1
|
Li L, Xu J, Yuan J, Zhang R, Xu T. TRPM2 deficiency ameliorated H9N2 influenza virus-induced acute lung injury in mice. Microb Pathog 2025; 199:107183. [PMID: 39615704 DOI: 10.1016/j.micpath.2024.107183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
Oxidative stress is involved in lung damage induced by the influenza virus. The transient receptor potential melastatin-2 (TRPM2) cation channel, a Ca2+ permeable non-selective cation channel, is implicated in the mediation of multiple tissue injuries induced by oxidative stress. The role of TRPM2 in several diseases has been widely studied, but there have been few studies on the involvement of TRPM2 in lung injury induced by the H9N2 influenza virus. We investigated the effects of TRPM2 on pathological alterations, oxidative stress, apoptosis, and inflammation in mice infected with H9N2 virus. TRPM2 knockout (TRPM2-/-) mice and wild-type (WT) mice were infected separately with H9N2 influenza virus. Pulmonary oedema, lung permeability, Ca2+ concentration, redox imbalance, apoptosis, and levels of inflammatory factors (IL-1β, IL-6, TNF-α) were increased in WT mice infected with H9N2 virus. However, these effects were diminished by TRPM2 knockout. Our results emphasised the significance of TRPM2 knockdown in mitigating pathological lung alterations, maintaining Ca2+ homeostasis, reducing oxidative damage, preventing apoptosis, and suppressing the production of inflammatory cytokines in H9N2 virus-infected mice. Therefore, inhibition of TRPM2 activation is a potentially important therapeutic strategy for treating lung injury.
Collapse
Affiliation(s)
- Longfei Li
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075000, Hebei, PR China
| | - Jiupeng Xu
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075000, Hebei, PR China
| | - Jiaxin Yuan
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075000, Hebei, PR China
| | - Ruihua Zhang
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075000, Hebei, PR China
| | - Tong Xu
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075000, Hebei, PR China.
| |
Collapse
|
2
|
Petrikonis K, Bernatoniene J, Kopustinskiene DM, Casale R, Davinelli S, Saso L. The Antinociceptive Role of Nrf2 in Neuropathic Pain: From Mechanisms to Clinical Perspectives. Pharmaceutics 2024; 16:1068. [PMID: 39204413 PMCID: PMC11358986 DOI: 10.3390/pharmaceutics16081068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Neuropathic pain, a chronic condition resulting from nerve injury or dysfunction, presents significant therapeutic challenges and is closely associated with oxidative stress and inflammation, both of which can lead to mitochondrial dysfunction. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, a critical cellular defense mechanism against oxidative stress, has emerged as a promising target for neuropathic pain management. Nrf2 modulators enhance the expression of antioxidant and cytoprotective genes, thereby reducing oxidative damage, inflammation, and mitochondrial impairment. This review explores the antinociceptive effects of Nrf2, highlighting how pharmacological agents and natural compounds may be used as potential therapeutic strategies against neuropathic pain. Although preclinical studies demonstrate significant pain reduction and improved nerve function through Nrf2 activation, several clinical challenges need to be addressed. However, emerging clinical evidence suggests potential benefits of Nrf2 modulators in several conditions, such as diabetic neuropathy and multiple sclerosis. Future research should focus on further elucidating the molecular role of Nrf2 in neuropathic pain to optimize its modulation efficacy and maximize clinical utility.
Collapse
Affiliation(s)
- Kestutis Petrikonis
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Roberto Casale
- Opusmedica Persons, Care & Research-NPO, 29121 Piacenza, Italy;
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
3
|
Bernatoniene J, Sciupokas A, Kopustinskiene DM, Petrikonis K. Novel Drug Targets and Emerging Pharmacotherapies in Neuropathic Pain. Pharmaceutics 2023; 15:1799. [PMID: 37513986 PMCID: PMC10384314 DOI: 10.3390/pharmaceutics15071799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Neuropathic pain is a debilitating condition characterized by abnormal signaling within the nervous system, resulting in persistent and often intense sensations of pain. It can arise from various causes, including traumatic nerve injury, neuropathy, and certain diseases. We present an overview of current and emerging pharmacotherapies for neuropathic pain, focusing on novel drug targets and potential therapeutic agents. Current pharmacotherapies, including tricyclic antidepressants, gabapentinoids, and serotonin norepinephrine re-uptake inhibitors, are discussed, as are emerging treatments, such as ambroxol, cannabidiol, and N-acetyl-L-cysteine. Additionally, the article highlights the need for further research in this field to identify new targets and develop more effective and targeted therapies for neuropathic pain management.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Arunas Sciupokas
- Pain Clinic, Lithuanian University of Health Sciences Hospital Kauno Klinikos, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
| | - Dalia Marija Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Kestutis Petrikonis
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
| |
Collapse
|
4
|
Abbas AO, Alaqil AA, Mehaisen GMK, El Sabry MI. Effect of Organic Selenium-Enriched Yeast on Relieving the Deterioration of Layer Performance, Immune Function, and Physiological Indicators Induced by Heat Stress. Front Vet Sci 2022; 9:880790. [PMID: 35573399 PMCID: PMC9096893 DOI: 10.3389/fvets.2022.880790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Heat stress (HS) induces deleterious effects on the performance of laying hens and causes economic losses for poultry industry. This study was carried out to investigate the organic effect of selenium-enriched yeast (SY) on relieving the performance, immunity and physiological deterioration induced by heat stress in laying hens. A total of 324, 28-week-old, Hy-Line Brown commercial chicken layers were randomly distributed into 4 treatments according to a 2 × 2 factorial design, with 9 hens × 9 replicates per treatment (n = 81). From 30 to 34 weeks of age, layers were exposed to 2 temperature treatments (the HS treatment groups): a thermoneutral temperature at 24°C and a heat stress at 35°C. Layers were further assigned into the 2 subgroups according to dietary supplementation with organic selenium-enriched yeast (the SY treatment groups) at either 0 or 0.4 mg/kg diet. Results indicated that all the aspects of the layer performance during the experimental period were impaired by exposure to HS, while SY supplementation improved the layer performance in both the HS and non-HS layers. Intestinal villi disruptions and liver necrotic hepatocytes were observed in the layers exposed to HS, while villi integrity and hepatocytic normality were enhanced by SY treatment. A significant (P < 0.05) decrease in the total leukocyte count, sheep red blood cell (SRBC) antibody titer, and T- and B-lymphocyte proliferation along with an increase in the heterophils/lymphocytes (H/L) ratio were observed in the HS layers compared to non-HS layers. On the contrary, SY treatment significantly (P < 0.05) improved the immune function traits in both the HS layers and non-HS layers. Furthermore, the SY treatment plays an important role in mitigating the oxidative stress and inflammation induced by HS, displaying lower levels of plasma corticosterone, lipid peroxidation, interleukin-1β, and tumor necrosis factor-α in HS layers supplemented with SY compared to HS layers without SY supplementation. These results conclude that addition of SY to the diet of laying hens could be applied as a potential nutritional approach to relieve the deterioration effects of heat stress on the immunity, physiological status, and productive performance of laying hens.
Collapse
Affiliation(s)
- Ahmed O Abbas
- Department of Animal and Fish Production, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Abdulaziz A Alaqil
- Department of Animal and Fish Production, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Gamal M K Mehaisen
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mohamed I El Sabry
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Selenium Effects on Oxidative Stress-Induced Calcium Signaling Pathways in Parkinson’s Disease. Indian J Clin Biochem 2022; 37:257-266. [DOI: 10.1007/s12291-022-01031-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
|
6
|
Ergun DD, Dursun S, Ozsobaci NP, Naziroglu M, Ozcelik D. Response of TRPM2 Channel to Hypercapnic Acidosis and Role of Zn, Se, and GSH. Biol Trace Elem Res 2022; 200:147-155. [PMID: 33689144 DOI: 10.1007/s12011-021-02652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/22/2021] [Indexed: 11/30/2022]
Abstract
Hypercapnia can increase the production of reactive oxygen species (ROS) by inducing oxidative stress in cells. Transient receptor potential melastatin 2 (TRPM2) channel activation that is realized by ROS plays a critical role in the cellular mechanism. It was shown that antioxidants such as zinc (Zn), selenium (Se), and glutathione (GSH) can partake in the structures of enzymes and create a protective effect against oxidative stress. This study revealed the relationship between TRPM2 channel and hypercapnia, and the interaction of zinc, selenium, and glutathione. In our study, normoxia, hypercapnia, hypercapnia + Zn, hypercapnia + Se, and hypercapnia + GSH were created, in transfected HEK293 cells. The cells were exposed to normoxia or hypercapnia gasses in two different times (30 min and 60 min), while Zn, Se, and GSH were applied to the cells in the other groups before being exposed to the gas mixtures. The statistical evaluation showed a significant increase in lipid peroxidation (LPO) level and lactate dehydrogenase (LDH)% in the hypercapnia 30 min and 60 min groups, compared to the normoxia 30 min and 60 min groups, and an increase in LPO level and LDH% in the hypercapnia groups that Zn, Se, and GSH were applied. It was determined that in comparison with the normoxia 30 min and 60 min groups, the amount of inward Ca+2 current across TRPM2 channels and mean current density increased in the groups that were exposed to hypercapnia for 30 min and 60 min, while the same values significantly decreased in the hypercapnia groups that Zn, Se, and GSH were applied. Also, it was shown that oxidative stress rose as the duration of hypercapnia exposure increased. It was concluded that hypercapnia increased oxidative stress and caused cellular membrane damage, while the addition of Zn, Se, and GSH could protect the cell membrane from these damaging effects.
Collapse
Affiliation(s)
- D Duzgun Ergun
- Department of Biophysics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - S Dursun
- Department of Biophysics, Faculty of Medicine, Uskudar University, Istanbul, Turkey
| | - N Pastaci Ozsobaci
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - M Naziroglu
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
- Drug Discovery Unit, BSN Health, Analyses, Innovation, Consultancy, Organization, Agriculture, Industry LTD. Inc., Göller Bölgesi Teknokenti, Isparta, Turkey
| | - D Ozcelik
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
7
|
Atilgan FA, Atescelik M, Yilmaz M, Turk A, Gurger M, Goktekin MC, Kuloglu T. Effects of N-acetyl cysteine on TRPM2 expression in kidney and liver tissues following malathion intoxication. Biotech Histochem 2021; 97:340-346. [PMID: 34652265 DOI: 10.1080/10520295.2021.1986639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
We investigated the effects of N-acetyl cysteine (NAC) on transient receptor potential melastatin 2 (TRPM2) channel expression in rat kidney and liver tissues following experimental malathion intoxication. We used seven groups of six male Wistar albino rats: control group, NAC, pralidoxime + atropine, malathion, malathion + pralidoxime + atropine, malathion + pralidoxime + atropine + NAC, and malathion + NAC. Single doses of 100 mg/kg N-acetyl cysteine, 40 mg/kg pralidoxime, 2 mg/kg atropine and 1/3 the lethal dose of malathion were administered. No difference in malondialdehyde (MDA) levels, apoptosis or TRPM2 immunoreactivity was found in liver tissue among the groups. In kidney tissue, MDA levels, apoptosis and TRPM2 immunoreactivity were increased significantly in the malathion and malathion + NAC groups compared to the control group. We found that organophosphate intoxication did not affect MDA, apoptosis or TRPM2 immunoreactivity in rat liver during the acute period. By contrast, we found that in kidney tissue, MDA, apoptosis, and TRPM2 immunoreactivity were increased significantly following administration of malathion. Also, NAC given in addition to pralidoxime and atropine reduced MDA to control levels.
