1
|
Halabian A, Radahmadi M. The neurobiological mechanisms of photoperiod impact on brain functions: a comprehensive review. Rev Neurosci 2024; 35:933-958. [PMID: 39520288 DOI: 10.1515/revneuro-2024-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024]
Abstract
Variations in day length, or photoperiodism, whether natural or artificial light, significantly impact biological, physiological, and behavioral processes within the brain. Both natural and artificial light sources are environmental factors that significantly influence brain functions and mental well-being. Photoperiodism is a phenomenon, occurring either over a 24 h cycle or seasonally and denotes all biological responses of humans and animals to these fluctuations in day and night length. Conversely, artificial light occurrence refers to the presence of light during nighttime hours and/or its absence during the daytime (unnaturally long and short days, respectively). Light at night, which is a form of light pollution, is prevalent in many societies, especially common in certain emergency occupations. Moreover, individuals with certain mental disorders, such as depression, often exhibit a preference for darkness over daytime light. Nevertheless, disturbances in light patterns can have negative consequences, impacting brain performance through similar mechanisms albeit with varying degrees of severity. Furthermore, changes in day length lead to alterations in the activity of receptors, proteins, ion channels, and molecular signaling pathways, all of which can impact brain health. This review aims to summarize the mechanisms by which day length influences brain functions through neural circuits, hormonal systems, neurochemical processes, cellular activity, and even molecular signaling pathways.
Collapse
Affiliation(s)
- Alireza Halabian
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western, Ontario, N6A 3K7 London, ON, Canada
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, 48455 Isfahan University of Medical Sciences , 81746-73461 Isfahan, Iran
| |
Collapse
|
2
|
Jiang Y, Shi J, Tai J, Yan L. Circadian Regulation in Diurnal Mammals: Neural Mechanisms and Implications in Translational Research. BIOLOGY 2024; 13:958. [PMID: 39765625 PMCID: PMC11727363 DOI: 10.3390/biology13120958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 01/15/2025]
Abstract
Diurnal and nocturnal mammals have evolved unique behavioral and physiological adaptations to optimize survival for their day- or night-active lifestyle. The mechanisms underlying the opposite activity patterns are not fully understood but likely involve the interplay between the circadian time-keeping system and various arousal- or sleep-promoting factors, e.g., light or melatonin. Although the circadian systems between the two chronotypes share considerable similarities, the phase relationships between the principal and subordinate oscillators are chronotype-specific. While light promotes arousal and wakefulness in diurnal species like us, it induces sleep in nocturnal ones. Similarly, melatonin, the hormone of darkness, is commonly used as a hypnotic in humans but is secreted in the active phase of nocturnal animals. Thus, the difference between the two chronotypes is more complex than a simple reversal, as the physiological and neurological processes in diurnal mammals during the day are not equivalent to that of nocturnal ones at night. Such chronotype differences could present a significant translational gap when applying research findings obtained from nocturnal rodents to diurnal humans. The potential advantages of diurnal models are being discussed in a few sleep-related conditions including familial natural short sleep (FNSS), obstructive sleep apnea (OSA), and Smith-Magenis syndrome (SMS). Considering the difference in chronotype, a diurnal model will be more adequate for revealing the physiology and physiopathology pertaining to human health and disease, especially in conditions in which circadian rhythm disruption, altered photic response, or melatonin secretion is involved. We hope the recent advances in gene editing in diurnal rodents will promote greater utility of the diurnal models in basic and translational research.
Collapse
Affiliation(s)
- Yirun Jiang
- Department of Otolaryngology, Head and Neck Surgery, Capital Institute of Pediatrics, Beijing 100020, China; (Y.J.); (J.T.)
| | - Jiaming Shi
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA;
| | - Jun Tai
- Department of Otolaryngology, Head and Neck Surgery, Capital Institute of Pediatrics, Beijing 100020, China; (Y.J.); (J.T.)
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA;
- Neuroscience Program, Interdisciplinary Science & Technology Building (ISTB), Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Oosthuizen T, Pillay N, Oosthuizen MK. A mouse in the spotlight: Response capacity to artificial light at night in a rodent pest species, the southern multimammate mouse (Mastomys coucha). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123373. [PMID: 39577187 DOI: 10.1016/j.jenvman.2024.123373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024]
Abstract
Multimammate mice are prolific breeders, can cause significant agricultural damage, and are reservoir hosts for a number of pathogens. They are nocturnal and given their success in urbanised rural environments, we were interested in how they would respond to increasingly bright anthropogenic spaces. We evaluated the locomotor activity of southern multimammate mice (Mastomys coucha), under four treatments: in an outdoor enclosure with natural light and temperature fluctuations, in a laboratory under a standard light regime, and two artificial light at night (ALAN) regimes (2 Lux) of varying proximity. The study animals remained nocturnal for the duration of the experiments. They were more active under the laboratory conditions with lower day-time light levels compared to the outdoor treatment but reduced their activity under ALAN. When the night light originated remotely, activity levels decreased by more than 50%, whereas under direct ALAN from above the cages, there was a 75% decrease in activity. The onset of activity was later during the two LAN treatments. We concluded that Mastomys coucha is strongly averse to light and show severe behavioural and circadian responses to light at night. We predict that it is unlikely that Mastomys will flourish in cities, but that they could thrive in and around dark urbanised refugia.
Collapse
Affiliation(s)
- Tasha Oosthuizen
- School of Animal, Plant and Environmental Sciences, University of Witwatersrand, Private Bag 3, WITS, Johannesburg, 2050, South Africa.
| | - Neville Pillay
- School of Animal, Plant and Environmental Sciences, University of Witwatersrand, Private Bag 3, WITS, Johannesburg, 2050, South Africa.
| | - Maria K Oosthuizen
- School of Animal, Plant and Environmental Sciences, University of Witwatersrand, Private Bag 3, WITS, Johannesburg, 2050, South Africa; Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa; Mammal Research Institute, University of Pretoria, Hatfield, 0028, South Africa.
| |
Collapse
|
4
|
Circadian functioning of Locus Cœruleus of the nocturnal rat and diurnal rodent Arvicanthis. Neurosci Lett 2023; 799:137091. [PMID: 36690061 DOI: 10.1016/j.neulet.2023.137091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
The noradrenergic Locus Cœruleus is one of the major arousal structures involved in inducing wakefulness. While brain noradrenaline (NA) amounts display 24-h variations, the origin of NA rhythm is currently unknown. In this study, we tested the hypothesis that NA rhythm could result from its rhythmic synthesis. Therefore, we investigated the 24-h expression profile of NA rate-limiting enzyme, tyrosine hydroxylase (th), in the Locus Cœruleus (LC) of the nocturnal rat and the diurnal rodent Arvicanthis, under 12 h:12 h light/dark (LD) and constant darkness (DD) conditions. In both species, th mRNA levels vary significantly over 24-h. In nocturnal rats, th mRNA profiles show a unimodal rhythm, with peak values in late day in LD, and in the middle of the subjective day in DD. In contrast, th mRNA rhythm in Arvicanthis is characterized by a bimodal profile, with higher levels at the beginning of the day and of the night in LD, and in the middle of the subjective day and night in DD. The rhythmic pattern of th expression may be dependent on a LC clock machinery. Therefore, we investigated the expression of three clock genes, namely bmal1, per1, and per2, and found that their mRNAs display significant variations between day and nighttime points in both species, but in opposite directions. These data show that NA rhythm may be related to circadian expression of th gene in both species, but differs between nocturnal and diurnal rodents. Furthermore, the phase opposition of clock gene expression in the rat compared to Arvicanthis suggests that the clock machinery might be one of the mechanisms involved in th rhythmic expression.
