not correlated with MoCA scores in the NAFLD group (P>0.05). CONCLUSION Our results show that NAFLD patients may have early or subtle cognitive dysfunction, including in the visuospatial and executive function domains, as indexed by scores on the MoCA test. Further targeted psychometric testing will be required to confirm the presence of cognitive impairment in this population.
Collapse
|
14
|
Cognitive Changes and Brain Volume Reduction in Patients with Nonalcoholic Fatty Liver Disease. Can J Gastroenterol Hepatol 2018; 2018:9638797. [PMID: 29682494 PMCID: PMC5848059 DOI: 10.1155/2018/9638797] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/31/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022] Open
Abstract
Studies of psychological condition of patients suffering from nonalcoholic fatty liver disease are rather equivocal about the results: while some claim that NAFLD patients suffer from anxiety and depression more than non-NAFLD controls, others do not withstand those findings. Lower cognitive potentials have also been reported, both in patient related and in animal model-based investigations, and correlated with assessed brain tissue changes. We hypothesized that NAFLD, as a condition, affects the brain tissue and, subsequently, the cognitive state. So we compared findings in 40 NAFLD positive and 36 NAFLD negative patients and correlated their brain tissue volumes with the results of Montreal Cognitive Assessment (MoCA) test. Binomial logistic regression verified the influence of NAFLD state leading to lower cognitive potentials: odds ratio 0.096; 95% confidence interval (CI) 0.032-0.289; p < 0.001. Patients with NAFLD had a greater risk to suffer from the cognitive impairment and depression: RR = 3.9; 95% CI 1.815-8.381; p = 0.0005 and RR = 1.65; 95% CI 1.16-2.36; p = 0.006. NAFLD significantly influenced the cognitive deficit and tissue volume reduction and patients suffering from NAFLD had about four times higher risk of having a cognitive impairment.
Collapse
|
15
|
Noble EE, Hsu TM, Liang J, Kanoski SE. Early-life sugar consumption has long-term negative effects on memory function in male rats. Nutr Neurosci 2017; 22:273-283. [PMID: 28944721 DOI: 10.1080/1028415x.2017.1378851] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Added dietary sugars contribute substantially to the diet of children and adolescents in the USA, and recent evidence suggests that consuming sugar-sweetened beverages (SSBs) during early life has deleterious effects on hippocampal-dependent memory function. Here, we test whether the effects of early-life sugar consumption on hippocampal function persist into adulthood when access to sugar is restricted to the juvenile/adolescent phase of development. METHODS Male rats were given ad libitum access to an 11% weight-by-volume sugar solution (made with high fructose corn syrup-55) throughout the adolescent phase of development (post-natal day (PN) 26-56). The control group received a second bottle of water instead, and both groups received ad libitum standard laboratory chow and water access throughout the study. At PN 56 sugar solutions were removed and at PN 175 rats were subjected to behavioral testing for hippocampal-dependent episodic contextual memory in the novel object in context (NOIC) task, for anxiety-like behavior in the Zero maze, and were given an intraperitoneal glucose tolerance test. RESULTS Early-life exposure to SSBs conferred long-lasting impairments in hippocampal-dependent memory function later in life- yet had no effect on body weight, anxiety-like behavior, or glucose tolerance. A second experiment demonstrated that NOIC performance was impaired at PN 175 even when SSB access was limited to 2 hours daily from PN 26-56. DISCUSSION Our data suggest that even modest SSB consumption throughout early life may have long-term negative consequences on memory function during adulthood.
Collapse
Affiliation(s)
- Emily E Noble
- a Department of Biological Sciences, Human and Evolutionary Biology Section , University of Southern California , Los Angeles , USA
| | - Ted M Hsu
- a Department of Biological Sciences, Human and Evolutionary Biology Section , University of Southern California , Los Angeles , USA.,b Neuroscience Graduate Program , University of Southern California , Los Angeles , USA
| | - Joanna Liang
- a Department of Biological Sciences, Human and Evolutionary Biology Section , University of Southern California , Los Angeles , USA
| | - Scott E Kanoski
- a Department of Biological Sciences, Human and Evolutionary Biology Section , University of Southern California , Los Angeles , USA.,b Neuroscience Graduate Program , University of Southern California , Los Angeles , USA
| |
Collapse
|
16
|
Xu T, Zhou J, Zhu J, Zhang S, Zhang N, Zhao Y, Ding C, Shi X, Yao J. Carnosic acid protects non-alcoholic fatty liver-induced dopaminergic neuron injury in rats. Metab Brain Dis 2017; 32:483-491. [PMID: 27957651 DOI: 10.1007/s11011-016-9941-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has been reported to induce cognitive impairments of hippocampus and may influence central nervous system. In the present study, we investigated whether carnosic acid (CA) ameliorates dopaminergic neuron injury in a rat model of NAFLD. In order to induce NAFLD, rats were fed with high-fat diet (HFD) for 10 weeks. We found that continued CA administration reduced lipid accumulation marked by decreases in alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels, and an increase in high-density lipoprotein cholesterol (HDL-C) level in the serum. H&E staining revealed that feeding CA reduced lipid droplets accumulation, and alleviated oxidative stress by increasing in superoxide dismutase (SOD) level and decreasing in malondialdehyde (MDA) level in the liver. In addition, by measuring several parameters of gait analysis, we demonstrated that CA treatment ameliorated behavioral impairments, as evidenced by decreased duration and maximum variation, accompanied by increased average speed and cadence. Furthermore, CA treated-animals displayed an increase in the contents of dopamine (DA) and its metabolites 3,4-dihydroxyphenylacelic acid (DOPAC) and elevated the expressions of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) as well as the TH protein in the striatum. Together, these findings suggest that CA may be an effective agent in protecting rats from NAFLD-induced dopaminergic neuron injury.
