1
|
Li X, Liang X, Ma S, Zhao S, Wang W, Li M, Feng D, Tang M. SERT and OCT mediate 5-HT 1B receptor regulation of immobility behavior and uptake of 5-HT and HIS. Biomed Pharmacother 2024; 177:117017. [PMID: 38917762 DOI: 10.1016/j.biopha.2024.117017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
5-HT clearance, commonly mediated by transporters in the uptake-1 and uptake-2 families, has been linked to 5-HT1B receptor's action on behaviors. Since no specific transporters identified yet, effects of serotonin transporter (SERT) and organic cation transporter (OCTs) on 5-HT1B-elicited immobility phenotype, and 5-HT and HIS uptake were then investigated. Intraperitoneal injections of SERT inhibitor fluoxetine (FLX) and/or OCTs inhibitor decynium (D22) were used prior to local perfusion of 5-HT1B agonist CP93129 into the ventral hippocampus to measure immobility times in the FST and TST, to measure 5-HT uptake efficiencies and HIS uptake efficiencies derived from linear regressions using the transient no-net-flux quantitative microdialysis in C57BL/6 mice. Exogenous 5-HT and HIS uptake were measured following incubation of FLX and/or D22 with CP93129 in the RBL-2H3 cells. Moreover, surface membrane levels of SERT and OCT were detected in response to CP93129. Local CP93129 prolonged immobility times, which were attenuated following pretreatment of either inhibitor. Local CP93129 lowered the slopes obtained from the lineal regressions for 5-HT and HIS (slope is reciprocal to uptake efficiency), which were then weakened following pretreatment of either inhibitor. Similar findings were obtained following CP93129 incubation, and co-incubation of CP93129 with either inhibitor in the RBL-2H3. Moreover, CP93129 dose-dependently moved SERT and OCT3 in the cytosol to the surface membrane. Both SERT and OCT are the target effectors mediating 5-HT1B regulation of immobility time and 5-HT uptake, OCT mediates 5-HT1B regulation of HIS uptake. Their underlying signal transductions need to be further explored.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xuankai Liang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shenglu Ma
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shulei Zhao
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Wenyao Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Mingxing Li
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Dan Feng
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Man Tang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Stobbe E, Forlim CG, Kühn S. Impact of exposure to natural versus urban soundscapes on brain functional connectivity, BOLD entropy and behavior. ENVIRONMENTAL RESEARCH 2024; 244:117788. [PMID: 38040180 DOI: 10.1016/j.envres.2023.117788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Humans have been moving from rural to urban environments for decades. This process may have important consequences for our health and well-being. Most previous studies have focused on visual input, and the auditory domain has been understudied so far. Therefore, we set out to investigate the influence of exposure to natural vs urban soundscapes on brain activity and behavior. METHODS Resting-state fMRI data was acquired while participants (N = 35) listened to natural and urban soundscapes. Two affective questionnaires (the Positive and Negative Affect Schedule (PANAS) and the Perceived Stress Scale) and two cognitive tasks (dual n-back (DNB) and the backward digit-span (BDS)) were assessed before and after each soundscape condition. To quantify brain function we used complexity and network measures, namely brain entropy (BEN) and whole brain functional connectivity (FC). To study the link between brain and behavior, changes in BEN and whole brain FC were correlated to changes in cognitive performance and self-reported affect. RESULTS We found higher BEN when listening to urban sounds in posterior cingulate gyrus, cuneus and precuneus, occipital lobe/calcarine as compared to nature sounds, which was negatively correlated to (post-pre) differences in positive affect (PANAS) in the urban soundscape condition. In addition, we found higher FC between areas in the auditory, cinguloopercular, somatomotor hand and mouth networks when listening to nature as compared to urban sounds which was positively correlated to (post-pre) differences of the of the composite score of Digit span and N-back for nature soundscape. CONCLUSIONS This study provides a framework for the neural underpinnings of how natural versus urban soundscapes affect both whole brain FC and BEN and bear implications for the understanding of how the physical auditory environment affects brain function and subsequently observed behavior. Moreover, correlations with cognition and affect reveal the meaning that exposure to soundscapes may have on the human brain. To the best of our knowledge this is the first study to analyze BEN and whole brain FC at rest during exposure to nature and urban soundscapes and to explore their relationship to behavior.
Collapse
Affiliation(s)
- Emil Stobbe
- Max Planck Institute for Human Development, Lise Meitner Group for Environmental Neuroscience, Lentzeallee 94, 14195, Berlin, Germany.
| | - Caroline Garcia Forlim
- Max Planck Institute for Human Development, Lise Meitner Group for Environmental Neuroscience, Lentzeallee 94, 14195, Berlin, Germany; University Medical Center Hamburg-Eppendorf, Department of Psychiatry and Psychotherapy, Martinistr. 52, 20251, Hamburg, Germany
| | - Simone Kühn
- Max Planck Institute for Human Development, Lise Meitner Group for Environmental Neuroscience, Lentzeallee 94, 14195, Berlin, Germany; Max Planck-UCL Center for Computational Psychiatry and Ageing Research, Germany; University Medical Center Hamburg-Eppendorf, Department of Psychiatry and Psychotherapy, Martinistr. 52, 20251, Hamburg, Germany
| |
Collapse
|
3
|
Gao S, Zhang L, Wang X, Li R, Han L, Xiong X, Jiang Q, Cheng D, Xiao X, Li H, Yang J. A terrified-sound stress causes cognitive impairment in female mice by impairing neuronal plasticity. Brain Res 2023; 1812:148419. [PMID: 37217110 DOI: 10.1016/j.brainres.2023.148419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Stress is an important environmental factor affecting mental health that cannot be ignored. Moreover, due to the great physiological differences between males and females, the effects of stress may vary by sex. Previous studies have shown that terrified-sound stress, meaning exposed mice to the recorded vocalizations in response to the electric shock by their kind to induce psychological stress, can cause cognitive impairment in male. In the study, we investigated the effects of the terrified-sound stress on adult female mice. METHODS 32 adults female C57BL/6 mice were randomly divided into control (n = 16) and stress group (n = 16). Sucrose preference test (SPT)was carried out to evaluate the depressive-like behavior. Using Open field test (OFT) to evaluate locomotor and exploratory alterations in mice. Spatial learning and memory ability were measured in Morris Water maze test (MWM), Golgi staining and western blotting showed dendritic remodeling after stress. In addition, serum hormone quantifications were performed by ELISA. RESULTS we found the sucrose preference of stress group was significantly decreased (p < 0.05) compared with control group; the escape latency of the stress group was significantly prolonged (p < 0.05), the total swimming distance and the number of target crossings(p < 0.05) were significantly increased (p < 0.05) in MWM; Endocrine hormone, Testosterone (T) (p < 0.05), GnRH (p < 0.05), FSH and LH levels was decreased; Golgi staining and western blotting showed a significant decrease in dendritic arborization, spine density and synaptic plasticity related proteins PSD95 and BDNF in the stress group. CONCLUSION Terrified-sound stress induced depressive-like behaviors, locomotor and exploratory alterations. And impaired cognitive by altering dendritic remodeling and the expression of synaptic plasticity-related proteins. However, females are resilient to terrified-sound stress from a hormonal point of view.
