1
|
Santollo J, Daniels D. Fluid transitions. Neuropharmacology 2024; 256:110009. [PMID: 38823577 PMCID: PMC11184821 DOI: 10.1016/j.neuropharm.2024.110009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024]
Abstract
Water is critical for survival and thirst is a powerful way of ensuring that fluid levels remain in balance. Overconsumption, however, can have deleterious effects, therefore optimization requires a need to balance the drive for water with the satiation of that water drive. This review will highlight our current understanding of how thirst is both generated and quenched, with particular focus on the roles of angiotensin II, glucagon like-peptide 1, and estradiol in turning on and off the thirst drive. Our understanding of the roles these bioregulators play has benefited from modern behavioral analyses, which have improved the time resolution of intake measures, allowing for attention to the details of the patterns within a bout of intake. This has led to behavioral interpretation in ways that are helpful in understanding the many controls of water intake and has expanded our understanding beyond the dichotomy that something which increases water intake is simply a "stimulator" while something that decreases water intake is simply a "satiety" factor. Synthesizing the available information, we describe a framework in which thirst is driven directly by perturbations in fluid intake and indirectly modified by several bioregulators. This allows us to better highlight areas that are in need of additional attention to form a more comprehensive understanding of how the system transitions between states of thirst and satiety.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | - Derek Daniels
- Department of Biology, University at Buffalo, State University of New York, Buffalo, NY 14260, USA; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
2
|
Young JK. Ovarian hormones and eating disorders. Front Psychol 2024; 15:1467795. [PMID: 39315050 PMCID: PMC11416966 DOI: 10.3389/fpsyg.2024.1467795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
The eating disorders anorexia nervosa and bulimia nervosa are much more common in women than in men. Also, there is evidence for a role of gene mutations in these disorders. This review examines recent data about the possibility that ovarian estrogens may contribute to the symptoms of anorexia nervosa and partly account for the sex difference in incidence of this disorder. Possible mechanisms linking genes that are abnormal in anorexia to pathways that could produce abnormal responses to estrogen are also examined. In addition, recent data pointing to a role of ovarian androgens in the symptoms of bulimia nervosa are reviewed. These data may point to more effective adjustments for the therapy of these difficult to treat disorders.
Collapse
Affiliation(s)
- John K. Young
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States
| |
Collapse
|
3
|
Stone BT, Rahamim OM, Katz DB, Lin JY. Changes in taste palatability across the estrous cycle are modulated by hypothalamic estradiol signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587593. [PMID: 38617267 PMCID: PMC11014520 DOI: 10.1101/2024.04.01.587593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Food intake varies across the stages of a rat's estrous cycle. It is reasonable to hypothesize that this cyclic fluctuation in consumption reflects an impact of hormones on taste palatability/preference, but evidence for this hypothesis has been mixed, and critical within-subject experiments in which rats sample multiple tastes during each of the four main estrous phases (metestrus, diestrus, proestrus, and estrus) have been scarce. Here, we assayed licking for pleasant (sucrose, NaCl, saccharin) and aversive (quinine-HCl, citric acid) tastes each day for 5-10 days while tracking rats' estrous cycles through vaginal cytology. Initial analyses confirmed the previously-described increased consumption of pleasant stimuli 24-48 hours following the time of high estradiol. A closer look, however, revealed this effect to reflect a general magnification of palatability-higher than normal preferences for pleasant tastes and lower than normal preferences for aversive tastes-during metestrus. We hypothesized that this phenomenon might be related to estradiol processing in the lateral hypothalamus (LH), and tested this hypothesis by inhibiting LH estrogen receptor activity with ICI 182,780 during tasting. Control infusions replicated the metestrus magnification of palatability pattern; ICI infusions blocked this effect as predicted, but failed to render preferences "cycle free," instead delaying the palatability magnification until diestrus. Clearly, estrous phase mediates details of taste palatability in a manner involving hypothalamic actions of estradiol; further work will be needed to explain the lack of a flat response across the cycle with hypothalamic estradiol binding inhibited, a result which perhaps suggests dynamic interplay between brain regions or hormones. Significance Statement Consummatory behaviors are impacted by many variables, including naturally circulating hormones. While it is clear that consumption is particularly high during the stages following the high-estradiol stage of the rodent's estrous (and human menstrual) cycle, it is as of yet unclear whether this phenomenon reflects cycle stage-specific palatability (i.e., whether pleasant tastes are particularly delicious, and aversive tastes particularly disgusting, at particular phases). Here we show that palatability is indeed modulated by estrous phase, and that this effect is governed, at least in part, by the action of estradiol within the lateral hypothalamus. These findings shed light on the mechanisms underlying the adverse impact on human welfare due to irregularities observed across the otherwise cyclic menstrual process.