Collapse
Affiliation(s)
- Ting Xu
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Junjun Zhou
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, People's Republic of China.
| | - Jie Zhu
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Shuai Zhang
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Ning Zhang
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, People's Republic of China
- Department of Pharmacy, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Yan Zhao
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Chunchun Ding
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Xue Shi
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, People's Republic of China.
| |
Collapse
|
17
|
Hannapel RC, Henderson YH, Nalloor R, Vazdarjanova A, Parent MB. Ventral hippocampal neurons inhibit postprandial energy intake. Hippocampus 2017; 27:274-284. [PMID: 28121049 DOI: 10.1002/hipo.22692] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 12/12/2022]
Abstract
Evidence suggests that the memory of a recently ingested meal limits subsequent intake. Given that ventral hippocampal (vHC) neurons are involved in memory and energy intake, the present experiment tested the hypothesis that vHC neurons contribute to the formation of a memory of a meal and inhibit energy intake during the postprandial period. We tested (1) whether pharmacological inactivation of vHC neurons during the period following a sucrose meal, when the memory of the meal would be undergoing consolidation, accelerates the onset of the next sucrose meal and increases intake and (2) whether sucrose intake increases vHC expression of the synaptic plasticity marker activity-regulated cytoskeletal-associated protein (Arc). Adult male Sprague-Dawley rats were trained to consume a 32% sucrose solution daily at the same time and location. On the experimental day, the rats were given intra-vHC infusions of the GABAA receptor agonist muscimol or vehicle after they finished their first sucrose meal. Compared to vehicle infusions, postmeal intra-vHC muscimol infusions decreased the latency to the next sucrose meal, increased the amount of sucrose consumed during that meal, increased the total number of sucrose meals and the total amount of sucrose ingested. In addition, rats that consumed sucrose had higher levels of Arc expression in both vHC CA1 and CA3 subfields than cage control rats. Collectively, these findings are the first to show that vHC neurons inhibit energy intake during the postprandial period and support the hypothesis that vHC neurons form a memory of a meal and inhibit subsequent intake. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Yoko H Henderson
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Rebecca Nalloor
- Neuroscience Institute, Augusta Biomedical Research Corporation, Charlie Norwood VA Medical Center, 950 15th Street, Augusta, Georgia
| | - Almira Vazdarjanova
- Department of Pharmacology and Toxicology, Augusta University, 1120 15th Street, CB 3526, Augusta, Georgia.,VA Research Service, Charlie Norwood VA Medical Center, 950 15th Street, Augusta, Georgia
| | - Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, Georgia.,Department of Psychology, Georgia State University, Atlanta, Georgia
| |
Collapse
|
18
|
Henderson YO, Nalloor R, Vazdarjanova A, Murphy AZ, Parent MB. Sex-dependent effects of early life inflammatory pain on sucrose intake and sucrose-associated hippocampal Arc expression in adult rats. Physiol Behav 2017; 173:1-8. [PMID: 28108332 DOI: 10.1016/j.physbeh.2017.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 12/14/2022]
Abstract
We hypothesize that dorsal hippocampal (dHC) neurons, which are critical for episodic memory, form a memory of a meal and inhibit the initiation of the next meal and the amount ingested during that meal. In support, we showed previously that (1) consuming a sucrose meal induces expression of the synaptic plasticity marker activity-regulated cytoskeleton-associated protein (Arc) in dHC neurons and (2) reversible inactivation of these neurons immediately following a sucrose meal accelerates the onset of the next meal and increases the size of that meal. These data suggest that hippocampal-dependent memory inhibits intake; therefore, the following experiments were conducted to determine whether hippocampal-dependent memory impairments are associated with increased intake. We reported recently that one episode of early life inflammatory pain impairs dHC-dependent memory in adult rats. The present study determined whether neonatal inflammatory pain also increases sucrose intake and attenuates sucrose-associated Arc expression. Male and female Sprague-Dawley rats were given an intraplantar injection of the inflammatory agent carrageenan (1%) on the day of birth and sucrose intake and sucrose-associated dHC Arc expression were measured in adulthood. Neonatal inflammatory pain increased sucrose intake in adult female and male rats, decreased sucrose-associated dHC Arc expression in female rats, and tended to have a similar effect on Arc expression in male rats. Neonatal inflammatory pain significantly decreased the interval between two sucrose meals in female but not in male rats. Morphine administration at the time of insult attenuated the effects of injury on sucrose intake. Collectively, these findings indicate that one brief episode of inflammatory pain on the day of birth has a long long-lasting, sex-dependent impact on intake of a palatable food in adulthood.
Collapse
Affiliation(s)
- Yoko O Henderson
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30302, United States.
| | - Rebecca Nalloor
- Augusta Biomedical Research Corporation, Charlie Norwood VA Medical Center, 950 15th Street, Augusta, GA 30901, United States.
| | - Almira Vazdarjanova
- Department of Pharmacology and Toxicology, Augusta University, 1120 15th Street, CB 3526, Augusta, GA 30912, United States; VA Research Service, Charlie Norwood VA Medical Center, 950 15th Street, Augusta, GA 30901, United States.
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30302, United States.
| | - Marise B Parent
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30302, United States; Department of Psychology, Georgia State University, P.O. Box 5030, Atlanta, GA 30302, United States.
| |
Collapse
|
19
|
Farr OM, Li CSR, Mantzoros CS. Central nervous system regulation of eating: Insights from human brain imaging. Metabolism 2016; 65:699-713. [PMID: 27085777 PMCID: PMC4834455 DOI: 10.1016/j.metabol.2016.02.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 12/28/2022]
Abstract
Appetite and body weight regulation are controlled by the central nervous system (CNS) in a rather complicated manner. The human brain plays a central role in integrating internal and external inputs to modulate energy homeostasis. Although homeostatic control by the hypothalamus is currently considered to be primarily responsible for controlling appetite, most of the available evidence derives from experiments in rodents, and the role of this system in regulating appetite in states of hunger/starvation and in the pathogenesis of overeating/obesity remains to be fully elucidated in humans. Further, cognitive and affective processes have been implicated in the dysregulation of eating behavior in humans, but their exact relative contributions as well as the respective underlying mechanisms remain unclear. We briefly review each of these systems here and present the current state of research in an attempt to update clinicians and clinical researchers alike on the status and future directions of obesity research.