Collapse
Affiliation(s)
- Shanfeng Gao
- Department of Otolaryngology and Head Neck, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China; Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Lingyu Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Xia Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Rufeng Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Lin Han
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Xiaofan Xiong
- Department of Tumor and Immunology in Precision Medicine Institute, Western China Science and Technology Innovation Port, Xi'an 710004, PR China
| | - Qingchen Jiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Daxin Cheng
- Department of Neonatology, Shaanxi Provincial People's Hospital, Xi'an 710068, PR China
| | - Xuan Xiao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Huajing Li
- Department of Otolaryngology and Head Neck, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| | - Juan Yang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an 710061, PR China.
| |
Collapse
|
4
|
Vyunova TV, Andreeva LA, Shevchenko KV, Glazova NY, Sebentsova EA, Levitskaya NG, Myasoedov NF. Synthetic corticotropins and the GABA-receptor system: Direct and delayed effects. Chem Biol Drug Des 2023; 101:1393-1405. [PMID: 36828803 DOI: 10.1111/cbdd.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 02/26/2023]
Abstract
The central effectors of the stress system are greatly interconnected and include, among others, a large group of peptides derived from proopiomelanocortin. In addition to natural corticotropins, a number of artificial molecules that contain some ACTH fragments in their structure are also referred to members of this family. Some of them possess a wide range of biological activity. The molecular mechanism underlying the biological activity of such peptides is partly based on allosteric modulation of various receptors. We analyzed the ability of some biologically active synthetic corticotropins (ACTH(4-7)PGP, ACTH(6-9)PGP, ACTH(7-10)PGP), and glyproline PGPL to affect the GABA-receptor system of rat brain. The effects of the peptides were studied in the isolated plasma membranes of brain cells, as well as after systemic peptide administration in the rat model of acute restraint stress. The delayed effect of stress or preadministration of each of the studied peptides on [3 H]GABA binding was different for its high- and low-affinity-specific sites. The studied peptides individually affected the binding of [3 H]GABA in their own way. Acute restraint stress caused a decrease in [3 H]GABA binding at its low-affine site and did not affected the high-affine site. Preliminary peptide administration did not influence this effect of stress.
Collapse
Affiliation(s)
- Tatiana V Vyunova
- Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow, Russia
| | - Ludmila A Andreeva
- Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow, Russia
| | - Konstantin V Shevchenko
- Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow, Russia
| | - Nataliya Yu Glazova
- Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow, Russia.,Faculty of Biology, Moscow State University, Moscow, Russia
| | - Elena A Sebentsova
- Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow, Russia.,Faculty of Biology, Moscow State University, Moscow, Russia
| | - Natalia G Levitskaya
- Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow, Russia.,Faculty of Biology, Moscow State University, Moscow, Russia
| | - Nikolay F Myasoedov
- Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow, Russia.,The Mental Health Research Center of the Russian Academy of Medical Sciences, Moscow, Russia
| |
Collapse
|
5
|
Cao Y, Ying SQ, Qiu XY, Guo J, Chen C, Li SJ, Dou G, Zheng CX, Chen D, Qiu JY, Jin Y, Sui BD, Jin F. Proteomic analysis identifies Stomatin as a biological marker for psychological stress. Neurobiol Stress 2023; 22:100513. [PMID: 36636173 PMCID: PMC9829922 DOI: 10.1016/j.ynstr.2023.100513] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/24/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023] Open
Abstract
Psychological stress emerges to be a common health burden in the current society for its highly related risk of mental and physical disease outcomes. However, how the quickly-adaptive stress response process connects to the long-observed organismal alterations still remains unclear. Here, we investigated the profile of circulatory extracellular vesicles (EVs) after acute stress (AS) of restraint mice by phenotypic and proteomic analyses. We surprisingly discovered that AS-EVs demonstrated significant changes in size distribution and plasma concentration compared to control group (CN) EVs. AS-EVs were further characterized by various differentially expressed proteins (DEPs) closely associated with biological, metabolic and immune regulations and were functionally important in potentially underlying multiple diseases. Notably, we first identified the lipid raft protein Stomatin as an essential biomarker expressed on the surface of AS-EVs. These findings collectively reveal that EVs are a significant function-related liquid biopsy indicator that mediate circulation alterations impinged by psychological stress, while also supporting the idea that psychological stress-associated EV-stomatin can be used as a biomarker for potentially predicting acute stress responses and monitoring psychological status. Our study will pave an avenue for implementing routine plasma EV-based theranostics in the clinic.
Collapse
Affiliation(s)
- Yuan Cao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China,Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Si-Qi Ying
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xin-Yu Qiu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China,Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jia Guo
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China,Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chen Chen
- Military Medical Psychology School, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shi-Jie Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China,Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Geng Dou
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Da Chen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China,Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ji-Yu Qiu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China,Department of VIP Dental Care, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China,Corresponding author. State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China,Corresponding author.
| | - Fang Jin
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China,Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China,Corresponding author. Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
6
|
Billig AJ, Lad M, Sedley W, Griffiths TD. The hearing hippocampus. Prog Neurobiol 2022; 218:102326. [PMID: 35870677 PMCID: PMC10510040 DOI: 10.1016/j.pneurobio.2022.102326] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
The hippocampus has a well-established role in spatial and episodic memory but a broader function has been proposed including aspects of perception and relational processing. Neural bases of sound analysis have been described in the pathway to auditory cortex, but wider networks supporting auditory cognition are still being established. We review what is known about the role of the hippocampus in processing auditory information, and how the hippocampus itself is shaped by sound. In examining imaging, recording, and lesion studies in species from rodents to humans, we uncover a hierarchy of hippocampal responses to sound including during passive exposure, active listening, and the learning of associations between sounds and other stimuli. We describe how the hippocampus' connectivity and computational architecture allow it to track and manipulate auditory information - whether in the form of speech, music, or environmental, emotional, or phantom sounds. Functional and structural correlates of auditory experience are also identified. The extent of auditory-hippocampal interactions is consistent with the view that the hippocampus makes broad contributions to perception and cognition, beyond spatial and episodic memory. More deeply understanding these interactions may unlock applications including entraining hippocampal rhythms to support cognition, and intervening in links between hearing loss and dementia.
Collapse
Affiliation(s)
| | - Meher Lad
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK; Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, USA
| |
Collapse
|
7
|
Xi W, Mao H, Cui Z, Yao H, Shi R, Gao Y. Scream Sound-induced Chronic Psychological Stress Results in Diminished Ovarian Reserve in Adult Female Rat. Endocrinology 2022; 163:6580263. [PMID: 35536288 DOI: 10.1210/endocr/bqac042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 01/09/2023]
Abstract
It is well established that chronic psychological stress (PS) induces female reproductive dysfunction. However, the studies on the consequences of chronic PS exposure precisely targeting ovarian reserve are lacking. In the present study, we employed a chronic scream sound-induced PS model to investigate the potential effect of pure psychosocial stressors on ovary reserve. Female rats were subjected to scream sound stress, white noise, or background for 3 weeks. Animals were euthanized by cervical dislocation after stress for collection of blood or ovaries. Sex hormones were analyzed by enzyme-linked immunosorbent assay. The follicle number was examined by histopathology. Granulosa cell apoptosis of the ovaries was examined by in situ cell death detection kit. Finally, rats were mated with proven fertile male rats to study fertility parameters. Female rats exposed to scream sound were presented with reduced weight gain and sucrose preference, while immobility time in forced swim test and serum corticosterone concentration were significantly increased. Scream sound stress sequentially decreased plasma anti-Müllerian hormone and estradiol concentration, induced primordial and preantral follicles loss, augmented granulosa cell apoptosis in ovarian growing follicles, and eventually decreased litter sizes. Based on these results, we suggest that chronic PS induced loss of ovarian reserve by accelerated primordial follicle activation and destruction of growing follicles, which results in follicle depletion and decreased fertility.