Collapse
Affiliation(s)
- Fethi Ahmet Atilgan
- Department of Emergency Medicine, Malatya Education and Research Hospital, Malatya, Turkey
| | - Metin Atescelik
- Department of Emergency Medicine, Firat University School of Medicine, Elazig, Turkey
| | - Mustafa Yilmaz
- Department of Emergency Medicine, Firat University School of Medicine, Elazig, Turkey
| | - Ahmet Turk
- Department of Histology and Embryology, Adiyaman University School of Medicine, Adiyaman, Turkey
| | - Mehtap Gurger
- Department of Emergency Medicine, Firat University School of Medicine, Elazig, Turkey
| | - Mehmet Cagri Goktekin
- Department of Emergency Medicine, Firat University School of Medicine, Elazig, Turkey
| | - Tuncay Kuloglu
- Department of Histology and Embryology, Firat University School of Medicine, Elazig, Turkey
| |
Collapse
|
8
|
Bilal RM, Hassan FU, Farag MR, Nasir TA, Ragni M, Mahgoub HAM, Alagawany M. Thermal stress and high stocking densities in poultry farms: Potential effects and mitigation strategies. J Therm Biol 2021; 99:102944. [PMID: 34420608 DOI: 10.1016/j.jtherbio.2021.102944] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/28/2022]
Abstract
Environmental changes pose significant threats to agricultural activities particularly animal production. These changes have induced major concerns which will negatively affect the poultry health and productivity under the current climate changes. Moreover, they also alter the immunological status of the exposed birds and make them susceptible to different diseases. The adverse effects of environmental stress also include poor performance of birds (reduced feed intake, growth, feed efficiency, immunity, and egg production) and inferior product quality. The adverse effect of heat stress on different quail breeds like Japanese quail, bobwhite quail, scaled quail, and Gambel's quail ranged from decreased growth rates (11.0-14.5%), body weight (7.7-13.2%), feed intake (6.1-21.6%), feed efficiency (4.3-8.6%), and egg production (6.6-23.3%). Also, birds reared under heat stress (34 °C) had significantly decreased Haugh units by 10.8% and egg weight by 14.3% in comparison with the control group (reared at 22 °C). On the other hand, increasing stoking density from 30 to 45 kg/m2 also negatively affected the feed intake and body weight. Recent studies have focused on evaluating the potential adverse effects of different environmental stresses on poultry performance, behavior, welfare, and reproduction. It is imperative to understand better the interaction of different environmental factors and their subsequent effects on avian physiology, to spotlights on the effective management and nutritional strategies to alleviate the adverse effects of different stresses in poultry. This review aims to present a comprehensive overview of physiological manifestations of major environmental stresses including thermal stress (heat and cold stress) and high stocking densities on poultry health and production. Moreover, we have also critically evaluated the scope and efficacy of some potential strategies to mitigate the influences of these environmental stressors in different poultry species.
Collapse
Affiliation(s)
- Rana Muhammad Bilal
- College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Faiz-Ul Hassan
- Institute of Animal & Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Mayada R Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, 44519, Egypt
| | - Taquir Ali Nasir
- Department of Animal Science, University of Sargodha, Punjb, Pakistan
| | - Marco Ragni
- Department of Agro-Environmental and Territorial Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - Hany A M Mahgoub
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
9
|
Yazğan Y, Nazıroğlu M. Involvement of TRPM2 in the Neurobiology of Experimental Migraine: Focus on Oxidative Stress and Apoptosis. Mol Neurobiol 2021; 58:5581-5601. [PMID: 34370177 DOI: 10.1007/s12035-021-02503-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022]
Abstract
Excessive Ca2+ influx and mitochondrial oxidative stress (OS) of trigeminal ganglia (TG) have essential roles in the etiology of migraine headache and aura. The stimulation of TRPM2 channel via the generation of OS and ADP-ribose (ADPR) induces pain, inflammatory, and oxidative neurotoxicity, although its inhibition reduces the intensity of pain and neurotoxicity in several neurons. However, the cellular and molecular effects of TRPM2 in the TG of migraine model (glyceryl trinitrate, GTN) on the induction of pain, OS, apoptosis, and inflammation remain elusive. GTN-mediated increases of pain intensity, apoptosis, death, cytosolic reactive oxygen species (ROS), mitochondrial ROS, caspase -3, caspase -9, cytosolic Ca2+ levels, and cytokine generations (TNF-α, IL-1β, and IL-6) in the TG of TRPM2 wild-type mouse were further increased by the TRPM2 activation, although they were modulated by the treatments of GSH, PARP-1 inhibitors (PJ34 and DPQ), and TRPM2 blockers (ACA and 2APB). However, the effects of GTN were not observed in the TG of TRPM2 knockout mice. The current data indicate that the maintaining activation of TRPM2 is not only important for the quenching OS, inflammation, and neurotoxicity in the TG neurons of mice with experimental migraine but also equally critical to the modulation of GTN-induced pain.
Collapse
Affiliation(s)
- Yener Yazğan
- Department of Neuroscience, Health Science Institute, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Department of Neuroscience, Health Science Institute, Suleyman Demirel University, Isparta, Turkey. .,Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey. .,Drug Discovery Unit, BSN Health, Analyses, Innovation, Consultancy, Organization, Agriculture and Industry Ltd, Isparta, Turkey. .,Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, TR-32260, Isparta, Turkey.
| |
Collapse
|
10
|
Yildirim C, Özkaya B, Bal R. KATP and TRPM2-like channels couple metabolic status to resting membrane potential of octopus neurons in the mouse ventral cochlear nucleus. Brain Res Bull 2021; 170:115-128. [PMID: 33581312 DOI: 10.1016/j.brainresbull.2021.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/29/2022]
Abstract
ATP-sensitive potassium (KATP) channels and transient receptor potential melastatin 2 (TRPM2) channels are commonly expressed both pre- and postsynaptically in the central nervous system (CNS). We hypothesized that KATP and TRPM2 may couple metabolic status to the resting membrane potential of octopus neurons of the mouse ventral cochlear nucleus (VCN). Therefore, we studied the expression of KATP channels and TRPM2 channels in octopus cells by immunohistochemical techniques and their contribution to neuronal electrical properties by the electrophysiological patch clamp technique. In immunohistochemical staining of octopus cells, labelling with Kir6.2 and SUR1 antibodies was strong, and labelling with the SUR2 antibody was moderate, but labelling with Kir6.1 was very weak. Octopus cells had intense staining with TRPM2 antibodies. In patch clamp recordings, bath application of KATP channel agonists H2O2 (880 μM), ATZ (1 mM), cromakalim (50 μM), diazoxide (200 μM), NNC 55-0118 and NN 414 separately resulted in hyperpolarizations of resting potential to different extents. Application of 8-Bro-cADPR (50 μM), a specific antagonist of TRPM2 channels, in the presence of H2O2 (880 μM) resulted in further hyperpolarization by approximately 1 mV. The amplitudes of H2O2-induced outward KATP currents and ADPR-induced inward currents were 206.1 ± 31.5 pA (n = 4) and 136.8 ± 22.4 pA, respectively, at rest. Their respective reversal potentials were -77 ± 2.6 mV (n = 3) and -6.3 ± 2.9 (n = 3) and -6.3 ± 2.9 (n = 3). In conclusion, octopus cells appear to possess both KATP channels and TRPM2-like channels. KATP might largely be constituted by SUR1-Kir6.2 subunits and SUR2-Kir6.2 subunits. Both KATP and TRPM2-like channels might have a modulatory action in setting the membrane potential.
Collapse
Affiliation(s)
- Caner Yildirim
- Department of Physiology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey
| | - Beytullah Özkaya
- Department of Physiology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey
| | - Ramazan Bal
- Department of Physiology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey.
| |
Collapse
|
11
|
Özkaya D, Nazıroğlu M. Bevacizumab induces oxidative cytotoxicity and apoptosis via TRPM2 channel activation in retinal pigment epithelial cells: Protective role of glutathione. Graefes Arch Clin Exp Ophthalmol 2021; 259:1539-1554. [PMID: 33544179 DOI: 10.1007/s00417-021-05074-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Bevacizumab (BEV) is a blocker of circulating VEGF A generation. However, BEV has adverse apoptotic and cytotoxic effects via upregulation of mitochondrial reactive oxygen species (ROS) and TRPM2 activation, and downregulation of cytosolic glutathione (GSH) in neuronal cells. We investigated the possible protective effects of GSH treatment on BEV-induced oxidant and apoptotic adverse actions in the TRPM2 expressing adult retinal pigment epithelial-19 (ARPE-19) and SH-SY5Y neuronal cells. MATERIAL AND METHODS The ARPE-19 and SH-SY5Y cells were divided into five main groups: Control, GSH (10 mM for 2 h), BEV (0.25 mg/ml for 24 h), BEV+GSH, and BEV+TRPM2 channel blockers (ACA or 2-APB). In the SH-SY5Y cells, the Ca2+ analyses (Fluo-3) were performed only, although Fluo-3 and the remaining analyses were performed in the ARPE-19 cells. RESULTS The levels of apoptosis, cell death, mitochondrial ROS, lipid peroxidation, caspase-3, caspase-9, ADP-ribose-induced TRPM2 current density, cytosolic-free Zn2+, and Ca2+ were increased by BEV, although their levels were diminished by the treatments of GSH and TRPM2 blockers. The BEV-induced decreases of cell viability, GSH levels, and glutathione peroxidase activities were increased by the treatment of GSH. BEV-induced increase of TRPM2 expression was decreased by the treatment of GSH, although BEV-induced decrease of VEGF A expression was further decreased by the treatment of GSH. CONCLUSION Our data confirmed that BEV-induced mitochondrial ROS and apoptosis in the human retinal epithelial cells were modulated by GSH and TRPM2 inhibition. The treatment of GSH may be considered as a therapeutic approach to BEV-induced ARPE-19 cell injury.