Collapse
Affiliation(s)
- Olivia M Farr
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215.
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520
| | - Christos S Mantzoros
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| |
Collapse
|
20
|
Parent MB. Cognitive control of meal onset and meal size: Role of dorsal hippocampal-dependent episodic memory. Physiol Behav 2016; 162:112-9. [PMID: 27083124 DOI: 10.1016/j.physbeh.2016.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 12/17/2022]
Abstract
There is a large gap in our understanding of how top-down cognitive processes, such as memory, influence energy intake. Similarly, there is limited knowledge regarding how the brain controls the timing of meals and meal frequency. Understanding how cognition influences ingestive behavior and how the brain controls meal frequency will provide a more complete explanation of the neural mechanisms that regulate energy intake and may also increase our knowledge of the factors that contribute to diet-induced obesity. We hypothesize that dorsal hippocampal neurons, which are critical for memory of personal experiences (i.e., episodic memory), form a memory of a meal, inhibit meal onset during the period following a meal, and limit the amount ingested at the next meal. In support, we describe evidence from human research suggesting that episodic memory of a meal inhibits intake and review data from human and non-human animals showing that impaired hippocampal function is associated with increased intake. We then describe evidence from our laboratory showing that inactivation of dorsal hippocampal neurons decreases the interval between sucrose meals and increases intake at the next meal. We also describe our evidence suggesting that sweet orosensation is sufficient to induce synaptic plasticity in dorsal hippocampal neurons and raise the possibility that impaired dorsal hippocampal function and episodic memory deficits contribute to the development and/or maintenance of diet-induced obesity. Finally, we raise some critical questions that need to be addressed in future research.
Collapse
Affiliation(s)
- Marise B Parent
- Neuroscience Institute, Department of Psychology, Georgia State University, PO Box 5030, Atlanta, GA 30303-5030, United States.
| |
Collapse
|
21
|
Henderson YO, Nalloor R, Vazdarjanova A, Parent MB. Sweet orosensation induces Arc expression in dorsal hippocampal CA1 neurons in an experience-dependent manner. Hippocampus 2015; 26:405-13. [PMID: 26386270 DOI: 10.1002/hipo.22532] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/20/2015] [Accepted: 09/16/2015] [Indexed: 01/09/2023]
Abstract
There is limited knowledge regarding how the brain controls the timing of meals. Similarly, there is a large gap in our understanding of how top-down cognitive processes, such as memory influence energy intake. We hypothesize that dorsal hippocampal (dHC) neurons, which are critical for episodic memory, form a memory of a meal and inhibit meal onset during the postprandial period. In support, we showed previously that reversible inactivation of these neurons during the period following a sucrose meal accelerates the onset of the next meal. If dHC neurons form a memory of a meal, then consumption should induce synaptic plasticity in dHC neurons. To test this, we determined (1) whether a sucrose meal increases the expression of the synaptic plasticity marker activity-regulated cytoskeleton-associated protein (Arc) in dHC CA1 neurons, (2) whether previous experience with sucrose influences sucrose-induced Arc expression, and (3) whether the orosensory stimulation produced by the noncaloric sweetener saccharin is sufficient to induce Arc expression. Male Sprague-Dawley rats were trained to consume a sweetened solution at a scheduled time daily. On the experimental day, they were given a solution for 7 min, euthanized, and then fluorescence in situ hybridization procedures were used to measure meal-induced Arc mRNA. Compared to caged control rats, Arc expression was significantly higher in rats that consumed sucrose or saccharin. Interestingly, rats given additional experience with sucrose had less Arc expression than rats with less sucrose experience, even though both groups consumed similar amounts on the experimental day. Thus, this study is the first to suggest that orosensory stimulation produced by consuming a sweetened solution and possibly the hedonic value of that sweet stimulation induces synaptic plasticity in dHC CA1 neurons in an experience-dependent manner. Collectively, these findings are consistent with our hypothesis that dHC neurons form a memory of a meal.
Collapse
Affiliation(s)
- Yoko O Henderson
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Rebecca Nalloor
- Augusta Biomedical Research Corporation, Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Almira Vazdarjanova
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA, United States.,VA Research Service, Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Department of Psychology, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
22
|
Folch J, Patraca I, Martínez N, Pedrós I, Petrov D, Ettcheto M, Abad S, Marin M, Beas-Zarate C, Camins A. The role of leptin in the sporadic form of Alzheimer's disease. Interactions with the adipokines amylin, ghrelin and the pituitary hormone prolactin. Life Sci 2015; 140:19-28. [PMID: 25998028 DOI: 10.1016/j.lfs.2015.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/05/2015] [Accepted: 05/11/2015] [Indexed: 12/11/2022]
Abstract
Leptin (Lep) is emerging as a pivotal molecule involved in both the early events and the terminal phases of Alzheimer's disease (AD). In the canonical pathway, Lep acts as an anorexigenic factor via its effects on hypothalamic nucleus. However, additional functions of Lep in the hippocampus and cortex have been unravelled in recent years. Early events in the sporadic form of AD likely involve cellular level alterations which can have an effect on food intake and metabolism. Thus, AD can be conceivably interpreted as a multiorgan pathology that not only results in a dramatic neuronal loss in brain areas such as the hippocampus and the cortex (ultimately leading to a significant cognitive impairment) but as a disease which also affects body-weight homeostasis. According to this view, body-weight control disruptions are to be expected in both the early- and late-stage AD, concomitant with changes in serum Lep content, alterations in Lep transport across the blood-brain barrier (BBB) and Lep receptor-related signalling abnormalities. Lep is a member of the adipokine family of molecules, while the Lep receptor belongs to the class I cytokine receptors. Since cellular response to adipokine signalling can be either potentiated or diminished as a result of specific ligand-receptor interactions, Lep interactions with other members of the adipokine family including amylin, ghrelin and hormones such as prolactin require further investigation. In this review, we provide a general perspective on the functions of Lep in the brain, with a particular focus on the sporadic AD.