Collapse
|
4
|
Carrillo B, Fernandez-Garcia JM, García-Úbeda R, Grassi D, Primo U, Blanco N, Ballesta A, Arevalo MA, Collado P, Pinos H. Neonatal inhibition of androgen activity alters the programming of body weight and orexinergic peptides differentially in male and female rats. Brain Res Bull 2024; 208:110898. [PMID: 38360152 DOI: 10.1016/j.brainresbull.2024.110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
The involvement of androgens in the regulation of energy metabolism has been demonstrated. The main objective of the present research was to study the involvement of androgens in both the programming of energy metabolism and the regulatory peptides associated with feeding. For this purpose, androgen receptors and the main metabolic pathways of testosterone were inhibited during the first five days of postnatal life in male and female Wistar rats. Pups received a daily s.c. injection from the day of birth, postnatal day (P) 1, to P5 of Flutamide (a competitive inhibitor of androgen receptors), Letrozole (an aromatase inhibitor), Finasteride (a 5-alpha-reductase inhibitor) or vehicle. Body weight, food intake and fat pads were measured. Moreover, hypothalamic Agouti-related peptide (AgRP), neuropeptide Y (NPY), orexin, and proopiomelanocortin (POMC) were analyzed by quantitative real-time polymerase chain reaction assay. The inhibition of androgenic activity during the first five days of life produced a significant decrease in body weight in females at P90 but did not affect this parameter in males. Moreover, the inhibition of aromatase decreased hypothalamic AgRP mRNA levels in males while the inhibition of 5α-reductase decreased hypothalamic AgRP and orexin mRNA levels in female rats. Finally, food intake and visceral fat, but not subcutaneous fat, were affected in both males and females depending on which testosterone metabolic pathway was inhibited. Our results highlight the differential involvement of androgens in the programming of energy metabolism as well as the AgRP and orexin systems during development in male and female rats.
Collapse
Affiliation(s)
- Beatriz Carrillo
- Department of Psychobiology, National University of Distance Education, Madrid, Spain; University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain
| | - Jose Manuel Fernandez-Garcia
- University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain; Faculty of Psychology, Universidad Villanueva Madrid, Madrid, Spain
| | - Rocío García-Úbeda
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
| | - Daniela Grassi
- Department of Anatomy, Histology and Neuroscience, Autonomous University of Madrid, Madrid, Spain
| | - Ulises Primo
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
| | - Noemí Blanco
- Department of Psychobiology, National University of Distance Education, Madrid, Spain; University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain
| | - Antonio Ballesta
- Department of Psychobiology, Centro de Enseñanza Superior Cardenal Cisneros, Spain
| | - Maria Angeles Arevalo
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Paloma Collado
- Department of Psychobiology, National University of Distance Education, Madrid, Spain; University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain
| | - Helena Pinos
- Department of Psychobiology, National University of Distance Education, Madrid, Spain; University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain.
| |
Collapse
|
5
|
Fernandez-Garcia JM, Carrillo B, Tezanos P, Pinos H, Collado P. Genistein early in life Modifies the arcuate nucleus of the hypothalamus morphology differentially in male and female rats. Mol Cell Endocrinol 2023; 570:111933. [PMID: 37080379 DOI: 10.1016/j.mce.2023.111933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/16/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023]
Abstract
In the present work we analyzed the effects of postnatal exposure to two doses of genistein (10 μg/g or 50 μg/g) from postnatal (P) day 6 to P13, on the morphology of the arcuate nucleus (Arc). The analyses of Arc coronal brain sections at 90 days showed that the ArcMP had higher values in volume, Nissl-stained neurons and GPER-ir neurons in males than in females and the treatment with genistein abolished these sex differences in most of the parameters studied. Moreover, in males, but not in females, the GPER-ir neurons decreased in the ArcMP but increased in the ArcL with both doses of genistein. In the ArcLP, GPER-ir population increased with the lowest doses and decreased with the highest one in males. Our results confirm that the Arc subdivisions have differential vulnerability to the effects of genistein during development, depending on which neuromorphological parameters, dose and sex are analyzed.
