1
|
Santollo J, Edwards AA, Howell JA, Myers KE. Bidirectional effects of estradiol on the control of water intake in female rats. Horm Behav 2021; 133:104996. [PMID: 34020111 PMCID: PMC8277715 DOI: 10.1016/j.yhbeh.2021.104996] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/18/2022]
Abstract
The inhibitory effect of estradiol (E2) on water intake has been recognized for 50 years. Despite a rich literature describing this phenomenon, we report here a previously unidentified dipsogenic effect of E2 during states of low fluid intake. Our initial goal was to test the hypothesis that the anti-dipsogenic effect of E2 on unstimulated water intake is independent of its anorexigenic effect in female rats. In support of this hypothesis, water intake was reduced during estrus, compared to diestrus, when food was present or absent. Water intake was reduced by E2 in ovariectomized rats when food was available, demonstrating a causative role of E2. Surprisingly, however, when food was removed, resulting in a significant reduction in baseline water intake, E2 enhanced drinking. Accordingly, we next tested the effect of E2 on water intake after an acute suppression of intake induced by exendin-4. The initial rebound drinking was greater in E2-treated, compared to Oil-treated, rats. Finally, to reconcile conflicting reports regarding the effect of ovariectomy on water intake, we measured daily water and food intake, and body weight in ovariectomized and sham-operated rats. Predictably, ovariectomy significantly increased food intake and body weight, but only transiently increased water intake. Together these results provide further support for independent effects of E2 on the controls of water and food intake. More importantly, this report of bidirectional effects of E2 on water intake may lead to a paradigm shift, as it challenges the prevailing view that E2 effects on fluid intake are exclusively inhibitory.
Collapse
Affiliation(s)
- Jessica Santollo
- University of Kentucky, Department of Biology, 675 Rose Street, Lexington, KY 40506, USA.
| | - Andrea A Edwards
- University of Kentucky, Department of Biology, 675 Rose Street, Lexington, KY 40506, USA
| | - Julia A Howell
- University of Kentucky, Department of Biology, 675 Rose Street, Lexington, KY 40506, USA
| | - Katherine E Myers
- University of Kentucky, Department of Biology, 675 Rose Street, Lexington, KY 40506, USA
| |
Collapse
|
2
|
Hardy RN, Simsek ZD, Curry B, Core SL, Beltz T, Xue B, Johnson AK, Thunhorst RL, Curtis KS. Aging affects isoproterenol-induced water drinking, astrocyte density, and central neuronal activation in female Brown Norway rats. Physiol Behav 2018; 192:90-97. [PMID: 29518407 PMCID: PMC6019141 DOI: 10.1016/j.physbeh.2018.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/26/2018] [Accepted: 03/03/2018] [Indexed: 01/22/2023]
Abstract
Age-dependent impairments in the central control of compensatory responses to body fluid challenges have received scant experimental attention, especially in females. In the present study, we found that water drinking in response to β-adrenergic activation with isoproterenol (30 μg/kg, s.c.) was reduced by more than half in aged (25 mo) vs. young (5 mo) ovariectomized female Brown Norway rats. To determine whether this age-related decrease in water intake was accompanied by changes in central nervous system areas associated with fluid balance, we assessed astrocyte density and neuronal activation in the SFO, OVLT, SON, AP and NTS of these rats using immunohistochemical labeling for GFAP and c-fos, respectively. GFAP labeling intensity was increased in the SFO, AP, and NTS of aged females independent of treatment, and was increased in the OVLT of isoproterenol-treated rats independent of age. Fos immunolabeling in response to isoproterenol was reduced in both the SFO and the OVLT of aged females compared to young females, but was increased in the SON of female rats of both ages. Finally, fos labeling in the AP and caudal NTS of aged rats was elevated after vehicle control treatment and did not increase in response to isoproterenol as it did in young females. Thus, age-related declines in water drinking are accompanied by site-specific, age-related changes in astrocyte density and neuronal activation. We suggest that astrocyte density may alter the detection and/or processing of signals related to isoproterenol treatment, and thereby alter neuronal activation in areas associated with fluid balance.