Collapse
Affiliation(s)
- Jaume Folch
- Unitats de Bioquímica i Farmacologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, C./ St. Llorenç 21, 43201 Reus, Tarragona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos Tercero, Madrid, Spain
| | - Iván Patraca
- Unitats de Bioquímica i Farmacologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, C./ St. Llorenç 21, 43201 Reus, Tarragona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos Tercero, Madrid, Spain
| | - Nohora Martínez
- Unitats de Bioquímica i Farmacologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, C./ St. Llorenç 21, 43201 Reus, Tarragona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos Tercero, Madrid, Spain
| | - Ignacio Pedrós
- Unitats de Bioquímica i Farmacologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, C./ St. Llorenç 21, 43201 Reus, Tarragona, Spain; Unitat de Farmacologia i Farmacognòsia Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Dmitry Petrov
- Unitat de Farmacologia i Farmacognòsia Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos Tercero, Madrid, Spain
| | - Miren Ettcheto
- Unitat de Farmacologia i Farmacognòsia Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos Tercero, Madrid, Spain
| | - Sonia Abad
- Unitat de Farmacologia i Farmacognòsia Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos Tercero, Madrid, Spain
| | - Miguel Marin
- Centro de Biotecnología, Universidad Nacional de Loja, Av. Pío Jaramillo Alvarado y Reinaldo Espinosa, La Argelia, Loja, Ecuador
| | - Carlos Beas-Zarate
- Departamento de Biología Celular y Molecular, C.U.C.B.A., Universidad de Guadalajara and División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Mexico; Instituto Mexicano del Seguro Social (IMSS), Sierra Mojada 800, Col. Independencia, Guadalajara, Jalisco 44340, Mexico
| | - Antoni Camins
- Unitat de Farmacologia i Farmacognòsia Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos Tercero, Madrid, Spain; Centro de Biotecnología, Universidad Nacional de Loja, Av. Pío Jaramillo Alvarado y Reinaldo Espinosa, La Argelia, Loja, Ecuador.
| |
Collapse
|
23
|
Gatineau E, Savary-Auzeloux I, Migné C, Polakof S, Dardevet D, Mosoni L. Chronic Intake of Sucrose Accelerates Sarcopenia in Older Male Rats through Alterations in Insulin Sensitivity and Muscle Protein Synthesis. J Nutr 2015; 145:923-30. [PMID: 25809681 DOI: 10.3945/jn.114.205583] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/20/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Today, high chronic intake of added sugars is frequent, which leads to inflammation, oxidative stress, and insulin resistance. These 3 factors could reduce meal-induced stimulation of muscle protein synthesis and thus aggravate the age-related loss of muscle mass (sarcopenia). OBJECTIVES Our aims were to determine if added sugars could accelerate sarcopenia and to assess the capacity of antioxidants and anti-inflammatory agents to prevent this. METHODS For 5 mo, 16-mo-old male rats were starch fed (13% sucrose and 49% wheat starch diet) or sucrose fed (62% sucrose and 0% wheat starch diet) with or without rutin (5 g/kg diet), vitamin E (4 times), vitamin A (2 times), vitamin D (5 times), selenium (10 times), and zinc (+44%) (R) supplementation. We measured the evolution of body composition and inflammation, plasma insulin-like growth factor 1 (IGF-I) concentration and total antioxidant status, insulin sensitivity (oral-glucose-tolerance test), muscle weight, superoxide dismutase activity, glutathione concentration, and in vivo protein synthesis rates. RESULTS Sucrose-fed rats lost significantly more lean body mass (-8.1% vs. -5.4%, respectively) and retained more fat mass (+0.2% vs. -33%, respectively) than starch-fed rats. Final muscle mass was 11% higher in starch-fed rats than in sucrose-fed rats. Sucrose had little effect on inflammation, oxidative stress, and plasma IGF-I concentration but reduced the insulin sensitivity index (divided by 2). Meal-induced stimulation of muscle protein synthesis was significantly lower in sucrose-fed rats (+7.3%) than in starch-fed rats (+22%). R supplementation slightly but significantly reduced oxidative stress and increased muscle protein concentration (+4%) but did not restore postprandial stimulation of muscle protein synthesis. CONCLUSIONS High chronic sucrose intake accelerates sarcopenia in older male rats through an alteration of postprandial stimulation of muscle protein synthesis. This effect could be explained by a decrease of insulin sensitivity rather than by changes in plasma IGF-I, inflammation, and/or oxidative stress.