Collapse
|
5
|
Morioka E, Miyamoto T, Tamogami S, Koketsu T, Kim J, Yoshikawa T, Mochizuki T, Ikeda M. Action potential firing rhythms in the suprachiasmatic nucleus of the diurnal grass rat, Arvicanthis niloticus. Neurosci Lett 2023; 792:136954. [PMID: 36347340 DOI: 10.1016/j.neulet.2022.136954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
In mammals, daily physiological activities are regulated by a central circadian pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). Recently, an increasing number of studies have used diurnal grass rats to analyze neuronal mechanisms regulating diurnal behavior. However, spontaneous action potential firing rhythms in SCN neurons have not been demonstrated clearly in diurnal grass rats. Therefore, the present study examined extracellular single-unit recordings from SCN neurons in acute hypothalamic slices of Arvicanthis niloticus (Nile grass rats). The results of this study found that circadian firing rhythms with the highest frequency occurred at dusk (6.4 Hz at zeitgeber time (ZT)10-12), while the secondary peak occurred at dawn (5.6 Hz at ZT0-2), and the lowest frequency took place in the middle of the night (3.6 Hz at ZT14-16). Locomotor activity recordings from a separate group of animals demonstrated that the Nile grass rats of the laboratory colony used in this study displayed diurnal behaviors that coincided with large crepuscular peaks under 12:12 h light-dark cycles and bimodal rhythms under constant dim red light. Thus, a positive correlation between SCN firing frequencies and locomotor activity levels was observed in the Nile grass rats. Previously, behavioral coupling of action potential firings in SCN neurons has been suggested by in vivo recordings while the present study demonstrates that the sustenance of bimodal firing rhythms in grass rat SCN neurons can last at least one day in vitro.
Collapse
Affiliation(s)
- Eri Morioka
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan.
| | - Tsubasa Miyamoto
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan.
| | - Sakura Tamogami
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan; Graduate School of Innovative Life Science, University of Toyama, Gofuku, Toyama 930-8555, Japan.
| | - Takahiro Koketsu
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan
| | - Juhyon Kim
- Graduate School of Innovative Life Science, University of Toyama, Gofuku, Toyama 930-8555, Japan.
| | - Tomoko Yoshikawa
- Organization for International Education and Exchange, University of Toyama, Toyama 930-8555, Japan.
| | - Takatoshi Mochizuki
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan.
| | - Masayuki Ikeda
- Graduate School of Innovative Life Science, University of Toyama, Gofuku, Toyama 930-8555, Japan; Organization for International Education and Exchange, University of Toyama, Toyama 930-8555, Japan.
| |
Collapse
|
6
|
Guan Q, Wang Z, Cao J, Dong Y, Chen Y. The role of light pollution in mammalian metabolic homeostasis and its potential interventions: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120045. [PMID: 36030956 DOI: 10.1016/j.envpol.2022.120045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Irregular or unnatural artificial light causes severe environmental stress on the survival and health of organisms, which is rapidly becoming a widespread new type of environmental pollution. A series of disruptive behaviors to body homeostasis brought about by light pollution, including metabolic abnormalities, are likely to be the result of circadian rhythm disturbances. Recently, the proposed role of light pollution in metabolic dysregulation has accelerated it into an emerging field. Hence, the regulatory role of light pollution in mammalian metabolic homeostasis is reviewed in this contribution. Light at night is the most widely affected type of light pollution, which disrupts metabolic homeostasis largely due to its disruption of daily food intake patterns, alterations of hormone levels such as melatonin and glucocorticoids, and changes in the rhythm of inflammatory factor production. Besides, light pollution impairs mammalian metabolic processes in an intensity-, photoperiod-, and wavelength-dependent manner, and is also affected by species, gender, and diets. Nevertheless, metabolic disorders triggered by light pollution are not irreversible to some extent. Potential interventions such as melatonin supplementation, recovery to the LD cycle, time-restricted feeding, voluntary exercise, wearing blue light-shied goggles, and bright morning light therapy open a bright avenue to prevent light pollution. This work will help strengthen the relationship between light information and metabolic homeostasis and provide new insights for the better prevention of metabolic disorders and light pollution.
Collapse
Affiliation(s)
- Qingyun Guan
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China; Department of Nutrition and Health, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
7
|
Gall AJ, Shuboni-Mulligan DD. Keep Your Mask On: The Benefits of Masking for Behavior and the Contributions of Aging and Disease on Dysfunctional Masking Pathways. Front Neurosci 2022; 16:911153. [PMID: 36017187 PMCID: PMC9395722 DOI: 10.3389/fnins.2022.911153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Environmental cues (e.g., light-dark cycle) have an immediate and direct effect on behavior, but these cues are also capable of “masking” the expression of the circadian pacemaker, depending on the type of cue presented, the time-of-day when they are presented, and the temporal niche of the organism. Masking is capable of complementing entrainment, the process by which an organism is synchronized to environmental cues, if the cues are presented at an expected or predictable time-of-day, but masking can also disrupt entrainment if the cues are presented at an inappropriate time-of-day. Therefore, masking is independent of but complementary to the biological circadian pacemaker that resides within the brain (i.e., suprachiasmatic nucleus) when exogenous stimuli are presented at predictable times of day. Importantly, environmental cues are capable of either inducing sleep or wakefulness depending on the organism’s temporal niche; therefore, the same presentation of a stimulus can affect behavior quite differently in diurnal vs. nocturnal organisms. There is a growing literature examining the neural mechanisms underlying masking behavior based on the temporal niche of the organism. However, the importance of these mechanisms in governing the daily behaviors of mammals and the possible implications on human health have been gravely overlooked even as modern society enables the manipulation of these environmental cues. Recent publications have demonstrated that the effects of masking weakens significantly with old age resulting in deleterious effects on many behaviors, including sleep and wakefulness. This review will clearly outline the history, definition, and importance of masking, the environmental cues that induce the behavior, the neural mechanisms that drive them, and the possible implications for human health and medicine. New insights about how masking is affected by intrinsically photosensitive retinal ganglion cells, temporal niche, and age will be discussed as each relates to human health. The overarching goals of this review include highlighting the importance of masking in the expression of daily rhythms, elucidating the impact of aging, discussing the relationship between dysfunctional masking behavior and the development of sleep-related disorders, and considering the use of masking as a non-invasive treatment to help treat humans suffering from sleep-related disorders.
Collapse
Affiliation(s)
- Andrew J. Gall
- Department of Psychology and Neuroscience Program, Hope College, Holland, MI, United States
- *Correspondence: Andrew J. Gall,
| | - Dorela D. Shuboni-Mulligan
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Lok R, Woelders T, Gordijn MCM, van Koningsveld MJ, Oberman K, Fuhler SG, Beersma DGM, Hut RA. Bright Light During Wakefulness Improves Sleep Quality in Healthy Men: A Forced Desynchrony Study Under Dim and Bright Light (III). J Biol Rhythms 2022; 37:429-441. [PMID: 35730553 PMCID: PMC9326793 DOI: 10.1177/07487304221096910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Under real-life conditions, increased light exposure during wakefulness seems associated with improved sleep quality, quantified as reduced time awake during bed time, increased time spent in non-rapid eye movement (NREM) sleep, or increased power of the electroencephalogram delta band (0.5-4 Hz). The causality of these important relationships and their dependency on circadian phase and/or time awake has not been studied in depth. To disentangle possible circadian and homeostatic interactions, we employed a forced desynchrony protocol under dim light (6 lux) and under bright light (1300 lux) during wakefulness. Our protocol consisted of a fast cycling sleep-wake schedule (13 h wakefulness—5 h sleep; 4 cycles), followed by 3 h recovery sleep in a within-subject cross-over design. Individuals (8 men) were equipped with 10 polysomnography electrodes. Subjective sleep quality was measured immediately after wakening with a questionnaire. Results indicated that circadian variation in delta power was only detected under dim light. Circadian variation in time in rapid eye movement (REM) sleep and wakefulness were uninfluenced by light. Prior light exposure increased accumulation of delta power and time in NREM sleep, while it decreased wakefulness, especially during the circadian wake phase (biological day). Subjective sleep quality scores showed that participants rated their sleep quality better after bright light exposure while sleeping when the circadian system promoted wakefulness. These results suggest that high environmental light intensity either increases sleep pressure buildup during wakefulness or prevents the occurrence of micro-sleep, leading to improved quality of subsequent sleep.