Collapse
Affiliation(s)
- Wenyan Xi
- The Second Affiliation Hospital of Xi'an Jiao Tong University, Xi'an City, China
| | - Hui Mao
- The Second Affiliation Hospital of Xi'an Jiao Tong University, Xi'an City, China
| | - Zhiwei Cui
- The First Affiliation Hospital of Xi'an Jiao Tong University, Xi'an City, China
| | - Haoyan Yao
- The Second Affiliation Hospital of Xi'an Jiao Tong University, Xi'an City, China
| | - Ruiting Shi
- The Second Affiliation Hospital of Xi'an Jiao Tong University, Xi'an City, China
| | - Yane Gao
- The Second Affiliation Hospital of Xi'an Jiao Tong University, Xi'an City, China
| |
Collapse
|
8
|
Wang B, Yang X, Lu J, Ntim M, Xia M, Kundu S, Jiang R, Chen D, Wang Y, Yang JY, Li S. Two-hour acute restraint stress facilitates escape behavior and learning outcomes through the activation of the Cdk5/GR P S211 pathway in male mice. Exp Neurol 2022; 354:114023. [PMID: 35218707 DOI: 10.1016/j.expneurol.2022.114023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/03/2022] [Accepted: 02/20/2022] [Indexed: 11/18/2022]
Abstract
Acute stress exerts pleiotropic actions on learning behaviors. The induced negative effects are sometimes adopted to measure the efficacy of particular drugs. Until now, there are no detailed experimental data on the time-gradient effects of acute stress. Here, we developed the time gradient acute restraint stress (ARS) model to precisely assess the roles of different restrain times on inducing acute stress. Time gradient ARS facilitates escape behaviors and learning outcomes, peaking at 2 h-ARS and then declining to baseline at 3.5 h-ARS as confirmed by time gradient post-stress data. Furthermore, time gradient ARS activates glucocorticoid receptor (GR) phosphorylation site at Serine211 (P S221) as an inverted V-shaped pattern peaking at 2 h-ARS, whereas that of the GR phosphorylation site at Serine226 (P S226) from 2 h-ARS to 3.5 h-ARS. The 2 h-ARS but not 3.5 h-ARS enhances synaptic plasticity and genes transcription associated with learning and memory in the hippocampus of male mice. The Cdk5 inhibitor, roscovitine, blocks this facilitation effect by intervening in GR phosphorylation at Serine211 in the 2 h-ARS mice. Altogether, these findings show that the time gradient ARS selectively activates GR phospho-isoforms and differentially influences the behaviors along with maintaining a relationship between 2 h-ARS and Cdk5/GR P S211-mediated transcriptional activity.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Xuewei Yang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Jincheng Lu
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Michael Ntim
- Department of Physiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Min Xia
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Supratik Kundu
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Rong Jiang
- Department of Physiology, Binzhou Medical University, Yantai Campus, 346 Guanhai Road, Laishan District, Yantai, Shandong, China
| | - Defang Chen
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Ying Wang
- Department of Cardiology, Institute of Heart and Vessel Diseases of Dalian Medical University, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jin-Yi Yang
- Department of Urology, Affiliated Dalian Friendship Hospital of Dalian Medical University, Dalian, China.
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
9
|
Li Z, Zhao Z, Nan Z, Duan J, Zhang S, Zhang Z, Huang C. A terrifying sound stress inhibits hippocampal neurogenesis in the adult male mice. Int J Dev Neurosci 2021; 82:63-71. [PMID: 34783064 DOI: 10.1002/jdn.10160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 11/12/2022] Open
Abstract
Stress impairs hippocampal neurogenesis. The traditional animal model of stress contains a mixture of physical and psychological stress factors. This leads to difficulty in the evaluation of the effect of pure psychological stress on neurogenesis. In this study, we investigated the effect of pure psychological stress on hippocampal neurogenesis. The pure psychological stress model and the mixed stress model were carried out by terrifying sound and restraint, respectively. The open field test showed that restraint treatment improved the general locomotor activity levels, while terrifying sound treatment had opposite effects. Compared with a normal condition, both terrifying sound stimulation and restraint treatment significantly decreased the number of BrdU and Ki-67 and reduced the positive rate of SOX2/GFAP in the hippocampus. These phenomena indicated that pure psychological stress could decrease the number of neural stem cells and inhibit cell proliferation in the hippocampus of a mouse. Furthermore, compared with the restraint treatment, the neurotransmitters including norepinephrine (NE), 5-hydroxytryptamine (5-HT), and gamma-aminobutyric acid (GABA) had not been affected drastically by terrifying sound stimulation. Our results suggest that the terrifying sound stimulation can be considered as a novel and effective pure psychological stress animal model for the further research on the hippocampus.
Collapse
Affiliation(s)
- Zhaoxin Li
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zixuan Zhao
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zhuhui Nan
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jingwen Duan
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Siyuan Zhang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zhichao Zhang
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chen Huang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
10
|
McLaurin KA, Harris M, Madormo V, Harrod SB, Mactutus CF, Booze RM. HIV-Associated Apathy/Depression and Neurocognitive Impairments Reflect Persistent Dopamine Deficits. Cells 2021; 10:2158. [PMID: 34440928 PMCID: PMC8392364 DOI: 10.3390/cells10082158] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Individuals living with human immunodeficiency virus type 1 (HIV-1) are often plagued by debilitating neurocognitive impairments and affective alterations;the pathophysiology underlying these deficits likely includes dopaminergic system dysfunction. The present review utilized four interrelated aims to critically examine the evidence for dopaminergic alterations following HIV-1 viral protein exposure. First, basal dopamine (DA) values are dependent upon both brain region andexperimental approach (i.e., high-performance liquid chromatography, microdialysis or fast-scan cyclic voltammetry). Second, neurochemical measurements overwhelmingly support decreased DA concentrations following chronic HIV-1 viral protein exposure. Neurocognitive impairments, including alterations in pre-attentive processes and attention, as well as apathetic behaviors, provide an additional line of evidence for dopaminergic deficits in HIV-1. Third, to date, there is no compelling evidence that combination antiretroviral therapy (cART), the primary treatment regimen for HIV-1 seropositive individuals, has any direct pharmacological action on the dopaminergic system. Fourth, the infection of microglia by HIV-1 viral proteins may mechanistically underlie the dopamine deficit observed following chronic HIV-1 viral protein exposure. An inclusive and critical evaluation of the literature, therefore, supports the fundamental conclusion that long-term HIV-1 viral protein exposure leads to a decreased dopaminergic state, which continues to persist despite the advent of cART. Thus, effective treatment of HIV-1-associated apathy/depression and neurocognitive impairments must focus on strategies for rectifying decreases in dopamine function.