Collapse
Affiliation(s)
- Dilek Özkaya
- Department of Ophthalmology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey. .,Drug Discovery Unit, BSN Health, Analyses, Innovation, Consultancy, Organization, Agriculture, Industry and Trade Limited Company, Göller Bölgesi Teknokenti, Isparta, Turkey. .,Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, 32260, Isparta, Turkey.
| |
Collapse
|
12
|
Oronowicz J, Reinhard J, Reinach PS, Ludwiczak S, Luo H, Omar Ba Salem MH, Kraemer MM, Biebermann H, Kakkassery V, Mergler S. Ascorbate-induced oxidative stress mediates TRP channel activation and cytotoxicity in human etoposide-sensitive and -resistant retinoblastoma cells. J Transl Med 2021; 101:70-88. [PMID: 32948812 PMCID: PMC7758186 DOI: 10.1038/s41374-020-00485-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/29/2020] [Accepted: 08/11/2020] [Indexed: 02/08/2023] Open
Abstract
There are indications that pharmacological doses of ascorbate (Asc) used as an adjuvant improve the chemotherapeutic management of cancer. This favorable outcome stems from its cytotoxic effects due to prooxidative mechanisms. Since regulation of intracellular Ca2+ levels contributes to the maintenance of cell viability, we hypothesized that one of the effects of Asc includes disrupting regulation of intracellular Ca2+ homeostasis. Accordingly, we determined if Asc induced intracellular Ca2+ influx through activation of pertussis sensitive Gi/o-coupled GPCR which in turn activated transient receptor potential (TRP) channels in both etoposide-resistant and -sensitive retinoblastoma (WERI-Rb1) tumor cells. Ca2+ imaging, whole-cell patch-clamping, and quantitative real-time PCR (qRT-PCR) were performed in parallel with measurements of RB cell survival using Trypan Blue cell dye exclusion. TRPM7 gene expression levels were similar in both cell lines whereas TRPV1, TRPM2, TRPA1, TRPC5, TRPV4, and TRPM8 gene expression levels were downregulated in the etoposide-resistant WERI-Rb1 cells. In the presence of extracellular Ca2+, 1 mM Asc induced larger intracellular Ca2+ transients in the etoposide-resistant WERI-Rb1 than in their etoposide-sensitive counterpart. With either 100 µM CPZ, 500 µM La3+, 10 mM NAC, or 100 µM 2-APB, these Ca2+ transients were markedly diminished. These inhibitors also had corresponding inhibitory effects on Asc-induced rises in whole-cell currents. Pertussis toxin (PTX) preincubation blocked rises in Ca2+ influx. Microscopic analyses showed that after 4 days of exposure to 1 mM Asc cell viability fell by nearly 100% in both RB cell lines. Taken together, one of the effects underlying oxidative mediated Asc-induced WERI-Rb1 cytotoxicity stems from its promotion of Gi/o coupled GPCR mediated increases in intracellular Ca2+ influx through TRP channels. Therefore, designing drugs targeting TRP channel modulation may be a viable approach to increase the efficacy of chemotherapeutic treatment of RB. Furthermore, Asc may be indicated as a possible supportive agent in anti-cancer therapies.
Collapse
Affiliation(s)
- Jakub Oronowicz
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Peter Sol Reinach
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, PR China
| | - Szymon Ludwiczak
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Huan Luo
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Marah Hussain Omar Ba Salem
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Miriam Monika Kraemer
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Heike Biebermann
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Vinodh Kakkassery
- Universität zu Lübeck, Klinik für Augenheilkunde - Universitätsklinikum Schleswig-Holstein (Campus Lübeck), Lübeck, Germany.
| | - Stefan Mergler
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
13
|
Armağan HH, Nazıroğlu M. Glutathione depletion induces oxidative injury and apoptosis via TRPM2 channel activation in renal collecting duct cells. Chem Biol Interact 2020; 334:109306. [PMID: 33309544 DOI: 10.1016/j.cbi.2020.109306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022]
Abstract
Oxidative stress (OS)-induced glutathione (GSH) depletion plays an essential role in several kidney diseases such as chronic kidney disease and nephrotoxicity. The OS-dependent activation of TRPM2 cation channel in several neurons and cells were modulated by the concentration of intracellular GSH. However, the effects of GSH alteration on TRPM2 activation, OS, and apoptosis in the cortical collecting duct (mpkCCDc14) cells still remain elusive. We investigated the effects of GSH supplementation on OS-induced TRPM2 activation, mitochondrial oxidative stress, and apoptosis in the human embryonic kidney 293 (HEK293) and mpkCCDc14 cells treated with buthionine-sulfoximine (BSO), a GSH synthase inhibitor. The HEK293 and mpkCCDc14 cells were divided into five groups as control, GSH (10 mM for 2 h), BSO (0.5 mM for 6 h), BSO + GSH, and BSO + TRPM2 channel blockers. Apoptosis, cell death, mitochondrial OS, caspase -3, caspase -9, cytosolic free Zn2+, and Ca2+ concentrations were increased in the BSO group of the TRPM2 expressing mpkCCDc14 cells, although they were diminished by the treatments of GSH, PARP-1 inhibitors (PJ34 and DPQ), and TRPM2 blockers (ACA and 2-APB). The BSO-induced decreases in the levels of cell viability and cytosolic GSH were increased by the treatments of GSH, ACA, and 2-APB. However, the effects of BSO and GSH were not observed in the non-TRPM2 expressing HEK293 cells. Current results show that maintaining GSH homeostasis is not only important for quenching OS in the cortical collecting duct cells but equally critical to modulate TRPM2 activation. Thus, suppressing apoptosis and mitochondrial OS responses elicited by oxidant action of GSH depletion.
Collapse
Affiliation(s)
- Hamit Hakan Armağan
- Department of Emergency Medicine, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey; Drug Discovery Unit, BSN Health, Analyses, Innovation, Consultancy, Organization, Agriculture and Industry Ltd, Göller Bölgesi Teknokenti, Isparta, Turkey.
| |
Collapse
|
14
|
Abbaszadeh F, Fakhri S, Khan H. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res 2020; 160:105069. [PMID: 32652198 DOI: 10.1016/j.phrs.2020.105069] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a neurological disorder associated with the loss of sensory and motor function. Understanding the precise dysregulated signaling pathways, especially apoptosis and autophagy following SCI, is of vital importance in developing innovative therapeutic targets and treatments. The present study lies in the fact that it reveals the precise dysregulated signaling mediators of apoptotic and autophagic pathways following SCI and also examines the effects of polyphenols and other candidate phytochemicals. It provides new insights to develop new treatments for post-SCI complications. Accordingly, a comprehensive review was conducted using electronic databases including, Scopus, Web of Science, PubMed, and Medline, along with the authors' expertise in apoptosis and autophagy as well as their knowledge about the effects of polyphenols and other phytochemicals on SCI pathogenesis. The primary mechanical injury to spinal cord is followed by a secondary cascade of apoptosis and autophagy that play critical roles during SCI. In terms of pharmacological mechanisms, caspases, Bax/Bcl-2, TNF-α, and JAK/STAT in apoptosis along with LC3 and Beclin-1 in autophagy have shown a close interconnection with the inflammatory pathways mainly glutamatergic, PI3K/Akt/mTOR, ERK/MAPK, and other cross-linked mediators. Besides, apoptotic pathways have been shown to regulate autophagy mediators and vice versa. Prevailing evidence has highlighted the importance of modulating these signaling mediators/pathways by polyphenols and other candidate phytochemicals post-SCI. The present review provides dysregulated signaling mediators and therapeutic targets of apoptotic and autophagic pathways following SCI, focusing on the modulatory effects of polyphenols and other potential phytochemical candidates.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
15
|
Yıldızhan K, Nazıroğlu M. Glutathione Depletion and Parkinsonian Neurotoxin MPP +-Induced TRPM2 Channel Activation Play Central Roles in Oxidative Cytotoxicity and Inflammation in Microglia. Mol Neurobiol 2020; 57:3508-3525. [PMID: 32535761 DOI: 10.1007/s12035-020-01974-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is one of most common neurodegenerative diseases. Environmental stressors such as oxidative stress (OS), calcium ion influx, apoptosis, and inflammation mechanisms are linked to activated microglia in patients with PD. The OS-dependent activated transient receptor potential melastatin 2 (TRPM2) channel is modulated in several neurons by glutathione (GSH). However, the cellular and molecular effects of GSH alteration on TRPM2 activation, OS, apoptosis, and inflammation in the microglia remain elusive. The microglia of TRPM2 wild-type (TRPM2-WT) and knockout (TRPM2-KO) mice were divided into control, PD model (MPP), L-buthionine sulfoximine (BSO), MPP + BSO and MPP + BSO + GSH groups. MPP-induced increases in apoptosis, death, OS, lipid peroxidation, PARP1, caspase-3 and caspase-9, inflammatory cytokines (IL-1β, TNF-α, IL-6), and intracellular free Zn2+ and Ca2+ levels in the microglia of TRPM2-WT mice were further increased by the BSO treatment, although they were diminished by the GSH treatment. Their levels were further reduced by PARP1 inhibitors (PJ34 and DPQ) and TRPM2 blockers (ACA and 2-APB). However, the effects of MPP and BSO were not observed in the microglia of TRPM2-KO mice. Taken together, our data demonstrate that maintaining GSH homeostasis is not only important for quenching OS in the microglia of patients with PD but also equally critical to modulating TRPM2, thus suppressing inflammatory responses elicited by environmental stressors.
Collapse
Affiliation(s)
- Kenan Yıldızhan
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, TR-32260, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, TR-32260, Isparta, Turkey. .,Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey. .,Drug Discovery Unit, BSN Health, Analyses, Innovation, Consultancy, Organization, Agriculture and Industry Ltd,, Göller Bölgesi Teknokenti, Isparta, Turkey.
| |
Collapse
|
16
|
Duzgun Ergun D, Dursun S, Pastaci Ozsobaci N, Hatırnaz Ng O, Naziroglu M, Ozcelik D. The potential protective roles of zinc, selenium and glutathione on hypoxia-induced TRPM2 channel activation in transfected HEK293 cells. J Recept Signal Transduct Res 2020; 40:521-530. [PMID: 32354246 DOI: 10.1080/10799893.2020.1759093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Hypoxia induces cell death through excessive production of reactive oxygen species (ROS) and calcium (Ca2+) influx in cells and TRPM2 cation channel is activated by oxidative stress. Zinc (Zn), selenium (Se), and glutathione (GSH) have antioxidant properties in several cells and hypoxia-induced TRPM2 channel activity, ROS and cell death may be inhibited by the Zn, Se, and GSH treatments. We investigated effects of Zn, Se, and GSH on lipid peroxidation (LPO), cell cytotoxicity and death through inhibition of TRPM2 channel activity in transfected HEK293 cells exposed to hypoxia defined as oxygen deficiency.We induced four groups as normoxia 30 and 60 min evaluated as control groups, hypoxia 30 and 60 min in the HEK293 cells. The cells were separately pre-incubated with extracellular Zn (100 µM), Se (150 nM) and GSH (5 mM). Cytotoxicity was evaluated by lactate dehydrogenase (LDH) release and the LDH and LPO levels were significantly higher in the hypoxia-30 and 60 min-exposed cells according to normoxia 30 and 60 min groups. Furthermore, we found that the LPO and LDH were decreased in the hypoxia-exposed cells after being treated with Zn, Se, and GSH according to the hypoxia groups. Compared to the normoxia groups, the current densities of TRPM2 channel were increased in the hypoxia-exposed cells by the hypoxia applications, while the same values were decreased in the treatment of Zn, Se, and GSH according to hypoxia group. In conclusion, hypoxia-induced TRPM2 channel activity, ROS and cell death were recovered by the Se, Zn and GSH treatments.