Collapse
Affiliation(s)
- R Lok
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands.,University of Groningen, Leeuwarden, the Netherlands.,Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| | - T Woelders
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - M C M Gordijn
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands.,Chrono@Work B.V., Groningen, the Netherlands
| | - M J van Koningsveld
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - K Oberman
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - S G Fuhler
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - D G M Beersma
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - R A Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
9
|
Pan X, Wang X, Shao L, Yang J, Qin F, Li J, Zhang X, Zhai P. The effects of light colour on female rabbit reproductive performance and the expression of key genes in follicular development. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:432-442. [PMID: 35709131 PMCID: PMC9184706 DOI: 10.5187/jast.2022.e31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/16/2022] [Accepted: 04/22/2022] [Indexed: 11/20/2022]
Abstract
The purpose of this study was to analyse the effects of light colour on rabbit
reproductive performance and the expression of key follicular development genes.
Rabbits (n = 1,068, 5 months old, 3.6–4.4 kg live body weight) were
divided randomly into four groups, housed individually in wire mesh cages and
exposed to red, green, blue, and white light-emitting diode (LED) light
(control). The lighting schedule was 16 L : 8 D-15 d / 150 lx / 6:00
am–22:00 pm (3 d preartificial insemination to 12 d postartificial
insemination). Red light and white light affected the conception rate and
kindling rate and increased the total litter size at birth (p
< 0.05). The effects of red light on litter size at weaning, litter
weight at weaning, and individual weight at weaning increased compared with the
green and blue groups. The effects of red light on live litter size at birth
were increased compared with those in the blue group (p
< 0.05). Compared to white light, green and blue light reduced the number
of secondary follicles (p < 0.05). Compared to red
light, green and blue light reduced the number of tertiary follicles
(p < 0.05). Compared with white light, red LED light
resulted in greater ovarian follicle stimulating hormone receptor and
luteinizing hormone receptor mRNA expression (p < 0.05).
Compared with green and blue LED light, red LED light resulted in greater B-cell
lymphom-2 mRNA expression (p < 0.05). Compared with
green LED light, red LED light inhibited FOXO1 mRNA expression in rabbit ovaries
(p < 0.05). Red light can affect the reproductive
performance of female rabbits and the expression of key genes for follicular
development.
Collapse
Affiliation(s)
- Xiaoqing Pan
- College of Animal Science and Technology,
Yangzhou University, Jiangsu 225009, China
- Institute of Animal Science, Jiangsu
Academy of Agricultural Sciences, Nanjing 212400, China
| | - Xinglong Wang
- College of Animal Science and Technology,
Yangzhou University, Jiangsu 225009, China
- Corresponding author: Xinglong Wang, College of
Animal Science and Technology, Yangzhou University, Jiangsu 225009, China. Tel:
+86-25-8439-0341, E-mail:
| | - Le Shao
- Institute of Animal Science, Jiangsu
Academy of Agricultural Sciences, Nanjing 212400, China
| | - Jie Yang
- Institute of Animal Science, Jiangsu
Academy of Agricultural Sciences, Nanjing 212400, China
| | - Feng Qin
- Institute of Animal Science, Jiangsu
Academy of Agricultural Sciences, Nanjing 212400, China
| | - Jian Li
- Institute of Animal Science, Jiangsu
Academy of Agricultural Sciences, Nanjing 212400, China
| | - Xia Zhang
- Institute of Animal Science, Jiangsu
Academy of Agricultural Sciences, Nanjing 212400, China
| | - Pin Zhai
- Institute of Animal Science, Jiangsu
Academy of Agricultural Sciences, Nanjing 212400, China
| |
Collapse
|
10
|
Salaberry NL, Mendoza J. The circadian clock in the mouse habenula is set by catecholamines. Cell Tissue Res 2021; 387:261-274. [PMID: 34816282 DOI: 10.1007/s00441-021-03557-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
Circadian rhythms are those variations in behavioral and molecular processes of organisms that follow roughly 24 h cycles in the absence of any external cue. The hypothalamic suprachiasmatic nucleus (SCN) harbors the principal brain pacemaker driving circadian rhythms. The epithalamic habenula (Hb) contains a self-sustained circadian clock functionally coupled to the SCN. Anatomically, the Hb projects to the midbrain dopamine (DA) and serotonin (5-HT) systems, and it receives inputs from the forebrain, midbrain, and brainstem. The SCN is set by internal signals such as 5-HT or melatonin from the raphe nuclei and pineal gland, respectively. However, how the Hb clock is set by internal cues is not well characterized. Hence, in the present study, we determined whether DA, noradrenaline (NA), 5-HT, and the neuropeptides orexin (ORX) and vasopressin influence the Hb circadian clock. Using PER2::Luciferase transgenic mice, we found that the amplitude of the PER2 protein circadian oscillations from Hb explants was strongly affected by DA and NA. Importantly, these effects were dose-and region (rostral vs. caudal) dependent for NA, with a main effect in the caudal part of the Hb. Furthermore, ORX also induced a significant change in the amplitude of PER2 protein oscillations in the caudal Hb. In conclusion, catecholaminergic (DA, NA) and ORXergic transmission impacts the clock properties of the Hb clock likely contributing to the circadian regulation of motivated behaviors. Accordingly, pathological conditions that lead in alterations of catecholamine or ORX activity (drug intake, compulsive feeding) might affect the Hb clock and conduct to circadian disturbances.
Collapse
Affiliation(s)
- Nora L Salaberry
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, 8 Allée du Général Rouvillois, Strasbourg, 67000, France
| | - Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, 8 Allée du Général Rouvillois, Strasbourg, 67000, France.
| |
Collapse
|
11
|
Zhu RT, Jia Z, Zhou L. Light therapy improved depression-like behavior induced by chronic unpredictable mild stress in Mongolian gerbils. Neurosci Lett 2021; 765:136256. [PMID: 34543679 DOI: 10.1016/j.neulet.2021.136256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 11/19/2022]
Abstract
Progress has been made in elucidating the mechanism by which light modulates depressive-like behaviors. However, almost all of these studies ignore an important issue, namely, that examining the effects of light therapy in nocturnal animals may be difficult because the influences of light on behavioral responses differ between nocturnal and diurnal animals. To date, few diurnal rodents have been utilized to establish animal models that closely mimic clinical depression. Herein, the chronic unpredictable mild stress model, which is the most representative, reliable, and effective rodent model of depression, was implemented in diurnal Mongolian gerbils for the first time. The gerbils were subjected to two hours of light therapy or fluoxetine treatment for 2 weeks. Our work revealed that Mongolian gerbils subjected to chronic unpredictable mild stress showed depression-like behaviors. Interestingly, we also found that light therapy improved anhedonic behavior more effectively than fluoxetine after two weeks of treatment. In summary, our study is the first to use diurnal Mongolian gerbils, which have the same circadian rhythm as humans, to establish an effective, economical, and practical animal model of depression and confirmed that light therapy could improve depression-like behavior more effectively than fluoxetine to some extent in diurnal Mongolian gerbils, which establishes a good foundation for clarifying the neural mechanism of light therapy for depression.