Collapse
Affiliation(s)
| | | | | | | | | | - Rosemarie M. Booze
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA; (K.A.M.); (M.H.); (V.M.); (S.B.H.); (C.F.M.)
| |
Collapse
|
11
|
Karem H, Mehla J, Kolb BE, Mohajerani MH. Traffic noise exposure, cognitive decline, and amyloid-beta pathology in an AD mouse model. Synapse 2020; 75:e22192. [PMID: 33096582 DOI: 10.1002/syn.22192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 11/11/2022]
Abstract
Concerns are growing that exposure to environmental pollutants, such as traffic noise, might cause cognitive impairments and predispose individuals toward the development of Alzheimer's disease (AD) dementia. In this study in a knock-in mouse model of AD, we investigated how chronic traffic noise exposure (CTNE) impacts cognitive performance and amyloid-beta (Aβ) pathology. A group of APPNL-G-F/NL-G-F mice was exposed to CTNE (70 dBA , 8 hr/day for 1 month) and compared with nonexposed counterparts. Following CTNE, an increase in hypothalamic-pituitary-adrenal (HPA) axis responsivity was observed by corticosterone assay of the blood. One month after CTNE, the CTNE group demonstrated impairments in cognitive and motor functions, and indications of anxiety-like behavior, relative to the control animals. The noise-exposed group also showed elevated Aβ aggregation, as inferred by a greater number of plaques and larger average plaque size in various regions of the brain, including regions involved in stress regulation. The results support that noise-associated dysregulation of the neuroendocrine system as a potential risk factor for developing cognitive impairment and Aβ pathology, which should be further investigated in human studies.
Collapse
Affiliation(s)
- Hadil Karem
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Jogender Mehla
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
12
|
Jafari Z, Kolb BE, Mohajerani MH. Noise exposure accelerates the risk of cognitive impairment and Alzheimer’s disease: Adulthood, gestational, and prenatal mechanistic evidence from animal studies. Neurosci Biobehav Rev 2020; 117:110-128. [DOI: 10.1016/j.neubiorev.2019.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 12/25/2022]
|
13
|
Sajjadi FS, Aghighi F, Vahidinia Z, Azami-Tameh A, Salami M, Talaei SA. Prenatal urban traffic noise exposure impairs spatial learning and memory and reduces glucocorticoid receptor expression in the hippocampus of male rat offspring. Physiol Int 2020; 107:209-219. [PMID: 32750028 DOI: 10.1556/2060.2020.00022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 03/11/2020] [Indexed: 11/19/2022]
Abstract
Introduction Exposure to noise stress during early life may permanently affect the structure and function of the central nervous system. The aim of this study was to evaluate the effects of prenatal exposure to urban traffic noise on the spatial learning and memory of the rats' offspring and the expression of glucocorticoid receptors (GRs) in their hippocampi. Methods Three g\roups of pregnant rats were exposed to recorded urban traffic noise for 1, 2 or 4 h/day during the last week of pregnancy. At the age of 45 days, their male offspring were introduced to the Morris water maze (MWM) for assessment of spatial learning and memory. The corticosterone levels were measured in the offspring's sera by radioimmunoassay, and the relative expression of glucocorticoid and mineralocorticoid receptors (MRs) in their hippocampi was evaluated via RT-PCR. Results Facing urban traffic noise for 2 and 4 h/day during the third trimester of pregnancy caused the offspring to spend more time and to travel a larger distance than the controls to find the target platform. Analogously, these two groups were inferior to their control counterparts in the probe test. Also, prenatal noise stress elevated the corticosterone concentration in the sera of the rats' offspring and dose-dependently decreased the relative expression of the mRNA of both GRs and MRs in their hippocampi. Conclusions Urban traffic noise exposure during the last trimester of pregnancy impairs spatial learning and memory of rat offspring and reduces GRs and MRs gene expression in the hippocampus.
Collapse
Affiliation(s)
- F S Sajjadi
- 1Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - F Aghighi
- 1Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Z Vahidinia
- 2Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - A Azami-Tameh
- 2Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - M Salami
- 1Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - S A Talaei
- 1Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| |
Collapse
|
14
|
Matt SM, Gaskill PJ. Where Is Dopamine and how do Immune Cells See it?: Dopamine-Mediated Immune Cell Function in Health and Disease. J Neuroimmune Pharmacol 2020; 15:114-164. [PMID: 31077015 PMCID: PMC6842680 DOI: 10.1007/s11481-019-09851-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/07/2019] [Indexed: 02/07/2023]
Abstract
Dopamine is well recognized as a neurotransmitter in the brain, and regulates critical functions in a variety of peripheral systems. Growing research has also shown that dopamine acts as an important regulator of immune function. Many immune cells express dopamine receptors and other dopamine related proteins, enabling them to actively respond to dopamine and suggesting that dopaminergic immunoregulation is an important part of proper immune function. A detailed understanding of the physiological concentrations of dopamine in specific regions of the human body, particularly in peripheral systems, is critical to the development of hypotheses and experiments examining the effects of physiologically relevant dopamine concentrations on immune cells. Unfortunately, the dopamine concentrations to which these immune cells would be exposed in different anatomical regions are not clear. To address this issue, this comprehensive review details the current information regarding concentrations of dopamine found in both the central nervous system and in many regions of the periphery. In addition, we discuss the immune cells present in each region, and how these could interact with dopamine in each compartment described. Finally, the review briefly addresses how changes in these dopamine concentrations could influence immune cell dysfunction in several disease states including Parkinson's disease, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, as well as the collection of pathologies, cognitive and motor symptoms associated with HIV infection in the central nervous system, known as NeuroHIV. These data will improve our understanding of the interactions between the dopaminergic and immune systems during both homeostatic function and in disease, clarify the effects of existing dopaminergic drugs and promote the creation of new therapeutic strategies based on manipulating immune function through dopaminergic signaling. Graphical Abstract.
Collapse
Affiliation(s)
- S M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
15
|
A new stress model by predatory sound produces persistent anxiety-like behaviours in male SD rats but not ICR mice. Appl Anim Behav Sci 2019. [DOI: 10.1016/j.applanim.2019.104843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Cheng H, Sun G, Li M, Yin M, Chen H. Neuron loss and dysfunctionality in hippocampus explain aircraft noise induced working memory impairment: a resting-state fMRI study on military pilots. Biosci Trends 2019; 13:430-440. [PMID: 31611544 DOI: 10.5582/bst.2019.01190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Huijuan Cheng
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, Gansu, China
| | - Guodong Sun
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Regiment Medical Company, 96875 Army of PLA, Baoji, Shaanxi, China
| | - Mei Li
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Minhong Yin
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hao Chen
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
17
|
β-Endorphin Induction by Psychological Stress Promotes Leydig Cell Apoptosis through p38 MAPK Pathway in Male Rats. Cells 2019; 8:cells8101265. [PMID: 31623282 PMCID: PMC6829611 DOI: 10.3390/cells8101265] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
Psychological stress (PS) disturbs the reproductive endocrine system and promotes male infertility, but the underlying pathogenic mechanisms have not been extensively studied. This study aimed to uncover the mechanisms of PS-induced male reproductive related abnormalities subjected to a ‘terrified sound’ exposure. Male rats subjected to PS displayed slow growth, decreased sperm quality, abnormal levels of the reproductive endocrine hormones, decreased expression of the reproductive-related proteins androgen-binding protein (ABP) and bromodomain-containing protein (BRDT), increased apoptosis in the testis, and accompanied by elevated levels of β-endorphin (β-EP). These effects were reversed by naloxone. Furthermore, PS-induced β-EP could promote mu opioid receptor (MOR) activation and ensure intracellular p38 MAPK phosphorylation and then lead to Leydig cells (LCs) apoptosis. The current result showed that β-EP was a key factor to PS-induced male infertility.