Collapse
Affiliation(s)
- Eva Gatineau
- National Institute of Agronomic Research, Joint Research Unit 1019 for Human Nutrition, Saint Genès Champanelle, France; and Clermont 1 University, Research and Training Unit Medicine, Joint Research Unit 1019 for Human Nutrition, Clermont-Ferrand, France
| | - Isabelle Savary-Auzeloux
- National Institute of Agronomic Research, Joint Research Unit 1019 for Human Nutrition, Saint Genès Champanelle, France; and Clermont 1 University, Research and Training Unit Medicine, Joint Research Unit 1019 for Human Nutrition, Clermont-Ferrand, France
| | - Carole Migné
- National Institute of Agronomic Research, Joint Research Unit 1019 for Human Nutrition, Saint Genès Champanelle, France; and Clermont 1 University, Research and Training Unit Medicine, Joint Research Unit 1019 for Human Nutrition, Clermont-Ferrand, France
| | - Sergio Polakof
- National Institute of Agronomic Research, Joint Research Unit 1019 for Human Nutrition, Saint Genès Champanelle, France; and Clermont 1 University, Research and Training Unit Medicine, Joint Research Unit 1019 for Human Nutrition, Clermont-Ferrand, France
| | - Dominique Dardevet
- National Institute of Agronomic Research, Joint Research Unit 1019 for Human Nutrition, Saint Genès Champanelle, France; and Clermont 1 University, Research and Training Unit Medicine, Joint Research Unit 1019 for Human Nutrition, Clermont-Ferrand, France
| | - Laurent Mosoni
- National Institute of Agronomic Research, Joint Research Unit 1019 for Human Nutrition, Saint Genès Champanelle, France; and Clermont 1 University, Research and Training Unit Medicine, Joint Research Unit 1019 for Human Nutrition, Clermont-Ferrand, France
| |
Collapse
|
24
|
Models and mechanisms for hippocampal dysfunction in obesity and diabetes. Neuroscience 2015; 309:125-39. [PMID: 25934036 DOI: 10.1016/j.neuroscience.2015.04.045] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/15/2015] [Accepted: 04/21/2015] [Indexed: 01/05/2023]
Abstract
Clinical studies suggest that obesity and Type 2 (insulin-resistant) diabetes impair the structural integrity of medial temporal lobe regions involved in memory and confer greater vulnerability to neurological insults. While eliminating obesity and its endocrine comorbidities would be the most straightforward way to minimize cognitive risk, structural barriers to physical activity and the widespread availability of calorically dense, highly palatable foods will likely necessitate additional strategies to maintain brain health over the lifespan. Research in rodents has identified numerous correlates of hippocampal functional impairment in obesity and diabetes, with several studies demonstrating causality in subsequent mechanistic studies. This review highlights recent work on pathways and cell-cell interactions underlying the synaptic consequences of obesity, diabetes, or in models with both pathological conditions. Although the mechanisms vary across different animal models, immune activation has emerged as a shared feature of obesity and diabetes, with synergistic exacerbation of neuroinflammation in model systems with both conditions. This review discusses these findings with reference to the benefits of incorporating existing models from the fields of obesity and metabolic disease. Many transgenic lines with basal metabolic alterations or differential susceptibility to diet-induced obesity have yet to be characterized with respect to their cognitive and synaptic phenotype. Adopting these models, and building on the extensive knowledge base used to generate them, is a promising avenue for understanding interactions between peripheral disease states and neurodegenerative disorders.
Collapse
|
25
|
Fructose decreases physical activity and increases body fat without affecting hippocampal neurogenesis and learning relative to an isocaloric glucose diet. Sci Rep 2015; 5:9589. [PMID: 25892667 PMCID: PMC4403227 DOI: 10.1038/srep09589] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/12/2015] [Indexed: 12/22/2022] Open
Abstract
Recent evidence suggests that fructose consumption is associated with weight gain, fat deposition and impaired cognitive function. However it is unclear whether the detrimental effects are caused by fructose itself or by the concurrent increase in overall energy intake. In the present study we examine the impact of a fructose diet relative to an isocaloric glucose diet in the absence of overfeeding, using a mouse model that mimics fructose intake in the top percentile of the USA population (18% energy). Following 77 days of supplementation, changes in body weight (BW), body fat, physical activity, cognitive performance and adult hippocampal neurogenesis were assessed. Despite the fact that no differences in calorie intake were observed between groups, the fructose animals displayed significantly increased BW, liver mass and fat mass in comparison to the glucose group. This was further accompanied by a significant reduction in physical activity in the fructose animals. Conversely, no differences were detected in hippocampal neurogenesis and cognitive/motor performance as measured by object recognition, fear conditioning and rotorod tasks. The present study suggests that fructose per se, in the absence of excess energy intake, increases fat deposition and BW potentially by reducing physical activity, without impacting hippocampal neurogenesis or cognitive function.
Collapse
|
26
|
Ross AP, Darling JN, Parent MB. Excess intake of fat and sugar potentiates epinephrine-induced hyperglycemia in male rats. J Diabetes Complications 2015; 29:329-37. [PMID: 25716573 DOI: 10.1016/j.jdiacomp.2014.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/08/2014] [Accepted: 12/24/2014] [Indexed: 02/06/2023]
Abstract
AIMS Over the past five decades, per capita caloric intake has increased significantly, and diet- and stress-related diseases are more prevalent. The stress hormone epinephrine stimulates hepatic glucose release during a stress response. The present experiment tested the hypothesis that excess caloric intake alters this ability of epinephrine to increase blood glucose. METHODS Sprague-Dawley rats were fed a high-energy cafeteria-style diet (HED). Weight gain during the first 5 days on the diet was used to divide the rats into an HED-lean group and HED-obese group. After 9 weeks, the rats were injected with epinephrine, and blood glucose was measured. RESULTS HED-obese rats gained body and fat mass, and developed insulin resistance (IR) and hepatic steatosis. HED-lean and control rats did not differ. Epinephrine produced larger increases in blood glucose in the HED-obese rats than in the HED-lean and control rats. Removing the high-energy components of the diet for 4 weeks reversed the potentiated effects of epinephrine on glucose and corrected the IR but not the steatosis or obesity. CONCLUSIONS Consumption of a high-energy cafeteria diet potentiates epinephrine-induced hyperglycemia. This effect is associated with insulin resistance but not adiposity or steatosis and is reversed by 4 weeks of standard chow.