Collapse
Affiliation(s)
- Dilek Duzgun Ergun
- Department of Biophysics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.,Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sefik Dursun
- Department of Biophysics, Faculty of Medicine, Uskudar University, Istanbul, Turkey
| | - Nural Pastaci Ozsobaci
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ozden Hatırnaz Ng
- Department of Medical Biology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,Department of Genetic, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Mustafa Naziroglu
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.,Drug Discovery Unit, BSN Health, Analyses, Innovation, Consultancy, Organization, Agriculture, Industry LTD. Inc, Göller Bölgesi Teknokenti, Isparta, Turkey
| | - Dervis Ozcelik
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
17
|
Resveratrol attenuates hypoxia-induced neuronal cell death, inflammation and mitochondrial oxidative stress by modulation of TRPM2 channel. Sci Rep 2020; 10:6449. [PMID: 32296107 PMCID: PMC7160154 DOI: 10.1038/s41598-020-63577-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/01/2020] [Indexed: 12/31/2022] Open
Abstract
Hypoxia (HYPX) induced-overload Ca2+ entry results in increase of mitochondrial oxidative stress, inflammation and apoptosis in several neurons. Ca2+ permeable TRPM2 channel was gated by ADP-ribose (ADPR) and reactive oxygen species (ROS), although its activity was modulated in HYPX-exposed neurons by resveratrol (RSV). The aim of this study was to evaluate if a therapy of RSV can modulate the effect of HYPX in the TRPM2 expressing SH-SY5Y neuronal and HEK293 (no expression of TRPM2) cell lines. The SH-SY5Y and HEK293 cells were divided into four groups as control, RSV (50 μM and 24 hours), and HYPX and RSV + HYPX. For induction of HYPX in the cells, CoCl2 (200 μM and 24 hours) incubation was used. HYPX-induced intracellular Ca2+ responses to TRPM2 activation were increased in the SH-SY5Y cells but not in the HEK293 cells from coming H2O2 and ADPR. RSV treatment improved intracellular Ca2+ responses, mitochondrial function, suppressed the generation of cytokine (IL-1β and TNF-α), cytosolic and mitochondrial ROS in the SH-SY5Y cells. Intracellular free Zn2+, apoptosis, cell death, PARP-1, TRPM2 expression, caspase −3 and −9 levels are increased through activating TRPM2 in the SH-SY5Y cells exposed to the HYPX. However, the values were decreased in the cells by RSV and TRPM2 blockers (ACA and 2-APB). In SH-SY5Y neuronal cells exposed to HYPX conditions, the neuroprotective effects of RSV were shown to be exerted via modulation of oxidative stress, inflammation, apoptosis and death through modulation of TRPM2 channel. RSV could be used as an effective agent in the treatment of neurodegeneration exposure to HYPX.
Collapse
|
18
|
Gökçe Kütük S, Gökçe G, Kütük M, Gürses Cila HE, Nazıroğlu M. Curcumin enhances cisplatin-induced human laryngeal squamous cancer cell death through activation of TRPM2 channel and mitochondrial oxidative stress. Sci Rep 2019; 9:17784. [PMID: 31780732 PMCID: PMC6882809 DOI: 10.1038/s41598-019-54284-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/05/2019] [Indexed: 01/21/2023] Open
Abstract
In this study, laryngeal tumor cells were killed through the production of excessive reactive oxygen species (ROS) and Ca2+ influx by cisplatin (CISP). Nevertheless, a resistance was determined against CISP treatment in the tumor cells. We have investigated the stimulating role of curcumin (CURC) on CISP-induced human laryngeal squamous cancer (Hep2) cell death through TRPM2 channel activation, and its protective role against the adverse effects of CISP in normal kidney (MPK) cells. Hep2 and MPK cells were divided into four groups as control group, CURC group (10μM for 24 hrs), CISP group (25 μM for 24 hrs), and CURC + CISP combination group. CISP-induced decrease of cell viability, cell count, glutathione peroxidase and glutathione level in Hep2 cells were further increased by CURC treatment, but the CISP-induced normal MPK cell death was reduced by the treatment. CISP-induced increase of apoptosis, Ca2+ fluorescence intensity, TRPM2 expression and current densities through the increase of lipid peroxidation, intracellular and mitochondrial oxidative stress were stimulated by CURC treatment. In conclusion, CISP-induced increases in mitochondrial ROS and cell death levels in Hep2 cells were further enhanced through the increase of TRPM2 activation with the effect of CURC treatment. CISP-induced drug resistance in Hep2 cells might be reduced by CURC treatment.
Collapse
Affiliation(s)
- Sinem Gökçe Kütük
- Department of Otorhinolaryngology, Aydın State Hospital, Aydın, Turkey
| | - Gökçen Gökçe
- Department of Histology and Embryology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Mustafa Kütük
- Department of Anesthesiology and Reanimation, Aydın State Hospital, Aydın, Turkey
| | - Hacer Esra Gürses Cila
- Department of Molecular Metabolism, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Mustafa Nazıroğlu
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey. .,Drug Discovery Unit, BSN Health, Analysis and Innovation Ltd. Inc. Teknokent, Isparta, Turkey.
| |
Collapse
|
19
|
Nazıroğlu M, Çiğ B, Yazğan Y, Schwaerzer GK, Theilig F, Pecze L. Albumin evokes Ca 2+-induced cell oxidative stress and apoptosis through TRPM2 channel in renal collecting duct cells reduced by curcumin. Sci Rep 2019; 9:12403. [PMID: 31455864 PMCID: PMC6711968 DOI: 10.1038/s41598-019-48716-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
In proteinuric nephropathies of chronic kidney disease, the epithelial cells of the nephron including the collecting duct are exposed to high concentrations of luminal albumin. Albumin is taken up from collecting duct cells by endocytosis causing excessive reactive oxygen species (ROS) production and a proinflammatory response. Curcumin used in the traditional medicine possesses anti-inflammatory and antioxidant effects. ROS and ADP-ribose (ADPR) activate the cation channel TRPM2. We hypothesize, that albumin-induced cell stress and proinflammatory response are mediated by Ca2+ and can be reduced by curcumin. The cortical collecting duct (CCD) cells mpkCCDc14 exhibit spontaneous and inducible Ca2+ oscillations, which can be blocked by pre-treatment with curcumin. Curcumin accumulates in plasma membrane and intracellular vesicles, where it interferes with TRPM2 and decreases the influx of Ca2+. Albumin reduces cell viability and increases apoptosis, NF-κB activation, and mitochondrial membrane depolarization via Ca2+-dependent signaling, which results in increased ROS production. Albumin-induced cell stress is diminished by the inhibition of TRPM2 after administration of curcumin and ADPR (PARP1) inhibitors. Curcumin did not reduce the Ca2+ elevation induced by thapsigargin in Ca2+-free medium, but it reduced the function of store-operated Ca2+ channels and ATP-evoked Ca2+ response. In conclusion, albumin-induced oxidative stress is mediated by Ca2+-dependent signaling via TRPM2 and leads to cell damage and a proinflammatory response, strengthening the role of CCD cells in the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey. .,Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey. .,Department of Neuroscience, Health Science Institute, Suleyman Demirel University, Isparta, Turkey.
| | - Bilal Çiğ
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.,Department of Neuroscience, Health Science Institute, Suleyman Demirel University, Isparta, Turkey
| | - Yener Yazğan
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.,Department of Neuroscience, Health Science Institute, Suleyman Demirel University, Isparta, Turkey
| | | | - Franziska Theilig
- Institute of Anatomy, Christian-Albrechts-University of Kiel, Kiel, Germany. .,Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland.
| | - László Pecze
- Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland.,Independent Scientist, Neuchhatel, Switzerland
| |
Collapse
|
20
|
ADP-Ribose and oxidative stress activate TRPM8 channel in prostate cancer and kidney cells. Sci Rep 2019; 9:4100. [PMID: 30858386 PMCID: PMC6411746 DOI: 10.1038/s41598-018-37552-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/06/2018] [Indexed: 01/16/2023] Open
Abstract
Activation of TRPM8 channel through oxidative stress may induce Ca2+ and pro-apoptotic signals in prostate cancer and kidney cells. The aim of this study was to evaluate activation of TRPM8 can increase apoptosis and oxidative stress in the prostate cancer (Du145M8), TRPM8 knock out (Du 145M8KO), transfected (HEK293TM8) and non-transfected human kidney (HEK293) cells. Intracellular Ca2+ responses to TRPM8 activation were increased in the Du145M8 and HEK293TM8 cells from coming cumene hydrogen peroxide (CHPx), menthol, ADP-Ribose (ADPR), but not in the HEK293 and Du 145M8KO cells. The intracellular Ca2+ responses to both ADPR and CHPx were totally inhibited by the thiol cycle antioxidant glutathione, and TRPM8 blockers (N-(p-amylcinnamoyl)anthranilic acid and capsazepine). Apoptosis, Annexin V, mitochondrial membrane depolarization, intracellular ROS, caspase 3 and 9 values were increased through TRPM8 activation in the Du 145M8 but not in the Du 145M8KO and non-transfected HEK293 cells by CHPx and hydrogen peroxide. In conclusion, apoptotic and oxidant effects on the cells were increased activation of TRPM8 by oxidative stress and ADPR. Activation of TRPM8 through oxidative stress and ADPR in the cells could be used as an effective strategy in the treatment of prostate cancer cells.