Collapse
|
18
|
Hamada M, Nishigawa T, Maesono S, Aso K, Ikeda H, Furuse M. Decreased stress-induced depression-like behavior in lactating rats is associated with changes in the hypothalamic-pituitary-adrenal axis, brain monoamines, and brain amino acid metabolism. Stress 2019; 22:482-491. [PMID: 30838897 DOI: 10.1080/10253890.2019.1584179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Depression-like behavior during lactation may relate to changes in the hypothalamic-pituitary-adrenal (HPA) axis, brain monoamines, and brain amino acid metabolism. This study investigated how the behavior, HPA axis activity, brain monoamines, and brain free amino acid metabolism of rats were changed by stress or lactation period. Rats were separated into four groups: (1) control lactating (n = 6), (2) stress lactating (n = 6), (3) control virgin (n = 7), and (4) stress virgin (n = 7) and restrained for 30 min a total of ten times (once every other day) from postnatal day (PND) 1. Depression-like behavior in the forced swimming test (FST) on PND 10 and concentration of corticosterone in plasma, as well as monoamines and L-amino acids including β-alanine, γ-aminobutyric acid, cystathionine, 3-methyl-histidine and taurine in the prefrontal cortex and hypothalamus on PND 19 were measured. The plasma corticosterone concentration, measured just after restraint stress, was significantly higher in the stress groups, versus the control groups, but there were no significant differences between control and stress lactating groups. Depression-like behavior (immobility) in the FST was significantly lower in the lactating groups, versus the virgin groups. Stress enhanced dopamine and glutamate, and decreased threonine and glycine concentrations in the hypothalamus. In addition, 3-methoxy-4-hydroxyphenylglycol (MHPG), threonine and ornithine concentrations in the prefrontal cortex were significantly higher in the lactating groups compared with the virgin groups. Changes in plasma corticosterone concentration, monoamine, and amino acid metabolism may relate to stress-induced depression-like behavior in lactating rats. Lay summary This study revealed that reduced depression-like behavior in lactating, relative to virgin rats, was associated with changes in monoamine and amino acid metabolism in the prefrontal cortex of the brain. In addition, the effect of stress on monoamine and amino acid metabolism is prominently observed in the hypothalamus and may be related to neuroendocrine stress axis activity and secretion of corticosterone. This study suggested that stress-induced depression-like behavior may be associated with several changes in the stress axis, brain monoamines, and brain amino acid metabolism. These parameters were associated with attenuated depression-like behavior in lactating rats.
Collapse
Affiliation(s)
- Mizuki Hamada
- a Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture , Kyushu University , Fukuoka , Japan
| | - Takuma Nishigawa
- a Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture , Kyushu University , Fukuoka , Japan
| | - Saori Maesono
- a Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture , Kyushu University , Fukuoka , Japan
| | - Kenta Aso
- a Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture , Kyushu University , Fukuoka , Japan
| | - Hiromi Ikeda
- a Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture , Kyushu University , Fukuoka , Japan
| | - Mitsuhiro Furuse
- a Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture , Kyushu University , Fukuoka , Japan
| |
Collapse
|
19
|
Vester AI, Chen M, Marsit CJ, Caudle WM. A Neurodevelopmental Model of Combined Pyrethroid and Chronic Stress Exposure. TOXICS 2019; 7:toxics7020024. [PMID: 31052489 PMCID: PMC6630986 DOI: 10.3390/toxics7020024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders of childhood and previous studies indicate the dopamine system plays a major role in ADHD pathogenesis. Two environmental exposures independently associated with dopaminergic dysfunction and ADHD risk include exposure to deltamethrin, a pyrethroid insecticide, and chronic stress. We hypothesized that combined neurodevelopmental exposure to both deltamethrin and corticosterone (CORT), the major stress hormone in rodents, would result in additive changes within the dopamine system. To study this, we developed a novel dual exposure paradigm and exposed pregnant C57BL/6 dams to 3 mg/kg deltamethrin through gestation and weaning, and their offspring to 25 μg/mL CORT dissolved in the drinking water through adulthood. Midbrain RNA expression as well as striatal and cortical protein expression of key dopaminergic components were investigated, in addition to ADHD-like behavioral tasks and electrochemical dopamine dynamics via fast-scan cyclic voltammetry. Given the well-described sexual dimorphism of ADHD, males and females were assessed separately. Males exposed to deltamethrin had significantly decreased midbrain Pitx3 expression, decreased cortical tyrosine hydroxylase (TH) expression, increased activity in the Y maze, and increased dopamine uptake rate in the dorsal striatum. These effects did not occur in males exposed to CORT only, or in males exposed to both deltamethrin and CORT, suggesting that CORT may attenuate these effects. Additionally, deltamethrin- and CORT-exposed females did not display these dopaminergic features, which indicates these changes are sex-specific. Our results show dopaminergic changes from the RNA through the functional level. Moreover, these data illustrate the importance of testing multiple environmental exposures together to better understand how combined exposures that occur in certain vulnerable populations could affect similar neurodevelopmental systems, as well as the importance of studying sex differences of these alterations.
Collapse
Affiliation(s)
- Aimée I Vester
- Department of Environmental Health Sciences, Emory University Rollins School of Public Health, Atlanta, GA 30329, USA.
| | - Merry Chen
- Department of Environmental Health Sciences, Emory University Rollins School of Public Health, Atlanta, GA 30329, USA.
| | - Carmen J Marsit
- Department of Environmental Health Sciences, Emory University Rollins School of Public Health, Atlanta, GA 30329, USA.
| | - W Michael Caudle
- Department of Environmental Health Sciences, Emory University Rollins School of Public Health, Atlanta, GA 30329, USA.
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
20
|
Chen J, Wang ZZ, Zhang S, Chu SF, Mou Z, Chen NH. The effects of glucocorticoids on depressive and anxiety-like behaviors, mineralocorticoid receptor-dependent cell proliferation regulates anxiety-like behaviors. Behav Brain Res 2019; 362:288-298. [DOI: 10.1016/j.bbr.2019.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/31/2022]
|
21
|
Liu H, Liu N, Teng W, Chen J. Study on a dSPE-LC-MS/MS method for lysophosphatidylcholines and underivatized neurotransmitters in rat brain tissues. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1096:11-19. [DOI: 10.1016/j.jchromb.2018.07.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/07/2023]
|
22
|
Qiu ZK, Zhong DS, He JL, Liu X, Chen JS, Nie H. The anxiolytic-like effects of puerarin are associated with the changes of monoaminergic neurotransmitters and biosynthesis of allopregnanolone in the brain. Metab Brain Dis 2018; 33:167-175. [PMID: 29101599 DOI: 10.1007/s11011-017-0127-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 10/09/2017] [Indexed: 12/27/2022]
Abstract
Anxiety disorder is a serious and burdensome psychiatric illness that frequently turn into chronic clinical conditions. Puerarin have been shown to be effective in the therapy of depression. However, few studies are concerned about the anxiolytic-like effects of puerarin. The current study aimed to evaluate the anxiolytic-like effects of puerarin and its possible mechanism. To evaluate this, the behavioral tests, i.e. Vogel-type conflict test (VTCT), elevated plus-maze test (EPMT), and open-field test (OFT) were conducted. Data showed that similar to the positive-control drug sertraline (Ser) (15 mg/kg, i.g.), the anxiolytic-like effects were produced by puerarin (60 and 120 mg/kg, i.g.) in VTCT and EMPT respectively without affecting locomotor activity in OFT. Moreover, the present study also found that consistent with Ser, the levels of allopregnanolone and serotonin (5-HT) in the prefrontal cortex and hippocampus were increased by puerarin (60 and 120 mg/kg, i.g.), respectively. In summary, the present study indicated that puerarin exerted the anxiolytic-like effects, which maybe associated with normalization of 5-HT levels and biosynthesis of allopregnanolone in brain.