Collapse
Affiliation(s)
- Amy P Ross
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30302, USA
| | - Jenna N Darling
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30302, USA
| | - Marise B Parent
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30302, USA.
| |
Collapse
|
27
|
Zhang D, Jiang S, Meng H. Role of the Insulin-Like Growth Factor Type 1 Receptor in the Pathogenesis of Diabetic Encephalopathy. Int J Endocrinol 2015; 2015:626019. [PMID: 26089889 PMCID: PMC4451562 DOI: 10.1155/2015/626019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/09/2014] [Indexed: 12/31/2022] Open
Abstract
Defective cognitive function is common in patients with diabetes, suggesting that insulin normally exerts anabolic actions in neuron, namely, diabetic encephalopathy. However, because insulin can cross-activate the insulin-like growth factor type 1 receptor (IGF-1R), which also functions in most of tissues, such as muscle and bone, it has been difficult to establish the direct (IGF-1-independent) actions of insulin in the pathogenesis of diabetic encephalopathy. To overcome this problem, we examined insulin signaling and action in primary PC-12 cells engineered for conditional disruption of the IGF-1 receptor (ΔIGF-1R). The results showed that the lower glucose metabolism and high expression of IGF-1R occurred in the brain of the DE rat model. The results also showed the defect of IGF-1R could significantly improve the ability of glucose consumption and enhance sensitivity to insulin-induced IR and Akt phosphorylation in PC12 cells. And meanwhile, IGF-1R allele gene knockout (IGF-1R(neo)) mice treated with HFD/STZ had better cognitive abilities than those of wild mice. Those results indicate that insulin exerts direct anabolic actions in neuron-like cells by activation of its cognate receptor and prove that IGF-1R plays an important role in the pathogenesis of diabetic encephalopathy.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Radiology, Affiliated Hospital of BeiHua University, JiLin 132011, China
| | - Shuang Jiang
- College of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Heng Meng
- Department of Radiology, Affiliated Hospital of BeiHua University, JiLin 132011, China
- *Heng Meng:
| |
Collapse
|
28
|
Sobesky JL, Barrientos RM, De May HS, Thompson BM, Weber MD, Watkins LR, Maier SF. High-fat diet consumption disrupts memory and primes elevations in hippocampal IL-1β, an effect that can be prevented with dietary reversal or IL-1 receptor antagonism. Brain Behav Immun 2014; 42:22-32. [PMID: 24998196 PMCID: PMC5652296 DOI: 10.1016/j.bbi.2014.06.017] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/05/2014] [Accepted: 06/25/2014] [Indexed: 12/11/2022] Open
Abstract
High-fat diet (HFD)-induced obesity is reaching worldwide proportions. In addition to causing obesity, HFDs also induce a variety of health disorders, which includes cognitive decline. Hippocampal function may be particularly vulnerable to the negative consequences of HFD, and it is suspected that 'primed' neuroinflammatory processes may mediate this response. To examine the link between diet, hippocampal function and neuroinflammation, male Wistar rats were fed a medium or HFD. Hippocampal memory function was measured using contextual pre-exposure fear conditioning (CPE-FC). Rats fed a HFD demonstrated impaired memory, an effect that was augmented with longer duration of HFD consumption. HFD-induced memory impairments were linked to potentiated levels of interleukin-1 beta (IL-1β) protein in the hippocampus 2h after the foot-shock that occurs during CPE-FC. Central IL-1 receptor antagonism, with intracisterna magna (ICM) administration of hIL-1RA prior to the foot-shock prevented the diet-induced memory disruption, suggesting a critical role for IL-1β in this phenomenon. Additionally, obese animals whose diet regimen was reversed from HFD back to standard chow recovered memory function and did not demonstrate a foot-shock-induced hippocampal IL-1β increase. Interestingly, dietary reversal neutralized the negative impact of HFD on memory and IL-1β, yet animals maintained physiological evidence of obesity (increased body mass and serum leptin), indicating that dietary components, not body mass, may mediate the negative effects on memory.
Collapse
Affiliation(s)
- Julia L. Sobesky
- Corresponding author. Address: Department of Psychology and Neuroscience, Campus Box 345, University of Colorado, Boulder, CO 80309, USA. Tel: +1 616 403 5401. (J.L. Sobesky)
| | | | | | | | | | | | | |
Collapse
|
29
|
Hsu TM, Konanur VR, Taing L, Usui R, Kayser BD, Goran MI, Kanoski SE. Effects of sucrose and high fructose corn syrup consumption on spatial memory function and hippocampal neuroinflammation in adolescent rats. Hippocampus 2014; 25:227-39. [PMID: 25242636 DOI: 10.1002/hipo.22368] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2014] [Indexed: 12/27/2022]
Abstract
Excessive consumption of added sugars negatively impacts metabolic systems; however, effects on cognitive function are poorly understood. Also unknown is whether negative outcomes associated with consumption of different sugars are exacerbated during critical periods of development (e.g., adolescence). Here we examined the effects of sucrose and high fructose corn syrup-55 (HFCS-55) intake during adolescence or adulthood on cognitive and metabolic outcomes. Adolescent or adult male rats were given 30-day access to chow, water, and either (1) 11% sucrose solution, (2) 11% HFCS-55 solution, or (3) an extra bottle of water (control). In adolescent rats, HFCS-55 intake impaired hippocampal-dependent spatial learning and memory in a Barne's maze, with moderate learning impairment also observed for the sucrose group. The learning and memory impairment is unlikely based on nonspecific behavioral effects as adolescent HFCS-55 consumption did not impact anxiety in the zero maze or performance in a non-spatial response learning task using the same mildly aversive stimuli as the Barne's maze. Protein expression of pro-inflammatory cytokines (interleukin 6, interleukin 1β) was increased in the dorsal hippocampus for the adolescent HFCS-55 group relative to controls with no significant effect in the sucrose group, whereas liver interleukin 1β and plasma insulin levels were elevated for both adolescent-exposed sugar groups. In contrast, intake of HFCS-55 or sucrose in adults did not impact spatial learning, glucose tolerance, anxiety, or neuroinflammatory markers. These data show that consumption of added sugars, particularly HFCS-55, negatively impacts hippocampal function, metabolic outcomes, and neuroinflammation when consumed in excess during the adolescent period of development.