Collapse
|
21
|
Hou L, Zhou X, Gan F, Liu Z, Zhou Y, Qian G, Huang K. Combination of Selenomethionine and N-Acetylcysteine Alleviates the Joint Toxicities of Aflatoxin B1 and Ochratoxin A by ERK MAPK Signal Pathway in Porcine Alveolar Macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5913-5923. [PMID: 29799741 DOI: 10.1021/acs.jafc.8b01858] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Our previous studies showed that aflatoxin B1 (AFB1) and ochratoxin A (OTA) could trigger joint immune toxicity. Little is known about the combined effects of selenomethionine (SeMet) and N-acetylcysteine (NAC) on the joint toxicities of the two toxins. In this study, results showed that SeMet or NAC alone or in combination significantly alleviated the downswing of cell viability, glutathione production, and phagorytosis induced by AFB1 and OTA in porcine alveolar macrophages. The uptrend of lactate dehydrogenase activities, apoptosis, reactive oxygen species levels, and the relative mRNA of inflammatory cytokines triggered by the two toxins was decreased. Combination of them was more effective than single application. Knockdown of p38, c-JUN N-terminal kinase (JNK), or extracellular signal-regulated kinase (ERK) via use of the corresponding specific siRNA could alleviate the joint toxicities of AFB1 and OTA. However, the ERK but not p38 or JNK pathway was involved in the protection of SeMet and NAC against the immunotoxicity. In conclusion, combination of SeMet and NAC might be a new therapeutic orientation for preventing the joint toxicities induced by AFB1 and OTA.
Collapse
Affiliation(s)
- Lili Hou
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
| | - Xuan Zhou
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
| | - Fang Gan
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
| | - Zixuan Liu
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
| | - Yajiao Zhou
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
| | - Gang Qian
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
| | - Kehe Huang
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
| |
Collapse
|
22
|
Carrasco C, Naziroǧlu M, Rodríguez AB, Pariente JA. Neuropathic Pain: Delving into the Oxidative Origin and the Possible Implication of Transient Receptor Potential Channels. Front Physiol 2018; 9:95. [PMID: 29491840 PMCID: PMC5817076 DOI: 10.3389/fphys.2018.00095] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/29/2018] [Indexed: 12/25/2022] Open
Abstract
Currently, neuropathic pain is an underestimated socioeconomic health problem affecting millions of people worldwide, which incidence may increase in the next years due to chronification of several diseases, such as cancer and diabetes. Growing evidence links neuropathic pain present in several disorders [i.e., spinal cord injury (SCI), cancer, diabetes and alcoholism] to central sensitization, as a global result of mitochondrial dysfunction induced by oxidative and nitrosative stress. Additionally, inflammatory signals and the overload in intracellular calcium ion could be also implicated in this complex network that has not yet been elucidated. Recently, calcium channels namely transient receptor potential (TRP) superfamily, including members of the subfamilies A (TRAP1), M (TRPM2 and 7), and V (TRPV1 and 4), have demonstrated to play a role in the nociception mediated by sensory neurons. Therefore, as neuropathic pain could be a consequence of the imbalance between reactive oxygen species and endogen antioxidants, antioxidant supplementation may be a treatment option. This kind of therapy would exert its beneficial action through antioxidant and immunoregulatory functions, optimizing mitochondrial function and even increasing the biogenesis of this vital organelle; on balance, antioxidant supplementation would improve the patient's quality of life. This review seeks to deepen on current knowledge about neuropathic pain, summarizing clinical conditions and probable causes, the relationship existing between oxidative stress, mitochondrial dysfunction and TRP channels activation, and scientific evidence related to antioxidant supplementation.
Collapse
Affiliation(s)
- Cristina Carrasco
- Department of Physiology, Faculty of Sciences, University of Extremadura, Badajoz, Spain
| | - Mustafa Naziroǧlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey
| | - Ana B Rodríguez
- Department of Physiology, Faculty of Sciences, University of Extremadura, Badajoz, Spain
| | - José A Pariente
- Department of Physiology, Faculty of Sciences, University of Extremadura, Badajoz, Spain
| |
Collapse
|
23
|
Activation of TRPM2 and TRPV1 Channels in Dorsal Root Ganglion by NADPH Oxidase and Protein Kinase C Molecular Pathways: a Patch Clamp Study. J Mol Neurosci 2017; 61:425-435. [PMID: 28097492 DOI: 10.1007/s12031-017-0882-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/06/2017] [Indexed: 12/25/2022]
Abstract
Despite considerable research, the mechanisms of neuropathic pain induced by excessive oxidative stress production and overload calcium ion (Ca2+) entry in dorsal root ganglion (DRG) remain substantially unidentified. The transient receptor potential melastatin 2 (TRPM2) and vanilloid 1 (TRPV1) channels are activated with different stimuli including oxidative stress. TRPM2 and TRPV1 have been shown to be involved in induction of neuropathic pain. However, the activation mechanisms of TRPM2 and TRPV1 via NADPH oxidase and protein kinase C (PKC) pathways are poorly understood. In this study, I investigated the roles of NADPH oxidase and PKC on Ca2+ entry through TRPM2 and TRPV1 channels in in vitro DRG neurons of rats. Rat DRG neurons were used in whole-cell patch clamp experiments. The H2O2-induced TRPM2 current densities were decreased by N-(p-amylcinnamoyl)anthranilic acid (ACA), and dose-dependent capsaicin (CAP) and H2O2-induced TRPV1 currents were inhibited by capsazepine (CPZ). The TRPV1 channel is activated in the DRG neurons by 0.01 mM capsaicin but not 0.001 mM or 0.05 mM capsaicin. TRPM2 and TRPV1 currents were increased by the PKC activator, phorbol myristate acetate (PMA), although the currents were decreased by ACA, CPZ, and the PKC inhibitor, bisindolylmaleimide I (BIM). Both channel currents were further increased by PMA + H2O2 as compared to H2O2 only. In the combined presence of PMA + BIM, no TRPM2 or TRPV1 currents were observed. The CAP and H2O2-induced TRPM2 current densities were also decreased by the NADPH oxidase inhibitors apocynin and N-Acetylcysteine. In conclusion, these results demonstrate a protective role for NADPH oxidase and PKC inhibitors on Ca2+ entry through TRPM2 and TRPV1 channels in DRG neurons. Since excessive oxidative stress production and Ca2+ entry are implicated in the pathophysiology of neuropathic pain, the findings may be relevant to the etiology and treatment of neuropathology in DRG neurons.
Collapse
|
24
|
Kheradpezhouh E, Barritt GJ, Rychkov GY. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes. Redox Biol 2016; 7:1-7. [PMID: 26609559 PMCID: PMC4683391 DOI: 10.1016/j.redox.2015.11.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/06/2015] [Accepted: 11/08/2015] [Indexed: 01/15/2023] Open
Abstract
Oxidative stress is a hallmark of many liver diseases including viral and drug-induced hepatitis, ischemia-reperfusion injury, and non-alcoholic steatohepatitis. One of the consequences of oxidative stress in the liver is deregulation of Ca(2+) homeostasis, resulting in a sustained elevation of the free cytosolic Ca(2+) concentration ([Ca(2+)]c) in hepatocytes, which leads to irreversible cellular damage. Recently it has been shown that liver damage induced by paracetamol and subsequent oxidative stress is, in large part, mediated by Ca(2+) entry through Transient Receptor Potential Melastatin 2 (TRPM2) channels. Involvement of TRPM2 channels in hepatocellular damage induced by oxidative stress makes TRPM2 a potential therapeutic target for treatment of a range of oxidative stress-related liver diseases. We report here the identification of curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), a natural plant-derived polyphenol in turmeric spice, as a novel inhibitor of TRPM2 channel. Presence of 5µM curcumin in the incubation medium prevented the H2O2- and paracetamol-induced [Ca(2+)]c rise in rat hepatocytes. Furthermore, in patch clamping experiments incubation of hepatocytes with curcumin inhibited activation of TRPM2 current by intracellular ADPR with IC50 of approximately 50nM. These findings enhance understanding of the actions of curcumin and suggest that the known hepatoprotective properties of curcumin are, at least in part, mediated through inhibition of TRPM2 channels.
Collapse
Affiliation(s)
- E Kheradpezhouh
- Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - G J Barritt
- Department of Medical Biochemistry, School of Medicine, Flinders University, Adelaide, SA 5001, Australia
| | - G Y Rychkov
- Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia; Discipline of Medicine, School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
25
|
Sözbir E, Nazıroğlu M. Diabetes enhances oxidative stress-induced TRPM2 channel activity and its control by N-acetylcysteine in rat dorsal root ganglion and brain. Metab Brain Dis 2016; 31:385-93. [PMID: 26612073 DOI: 10.1007/s11011-015-9769-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
Abstract
N-acetylcysteine (NAC) is a sulfhydryl donor antioxidant that contributes to the regeneration of glutathione (GSH) and also scavengers via a direct reaction with free oxygen radicals. Recently, we observed a modulatory role of NAC on GSH-depleted dorsal root ganglion (DRG) cells in rats. NAC may have a protective role on oxidative stress and calcium influx through regulation of the TRPM2 channel in diabetic neurons. Therefore, we investigated the effects of NAC on DRG TRPM2 channel currents and brain oxidative stress in streptozotocin (STZ)-induced diabetic rats. Thirty-six rats divided into four groups: control, STZ, NAC and STZ + NAC. Diabetes was induced in the STZ and STZ + NAC groups by intraperitoneal STZ (65 mg/kg) administration. After the induction of diabetes, rats in the NAC and STZ + NAC groups received NAC (150 mg/kg) via gastric gavage. After 2 weeks, DRG neurons and the brain cortex were freshly isolated from rats. In whole-cell patch clamp experiments, TRPM2 currents in the DRG following diabetes induction with STZ were gated by H2O2. TRPM2 channel current densities in the DRG and lipid peroxidation levels in the DRG and brain were higher in the STZ groups than in controls; however, brain GSH, GSH peroxidase (GSH-Px), vitamin C and vitamin E concentrations and DRG GSH-Px activity were decreased by diabetes. STZ + H2O2-induced TRPM2 gating was totally inhibited by NAC and partially inhibited by N-(p-amylcinnamoyl) anthranilic acid (ACA) and 2-aminoethyl diphenylborinate (2-APB). GSH-Px activity and lipid peroxidation levels were also attenuated by NAC treatment. In conclusion, we observed a modulatory role of NAC on oxidative stress and Ca(2+) entry through the TRPM2 channel in the diabetic DRG and brain. Since excessive oxidative stress and overload Ca(2+) entry are common features of neuropathic pain, our findings are relevant to the etiology and treatment of pain neuropathology in DRG neurons.