Collapse
Affiliation(s)
- Zhi-Kun Qiu
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - De-Sheng Zhong
- Department of Pharmacy, Hui Zhou Municipal Centre Hospital, Huizhou, Guangdong, People's Republic of China
| | - Jia-Li He
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, People's Republic of China.
| | - Xu Liu
- Pharmacy Department of General Hospital of Chinese People's Armed Police Forces, Beijing, 100039, People's Republic of China
| | - Ji-Sheng Chen
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China.
| | - Hong Nie
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
23
|
Li Y, Jiang W, Li ZZ, Zhang C, Huang C, Yang J, Kong GY, Li ZF. Repetitive restraint stress changes spleen immune cell subsets through glucocorticoid receptor or β-adrenergic receptor in a stage dependent manner. Biochem Biophys Res Commun 2017; 495:1108-1114. [PMID: 29175389 DOI: 10.1016/j.bbrc.2017.11.148] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 11/22/2017] [Indexed: 12/30/2022]
Abstract
Immune system is sensitive to stress. Spleen is the largest peripheral immune organ innervated with sympathetic nerves and controlled by adrenomedullary system in the body. However, the alterations and mechanism of spleen immune cell subsets caused by repetitive restraint stress (RRS) is poorly understood. In this study, we found that RRS reduced spleen index in mice, and induced an expansion of white pulp and involution of the red pulp. Meanwhile, the percentage of CD3+CD8+ T lymphocytes, CD11b+F4/80+ macrophages, CD11b+Ly-6G-Ly-6Chi monocytic myeloid derived suppressor cells (mMDSCs) and CD11b+Ly-6G+Ly-6Cint granulocytic myeloid derived suppressor cells (gMDSCs) in spleen were significantly changed by RRS. Mechanistically, we found that the expression of norepinephrine (NE) and β-adrenergic receptor (β-AR) in spleen were up-regulated after 21 days of RRS, but not 7 days. The expression of corticosterone (CORT) and glucocorticoid receptor (GR) in spleen were up-regulated after 7 days of RRS but were lower after 21 days of RRS, even though they were still higher than that in mice without stress. By treating the stressed mice with RU486 (antagonist of GR) or propranolol (antagonist of β-AR), we demonstrated that GR was responsible for the changes of spleen induced by 7 days of RRS and β-AR was for 21 days of RRS. Our data suggest that RRS changes spleen immune cell subsets through GR or β-AR in a stage dependent manner.
Collapse
Affiliation(s)
- Yu Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China; Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Jiang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China; Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhen-Zhen Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chen Zhang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chen Huang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Jun Yang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Guang-Yao Kong
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Zong-Fang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China; Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
24
|
Jafari Z, Mehla J, Afrashteh N, Kolb BE, Mohajerani MH. Corticosterone response to gestational stress and postpartum memory function in mice. PLoS One 2017; 12:e0180306. [PMID: 28692696 PMCID: PMC5503237 DOI: 10.1371/journal.pone.0180306] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 06/13/2017] [Indexed: 02/07/2023] Open
Abstract
Maternal stress is a common adversity during pregnancy. Gestational corticosterone alternations are thought to contribute to the etiology of postpartum behavioral disturbances. However, the impact of stress during pregnancy, in particular noise exposure, on gestational corticosterone fluctuations and spatial cognition in postpartum mice has not been fully understood yet. We hypothesized that noise exposure during pregnancy negatively affects gestational corticosterone levels and postpartum memory function in the dams similar to the physical stressors. Pregnant C57BL/6 mice were randomly assigned to either one of two stress conditions or a control condition. The noise stress (NS) was induced by presenting a loud intermittent 3000 Hz frequency on gestational days (GDs) 12, 14, and 16 for 24 hours, whereas the physical stress (PS) consisted of restraint and exposure to an elevated platform on GDs 12–16. Plasma corticosterone level was collected on GDs 11 and 17, and Morris water task (MWT) was carried out 30 days after parturition. Compared to the control group, the level of corticosterone in the stressed groups was significantly increased on GD17 relative to GD11. Significantly longer swim time and lower swim speed were observed in both stressed groups relative to the control group. Probe time was significantly shorter in the NS group than the other groups. The delta corticosterone level was significantly correlated with the swim time as well as the probe time in the three groups. Given the results, the adverse effects of gestational noise exposure on the hypothalamic pituitary-adrenal (HPA) axis activation and postpartum spatial learning and memory function were as large as/ or a bit stronger than the physical stresses. The findings suggest the significance of conservation against loud noise exposure in daily living, as well as need to further notice to the different aspects of gestational stress in mothers’ behavior like offspring.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience (CCBN), University of Lethbridge, Lethbridge, AB, Canada
- School of Rehabilitation Sciences, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Jogender Mehla
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience (CCBN), University of Lethbridge, Lethbridge, AB, Canada
| | - Navvab Afrashteh
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience (CCBN), University of Lethbridge, Lethbridge, AB, Canada
| | - Bryan E. Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience (CCBN), University of Lethbridge, Lethbridge, AB, Canada
- * E-mail: (BEK); (MHM)
| | - Majid H. Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience (CCBN), University of Lethbridge, Lethbridge, AB, Canada
- * E-mail: (BEK); (MHM)
| |
Collapse
|
25
|
Jin SG, Kim MJ, Park SY, Park SN. Stress hormonal changes in the brain and plasma after acute noise exposure in mice. Auris Nasus Larynx 2017; 44:272-276. [DOI: 10.1016/j.anl.2016.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/07/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
|
26
|
Chronic early postnatal scream sound stress induces learning deficits and NMDA receptor changes in the hippocampus of adult mice. Neuroreport 2016; 27:397-403. [PMID: 27015584 DOI: 10.1097/wnr.0000000000000552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chronic scream sounds during adulthood affect spatial learning and memory, both of which are sexually dimorphic. The long-term effects of chronic early postnatal scream sound stress (SSS) during postnatal days 1-21 (P1-P21) on spatial learning and memory in adult mice as well as whether or not these effects are sexually dimorphic are unknown. Therefore, the present study examines the performance of adult male and female mice in the Morris water maze following exposure to chronic early postnatal SSS. Hippocampal NR2A and NR2B levels as well as NR2A/NR2B subunit ratios were tested using immunohistochemistry. In the Morris water maze, stress males showed greater impairment in spatial learning and memory than background males; by contrast, stress and background females performed equally well. NR2B levels in CA1 and CA3 were upregulated, whereas NR2A/NR2B ratios were downregulated in stressed males, but not in females. These data suggest that chronic early postnatal SSS influences spatial learning and memory ability, levels of hippocampal NR2B, and NR2A/NR2B ratios in adult males. Moreover, chronic early stress-induced alterations exert long-lasting effects and appear to affect performance in a sex-specific manner.