Collapse
Affiliation(s)
- Ted M Hsu
- Neuroscience Program, University of Southern California, Los Angeles, CA; Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Parent MB, Darling JN, Henderson YO. Remembering to eat: hippocampal regulation of meal onset. Am J Physiol Regul Integr Comp Physiol 2014; 306:R701-13. [PMID: 24573183 DOI: 10.1152/ajpregu.00496.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A wide variety of species, including vertebrate and invertebrates, consume food in bouts (i.e., meals). Decades of research suggest that different mechanisms regulate meal initiation (when to start eating) versus meal termination (how much to eat in a meal, also known as satiety). There is a very limited understanding of the mechanisms that regulate meal onset and the duration of the postprandial intermeal interval (ppIMI). In the present review, we examine issues involved in measuring meal onset and some of the limited available evidence regarding how it is regulated. Then, we describe our recent work indicating that dorsal hippocampal neurons inhibit meal onset during the ppIMI and describe the processes that may be involved in this. We also synthesize recent evidence, including evidence from our laboratory, suggesting that overeating impairs hippocampal functioning and that impaired hippocampal functioning, in turn, contributes to the development and/or maintenance of diet-induced obesity. Finally, we identify critical questions and challenges for future research investigating neural controls of meal onset.
Collapse
Affiliation(s)
- Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, Georgia; and Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Jenna N Darling
- Neuroscience Institute, Georgia State University, Atlanta, Georgia; and
| | - Yoko O Henderson
- Neuroscience Institute, Georgia State University, Atlanta, Georgia; and
| |
Collapse
|
31
|
Cetinkaya C, Sisman AR, Kiray M, Camsari UM, Gencoglu C, Baykara B, Aksu I, Uysal N. Positive effects of aerobic exercise on learning and memory functioning, which correlate with hippocampal IGF-1 increase in adolescent rats. Neurosci Lett 2013; 549:177-81. [PMID: 23792196 DOI: 10.1016/j.neulet.2013.06.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/16/2013] [Accepted: 06/09/2013] [Indexed: 10/26/2022]
Abstract
It is already known that regular aerobic exercise during adolescent period improves learning and memory in rats. In this study, we investigated the effects of regular aerobic exercise on learning, memory functioning and IGF-1 levels. IGF-1 is known to have positive effects on cognitive functions in adolescent rats. Exercise group was separated into two different groups. First half was run on a treadmill for 30 min per session at a speed of 8m/min and 0° slope, five times a week for 6 weeks. The second half was given free access to a running wheel (diameter 11.5 cm) which was connected to a digital counter and run on a treadmill for 6 weeks. Learning and memory functioning were found to be positively correlated with the exercise activity. Findings suggest increased neuron density in CA1 hippocampal region and dentate gyrus. Increased IGF-1 level was detected in hippocampus and blood serum, while IGF-1 level in liver tissue did not change with exercise activity. In conclusion, our findings indicate that learning and memory functioning were positively affected by voluntary and involuntary physical exercise which correlated increased hippocampal activity and elevated IGF-1 levels in adolescent rats.
Collapse
|
32
|
Darling JN, Ross AP, Bartness TJ, Parent MB. Predicting the effects of a high-energy diet on fatty liver and hippocampal-dependent memory in male rats. Obesity (Silver Spring) 2013; 21:910-7. [PMID: 23784893 PMCID: PMC3695417 DOI: 10.1002/oby.20167] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 11/15/2012] [Indexed: 01/01/2023]
Abstract
OBJECTIVE In rodents, diets exceeding nutritional requirements (i.e., high-energy diets; HED) impair hippocampal-dependent memory. Our research suggests that the effects likely involve HED-induced increases in liver lipids. In this experiment, rats were provided with diet choices to test whether voluntary consumption of a HED impairs spatial memory, whether differences in initial weight gain predict memory deficits, and whether increases in liver lipids are associated with the memory deficits. DESIGN AND METHODS Adult male Sprague-Dawley rats were given a control diet or cafeteria-style HED for 8 weeks. Weight gain during the first 5 days on the diet was used to divide rats into a HED-Lean group and a HED-Obese group. Spatial water maze memory was tested 8 weeks later and postmortem liver lipid concentrations were quantified. RESULTS Compared with the HED-Lean and control rats, the HED-Obese rats had impaired spatial memory and met the human diagnostic criterion of non-alcoholic fatty liver disease (>5% liver lipids relative to liver weight). Moreover, liver lipids were correlated with memory deficits. CONCLUSIONS These findings show that voluntary consumption of a HED impairs memory, that initial weight gain predicts fatty liver and memory deficits, and that fatty liver may contribute to the memory-impairing effects of obesity.
Collapse
Affiliation(s)
- J N Darling
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
33
|
Pancani T, Anderson KL, Brewer LD, Kadish I, DeMoll C, Landfield PW, Blalock EM, Porter NM, Thibault O. Effect of high-fat diet on metabolic indices, cognition, and neuronal physiology in aging F344 rats. Neurobiol Aging 2013; 34:1977-87. [PMID: 23545425 DOI: 10.1016/j.neurobiolaging.2013.02.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/31/2013] [Accepted: 02/22/2013] [Indexed: 01/05/2023]
Abstract
The prevalence of obesity and type 2 diabetes increases with age. Despite this, few studies have examined these conditions simultaneously in aged animals, and fewer studies have measured the impact of these conditions on brain function. Using an established animal model of brain aging (F344 rats), we investigated whether a high-fat diet (HFD) exacerbates cognitive decline and the hippocampal calcium-dependent afterhyperpolarization (a marker of age-dependent calcium dysregulation). Young and mid-aged animals were maintained on control or HFD for 4.5 months, and peripheral metabolic variables, cognitive function, and electrophysiological responses to insulin in the hippocampus were measured. HFD increased lipid accumulation in the periphery, although overt diabetes did not develop, nor were spatial learning and memory altered. Hippocampal adiponectin levels were reduced in aging animals but were unaffected by HFD. For the first time, however, we show that the AHP is sensitive to insulin, and that this sensitivity is reduced by HFD. Interestingly, although peripheral glucose regulation was relatively insensitive to HFD, the brain appeared to show greater sensitivity to HFD in F344 rats.