Collapse
Affiliation(s)
- Ercan Sözbir
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey.
| |
Collapse
|
26
|
Badr H, Kozai D, Sakaguchi R, Numata T, Mori Y. Different Contribution of Redox-Sensitive Transient Receptor Potential Channels to Acetaminophen-Induced Death of Human Hepatoma Cell Line. Front Pharmacol 2016; 7:19. [PMID: 26903865 PMCID: PMC4746322 DOI: 10.3389/fphar.2016.00019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/21/2016] [Indexed: 01/30/2023] Open
Abstract
Acetaminophen (APAP) is a safe analgesic antipyretic drug at prescribed doses. Its overdose, however, can cause life-threatening liver damage. Though, involvement of oxidative stress is widely acknowledged in APAP-induced hepatocellular death, the mechanism of this increased oxidative stress and the associated alterations in Ca2+ homeostasis are still unclear. Among members of transient receptor potential (TRP) channels activated in response to oxidative stress, we here identify that redox-sensitive TRPV1, TRPC1, TRPM2, and TRPM7 channels underlie Ca2+ entry and downstream cellular damages induced by APAP in human hepatoma (HepG2) cells. Our data indicate that APAP treatment of HepG2 cells resulted in increased reactive oxygen species (ROS) production, glutathione (GSH) depletion, and Ca2+ entry leading to increased apoptotic cell death. These responses were significantly suppressed by pretreatment with the ROS scavengers N-acetyl-L-cysteine (NAC) and 4,5-dihydroxy-1,3-benzene disulfonic acid disodium salt monohydrate (Tiron), and also by preincubation of cells with the glutathione inducer Dimethylfumarate (DMF). TRP subtype-targeted pharmacological blockers and siRNAs strategy revealed that suppression of either TRPV1, TRPC1, TRPM2, or TRPM7 reduced APAP-induced ROS formation, Ca2+ influx, and cell death; the effects of suppression of TRPV1 or TRPC1, known to be activated by oxidative cysteine modifications, were stronger than those of TRPM2 or TRPM7. Interestingly, TRPV1 and TRPC1 were labeled by the cysteine-selective modification reagent, 5,5′-dithiobis (2-nitrobenzoic acid)-2biotin (DTNB-2Bio), and this was attenuated by pretreatment with APAP, suggesting that APAP and/or its oxidized metabolites act directly on the modification target cysteine residues of TRPV1 and TRPC1 proteins. In human liver tissue, TRPV1, TRPC1, TRPM2, and TRPM7 channels transcripts were localized mainly to hepatocytes and Kupffer cells. Our findings strongly suggest that APAP-induced Ca2+ entry and subsequent hepatocellular death are regulated by multiple redox-activated cation channels, among which TRPV1 and TRPC1 play a prominent role.
Collapse
Affiliation(s)
- Heba Badr
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Kyoto, Japan
| | - Daisuke Kozai
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Kyoto, Japan
| | - Reiko Sakaguchi
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto UniversityKyoto, Japan; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences, Kyoto UniversityKyoto, Japan
| | - Tomohiro Numata
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto UniversityKyoto, Japan; Laboratory of Environmental Systems Biology, Department of Technology and Ecology, Hall of Global Environmental Studies, Kyoto UniversityKyoto, Japan
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto UniversityKyoto, Japan; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences, Kyoto UniversityKyoto, Japan; Laboratory of Environmental Systems Biology, Department of Technology and Ecology, Hall of Global Environmental Studies, Kyoto UniversityKyoto, Japan
| |
Collapse
|
27
|
Hypericum perforatum Attenuates Spinal Cord Injury-Induced Oxidative Stress and Apoptosis in the Dorsal Root Ganglion of Rats: Involvement of TRPM2 and TRPV1 Channels. Mol Neurobiol 2015; 53:3540-3551. [PMID: 26099309 DOI: 10.1007/s12035-015-9292-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/05/2015] [Indexed: 02/02/2023]
Abstract
Oxidative stress and cytosolic Ca(2+) overload have important roles on apoptosis in dorsal root ganglion (DRG) neurons after spinal cord injury (SCI). Hypericum perforatum (HP) has an antioxidant property in the DRGs due to its ability to modulate NADPH oxidase and protein kinase C pathways. We aimed to investigate the protective property of HP on oxidative stress, apoptosis, and Ca(2+) entry through transient receptor potential melastatin 2 (TRPM2) and transient receptor potential vanilloid 1 (TRPV1) channels in SCI-induced DRG neurons of rats. Rats were divided into four groups as control, HP, SCI, and SCI + HP. The HP groups received 30 mg/kg HP for three concessive days after SCI induction. The SCI-induced TRPM2 and TRPV1 currents and cytosolic free Ca(2+) concentration were reduced by HP. The SCI-induced decrease in glutathione peroxidase and cell viability values were ameliorated by HP treatment, and the SCI-induced increase in apoptosis, caspase 3, caspase 9, cytosolic reactive oxygen species (ROS) production, and mitochondrial membrane depolarization values in DRG of SCI group were overcome by HP treatment. In conclusion, we observed a protective role of HP on SCI-induced oxidative stress, apoptosis, and Ca(2+) entry through TRPM2 and TRPV1 in the DRG neurons. Our findings may be relevant to the etiology and treatment of SCI by HP. Graphical Abstract Possible molecular pathways of involvement of Hypericum perforatum (HP) on apoptosis, oxidative stress, and calcium accumulation through TRPM2 and TRPV1 channels in DRG neurons of SCI-induced rats. The TRPM2 channel is activated by ADP-ribose and oxidative stress through activation of ADP-ribose pyrophosphate although it was inhibited by N-(p-amylcinnamoyl) anthranilic acid (ACA) and 2-aminoethyl diphenylborinate (2APB). The TRPV1 channel is activated by oxidative stress and capsaicin and it is blocked by capsazepine. Injury in the DRG can result in augmented ROS release, leading to Ca(2+) uptake through TRPM2 and TRPV1 channels. Mitochondria were reported to accumulate Ca(2+), provided intracellular Ca(2+) rises, thereby leading to depolarization of mitochondrial membranes and release of apoptosis-inducing factors such as caspase 3 and caspase 9. HP via regulation of NADPH oxidase and PKC inhibits TRPM2 and TRPV1 channels. The molecular pathway may be a cause of SCI-induced pain and neuronal death, and the subject should be urgently investigated.
Collapse
|
28
|
Habibian M, Sadeghi G, Ghazi S, Moeini MM. Selenium as a feed supplement for heat-stressed poultry: a review. Biol Trace Elem Res 2015; 165:183-93. [PMID: 25721721 DOI: 10.1007/s12011-015-0275-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/16/2015] [Indexed: 01/17/2023]
Abstract
Heat stress is associated with compromised performance and productivity in poultry due to declines in feed intake, nutrient utilization, growth rate, egg production and quality, and feed efficiency. Emerging evidences have shown that acute heat exposure results in increased production of free radicals and causes oxidative damage to lipids, proteins, and DNA. Additionally, heat stress can influence immune response by changing the expression of cytokines and by making the immune cells more susceptible to oxidative stress. Selenium, as a part of specific selenoproteins, can help to maintain antioxidant defenses, thereby preventing damages to tissues. An optimum response with supplementation of selenium in diet has been found to improve feed intake, body weight gain, feed efficiency, egg production and quality, and antioxidant status in heat-stressed poultry. Selenium compounds are also known to improve immune responses by altering the production of certain cytokines secreted by cells of the immune system and by enhancing the resistance of the immune cells to oxidative stress. It was reported that selenium supplementation had inhibitory effects on tumor necrosis factor alpha levels in heat-stressed broiler chicks, but the details are not completely elucidated. In the present review, the effect of selenium on production performance, nutrient utilization, antioxidative status, and immune responses of heat-stressed poultry is summarized.
Collapse
Affiliation(s)
- Mahmood Habibian
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran,
| | | | | | | |
Collapse
|
29
|
Annabi A, Dhouib IB, Lamine AJ, Golli NE, Gharbi N, Fazâa SE, Lasram MM. Recovery byN-acetylcysteine from subchronic exposure to Imidacloprid-induced hypothalamic–pituitary–adrenal (HPA) axis tissues injury in male rats. Toxicol Mech Methods 2015; 25:524-31. [DOI: 10.3109/15376516.2015.1045663] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Nazıroğlu M, Övey İ. Involvement of apoptosis and calcium accumulation through TRPV1 channels in neurobiology of epilepsy. Neuroscience 2015; 293:55-66. [DOI: 10.1016/j.neuroscience.2015.02.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 02/15/2015] [Accepted: 02/20/2015] [Indexed: 12/20/2022]
|
31
|
Köse SA, Nazıroğlu M. N-acetyl cysteine reduces oxidative toxicity, apoptosis, and calcium entry through TRPV1 channels in the neutrophils of patients with polycystic ovary syndrome. Free Radic Res 2015; 49:338-46. [PMID: 25666878 DOI: 10.3109/10715762.2015.1006214] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common inflammatory and oxidant disease with an uncertain pathogenesis. N-acetyl cysteine (NAC) decreases oxidative stress, intracellular free calcium ion [Ca(2+)]i, and apoptosis levels in human neutrophil. We aimed to investigate the effects of NAC on apoptosis, oxidative stress, and Ca(2+) entry through transient receptor potential vanilloid 1 (TRPV1) and TRP melastatin 2 (TRPM2) channels in neutrophils from patients with PCOS. Neutrophils isolated from PCOS group were investigated in three settings: (1) after incubation with TRPV1 channel blocker capsazepine or TRPM2 channel blocker 2-aminoethyl diphenylborinate (2-APB), (2) after supplementation with NAC (for 6 weeks), and (3) with combination (capsazepine + 2-APB + NAC) exposure. The neutrophils in TRPM2 and TRPV1 experiments were stimulated by N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP; 1 μM) and capsaicin (10 μM) as concentration agonists, respectively. Neutrophil lipid peroxidation and capsaicin-induced increase in [Ca(2+)]i concentrations were reduced by capsazepine and NAC treatments. However, the [Ca(2+)]i concentration did not change by fMLP stimulation. Neutrophil lipid peroxidation, apoptosis, caspase-3, caspase-9, cytosolic reactive oxygen species production, and mitochondrial membrane depolarization values were decreased by NAC treatment although neutrophil glutathione peroxidase and reduced glutathione levels were increased by the NAC treatment. Serum lipid peroxidation, luteinizing hormone, testosterone, insulin, interleukin-1 beta, and homocysteine levels were decreased by NAC treatment although serum vitamin A, beta-carotene, vitamin E, and total antioxidant status were increased by the NAC treatment. In conclusion, NAC reduced oxidative stress, apoptosis, cytokine levels, and Ca(2+) entry through TRPV1 channel, which provide supportive evidence that oxidative stress and TRPV1 channel plays a key role in etiology of PCOS.