Collapse
|
27
|
Zhou JJ, Gao Y, Kosten TA, Zhao Z, Li DP. Acute stress diminishes M-current contributing to elevated activity of hypothalamic-pituitary-adrenal axis. Neuropharmacology 2016; 114:67-76. [PMID: 27908768 DOI: 10.1016/j.neuropharm.2016.11.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/17/2016] [Accepted: 11/26/2016] [Indexed: 11/16/2022]
Abstract
Acute stress stimulates corticotrophin-releasing hormone (CRH)-expressing neurons in the hypothalamic paraventricular nucleus (PVN), which is an essential component of hypothalamic-pituitary-adrenal (HPA) axis. However, the cellular and molecular mechanisms remain unclear. The M-channel is a voltage-dependent K+ channel involved in stabilizing the neuronal membrane potential and regulating neuronal excitability. In this study, we tested our hypothesis that acute stress suppresses expression of Kv7 channels to stimulate PVN-CRH neurons and the HPA axis. Rat PVN-CRH neurons were identified by expressing enhanced green fluorescent protein driven by Crh promoter. Acute restraint stress attenuated the excitatory effect of Kv7 blocker XE-991 on the firing activity of PVN-CRH neurons and blunted the increase in plasma corticosterone (CORT) levels induced by microinjection of XE-991 into the PVN. Furthermore, acute stress significantly decreased the M-currents in PVN-CRH neurons and reduced PVN expression of Kv7.3 subunit in the membrane. In addition, acute stress significantly increased phosphorylated AMP-activated protein kinase (AMPK) levels in the PVN tissue. Intracerebroventricular injection of the AMPK inhibitor dorsomorphin restored acute stress-induced elevation of CORT levels and reduction of membrane Kv7.3 protein level in the PVN. Dorsomorphin treatment increased the M-currents and reduced the firing activity of PVN-CRH neurons in acutely stressed rats. Collectively, these data suggest that acute stress diminishes Kv7 channels to stimulate PVN-CRH neurons and the HPA axis potentially via increased AMPK activity.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- Department of Critical Care, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yonggang Gao
- Department of Preventive Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Therese A Kosten
- Department of Psychology, University of Houston, Houston, TX, USA
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China.
| | - De-Pei Li
- Department of Critical Care, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
28
|
Lin CC, Tung CS, Liu YP. Escitalopram reversed the traumatic stress-induced depressed and anxiety-like symptoms but not the deficits of fear memory. Psychopharmacology (Berl) 2016; 233:1135-46. [PMID: 26740318 DOI: 10.1007/s00213-015-4194-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/16/2015] [Indexed: 12/22/2022]
Abstract
RATIONALE Posttraumatic stress disorder (PTSD) is a trauma-induced mental disorder characterised by fear extinction dysfunction in which fear circuit monoamines are possibly associated. PTSD often coexists with depressive/anxiety symptoms, and selective serotonin reuptake inhibitors (SSRIs) are recommended to treat PTSD. However, therapeutic mechanisms of SSRIs underlying the PTSD fear symptoms remain unclear. OBJECTIVES Using a rodent PTSD model, we examined the effects of early SSRI intervention in mood and fear dysfunctions with associated changes of monoamines within the fear circuit areas. METHODS A 14-day escitalopram (ESC) regimen (5 mg/kg/day) was undertaken in two separate experiments in rats which previously received a protocol of single prolonged stress (SPS). In experiment 1, sucrose preference and elevated T-maze were used to index anhedonia depression and avoidance/escape anxiety profiles. In experiment 2, the percentage of freezing time was measured in a 3-day fear conditioning paradigm. At the end of our study, tissue levels of serotonin (5-HT) in the medial prefrontal cortex, amygdala, hippocampus, and striatum were measured in experiment 1, and the efflux levels of infralimbic (IL) monoamines were measured in experiment 2. RESULTS In experiment 1, ESC corrected both behavioural (depression/anxiety) and neurochemical (reduced 5-HT tissue levels in amygdala/hippocampus) abnormalities. In experiment 2, ESC was unable to correct the SPS-impaired retrieval of fear extinction. In IL, ESC increased the efflux level of 5-HT but failed to reverse SPS-reduced dopamine (DA) and noradrenaline (NA). CONCLUSIONS PTSD-induced mood dysfunction is psychopathologically different from PTSD-induced fear disruption in terms of disequilibrium of monoamines within the fear circuit areas.
Collapse
Affiliation(s)
- Chen-Cheng Lin
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Che-Se Tung
- Division of Medical Research and Education, Cheng Hsin General Hospital, Taipei, 11220, Taiwan
| | - Yia-Ping Liu
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, 11490, Taiwan.
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan.
| |
Collapse
|
29
|
Goswami AR, Dutta G, Ghosh T. Naproxen, a Nonsteroidal Anti-Inflammatory Drug, Can Affect Daily Hypobaric Hypoxia-Induced Alterations of Monoamine Levels in Different Areas of the Brain in Male Rats. High Alt Med Biol 2016; 17:133-40. [PMID: 26894935 DOI: 10.1089/ham.2015.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Goswami, Ananda Raj, Goutam Dutta, and Tusharkanti Ghosh. Naproxen, a nonsteroidal anti-inflammatory drug can affect daily hypobaric hypoxia-induced alterations of monoamine levels in different areas of the brain in male rats. High Alt Med Biol. 17:133-140, 2016.-The oxidative stress (OS)-induced prostaglandin (PG) release, in hypobaric hypoxic (HHc) condition, may be linked with the changes of brain monoamines. The present study intends to explore the changes of monoamines in hypothalamus (H), cerebral cortex (CC), and cerebellum (CB) along with the motor activity in rats after exposing them to simulated hypobaric condition and the role of PGs on the daily hypobaric hypoxia (DHH)-induced alteration of brain monoamines by administering, an inhibitor of PG synthesis, naproxen. The rats were exposed to a decompression chamber at 18,000 ft for 8 hours per day for 6 days after administration of vehicle or naproxen (18 mg/kg body wt.). The monoamine levels (epinephrine, E; norepinephrine, NE; dopamine, DA; and 5-hydroxytryptamine, 5-HT) in CC, CB, and H were assayed by high-performance liquid chromatography (HPLC) with electrochemical detection, and the locomotor behavior was measured by open field test. The NE and DA levels were decreased in CC, CB, and H of the rat brain in HHc condition. The E and 5-HT levels were decreased in CC, but in H and CB, they remained unaltered in HHc condition. These DHH-induced changes of monoamines in brain areas were prevented after administration of naproxen in HHc condition. The locomotor behavior remained unaltered in HHc condition and after administration of naproxen in HHc condition. The DHH-induced changes of monoamines in the brain in HHc condition are probably linked with PGs that may be induced by OS.
Collapse
Affiliation(s)
- Ananda Raj Goswami
- Department of Physiology, University College of Science and Technology, University of Calcutta , Kolkata, India
| | - Goutam Dutta
- Department of Physiology, University College of Science and Technology, University of Calcutta , Kolkata, India
| | - Tusharkanti Ghosh
- Department of Physiology, University College of Science and Technology, University of Calcutta , Kolkata, India
| |
Collapse
|
30
|
Effects of a Terrified-Sound Stress on Serum Proteomic Profiling in Mice. J Mol Neurosci 2015; 57:211-8. [PMID: 26156200 DOI: 10.1007/s12031-015-0607-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
Abstract
The serum proteomic profiles of mice exposed to terrified-sound-induced stress and after stress release were investigated. Serum samples from 32 mice were divided into four groups (n = 8 each) and analyzed using matrix-assisted laser desorption and ionization time-of-flight mass spectrometry techniques (MALDI-TOF MS) combined with magnetic bead-based weak cation-exchange chromatography. ClinProTools software identified several distinct markers that differed between the stressed and control groups and between the stress released and stressed released controls. Of 33 m/z peaks that differed among the four groups, 17 were significantly different (P < 0.05). Five peaks (m/z: 2793.37, 2924.86, 1979.90, 3492.49, 3880.24) showed significant differences in expression after exposure to terrified-sound stress and returned to control levels after stress release. These were sequence identified as peptide regions of dimethylaniline monooxygenase, myosin-9, uncharacterized protein in Rattus norvegicus, apolipoprotein C-I, and plasma serine protease inhibitor (Serpina 5). Our study provides the first evidence of significant changes in serum proteomic profiles in mice exposed to terrified-sound stress, which suggests that protein expression profiles are affected by the stress. Normal expression levels were restored after stress release, suggesting the activation of self-adjustment mechanisms for the recovery of protein expression levels altered by this stress.