Collapse
Affiliation(s)
- Tristano Pancani
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center, Lexington, KY 40536-0084, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yin QQ, Pei JJ, Xu S, Luo DZ, Dong SQ, Sun MH, You L, Sun ZJ, Liu XP. Pioglitazone improves cognitive function via increasing insulin sensitivity and strengthening antioxidant defense system in fructose-drinking insulin resistance rats. PLoS One 2013; 8:e59313. [PMID: 23527159 PMCID: PMC3603906 DOI: 10.1371/journal.pone.0059313] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/13/2013] [Indexed: 12/18/2022] Open
Abstract
Insulin resistance (IR) links Alzheimer’s disease (AD) with oxidative damage, cholinergic deficit, and cognitive impairment. Peroxisome proliferator-activated receptor γ (PPARγ) agonist pioglitazone previously used to treat type 2 diabetes mellitus (T2DM) has also been demonstrated to be effective in anti-inflammatory reaction and anti-oxidative stress in the animal models of AD and other neuroinflammatory diseases. Here, we investigated the effect of pioglitazone on learning and memory impairment and the molecular events that may cause it in fructose-drinking insulin resistance rats. We found that long-term fructose-drinking causes insulin resistance, oxidative stress, down-regulated activity of cholinergic system, and cognitive deficit, which could be ameliorated by pioglitazone administration. The results from the present study provide experimental evidence for using pioglitazone in the treatment of brain damage caused by insulin resistance.
Collapse
Affiliation(s)
- Qing-Qing Yin
- Department of Senile Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P. R. China
| | - Jin-Jing Pei
- Department of KI-Alzheimer Disease Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Song Xu
- Department of Anti-Ageing, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P. R. China
| | - Ding-Zhen Luo
- Department of Senile Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P. R. China
| | - Si-Qing Dong
- Department of Senile Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P. R. China
| | - Meng-Han Sun
- Department of Senile Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P. R. China
| | - Li You
- Department of Central Lab, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P. R. China
| | - Zhi-Jian Sun
- Department of Anti-Ageing, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P. R. China
| | - Xue-Ping Liu
- Department of Senile Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P. R. China
- Department of Anti-Ageing, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P. R. China
- * E-mail:
| |
Collapse
|
35
|
Aksu I, Baykara B, Kiray M, Gurpinar T, Sisman AR, Ekerbicer N, Tas A, Gokdemir-Yazar O, Uysal N. Serum IGF-1 levels correlate negatively to liver damage in diabetic rats. Biotech Histochem 2013; 88:194-201. [PMID: 23331186 DOI: 10.3109/10520295.2012.758311] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diabetes and insulin resistance frequently cause liver damage. Diabetes also causes reduction in liver and blood IGF-1 levels. We investigated the relation between liver damage and IGF-1 levels in diabetic rats. Fourteen Wistar albino rats were divided into control and diabetic groups. Diabetes was induced by streptozotocin. Rats were sacrificed for biochemical and histologic examinations 2 weeks after streptozotocin injection. Serum and liver IGF-1 levels were decreased, liver malondialdehyde (MDA) levels were increased, glutathione peroxidase (GPx) enzymes activities were decreased and serum alanine aminotransferase (ALT) levels were increased in diabetic group. Microscopic examination of liver revealed that normal tissue organization was disrupted in streptozotocin-induced diabetic rats. There was a strongly positive correlation between blood glucose levels and liver injury, and blood and liver IGF-1 levels. There was a strongly negative correlation between blood IGF-1 levels and hepatic injury. Our results suggest that reduction of blood IGF-1 levels correlates with hepatic injury and circulating IGF-1 levels may have predictive value for determining hepatic damage that results from diabetes. In addition, circulating IGF-1 levels are correlated with glutathione levels and the oxidative stress status of diabetic rat liver.
Collapse
Affiliation(s)
- Ilkay Aksu
- Dokuz Eylul University, Medical Faculty, Physiology, Izmir, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rebollo A, Roglans N, Alegret M, Laguna JC. Way back for fructose and liver metabolism: Bench side to molecular insights. World J Gastroenterol 2012; 18:6552-9. [PMID: 23236229 PMCID: PMC3516224 DOI: 10.3748/wjg.v18.i45.6552] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/26/2012] [Accepted: 09/29/2012] [Indexed: 02/06/2023] Open
Abstract
The World Health Organization recommends that the daily intake of added sugars should make up no more than 10% of total energy. The consumption of sugar-sweetened beverages is the main source of added sugars. Fructose, together with glucose, as a component of high fructose corn syrups or as a component of the sucrose molecule, is one of the main sweeteners present in this kind of beverages. Data from prospective and intervention studies clearly point to high fructose consumption, mainly in the form of sweetened beverages, as a risk factor for several metabolic diseases in humans. The incidence of hypertension, nonalcoholic fatty liver disease (NAFLD), dyslipidemia (mainly hypertriglyceridemia), insulin resistance, type 2 diabetes mellitus, obesity, and the cluster of many of these pathologies in the form of metabolic syndrome is higher in human population segments that show high intake of fructose. Adolescent and young adults from low-income families are especially at risk. We recently reviewed evidence from experimental animals and human data that confirms the deleterious effect of fructose on lipid and glucose metabolism. In this present review we update the information generated in the past 2 years about high consumption of fructose-enriched beverages and the occurrence of metabolic disturbances, especially NAFLD, type 2 diabetes mellitus, and metabolic syndrome. We have explored recent data from observational and experimental human studies, as well as experimental data from animal and cell models. Finally, using information generated in our laboratory and others, we provide a view of the molecular mechanisms that may be specifically involved in the development of liver lipid and glucose metabolic alterations after fructose consumption in liquid form.
Collapse
|
37
|
Henderson YO, Smith GP, Parent MB. Hippocampal neurons inhibit meal onset. Hippocampus 2012; 23:100-7. [DOI: 10.1002/hipo.22062] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2012] [Indexed: 01/29/2023]
|