Collapse
Affiliation(s)
- S A Köse
- Department of Obstetrics and Gynecology, Faculty of Medicine, Suleyman Demirel University , Isparta , Turkey
| | | |
Collapse
|
32
|
Ooi TC, Mohammad NH, Sharif R. Zinc carnosine protects against hydrogen peroxide-induced DNA damage in WIL2-NS lymphoblastoid cell line independent of poly (ADP-Ribose) polymerase expression. Biol Trace Elem Res 2014; 162:8-17. [PMID: 25326781 DOI: 10.1007/s12011-014-0153-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/07/2014] [Indexed: 12/13/2022]
Abstract
The aim of this study is to investigate the ability of zinc carnosine to protect the human lymphoblastoid (WIL2-NS) cell line from hydrogen peroxide-induced DNA damage. Cells were cultured with medium containing zinc carnosine at the concentrations of 0.4, 4, 16 and 32 μM for 9 days prior to treatment with 30 μM of hydrogen peroxide (30 min). Zinc carnosine at the concentration 16 μM was optimal in protecting cells from hydrogen peroxide-induced cytotoxicity and gave the lowest percentage of apoptotic and necrotic cells. Results showed that zinc carnosine was able to induce glutathione production and protect cells from hydrogen peroxide-induced oxidative stress at all concentration and the highest protection was observed at 32-μM zinc carnosine culture. Cytokinesis-block micronucleus cytome assay showed that cells cultured with 4-32 μM of zinc carnosine showed significant reduction in micronuclei formation, nucleoplasmic bridges and nuclear bud frequencies (p < 0.05), suggesting that these concentrations maybe optimal in protecting cells from hydrogen peroxide-induced DNA damage. However, after being challenged with hydrogen peroxide, no increase in poly(ADP-ribose) polymerase expression was observed. Thus, results from this study demonstrate that zinc carnosines possess antioxidant properties and are able to reduce hydrogen peroxide-induced DNA damage in vitro independent of poly(ADP-ribose) polymerase. Further studies are warranted to understand the mechanism of protection of zinc carnosine against hydrogen peroxide-induced damage.
Collapse
Affiliation(s)
- Theng Choon Ooi
- Biomedical Science Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
33
|
Övey İS, Naziroğlu M. Homocysteine and cytosolic GSH depletion induce apoptosis and oxidative toxicity through cytosolic calcium overload in the hippocampus of aged mice: involvement of TRPM2 and TRPV1 channels. Neuroscience 2014; 284:225-233. [PMID: 25305668 DOI: 10.1016/j.neuroscience.2014.09.078] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 11/15/2022]
Abstract
Oxidative stress and apoptosis were induced in neuronal cultures by inhibition of glutathione (GSH) biosynthesis with d,l-buthionine-S,R-sulfoximine (BSO). Transient receptor potential melastatin 2 (TRPM2) and transient receptor potential vanilloid 1 (TRPV1) cation channels are gated by oxidative stress. The oxidant effects of homocysteine (Hcy) may induce activation of TRPV1 and TRPM2 channels in aged mice as a model of Alzheimer's disease (AD). We tested the effects of Hcy, BSO and GSH on oxidative stress, apoptosis and Ca2+ and influx via TRPM2 and TRPV1 channels in the hippocampus of mice. Native mice hippocampal neurons were divided into five groups as follows; control, Hcy, BSO, Hcy+BSO and Hcy+BSO+GSH groups. The neurons in TRPM2 and TRPV1 experiments were stimulated by hydrogen peroxide and capsaicin, respectively. BSO and Hcy incubations increased intracellular free Ca2+ concentrations, reactive oxygen species, apoptosis, mitochondrial depolarization, and levels of caspase 3 and 9. All of these increases were reduced by GSH treatments. Treatment with 2-aminoethoxydiphenyl borate (2-APB) and N-(p-amylcinnamoyl)anthranilic acid (ACA) as potent inhibitors of TRPM2, capsazepine as a potent inhibitor of TRPV1, verapamil+diltiazem (V+D) as inhibitors of the voltage-gated Ca2+ channels (VGCC) and MK-801 as a N-methyl-d-aspartate (NMDA) channel antagonist indicated that GSH depletion and Hcy elevation activated Ca2+ entry into the neurons through TRPM2, TRPV1, VGCC and NMDA channels. Inhibitor roles of 2-APB and capsazepine on the Ca2+ entry higher than in V+D and MK-801 antagonists. In conclusion, these findings support the idea that GSH depletion and Hcy elevation can have damaging effects on hippocampal neurons by perturbing calcium homeostasis, mainly through TRPM2 and TRPV1 channels. GSH treatment can partially reverse these effects.
Collapse
Affiliation(s)
- İ S Övey
- Department of Biophysics, Faculty of Medicine, University of Suleyman Demirel, Isparta, Turkey
| | - M Naziroğlu
- Department of Biophysics, Faculty of Medicine, University of Suleyman Demirel, Isparta, Turkey; Neuroscience Research Center, University of Suleyman Demirel, Isparta, Turkey.
| |
Collapse
|
34
|
Nazıroğlu M, Senol N, Ghazizadeh V, Yürüker V. Neuroprotection induced by N-acetylcysteine and selenium against traumatic brain injury-induced apoptosis and calcium entry in hippocampus of rat. Cell Mol Neurobiol 2014; 34:895-903. [PMID: 24842665 DOI: 10.1007/s10571-014-0069-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/21/2014] [Indexed: 12/17/2022]
Abstract
Neurodegeneration associated with acute central nervous system injuries and diseases such as spinal cord injury and traumatic brain injury (TBI) are reported to be mediated by the regulation of apoptosis and oxidative stress through Ca(2+) influx. The thiol redox system antioxidants, such as N-acetylcysteine (NAC) and selenium (Se), display neuroprotective activities mediated at least in part by their antioxidant and anti-inflammatory properties. However, there are no reports on hippocampal apoptosis, cytosolic reactive oxygen species (ROS), or Ca(2+) values in rats with an induced TBI. Therefore, we tested the effects of Se and NAC administration on apoptosis, oxidative stress, and Ca(2+) influx through TRPV1 channel activations in the hippocampus of TBI-induced rats. The 32 rats were divided into four groups: control, TBI, TBI + NAC, and TBI + Se groups. Intraperitoneal administrations of NAC and Se were performed at 1, 24, 48, and 72 h after TBI induction. After 3 days, the hippocampal neurons were freshly isolated from the rats. In cytosolic-free Ca(2+) analyses, the neurons were stimulated with the TRPV1 channel agonist capsaicin, a pungent compound found in hot chili peppers. Cytosolic-free Ca(2+), apoptosis, cytosolic ROS levels, and caspase-3 and -9 activities were higher in the TBI group than control. The values in the hippocampus were decreased by Se and NAC administrations. In conclusion, we observed that NAC and Se have protective effects on oxidative stress, apoptosis, and Ca(2+) entry via TRPV1 channel activation in the hippocampus of this TBI model, but the effect of NAC appears to be much greater than that of Se. They are both interesting candidates for studying the amelioration of TBIs.
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Neuroscience Research Center, University of SuleymanDemirel, TR-32260, Isparta, Turkey,
| | | | | | | |
Collapse
|
35
|
Agomelatine and Duloxetine Synergistically Modulates Apoptotic Pathway by Inhibiting Oxidative Stress Triggered Intracellular Calcium Entry in Neuronal PC12 Cells: Role of TRPM2 and Voltage-Gated Calcium Channels. J Membr Biol 2014; 247:451-9. [DOI: 10.1007/s00232-014-9652-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/06/2014] [Indexed: 12/18/2022]
|
36
|
Etem EO, Bal R, Akağaç AE, Kuloglu T, Tuzcu M, Andrievsky GV, Buran I, Nedzvetsky VS, Baydas G. The effects of hydrated C(60) fullerene on gene expression profile of TRPM2 and TRPM7 in hyperhomocysteinemic mice. J Recept Signal Transduct Res 2014; 34:317-24. [PMID: 24646197 DOI: 10.3109/10799893.2014.896381] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Hyperhomocysteinemia (HHcy) is associated with neurodegenerative diseases. Transient receptor potential melastatin (TRPM2) and TRPM7 channels may be activated by oxidative stress. Hydrated C(60) fullerene (C(60)HyFn) have recently gained considerable attention as promising candidates for neurodegenerative states. We aimed to examine the effects on TRPM2 and TRPM7 gene expression of C(60)HyFn due to marked antioxidant activity in HHcy mice. METHODS C57BL/6 J. mice were divided into four groups: (1) Control group, (2) HHcy, (3) HHcy + C(60)HyFn-treated group and (4) C(60)HyFn-treated group. TRPM2 and TRPM7 gene expression in brains of mice were detected by real-time PCR, Western blotting and immunohistochemistry. Apoptosis in brain were assessed by TUNEL staining. RESULTS mRNA expression levels of TRPM2 were significantly increased in HHcy group compared to the control group. C(60)HyFn administration significantly decreased serum levels of homocysteine and TRPM2 mRNA levels in HHcy + C(60)HyFn group. Whereas, HHcy-treatment and C(60)HyFn administration did not change the expression of TRPM7. CONCLUSION Administration of C(60)HyFn in HHcy mice significantly reduces serum homocysteine level, neuronal apoptosis and expression level of TRPM2 gene. Increased expression level of TRPM2 induced by oxidative stress might be involved in the ethiopathogenesis of HHcy related neurologic diseases.
Collapse
Affiliation(s)
- Ebru Onalan Etem
- Department of Medical Biology, Faculty of Medicine, Firat University , Elazig , Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Şenol N, Nazıroğlu M, Yürüker V. N-Acetylcysteine and Selenium Modulate Oxidative Stress, Antioxidant Vitamin and Cytokine Values in Traumatic Brain Injury-Induced Rats. Neurochem Res 2014; 39:685-92. [DOI: 10.1007/s11064-014-1255-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/25/2014] [Accepted: 02/03/2014] [Indexed: 12/17/2022]
|
38
|
Tola EN, Mungan MT, Uğuz AC, Naziroğlu M. Intracellular Ca2+ and antioxidant values induced positive effect on fertilisation ratio and oocyte quality of granulosa cells in patients undergoing in vitro fertilisation. Reprod Fertil Dev 2014; 25:746-52. [PMID: 22954014 DOI: 10.1071/rd12144] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/19/2012] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is important for promoting oocyte maturation and ovulation within the follicle through calcium ion (Ca(2+)) influx. The relationship between antioxidant and cytosolic Ca(2+) levels and oocyte quality and fertilisation rate in the granulosa cells of patients undergoing in vitro fertilisation was investigated. Granulosa cells were collected from 33 patients. Cytosolic free Ca(2+) ([Ca(2+)]i) concentration, lipid peroxidation, reduced glutathione, glutathione peroxidase and oocyte quality were measured in the granulosa cells. The relationship between two drug protocols was also examined (gonadotrophin-releasing hormone antagonist and agonist protocols) and the same parameters investigated. The [Ca(2+)]i concentration (P<0.001), glutathione (P<0.05) and oocyte quality (P<0.001) values were significantly higher in the fertilised group than in the non-fertilised group, although glutathione peroxidase activity was significantly (P<0.05) higher in the non-fertilised group than in the fertilised group. The [Ca(2+)]i concentrations were also higher (P<0.001) in the good-quality oocyte groups than in the poor-quality oocyte group. There was no correlation between the two drug protocols and investigated parameters. In conclusion, it was observed that high glutathione and cytosolic Ca(2+) concentrations in granulosa cells of patients undergoing in vitro fertilisation tended to increase the fertilisation potential of oocytes.