Collapse
Affiliation(s)
- Rong-Ting Zhu
- Department of Social Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Zhouxin Jia
- Department of Social Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China; School of Public and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liang Zhou
- Department of Social Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| |
Collapse
|
12
|
Bright light exposure induces dynamic changes of spatial memory in nocturnal rodents. Brain Res Bull 2021; 174:389-399. [PMID: 34197939 DOI: 10.1016/j.brainresbull.2021.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 12/30/2022]
Abstract
Bright light has been reported to improve spatial memory of diurnal rodents, yet how it will influence the spatial memory of nocturnal rodents is unknown. Here, we found that dynamic changes in spatial memory and anxiety were induced at different time point after bright light treatment. Mice maintained in brighter light exhibited impaired memory in Y maze at one day after bright light exposure, but showed significantly improved spatial memory in the Y maze and Morris water maze at four weeks after bright light exposure. We also found increased anxiety one day after bright light exposure, which could be the reason of impaired memory. However, no change of anxiety was detected after four weeks. Thus, we further explore the underlying mechanism of the beneficial effects of long term bright light on spatial memory. Golgi staining indicated that the structure of dendritic spines changed, accompanied by increased expression of synaptophysin and postsynaptic density 95 in the hippocampus. Further research has found that bright light treatment leads to elevated CaMKII/CREB phosphorylation levels in the hippocampus, which are associated with synaptic function. Moreover, higher expression of brain-derived neurotrophic factor (BDNF) was followed by increased phosphorylated TrkB levels in the hippocampus, indicating that BDNF/TrkB signaling is also activated during this process. Taken together, these findings revealed that bright light exposure with different duration exert different effects on spatial memory in nocturnal rodents, and the potential molecular mechanism by which long term bright light regulates spatial memory was also demonstrated.
Collapse
|
13
|
Mendoza J. Nighttime Light Hurts Mammalian Physiology: What Diurnal Rodent Models Are Telling Us. Clocks Sleep 2021; 3:236-250. [PMID: 33915800 PMCID: PMC8167723 DOI: 10.3390/clockssleep3020014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/16/2021] [Accepted: 03/15/2021] [Indexed: 01/24/2023] Open
Abstract
Natural sunlight permits organisms to synchronize their physiology to the external world. However, in current times, natural sunlight has been replaced by artificial light in both day and nighttime. While in the daytime, indoor artificial light is of lower intensity than natural sunlight, leading to a weak entrainment signal for our internal biological clock, at night the exposure to artificial light perturbs the body clock and sleep. Although electric light at night allows us "to live in darkness", our current lifestyle facilitates nighttime exposure to light by the use, or abuse, of electronic devices (e.g., smartphones). The chronic exposure to light at nighttime has been correlated to mood alterations, metabolic dysfunctions, and poor cognition. To decipher the brain mechanisms underlying these alterations, fundamental research has been conducted using animal models, principally of nocturnal nature (e.g., mice). Nevertheless, because of the diurnal nature of human physiology, it is also important to find and propose diurnal animal models for the study of the light effects in circadian biology. The present review provides an overview of the effects of light at nighttime on physiology and behavior in diurnal mammals, including humans. Knowing how the brain reacts to artificial light exposure, using diurnal rodent models, is fundamental for the development of new strategies in human health based in circadian biology.
Collapse
Affiliation(s)
- Jorge Mendoza
- Institute of Cellular and Integrative Neuroscience CNRS UPR3212, University of Strasburg, 8 allée du Général Rouvillois, 67000 Strasbourg, France
| |
Collapse
|
14
|
Masís-Vargas A, Hicks D, Kalsbeek A, Mendoza J. Blue light at night acutely impairs glucose tolerance and increases sugar intake in the diurnal rodent Arvicanthis ansorgei in a sex-dependent manner. Physiol Rep 2020; 7:e14257. [PMID: 31646762 PMCID: PMC6811685 DOI: 10.14814/phy2.14257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022] Open
Abstract
In our modern society, the exposure to light at night (LAN) has increased considerably, which may impact human health negatively. Especially exposure to light at night containing short wavelength emissions (~450–500 nm) can disrupt the normal function of the biological clock, altering sleep‐wake cycles and inducing metabolic changes. Recently, we reported that light at night acutely impairs glucose tolerance in nocturnal rats. However, light at night in nocturnal rodents coincides with their activity period, in contrast to artificial light at night exposure in humans. The aim of this study was to evaluate the acute effects of blue (λ = 490 ± 20 nm) artificial light at night (bALAN) on glucose metabolism and food intake in both male and female diurnal Sudanian grass rats (Arvicanthis ansorgei) fed either regular chow or a free choice high‐fat high sucrose diet (HFHS). In both chow and HFHS fed male Arvicanthis, 1‐hour of bALAN exposure induced a higher glucose response in the oral glucose tolerance test (OGTT) accompanied by a significant decrease in plasma insulin. Furthermore, in HFHS fed animals, bALAN induced an increase in sucrose intake during the dark phase in males but not in females. Additionally, 1‐h of bALAN increased the nonfasted glucose levels together with plasma corticosterone in female grass rats. These results provide new and further evidence for the deleterious effects of exposure to short wavelength emission‐containing artificial light at night on glucose metabolism in a diurnal rodent in a sex‐dependent manner.
Collapse
Affiliation(s)
- Anayanci Masís-Vargas
- Institute of Cellular and Integrative Neurosciences (INCI), UPR-3212 CNRS, University of Strasbourg, Strasbourg, France.,Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - David Hicks
- Institute of Cellular and Integrative Neurosciences (INCI), UPR-3212 CNRS, University of Strasbourg, Strasbourg, France
| | - Andries Kalsbeek
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences (INCI), UPR-3212 CNRS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
15
|
Mouland JW, Martial F, Watson A, Lucas RJ, Brown TM. Cones Support Alignment to an Inconsistent World by Suppressing Mouse Circadian Responses to the Blue Colors Associated with Twilight. Curr Biol 2020; 29:4260-4267.e4. [PMID: 31846668 PMCID: PMC6926481 DOI: 10.1016/j.cub.2019.10.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/19/2019] [Accepted: 10/16/2019] [Indexed: 01/04/2023]
Abstract
In humans, short-wavelength light evokes larger circadian responses than longer wavelengths [1-3]. This reflects the fact that melanopsin, a key contributor to circadian assessments of light intensity, most efficiently captures photons around 480 nm [4-8] and gives rise to the popular view that "blue" light exerts the strongest effects on the clock. However, in the natural world, there is often no direct correlation between perceived color (as reported by the cone-based visual system) and melanopsin excitation. Accordingly, although the mammalian clock does receive cone-based chromatic signals [9], the influence of color on circadian responses to light remains unclear. Here, we define the nature and functional significance of chromatic influences on the mouse circadian system. Using polychromatic lighting and mice with altered cone spectral sensitivity (Opn1mwR), we generate conditions that differ in color (i.e., ratio of L- to S-cone opsin activation) while providing identical melanopsin and rod activation. When biased toward S-opsin activation (appearing "blue"), these stimuli reliably produce weaker circadian behavioral responses than those favoring L-opsin ("yellow"). This influence of color (which is absent in animals lacking cone phototransduction; Cnga3-/-) aligns with natural changes in spectral composition over twilight, where decreasing solar angle is accompanied by a strong blue shift [9-11]. Accordingly, we find that naturalistic color changes support circadian alignment when environmental conditions render diurnal variations in light intensity weak/ambiguous sources of timing information. Our data thus establish how color contributes to circadian entrainment in mammals and provide important new insight to inform the design of lighting environments that benefit health.
Collapse
Affiliation(s)
- Joshua W Mouland
- Centre for Biological Timing, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Franck Martial
- Centre for Biological Timing, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Alex Watson
- Centre for Biological Timing, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Robert J Lucas
- Centre for Biological Timing, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Timothy M Brown
- Centre for Biological Timing, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
16
|
Begemann K, Neumann A, Oster H. Regulation and function of extra-SCN circadian oscillators in the brain. Acta Physiol (Oxf) 2020; 229:e13446. [PMID: 31965726 DOI: 10.1111/apha.13446] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Most organisms evolved endogenous, so called circadian clocks as internal timekeeping mechanisms allowing them to adapt to recurring changes in environmental demands brought about by 24-hour rhythms such as the light-dark cycle, temperature variations or changes in humidity. The mammalian circadian clock system is based on cellular oscillators found in all tissues of the body that are organized in a hierarchical fashion. A master pacemaker located in the suprachiasmatic nucleus (SCN) synchronizes peripheral tissue clocks and extra-SCN oscillators in the brain with each other and with external time. Different time cues (so called Zeitgebers) such as light, food intake, activity and hormonal signals reset the clock system through the SCN or by direct action at the tissue clock level. While most studies on non-SCN clocks so far have focused on peripheral tissues, several extra-SCN central oscillators were characterized in terms of circadian rhythm regulation and output. Some of them are directly innervated by the SCN pacemaker, while others receive indirect input from the SCN via other neural circuits or extra-brain structures. The specific physiological function of these non-SCN brain oscillators as well as their role in the regulation of the circadian clock network remains understudied. In this review we summarize our current knowledge about the regulation and function of extra-SCN circadian oscillators in different brain regions and devise experimental approaches enabling us to unravel the organization of the circadian clock network in the central nervous system.