Collapse
|
31
|
Kao CY, Stalla G, Stalla J, Wotjak CT, Anderzhanova E. Norepinephrine and corticosterone in the medial prefrontal cortex and hippocampus predict PTSD-like symptoms in mice. Eur J Neurosci 2015; 41:1139-48. [PMID: 25720329 DOI: 10.1111/ejn.12860] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/26/2015] [Indexed: 12/24/2022]
Abstract
This study measured changes in brain extracellular norepinephrine (NE) and free corticosterone (CORT) levels in a mouse model of post-traumatic stress disorder and related them to hyperarousal and fear memory retention. To this end, microdialysis in the medial prefrontal cortex (mPFC) and the hippocampus (HPC) of male C57BL/6NCrl mice was performed during an acoustic startle response (ASR) and following an electric foot shock (FS), as well as during an ASR and recall of contextual fear (CF) 1 day later. Changes in ASR-stimulated NE levels in the mPFC corresponded to ASR 34 days after FS. Changes in basal and ASR-stimulated extracellular NE levels in the HPC, in contrast, were related to expression of early (day 2) and late (day 34) CF after FS. The increase in extracellular NE levels correlated in a U-shape manner with arousal levels and CF, thus suggesting a non-direct relationship. Stress of different modalities/strength (ASR, FS and CF) caused a similar relative increase in free CORT levels both in the mPFC and the HPC. One day after FS, ASR-induced increases in the CORT content in the mPFC tended to correlate with the FS-potentiated ASR in a U-shape manner. Taken together, these data show that the intracerebral increase in free CORT was likely related to an immediate response to stress, whereas NE neurotransmission in the forebrain predicted arousal and CF 1 month after trauma.
Collapse
Affiliation(s)
- C-Y Kao
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
32
|
Hu L, Zhao X, Yang J, Wang L, Yang Y, Song T, Huang C. Chronic scream sound exposure alters memory and monoamine levels in female rat brain. Physiol Behav 2014; 137:53-9. [PMID: 24952268 DOI: 10.1016/j.physbeh.2014.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/04/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
Abstract
Chronic scream sound alters the cognitive performance of male rats and their brain monoamine levels, these stress-induced alterations are sexually dimorphic. To determine the effects of sound stress on female rats, we examined their serum corticosterone levels and their adrenal, splenic, and thymic weights, their cognitive performance and the levels of monoamine neurotransmitters and their metabolites in the brain. Adult female Sprague-Dawley rats, with and without exposure to scream sound (4h/day for 21 day) were tested for spatial learning and memory using a Morris water maze. Stress decreased serum corticosterone levels, as well as splenic and adrenal weight. It also impaired spatial memory but did not affect the learning ability. Monoamines and metabolites were measured in the prefrontal cortex (PFC), striatum, hypothalamus, and hippocampus. The dopamine (DA) levels in the PFC decreased but the homovanillic acid/DA ratio increased. The decreased DA and the increased 5-hydroxyindoleacetic acid (5-HIAA) levels were observed in the striatum. Only the 5-HIAA level increased in the hypothalamus. In the hippocampus, stress did not affect the levels of monoamines and metabolites. The results suggest that scream sound stress influences most physiologic parameters, memory, and the levels of monoamine neurotransmitter and their metabolites in female rats.
Collapse
Affiliation(s)
- Lili Hu
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China; Basic Medical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Xiaoge Zhao
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Juan Yang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Lumin Wang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Yang Yang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Tusheng Song
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China.
| | - Chen Huang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China; Cardiovascular Research Center, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China.
| |
Collapse
|
33
|
Proteomic Changes in Female Rat Hippocampus Following Exposure to a Terrified Sound Stress. J Mol Neurosci 2014; 53:158-65. [DOI: 10.1007/s12031-014-0242-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/15/2014] [Indexed: 12/27/2022]
|
34
|
Yang J, Hu L, Wu Q, Liu L, Zhao L, Zhao X, Song T, Huang C. A terrified-sound stress induced proteomic changes in adult male rat hippocampus. Physiol Behav 2014; 128:32-8. [PMID: 24518870 DOI: 10.1016/j.physbeh.2014.01.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 01/19/2014] [Accepted: 01/25/2014] [Indexed: 01/24/2023]
Abstract
In this study, we investigated the biochemical mechanisms in the adult rat hippocampus underlying the relationship between a terrified-sound induced psychological stress and spatial learning. Adult male rats were exposed to a terrified-sound stress, and the Morris water maze (MWM) has been used to evaluate changes in spatial learning and memory. The protein expression profile of the hippocampus was examined using two-dimensional gel electrophoresis (2DE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and bioinformatics analysis. The data from the MWM tests suggested that a terrified-sound stress improved spatial learning. The proteomic analysis revealed that the expression of 52 proteins was down-regulated, while that of 35 proteins were up-regulated, in the hippocampus of the stressed rats. We identified and validated six of the most significant differentially expressed proteins that demonstrated the greatest stress-induced changes. Our study provides the first evidence that a terrified-sound stress improves spatial learning in rats, and that the enhanced spatial learning coincides with changes in protein expression in rat hippocampus.
Collapse
Affiliation(s)
- Juan Yang
- Department of Genetics and Molecular Biology, Medical School of Xi'an Jiaotong University, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - Lili Hu
- Department of Genetics and Molecular Biology, Medical School of Xi'an Jiaotong University, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - Qiuhua Wu
- Department of Genetics and Molecular Biology, Medical School of Xi'an Jiaotong University, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - Liying Liu
- Department of Genetics and Molecular Biology, Medical School of Xi'an Jiaotong University, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - Lingyu Zhao
- Department of Genetics and Molecular Biology, Medical School of Xi'an Jiaotong University, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - Xiaoge Zhao
- Department of Genetics and Molecular Biology, Medical School of Xi'an Jiaotong University, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - Tusheng Song
- Department of Genetics and Molecular Biology, Medical School of Xi'an Jiaotong University, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - Chen Huang
- Department of Genetics and Molecular Biology, Medical School of Xi'an Jiaotong University, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
35
|
Abstract
Whereas fear memories are rapidly acquired and enduring over time, extinction memories are slow to form and are susceptible to disruption. Consequently, behavioral therapies that involve extinction learning (e.g., exposure therapy) often produce only temporary suppression of fear and anxiety. This review focuses on the factors that are known to influence the relapse of extinguished fear. Several phenomena associated with the return of fear after extinction are discussed, including renewal, spontaneous recovery, reacquisition, and reinstatement. Additionally, this review describes recent work, which has focused on the role of psychological stress in the relapse of extinguished fear. Recent developments in behavioral and pharmacological research are examined in light of treatment of pathological fear in humans.
Collapse
|