Collapse
Affiliation(s)
- Esra Nur Tola
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Suleyman Demirel University, TR-32260, Isparta, Turkey
| | | | | | | |
Collapse
|
39
|
Naziroğlu M, Uğuz AC, Ismailoğlu Ö, Çiğ B, Özgül C, Borcak M. Role of TRPM2 cation channels in dorsal root ganglion of rats after experimental spinal cord injury. Muscle Nerve 2013; 48:945-50. [PMID: 23512594 DOI: 10.1002/mus.23844] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2013] [Indexed: 12/17/2022]
Abstract
INTRODUCTION We sought to determine the contribution of oxidative stress-dependent activation of TRPM2 and L-type voltage-gated Ca(2+) channels (VGCC) in dorsal root ganglion (DRG) neurons of rats after spinal cord injury (SCI). METHODS The rats were divided into 4 groups: control; sham control; SCI; and SCI+nimodipine groups. The neurons of the SCI groups were also incubated with non-specific TRPM2 channel blockers, 2-aminoethoxydiphenylborate (2-APB) and N-(p-amylcinnamoyl)anthranilic acid (ACA), before H2 O2 stimulation. RESULTS The [Ca(2+) ]i concentrations were higher in the SCI group than in the control groups, although their concentrations were decreased by nimodipine and 2-APB. The H2 O2 -induced TRPM2 current densities in patch-clamp experiments were decreased by ACA and 2-APB incubation. In the nimodipine group, the TRPM2 channels of neurons were not activated by H2 O2 or cumene hydroperoxide. CONCLUSIONS Increased Ca(2+) influx and currents in DRG neurons after spinal injury indicated TRPM2 and voltage-gated Ca(2+) channel activation.
Collapse
Affiliation(s)
- Mustafa Naziroğlu
- Department of Biophysics, Medical Faculty, Suleyman Demirel University, Isparta, Turkey; Neuroscience Research Center, Suleyman Demirel University, TR-32260, Isparta, Turkey
| | | | | | | | | | | |
Collapse
|
40
|
Nazıroğlu M, Özgül C. Vitamin E modulates oxidative stress and protein kinase C activator (PMA)-induced TRPM2 channel gate in dorsal root ganglion of rats. J Bioenerg Biomembr 2013; 45:541-9. [PMID: 23943124 DOI: 10.1007/s10863-013-9524-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/30/2013] [Indexed: 01/07/2023]
Abstract
It is well known that Ca(2+) influx through cation channels induces peripheral pain in dorsal root ganglion (DRG) neurons. Melastatin-like transient receptor potential 2 (TRPM2) channel is a oxidative redox sensitive Ca(2+)-permeable cation channel. There is scarce report on block of the channels. Since the mechanisms that lead to TRPM2 inhibition in response to oxidative stress and protein kinase C (PKC) activation are not understood, we investigated effects of the antioxidants on the inhibition of TRPM2 channel currents in the DRG neurons of rats. The DRG peripheral neurons were freshly isolated from rats and the neurons were incubated by phorbol 12-myristate 13-acetate (PMA) which leads to activation of PKC and cause oxidative stress. In whole-cell patch clamp experiments, TRPM2 currents in the DRG incubated with PMA were stimulated by H2O2. In addition, the PMA-induced activation of TRPM2 channels were blocked by nonspecific TRPM2 channels inhibitors [2-aminoethyl diphenylborinate (2-APB) and N-(p-amylcinnamoyl)anthranilic acid (ACA)]. The currents in the neurons are also totally blocked by vitamin E incubation. However, administration of catalase and vitamin C with/without the vitamin E incubation did not block the currents. In conclusion, we indicated that vitamin E modulated oxidative stress-induced TRPM2 channel activation in the DRG neurons. The results may be useful modulation of oxidative stress-induced peripheral pain in sensory neurons.
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Neuroscience Research Center, University of Suleyman Demirel, Isparta, Turkey,
| | | |
Collapse
|
41
|
Koçer G, Nazıroğlu M, Çelik Ö, Önal L, Özçelik D, Koçer M, Sönmez TT. Basic fibroblast growth factor attenuates bisphosphonate-induced oxidative injury but decreases zinc and copper levels in oral epithelium of rat. Biol Trace Elem Res 2013; 153:251-6. [PMID: 23572387 DOI: 10.1007/s12011-013-9659-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/27/2013] [Indexed: 12/11/2022]
Abstract
Recent studies have reported oxidative damage due to bisphosphonate (BP) in various cancer tissues and neurons, although basic fibroblast growth factor (bFGF) induced antioxidant effects in the cells. The bFGF may modulate the BP-induced oxidative stress in oral epithelium of rats. This study was undertaken to explore possible beneficial antioxidant effects of bFGF on oxidative stress induced by BP in oral epithelium of rats. Twenty-eight rats were equally divided into four groups. The first group was used as control. The second, third and fourth groups intraperitoneally received BP (zoledronic acid), bFGF and BP + bFGF. At the end of 10 weeks, the rats were sacrificed, and oral epithelium samples were taken for analyses. In BP group, the lipid peroxidation levels were increased in the oral epithelium, while the activities of glutathione peroxidase (GSH-Px) and the concentrations of total antioxidant status (TAS) were decreased. In rats treated with bFGF, lipid peroxidation levels decreased, and the activities of GSH-Px and concentrations of TAS improved in the oral epithelium. However, zinc and copper levels were decreased in the oral epithelium by BP and bFGF treatments. Concentrations of vitamin E and reduced glutathione in the samples did not change in the groups. In conclusion, treatment with bFGF modulated the antioxidant redox system and reduced the oral epithelium oxidative stress induced by BP. However, zinc and copper levels were decreased by BP and bFGF treatments.
Collapse
Affiliation(s)
- Gülperi Koçer
- Department of Oral and Maxillofacial Surgery, Dentistry Faculty, Suleyman Demirel University, Isparta, Turkey
| | | | | | | | | | | | | |
Collapse
|
42
|
Samuni Y, Goldstein S, Dean OM, Berk M. The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta Gen Subj 2013; 1830:4117-29. [PMID: 23618697 DOI: 10.1016/j.bbagen.2013.04.016] [Citation(s) in RCA: 567] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 04/11/2013] [Accepted: 04/15/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND N-acetylcysteine (NAC) has been in clinical practice for several decades. It has been used as a mucolytic agent and for the treatment of numerous disorders including paracetamol intoxication, doxorubicin cardiotoxicity, ischemia-reperfusion cardiac injury, acute respiratory distress syndrome, bronchitis, chemotherapy-induced toxicity, HIV/AIDS, heavy metal toxicity and psychiatric disorders. SCOPE OF REVIEW The mechanisms underlying the therapeutic and clinical applications of NAC are complex and still unclear. The present review is focused on the chemistry of NAC and its interactions and functions at the organ, tissue and cellular levels in an attempt to bridge the gap between its recognized biological activities and chemistry. MAJOR CONCLUSIONS The antioxidative activity of NAC as of other thiols can be attributed to its fast reactions with OH, NO2, CO3(-) and thiyl radicals as well as to restitution of impaired targets in vital cellular components. NAC reacts relatively slowly with superoxide, hydrogen-peroxide and peroxynitrite, which cast some doubt on the importance of these reactions under physiological conditions. The uniqueness of NAC is most probably due to efficient reduction of disulfide bonds in proteins thus altering their structures and disrupting their ligand bonding, competition with larger reducing molecules in sterically less accessible spaces, and serving as a precursor of cysteine for GSH synthesis. GENERAL SIGNIFICANCE The outlined reactions only partially explain the diverse biological effects of NAC, and further studies are required for determining its ability to cross the cell membrane and the blood-brain barrier as well as elucidating its reactions with components of cell signaling pathways.
Collapse
|
43
|
Nazıroğlu M, Ciğ B, Ozgül C. Neuroprotection induced by N-acetylcysteine against cytosolic glutathione depletion-induced Ca2+ influx in dorsal root ganglion neurons of mice: role of TRPV1 channels. Neuroscience 2013; 242:151-60. [PMID: 23545271 DOI: 10.1016/j.neuroscience.2013.03.032] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/26/2013] [Accepted: 03/14/2013] [Indexed: 10/27/2022]
Abstract
Glutathione (GSH) and N-acetylcysteine (NAC) are thiol-containing antioxidants, and also act through a direct reaction with free radicals. Transient receptor potential vanilloid 1 (TRPV1) is the principal transduction channel serving as a polymodal detector. Despite the importance of oxidative stress in pain sensitivity, its role in TRPV1 modulation is poorly understood. NAC may also have a regulator role on TRPV1 channel activity in the dorsal root ganglion (DRG) neuron. Therefore, we tested the effects of GSH and NAC on TRPV1 channel current, Ca(2+) influx, oxidative stress and caspase activity in the DRG of mice. DRG neurons were freshly isolated from mice and the neurons were incubated for 6 and 24h with buthionine sulfoximine (BSO). Pretreatment of cultured DRG neurons with NAC, results in a protection against oxidative damages. This neuroprotection is associated with the attenuation of a Ca(2+) influx triggered by oxidative agents such as H2O2, 5,5'-dithiobis-(2-nitrobenzoic acid) and GSH depletion via BSO. Here, we demonstrate the contribution of cytosolic factors (related to thiol group depletion) on the activation of TRPV1 channels in this mechanism. TRPV1 channels are activated by various agents including capsaicin (CAP), the pungent component of hot chili peppers, and are blocked by capsazepine. An oxidative environment also increased CAP-evoked TRPV1 currents in the neurons. When NAC and GSH were included in the patch pipette as well as extracellularly in the chamber, TRPV1 channels were not activated by CAP and H2O2. TRPV1 inhibitors, 2-aminoethyl diphenylborinate and N-(p-amylcinnamoyl)anthranilic acid strongly reduced BSO-induced oxidative toxicity and Ca(2+) influx, in a manner similar to pretreatment with NAC and GSH. Caspase-3 and -9 activities of all groups were not changed by the agonists or antagonists. In conclusion, in our experimental model, TRPV1 channels are involved in the oxidative stress-induced neuronal death, and negative modulation of this channel activity by GSH and NAC pretreatment may account for their neuroprotective activity against oxidative stress.
Collapse
Affiliation(s)
- M Nazıroğlu
- Neuroscience Research Center, University of Suleyman Demirel, Isparta, Turkey.
| | | | | |
Collapse
|
44
|
Nazıroğlu M. Molecular role of catalase on oxidative stress-induced Ca2+signaling and TRP cation channel activation in nervous system. J Recept Signal Transduct Res 2012; 32:134-41. [DOI: 10.3109/10799893.2012.672994] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
45
|
Effects of Selenium on Calcium Signaling and Apoptosis in Rat Dorsal Root Ganglion Neurons Induced by Oxidative Stress. Neurochem Res 2012; 37:1631-8. [DOI: 10.1007/s11064-012-0758-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/08/2012] [Accepted: 03/16/2012] [Indexed: 01/12/2023]
|