Collapse
Affiliation(s)
- Rachel N Hardy
- Oklahoma State University - Center of Health Sciences, Tulsa, OK 74107, United States
| | - Zinar D Simsek
- Oklahoma State University - Center of Health Sciences, Tulsa, OK 74107, United States
| | - Brandon Curry
- Oklahoma State University - Center of Health Sciences, Tulsa, OK 74107, United States
| | - Sheri L Core
- Oklahoma State University - Center of Health Sciences, Tulsa, OK 74107, United States
| | - Terry Beltz
- University of Iowa, Iowa City, IA, United States
| | - Baojian Xue
- University of Iowa, Iowa City, IA, United States
| | | | | | - Kathleen S Curtis
- Oklahoma State University - Center of Health Sciences, Tulsa, OK 74107, United States.
| |
Collapse
|
3
|
Early oxytocin inhibition of salt intake after furosemide treatment in rats? Physiol Behav 2017; 173:34-41. [PMID: 28131863 DOI: 10.1016/j.physbeh.2017.01.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 11/23/2022]
Abstract
Body fluid homeostasis requires a complex suite of physiological and behavioral processes. Understanding of the role of the central nervous system (CNS) in integrating these processes has been advanced by research employing immunohistochemical techniques to assess responses to a variety of body fluid challenges. Such techniques have revealed sex/estrogen differences in CNS activation in response to hypotension and hypernatremia. In contrast, it has been difficult to conclusively identify specific CNS areas and neurotransmitter systems that are activated by hyponatremia using these techniques. In part, this difficulty is due to the temporal disconnect between the physiological effects of treatments commonly used to deplete body sodium and the behavioral response to such depletion. In some methods, sodium ingestion is delayed in association with increased oxytocin (OT), suggesting an inhibitory role for OT in sodium intake. Urinary sodium loss increases within an hour after treatment with furosemide, a natriuretic-diuretic, but sodium intake is delayed for 18-24h. Accordingly, we hypothesized that acute furosemide-induced sodium loss activates centrally-projecting OT neurons which provide an initial inhibition of sodium intake, and tested this hypothesis in ovariectomized Sprague-Dawley rats with or without estrogen using immunohistochemical methods. Neuronal activation in the hypothalamic paraventricular nuclei (PVN) after administration of furosemide corresponded to the timing of the physiological effects. The activation was not different in estrogen-treated rats, nor did estrogen alter the initial suppression of sodium intake. However, virtually no fos immunoreactive (fos-IR) neurons in the parvocellular PVN were also immunolabeled for OT. Thus, acute sodium loss after furosemide produces neural activation and an early inhibition of sodium intake that does not appear to involve activation of centrally-projecting OT neurons and is not influenced by estrogen.
Collapse
|
4
|
Ferreira-Neto H, Ribeiro I, Moreira T, Yao S, Antunes V. Purinergic P2 receptors in the paraventricular nucleus of the hypothalamus are involved in hyperosmotic-induced sympathoexcitation. Neuroscience 2017; 349:253-263. [DOI: 10.1016/j.neuroscience.2017.02.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 11/16/2022]
|
5
|
Jones AB, Gupton R, Curtis KS. Estrogen and voluntary exercise interact to attenuate stress-induced corticosterone release but not anxiety-like behaviors in female rats. Behav Brain Res 2016; 311:279-286. [PMID: 27247143 DOI: 10.1016/j.bbr.2016.05.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 01/13/2023]
Abstract
The beneficial effects of physical exercise to reduce anxiety and depression and to alleviate stress are increasingly supported in research studies. The role of ovarian hormones in interactions between exercise and anxiety/stress has important implications for women's health, given that women are at increased risk of developing anxiety-related disorders, particularly during and after the menopausal transition. In these experiments, we tested the hypothesis that estrogen enhances the positive impact of exercise on stress responses by investigating the combined effects of exercise and estrogen on anxiety-like behaviors and stress hormone levels in female rats after an acute stressor. Ovariectomized female rats with or without estrogen were given access to running wheels for one or three days of voluntary running immediately after or two days prior to being subjected to restraint stress. We found that voluntary running was not effective at reducing anxiety-like behaviors, whether or not rats were subjected to restraint stress. In contrast, stress-induced elevations of stress hormone levels were attenuated by exercise experience in estrogen-treated rats, but were increased in rats without estrogen. These results suggest that voluntary exercise may be more effective at reducing stress hormone levels if estrogen is present. Additionally, exercise experience, or the distance run, may be important in reducing stress.