Collapse
Affiliation(s)
| | | | - Henrik Oster
- Institute of Neurobiology University of Lübeck Lübeck Germany
| |
Collapse
|
17
|
Yan L, Smale L, Nunez AA. Circadian and photic modulation of daily rhythms in diurnal mammals. Eur J Neurosci 2020; 51:551-566. [PMID: 30269362 PMCID: PMC6441382 DOI: 10.1111/ejn.14172] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/02/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022]
Abstract
The temporal niche that an animal occupies includes a coordinated suite of behavioral and physiological processes that set diurnal and nocturnal animals apart. The daily rhythms of the two chronotypes are regulated by both the circadian system and direct responses to light, a process called masking. Here we review the literature on circadian regulations and masking responses in diurnal mammals, focusing on our work using the diurnal Nile grass rat (Arvicanthis niloticus) and comparing our findings with those derived from other diurnal and nocturnal models. There are certainly similarities between the circadian systems of diurnal and nocturnal mammals, especially in the phase and functioning of the principal circadian oscillator within the hypothalamic suprachiasmatic nucleus (SCN). However, the downstream pathways, direct or indirect from the SCN, lead to drastic differences in the phase of extra-SCN oscillators, with most showing a complete reversal from the phase seen in nocturnal species. This reversal, however, is not universal and in some cases the phases of extra-SCN oscillators are only a few hours apart between diurnal and nocturnal species. The behavioral masking responses in general are opposite between diurnal and nocturnal species, and are matched by differential responses to light and dark in several retinorecipient sites in their brain. The available anatomical and functional data suggest that diurnal brains are not simply a phase-reversed version of nocturnal ones, and work with diurnal models contribute significantly to a better understanding of the circadian and photic modulation of daily rhythms in our own diurnal species.
Collapse
Affiliation(s)
- Lily Yan
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Laura Smale
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Antonio A. Nunez
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
18
|
Yassumoto TI, Tachinardi P, Oda GA, Valentinuzzi VS. Acute effects of light and darkness on the activity and temperature rhythms of a subterranean rodent, the Anillaco tuco-tuco. Physiol Behav 2019; 210:112645. [DOI: 10.1016/j.physbeh.2019.112645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 11/30/2022]
|
19
|
Verra DM, Sajdak BS, Merriman DK, Hicks D. Diurnal rodents as pertinent animal models of human retinal physiology and pathology. Prog Retin Eye Res 2019; 74:100776. [PMID: 31499165 DOI: 10.1016/j.preteyeres.2019.100776] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 12/12/2022]
Abstract
This presentation will survey the retinal architecture, advantages, and limitations of several lesser-known rodent species that provide a useful diurnal complement to rats and mice. These diurnal rodents also possess unusually cone-rich photoreceptor mosaics that facilitate the study of cone cells and pathways. Species to be presented include principally the Sudanian Unstriped Grass Rat and Nile Rat (Arvicanthis spp.), the Fat Sand Rat (Psammomys obesus), the degu (Octodon degus) and the 13-lined ground squirrel (Ictidomys tridecemlineatus). The retina and optic nerve in several of these species demonstrate unusual resilience in the face of neuronal injury, itself an interesting phenomenon with potential translational value.
Collapse
Affiliation(s)
- Daniela M Verra
- Department of Neurobiology of Rhythms, Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS UPR 3212, Strasbourg, France
| | | | - Dana K Merriman
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - David Hicks
- Department of Neurobiology of Rhythms, Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS UPR 3212, Strasbourg, France.
| |
Collapse
|
20
|
Shuboni-Mulligan DD, Cavanaugh BL, Tonson A, Shapiro EM, Gall AJ. Functional and anatomical variations in retinorecipient brain areas in Arvicanthis niloticus and Rattus norvegicus: implications for the circadian and masking systems. Chronobiol Int 2019; 36:1464-1481. [PMID: 31441335 DOI: 10.1080/07420528.2019.1651325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Daily rhythms in light exposure influence the expression of behavior by entraining circadian rhythms and through its acute effects on behavior (i.e., masking). Importantly, these effects of light are dependent on the temporal niche of the organism; for diurnal organisms, light increases activity, whereas for nocturnal organisms, the opposite is true. Here we examined the functional and morphological differences between diurnal and nocturnal rodents in retinorecipient brain regions using Nile grass rats (Arvicanthis niloticus) and Sprague-Dawley (SD) rats (Rattus norvegicus), respectively. We established the presence of circadian rhythmicity in cFOS activation in retinorecipient brain regions in nocturnal and diurnal rodents housed in constant dark conditions to highlight different patterns between the temporal niches. We then assessed masking effects by comparing cFOS activation in constant darkness (DD) to that in a 12:12 light/dark (LD) cycle, confirming light responsiveness of these regions during times when masking occurs in nature. The intergeniculate leaflet (IGL) and olivary pretectal nucleus (OPN) exhibited significant variation among time points in DD of both species, but their expression profiles were not identical, as SD rats had very low expression levels for most timepoints. Light presentation in LD conditions induced clear rhythms in the IGL of SD rats but eliminated them in grass rats. Additionally, grass rats were the only species to demonstrate daily rhythms in LD for the habenula and showed a strong response to light in the superior colliculus. Structurally, we also analyzed the volumes of the visual brain regions using anatomical MRI, and we observed a significant increase in the relative size of several visual regions within diurnal grass rats, including the lateral geniculate nucleus, superior colliculus, and optic tract. Altogether, our results suggest that diurnal grass rats devote greater proportions of brain volume to visual regions than nocturnal rodents, and cFOS activation in these brain regions is dependent on temporal niche and lighting conditions.
Collapse
Affiliation(s)
- Dorela D Shuboni-Mulligan
- Institute for Quantitative Health Science and Engineering, Michigan State University , East Lansing , MI , USA.,Department of Radiology, Michigan State University , East Lansing , MI , USA
| | | | - Anne Tonson
- Department of Physiology, Michigan State University , East Lansing , MI , USA
| | - Erik M Shapiro
- Institute for Quantitative Health Science and Engineering, Michigan State University , East Lansing , MI , USA.,Department of Radiology, Michigan State University , East Lansing , MI , USA
| | - Andrew J Gall
- Department of Psychology, Hope College , Holland , MI , USA.,Neuroscience Program, Hope College , Holland , MI , USA
| |
Collapse
|
21
|
Szabadi E. Functional Organization of the Sympathetic Pathways Controlling the Pupil: Light-Inhibited and Light-Stimulated Pathways. Front Neurol 2018; 9:1069. [PMID: 30619035 PMCID: PMC6305320 DOI: 10.3389/fneur.2018.01069] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/23/2018] [Indexed: 11/13/2022] Open
Abstract
Pupil dilation is mediated by a sympathetic output acting in opposition to parasympathetically mediated pupil constriction. While light stimulates the parasympathetic output, giving rise to the light reflex, it can both inhibit and stimulate the sympathetic output. Light-inhibited sympathetic pathways originate in retina-receptive neurones of the pretectum and the suprachiasmatic nucleus (SCN): by attenuating sympathetic activity, they allow unimpeded operation of the light reflex. Light stimulates the noradrenergic and serotonergic pathways. The hub of the noradrenergic pathway is the locus coeruleus (LC) containing both excitatory sympathetic premotor neurones (SympPN) projecting to preganglionic neurones in the spinal cord, and inhibitory parasympathetic premotor neurones (ParaPN) projecting to preganglionic neurones in the Edinger-Westphal nucleus (EWN). SympPN receive inputs from the SCN via the dorsomedial hypothalamus, orexinergic neurones of the latero-posterior hypothalamus, wake- and sleep-promoting neurones of the hypothalamus and brain stem, nociceptive collaterals of the spinothalamic tract, whereas ParaPN receive inputs from the amygdala, sleep/arousal network, nociceptive spinothalamic collaterals. The activity of LC neurones is regulated by inhibitory α2-adrenoceptors. There is a species difference in the function of the preautonomic LC. In diurnal animals, the α2-adrenoceptor agonist clonidine stimulates mainly autoreceptors on SymPN, causing miosis, whereas in nocturnal animals it stimulates postsynaptic α2-arenoceptors in the EWN, causing mydriasis. Noxious stimulation activates SympPN in diurnal animals and ParaPN in nocturnal animals, leading to pupil dilation via sympathoexcitation and parasympathetic inhibition, respectively. These differences may be attributed to increased activity of excitatory LC neurones due to stimulation by light in diurnal animals. This may also underlie the wake-promoting effect of light in diurnal animals, in contrast to its sleep-promoting effect in nocturnal species. The hub of the serotonergic pathway is the dorsal raphe nucleus that is light-sensitive, both directly and indirectly (via an orexinergic input). The light-stimulated pathways mediate a latent mydriatic effect of light on the pupil that can be unmasked by drugs that either inhibit or stimulate SympPN in these pathways. The noradrenergic pathway has widespread connections to neural networks controlling a variety of functions, such as sleep/arousal, pain, and fear/anxiety. Many physiological and psychological variables modulate pupil function via this pathway.
Collapse
Affiliation(s)
- Elemer Szabadi
- Developmental Psychiatry, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
22
|
Salaberry NL, Hamm H, Felder-Schmittbuhl MP, Mendoza J. A suprachiasmatic-independent circadian clock(s) in the habenula is affected by Per gene mutations and housing light conditions in mice. Brain Struct Funct 2018; 224:19-31. [PMID: 30242505 DOI: 10.1007/s00429-018-1756-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/12/2018] [Indexed: 01/08/2023]
Abstract
For many years, the suprachiasmatic nucleus (SCN) was considered as the unique circadian pacemaker in the mammalian brain. Currently, it is known that other brain areas are able to oscillate in a circadian manner. However, many of them are dependent on, or synchronized by, the SCN. The Habenula (Hb), localized in the epithalamus, is a key nucleus for the regulation of monoamine activity (dopamine, serotonin) and presents circadian features; nonetheless, the clock properties of the Hb are not fully described. Here, we report, first, circadian expression of clock genes in the lateral habenula (LHb) under constant darkness (DD) condition in wild-type mice which is disturbed in double Per1-/--Per2Brdm1 clock-mutant mice. Second, using Per2::luciferase transgenic mice, we observed a self-sustained oscillatory ability (PER2::LUCIFERASE bioluminescence rhythmicity) in the rostral and caudal part of the Hb of arrhythmic SCN-ablated animals. Finally, in Per2::luciferase mice exposed to different lighting conditions (light-dark, constant darkness or constant light), the period or amplitude of PER2 oscillations, in both the rostral and caudal Hb, were similar. However, under DD condition or from SCN-lesioned mice, these two Hb regions were out of phase, suggesting an uncoupling of two putative Hb oscillators. Altogether, these results suggest that an autonomous clock in the rostral and caudal part of the Hb requires integrity of circadian genes to tick, and light information or SCN innervation to keep synchrony. The relevance of the Hb timing might reside in the regulation of circadian functions linked to motivational (reward) and emotional (mood) processes.
Collapse
Affiliation(s)
- Nora L Salaberry
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, 5 rue Blaise Pascal, 67000, Strasbourg, France
| | - Hélène Hamm
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, 5 rue Blaise Pascal, 67000, Strasbourg, France
| | | | - Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, 5 rue Blaise Pascal, 67000, Strasbourg, France.
| |
Collapse
|
23
|
Distributions of GABAergic and glutamatergic neurons in the brains of a diurnal and nocturnal rodent. Brain Res 2018; 1700:152-159. [PMID: 30153458 DOI: 10.1016/j.brainres.2018.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/25/2018] [Accepted: 08/17/2018] [Indexed: 12/26/2022]
Abstract
Light influences the daily patterning of activity by both synchronizing internal clocks to environmental light-dark cycles and acutely modulating arousal states, a process known as masking. Masking responses are completely reversed in diurnal and nocturnal species. In nocturnal rodents, masking is mediated through a subset of intrinsically photosensitive retinal ganglion cells (ipRGCs) whose projections are similar in diurnal and nocturnal rodents. This raises the possibility that differences in responsivity to signals that these cells release might underlie chronotype differences in masking. We explored one aspect of this hypothesis by examining the distribution of excitatory and inhibitory neuronal populations in many ipRGC target areas of a diurnal species (Nile grass rat) and a nocturnal one (Norway rat). We discovered that while many of these regions were very similar in these two species, there were striking differences in the ventral lateral geniculate nucleus (vLGN; higher density of glutamate cells in Norway rats) and in the lateral habenula (LHb; GABAeric cells present in grass rats, but not Norway rats). These patterns raise the possibility that the vLGN and LHb contribute to differences in masking and/or circadian regulation of diurnal and nocturnal species.
Collapse
|
24
|
Gaston KJ, Holt LA. Nature, extent and ecological implications of night-time light from road vehicles. J Appl Ecol 2018; 55:2296-2307. [PMID: 30147142 PMCID: PMC6099288 DOI: 10.1111/1365-2664.13157] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/09/2018] [Indexed: 11/28/2022]
Abstract
The erosion of night‐time by the introduction of artificial lighting constitutes a profound pressure on the natural environment. It has altered what had for millennia been reliable signals from natural light cycles used for regulating a host of biological processes, with impacts ranging from changes in gene expression to ecosystem processes. Studies of these impacts have focused almost exclusively on those resulting from stationary sources of light emissions, and particularly streetlights. However, mobile sources, especially road vehicle headlights, contribute substantial additional emissions. The ecological impacts of light emissions from vehicle headlights are likely to be especially high because these are (1) focused so as to light roadsides at higher intensities than commonly experienced from other sources, and well above activation thresholds for many biological processes; (2) projected largely in a horizontal plane and thus can carry over long distances; (3) introduced into much larger areas of the landscape than experience street lighting; (4) typically broad “white” spectrum, which substantially overlaps the action spectra of many biological processes and (5) often experienced at roadsides as series of pulses of light (produced by passage of vehicles), a dynamic known to have major biological impacts. The ecological impacts of road vehicle headlights will markedly increase with projected global growth in numbers of vehicles and the road network, increasing the local severity of emissions (because vehicle numbers are increasing faster than growth in the road network) and introducing emissions into areas from which they were previously absent. The effects will be further exacerbated by technological developments that are increasing the intensity of headlight emissions and the amounts of blue light in emission spectra. Synthesis and applications. Emissions from vehicle headlights need to be considered as a major, and growing, source of ecological impacts of artificial night‐time lighting. It will be a significant challenge to minimise these impacts whilst balancing drivers' needs at night and avoiding risk and discomfort for other road users. Nonetheless, there is potential to identify solutions to these conflicts, both through the design of headlights and that of roads.
Emissions from vehicle headlights need to be considered as a major, and growing, source of ecological impacts of artificial night‐time lighting. It will be a significant challenge to minimise these impacts whilst balancing drivers' needs at night and avoiding risk and discomfort for other road users. Nonetheless, there is potential to identify solutions to these conflicts, both through the design of headlights and that of roads.