Collapse
Affiliation(s)
- Alexis B Jones
- Department of Pharmacology and Physiology, Oklahoma State University-Center for Health Sciences, Tulsa, OK 74107-1898, United States
| | - Rebecca Gupton
- Department of Pharmacology and Physiology, Oklahoma State University-Center for Health Sciences, Tulsa, OK 74107-1898, United States
| | - Kathleen S Curtis
- Department of Pharmacology and Physiology, Oklahoma State University-Center for Health Sciences, Tulsa, OK 74107-1898, United States.
| |
Collapse
|
6
|
Estrogen Replacement Reduces Oxidative Stress in the Rostral Ventrolateral Medulla of Ovariectomized Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:2158971. [PMID: 26640612 PMCID: PMC4657113 DOI: 10.1155/2016/2158971] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/06/2015] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease prevalence rises rapidly after menopause, which is believed to be derived from the loss of estrogen. It is reported that sympathetic tone is increased in postmenopause. The high level of oxidative stress in the rostral ventrolateral medulla (RVLM) contributes to increased sympathetic outflow. The focus of this study was to determine if estrogen replacement reduces oxidative stress in the RVLM and sympathetic outflow in the ovariectomized (OVX) rats. The data of this study showed that OVX rat increased oxidative stress in the RVLM and sympathetic tone; estrogen replacement improved cardiovascular functions but also reduced the level of oxidative stress in the RVLM. These findings suggest that estrogen replacement decreases blood pressure and sympathoexcitation in the OVX rats, which may be associated with suppression in oxidative stress in the RVLM through downregulation of protein expression of NADPHase (NOX4) and upregulation of protein expression of SOD1. The data from this study is beneficial for our understanding of the mechanism of estrogen exerting cardiovascular protective effects on postmenopause.
Collapse
|
7
|
Curtis KS. Estradiol and osmolality: Behavioral responses and central pathways. Physiol Behav 2015; 152:422-30. [PMID: 26074202 DOI: 10.1016/j.physbeh.2015.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/15/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
Regulation of appropriate osmolality of body fluid is critical for survival, yet there are sex differences in compensatory responses to osmotic challenges. Few studies have focused on the role of sex hormones such as estradiol in behavioral responses to increases or decreases in systemic osmolality, and even fewer studies have investigated whether central actions of estrogens contribute to these responses. This overview integrates findings from a series of ongoing and completed experiments conducted in my laboratory to assess estradiol effects on water and NaCl intake in response to osmotic challenges, and on activity in central pathways that mediate such responses.
Collapse
Affiliation(s)
- Kathleen S Curtis
- Oklahoma State University, Center for Health Sciences, Tulsa, OK 74107-1898, USA.
| |
Collapse
|
8
|
Santollo J, Daniels D. Control of fluid intake by estrogens in the female rat: role of the hypothalamus. Front Syst Neurosci 2015; 9:25. [PMID: 25788879 PMCID: PMC4349057 DOI: 10.3389/fnsys.2015.00025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/13/2015] [Indexed: 01/25/2023] Open
Abstract
Body fluid homeostasis is maintained by a complex network of central and peripheral systems that regulate blood pressure, fluid and electrolyte excretion, and fluid intake. The behavioral components, which include well regulated water and saline intake, are influenced by a number of hormones and neuropeptides. Since the early 1970s, it has been known that the ovarian estrogens play an important role in regulating fluid intake in females by decreasing water and saline intake under a variety of hypovolemic conditions. Behavioral, electrophysiological, gene and protein expression studies have identified nuclei in the hypothalamus, along with nearby forebrain structures such as the subfornical organ (SFO), as sites of action involved in mediating these effects of estrogens and, importantly, all of these brain areas are rich with estrogen receptors (ERs). This review will discuss the multiple ER subtypes, found both in the cell nucleus and associated with the plasma membrane, that provide diversity in the mechanism through which estrogens can induce behavioral changes in fluid intake. We then focus on the relevant brain structures, hypothesized circuits, and various peptides, such as angiotensin, oxytocin, and vasopressin, implicated in the anti-dipsogenic and anti-natriorexigenic actions of the estrogens.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Psychology, University at Buffalo SUNY Buffalo, NY, USA
| | - Derek Daniels
- Department of Psychology, University at Buffalo SUNY Buffalo, NY, USA
| |
Collapse
|