Collapse
Affiliation(s)
- Kevin J. Gaston
- Environment & Sustainability Institute; University of Exeter; Cornwall UK
- Wissenschaftskolleg zu Berlin, Institute for Advanced Study; Berlin Germany
| | - Lauren A. Holt
- Environment & Sustainability Institute; University of Exeter; Cornwall UK
| |
Collapse
|
25
|
Itzhacki J, Clesse D, Goumon Y, Van Someren EJ, Mendoza J. Light rescues circadian behavior and brain dopamine abnormalities in diurnal rodents exposed to a winter-like photoperiod. Brain Struct Funct 2018; 223:2641-2652. [PMID: 29560509 DOI: 10.1007/s00429-018-1655-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/18/2018] [Indexed: 12/17/2022]
Abstract
Seasonal affective disorder (SAD), beyond mood changes, is characterized by alterations in daily rhythms of behavior and physiology. The pathophysiological conditions of SAD involve changes in day length and its first-line treatment is bright light therapy. Animal models using nocturnal rodents have been studied to elucidate the neurobiological mechanisms of depression, but might be ill suited to study the therapeutic effects of light in SAD since they exhibit light-aversive responses. Here Arvicanthis ansorgei, a diurnal rodent, was used to determine behavioral, molecular and brain dopamine changes in response to exposure to a winter-like photoperiod consisting of a light-dark cycle with 8 h of light, under diminished light intensity, and 16 h of darkness. Furthermore, we evaluated whether timed-daily bright light exposure has an effect on behavior and brain physiology of winter-like exposed animals. Arvicanthis under a winter-like condition showed alterations in the synchronization of the locomotor activity rhythm to the light-dark cycle. Moreover, alterations in day-night activity of dopaminergic neurotransmission were revealed in the nucleus accumbens and the dorsal striatum, and in the day-night clock gene expression in the suprachiasmatic nucleus. Interestingly, whereas dopamine disturbances were reversed in animals exposed to daily light at early or late day, altered phase of the daily rhythm of locomotion was reverted only in animals exposed to light at the late day. Moreover, Per2 gene expression in the SCN was also affected by light exposure at late day in winter-like exposed animals. These findings suggest that light induces effects on behavior by mechanisms that rely on both circadian and rhythm-independent pathways influencing the dopaminergic circuitry. This last point might be crucial for understanding the mechanisms of non-pharmacological treatment in SAD.
Collapse
Affiliation(s)
- Jacob Itzhacki
- Institute of Cellular and Integrative Neurosciences, CNRS-UPR3212, 5 rue Blaise Pascal, 67084, Strasbourg Cedex, France.,Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Daniel Clesse
- Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS, UMR 7364 and University of Strasbourg, Strasbourg, France
| | - Yannick Goumon
- Institute of Cellular and Integrative Neurosciences, CNRS-UPR3212, 5 rue Blaise Pascal, 67084, Strasbourg Cedex, France
| | - Eus J Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.,Department of Integrative Neurophysiology and Psychiatry inGeest, Vrije Universiteit University and Medical Center, Neuroscience Campus, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS-UPR3212, 5 rue Blaise Pascal, 67084, Strasbourg Cedex, France.
| |
Collapse
|
26
|
Mendoza J. Circadian neurons in the lateral habenula: Clocking motivated behaviors. Pharmacol Biochem Behav 2017; 162:55-61. [PMID: 28666896 DOI: 10.1016/j.pbb.2017.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/30/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022]
Abstract
The main circadian clock in mammals is located in the hypothalamic suprachiasmatic nucleus (SCN), however, central timing mechanisms are also present in other brain structures beyond the SCN. The lateral habenula (LHb), known for its important role in the regulation of the monoaminergic system, contains such a circadian clock whose molecular and cellular mechanisms as well as functional role are not well known. However, since monoaminergic systems show circadian activity, it is possible that the LHb-clock's role is to modulate the rhythmic activity of the dopamine, serotonin and norephinephrine systems, and associated behaviors. Moreover, the LHb is involved in different pathological states such as depression, addiction and schizophrenia, states in which sleep and circadian alterations have been reported. Thus, perturbations of circadian activity in the LHb might, in part, be a cause of these rhythmic alterations in psychiatric ailments. In this review the current state of the LHb clock and its possible implications in the control of monoaminergic systems rhythms, motivated behaviors (e.g., feeding, drug intake) and depression (with circadian disruptions and altered motivation) will be discussed.
Collapse
Affiliation(s)
- Jorge Mendoza
- Institute of Cellular and Integrative Neuroscience, CNRS-UPR 3212 Strasbourg France, 5 rue Blaise Pascal, 67084 cedex Strasbourg, France.
| |
Collapse
|
27
|
Abstract
Background Stress and stressful life events have repeatedly been shown as causally related to depression. The Chronic Mild Stress rat model is a valid model of stress-induced depression. Like humans, rats display great heterogeneity in their response to stress and adversity. Hence some individuals are stress-sensitive and prone to develop depression-like behaviour in response to modest stressors, while others are stress-resilient and remain essentially symptom free. Objectives Compared to the large body of research, which describes stress-induced maladaptive neurobiological changes, relatively little attention has been devoted to understand resiliency to stress. The aim of the present study was to identify changes in neuronal activity, associated with stress-resilient and stress-susceptible chronic mild stress endophenotypes, by examining c-Fos expression in 13 different brain areas. Changes in c-Fos expression have been reported as associated to stressful conditions. Methods Stress-induced modulation of neuronal activation patterns in response to the chronic mild stress paradigm was mapped using the immediate early gene expression c-Fos as a marker. Quantification of the c-Fos-like immunoreactivity responses was done by semi-automated profile counting procedures and design-based stereology. Results Exposure to chronic mild stress significantly altered c-Fos expression in a total of 6 out of 13 investigated areas. Chronic mild stress was found to suppress the c-Fos response within the magnocellular ventral lateral geniculate nucleus of both stress subgroups. In the the lateral and ventral orbital cortices of stress-resilient rats, the c-Fos like immunoreactivity response was also repressed by stress exposure. On the contrary the c-Fos response within the amygdala, medial habenula, and infralimbic cortex was increased selectively for the stress-susceptible rats. Conclusions The study was initiated to characterize neuronal substrates associated with stress-coping mechanisms. Six areas, all of which represents limbic structures, were found to be sensitive to stress exposure. The effects within these areas associate to the hedonic status of the rats. Hence, these areas might be associated to stress-coping mechanisms underlying the chronic mild stress induced segregation into stress-susceptible and stress-resilient endophenotypes.
Collapse
Affiliation(s)
- Fabia Febbraro
- Danish Research Institute of Translational Neuroscience (DANDRITE) Aarhus University, Aarhus C, Denmark
- * E-mail: (FF); (OW)
| | - Katrine Svenningsen
- Focused Research Unit for Molecular Diagnostic and Clinical Research IRS-Center Sonderjylland, Laboratory Center, Hospital of Southern Jutland, Åbenrå, Denmark
| | - Thao Phuong Tran
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Ove Wiborg
- Department of Clinical Medicine, Health, Aarhus University, Aarhus C, Denmark
- * E-mail: (FF); (OW)
| |
Collapse
|
28
|
Davimes JG, Alagaili AN, Bertelsen MF, Mohammed OB, Hemingway J, Bennett NC, Manger PR, Gravett N. Temporal niche switching in Arabian oryx (Oryx leucoryx): Seasonal plasticity of 24h activity patterns in a large desert mammal. Physiol Behav 2017; 177:148-154. [PMID: 28431978 DOI: 10.1016/j.physbeh.2017.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 11/19/2022]
Abstract
The Arabian oryx, a moderately large mammal that inhabits a harsh desert environment, has been shown to exhibit seasonal variations in activity and inactivity patterns. Here we analyzed the continuous year-round activity patterns of twelve free-roaming Arabian oryx under natural conditions from two varying desert environments in Saudi Arabia using abdominally implanted activity meters. We simultaneously recorded weather parameters at both sites to determine whether environmental factors are responsible for temporal niche switching as well as the seasonal structuring and timing of this behavioural plasticity. Our results demonstrate that Arabian oryx undergo temporal niche switching of 24h activity patterns at a seasonal level and exhibit distinct nocturnal/crepuscular activity during summer, diurnal activity during winter and intermittent patterns of behaviour during the transitional seasons of autumn and spring. In addition, the oryx exhibited inter- and intra-seasonal variations in the temporal budgeting of 24h activity patterns. Strong relationships with both photoperiod and ambient temperatures were found and in some instances suggested that increasing ambient temperatures are a primary driving force behind seasonal shifts in activity patterns. These adaptive patterns may be dictated by the availability of food and water, which in turn are strongly influenced by seasonal climate variations. Overall, the adaptive responses of free-roaming Arabian oryx in such harsh and non-laboratorial conditions provide a framework for comparing wild populations as well as aiding conservation efforts.
Collapse
Affiliation(s)
- Joshua G Davimes
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193 Johannesburg, South Africa
| | - Abdulaziz N Alagaili
- KSU Mammals Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Osama B Mohammed
- KSU Mammals Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jason Hemingway
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193 Johannesburg, South Africa
| | - Nigel C Bennett
- KSU Mammals Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; South African Research Chair of Mammal Behavioural Ecology and Physiology, University of Pretoria, Pretoria 0002, South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193 Johannesburg, South Africa
| | - Nadine Gravett
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193 Johannesburg, South Africa.
| |
Collapse
|
29
|
Abstract
In mammals, light exerts pervasive effects on physiology and behavior in two ways: indirectly through clock synchronization and the phase adjustment of circadian rhythms, and directly through the promotion of alertness and sleep, respectively, in diurnal and nocturnal species. A recent report by Pilorz and colleagues describes an even more complex role for the acute effects of light. In mice, blue light acutely causes behavioral arousal, whereas green wavelengths promote sleep. These opposing effects are mediated by melanopsin-based phototransduction through different neural pathways. These findings reconcile nocturnal and diurnal species through a common alerting response to blue light. One can hypothesize that the opposite responses to natural polychromatic light in night- or day-active animals may reflect higher sensitivity of nocturnal species to green, and diurnals to blue wavelengths, resulting in hypnogenic and alerting effects, respectively. Additional questions remain to be clarified. How do different light wavelengths affect other behaviors such as mood and cognition? How do those results apply to humans? How does light pose either a risk or benefit, depending on whether one needs to be asleep or alert? Indeed, in addition to timing, luminance levels, and light exposure duration, these findings stress the need to understand how best to adapt the color spectrum of light to our needs and to take this into account for the design of daily lighting concepts—a key challenge for today’s society, especially with the emergence of LED light technology.
Collapse
Affiliation(s)
- Patrice Bourgin
- CNRS-UPR 3212, Institute of Cellular and Integrative Neurosciences, Sleep Disorders Center—CIRCSom, CHU and FMTS, University of Strasbourg, Strasbourg, France
- * E-mail:
| | - Jeffrey Hubbard
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
30
|
Gall AJ, Shuboni DD, Yan L, Nunez AA, Smale L. Suprachiasmatic Nucleus and Subparaventricular Zone Lesions Disrupt Circadian Rhythmicity but Not Light-Induced Masking Behavior in Nile Grass Rats. J Biol Rhythms 2016; 31:170-81. [PMID: 26801650 DOI: 10.1177/0748730415626251] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The ventral subparaventricular zone (vSPVZ) receives direct retinal input and influences the daily patterning of activity in rodents, making it a likely candidate for the mediation of acute behavioral responses to light (i.e., masking). We performed chemical lesions aimed at the vSPVZ of diurnal grass rats (Arvicanthis niloticus) using N-methyl-D,L-aspartic acid (NMA), a glutamate agonist. Following NMA lesions, we placed grass rats in various lighting conditions (e.g., 12:12 light-dark, constant dark, constant light); presented a series of light pulses at circadian times (CT) 6, 14, 18, and 22; and placed them in a 7-h ultradian cycle to assess behavioral masking. Extensive bilateral lesions of the vSPVZ disrupted the expression of circadian rhythms of activity and abolished the circadian modulation of masking responses to light, without affecting light-induced masking behavior per se. We also found that in diurnal grass rats, NMA was capable of destroying not only neurons of the vSPVZ but also those of the suprachiasmatic nucleus (SCN), even though excitotoxins have been ineffective at destroying cells within the SCN of nocturnal rodents. The vulnerability of the grass rat's SCN to NMA toxicity raises the possibility of a difference in density of receptors for glutamate between nocturnal and diurnal species. In cases in which damage extended to the SCN, masking responses to light were present and similar to those displayed by animals with damage restricted to the vSPVZ. Thus, extensive bilateral lesions of the SCN and vSPVZ disrupted the expression of circadian rhythms without affecting acute responses to light in a diurnal species. Our present and previous results suggest that retinorecipient brain areas other than the SCN or vSPVZ, such as the intergeniculate leaflet or olivary pretectal nucleus, may be responsible for the mediation of masking responses to light in the diurnal grass rat.
Collapse
Affiliation(s)
| | - Dorela D Shuboni
- Department of Radiology, Michigan State University, East Lansing, MI
| | - Lily Yan
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI
| | - Antonio A Nunez
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI
| | - Laura Smale
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI
| |
Collapse
|
31
|
Langel JL, Smale L, Esquiva G, Hannibal J. Central melanopsin projections in the diurnal rodent, Arvicanthis niloticus. Front Neuroanat 2015; 9:93. [PMID: 26236201 PMCID: PMC4500959 DOI: 10.3389/fnana.2015.00093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/29/2015] [Indexed: 12/12/2022] Open
Abstract
The direct effects of photic stimuli on behavior are very different in diurnal and nocturnal species, as light stimulates an increase in activity in the former and a decrease in the latter. Studies of nocturnal mice have implicated a select population of retinal ganglion cells that are intrinsically photosensitive (ipRGCs) in mediation of these acute responses to light. ipRGCs are photosensitive due to the expression of the photopigment melanopsin; these cells use glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP) as neurotransmitters. PACAP is useful for the study of central ipRGC projections because, in the retina, it is found exclusively within melanopsin cells. Little is known about the central projections of ipRGCs in diurnal species. Here, we first characterized these cells in the retina of the diurnal Nile grass rat using immunohistochemistry (IHC). The same basic subtypes of melanopsin cells that have been described in other mammals were present, but nearly 25% of them were displaced, primarily in its superior region. PACAP was present in 87.7% of all melanopsin cells, while 97.4% of PACAP cells contained melanopsin. We then investigated central projections of ipRGCs by examining the distribution of immunoreactive PACAP fibers in intact and enucleated animals. This revealed evidence that these cells project to the suprachiasmatic nucleus, lateral geniculate nucleus (LGN), pretectum, and superior colliculus. This distribution was confirmed with injections of cholera toxin subunit β coupled with Alexa Fluor 488 in one eye and Alexa Fluor 594 in the other, combined with IHC staining of PACAP. These studies also revealed that the ventral and dorsal LGN and the caudal olivary pretectal nucleus receive less innervation from ipRGCs than that reported in nocturnal rodents. Overall, these data suggest that although ipRGCs and their projections are very similar in diurnal and nocturnal rodents, they may not be identical.
Collapse
Affiliation(s)
- Jennifer L Langel
- Neuroscience Program, Michigan State University East Lansing, MI, USA
| | - Laura Smale
- Neuroscience Program, Michigan State University East Lansing, MI, USA ; Department of Psychology, Michigan State University East Lansing, MI, USA ; Department of Zoology, Michigan State University East Lansing, MI, USA
| | - Gema Esquiva
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen Copenhagen, Denmark ; Department of Physiology, Genetics and Microbiology, University of Alicante Alicante, Spain
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|