Collapse
Affiliation(s)
- Jose Manuel Fernandez-Garcia
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain
| | - Beatriz Carrillo
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain
| | - Patricia Tezanos
- Departamento de Neurociencia Traslacional, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28002, Spain
| | - Helena Pinos
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain.
| | - Paloma Collado
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain
| |
Collapse
|
6
|
Klappenbach CM, Wang Q, Jensen AL, Glodosky NC, Delevich K. Sex and timing of gonadectomy relative to puberty interact to influence weight, body composition, and feeding behaviors in mice. Horm Behav 2023; 151:105350. [PMID: 36996734 DOI: 10.1016/j.yhbeh.2023.105350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/01/2023]
Abstract
Gonadal sex steroids are important regulators of energy balance in adult rodents, and gonadectomy (GDX) has opposing effects on weight gain in sexually mature males and females. Puberty is associated with the emergence of sex differences in weight, body composition, and feeding behaviors, yet the role of gonadal hormones at puberty remains unclear. To address this, we performed GDX or sham surgery in male and female C57Bl/6 mice at postnatal day (P)25 (prepubertal) or P60 (postpubertal) timepoints and measured weight and body composition for 35 days, after which ad libitum and operant food intake was measured using Feeding Experimentation Device 3 (FED3s) in the home cage. Consistent with previous studies, postpubertal GDX caused weight gain in females and weight loss in males and increased adiposity in both sexes. However, prepubertal GDX decreased weight gain and altered body composition across the adolescent transition (P25 to P60) in males but had no effect in females. Despite the varied effects on weight, GDX decreased food intake and motivation for food as assessed in operant tasks regardless of sex or timing of surgery relative to puberty. Our findings indicate that GDX interacts with both sex and age at surgery to influence weight, body composition, and feeding behavior.
Collapse
Affiliation(s)
- Courtney M Klappenbach
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Qing Wang
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Allison L Jensen
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Nicholas C Glodosky
- Department of Psychology Washington State University, Pullman, WA 99164, USA
| | - Kristen Delevich
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
7
|
Turek J, Gąsior Ł. Estrogen fluctuations during the menopausal transition are a risk factor for depressive disorders. Pharmacol Rep 2023; 75:32-43. [PMID: 36639604 PMCID: PMC9889489 DOI: 10.1007/s43440-022-00444-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023]
Abstract
Women are significantly more likely to develop depression than men. Fluctuations in the ovarian estrogen hormone levels are closely linked with women's well-being. This narrative review discusses the available knowledge on the role of estrogen in modulating brain function and the correlation between changes in estrogen levels and the development of depression. Equally discussed are the possible mechanisms underlying these effects, including the role of estrogen in modulating brain-derived neurotrophic factor activity, serotonin neurotransmission, as well as the induction of inflammatory response and changes in metabolic activity, are discussed.
Collapse
Affiliation(s)
- Justyna Turek
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland
| | - Łukasz Gąsior
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland
| |
Collapse
|
8
|
Santollo J, Edwards AA, Howell JA, Myers KE. Bidirectional effects of estradiol on the control of water intake in female rats. Horm Behav 2021; 133:104996. [PMID: 34020111 PMCID: PMC8277715 DOI: 10.1016/j.yhbeh.2021.104996] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/18/2022]
Abstract
The inhibitory effect of estradiol (E2) on water intake has been recognized for 50 years. Despite a rich literature describing this phenomenon, we report here a previously unidentified dipsogenic effect of E2 during states of low fluid intake. Our initial goal was to test the hypothesis that the anti-dipsogenic effect of E2 on unstimulated water intake is independent of its anorexigenic effect in female rats. In support of this hypothesis, water intake was reduced during estrus, compared to diestrus, when food was present or absent. Water intake was reduced by E2 in ovariectomized rats when food was available, demonstrating a causative role of E2. Surprisingly, however, when food was removed, resulting in a significant reduction in baseline water intake, E2 enhanced drinking. Accordingly, we next tested the effect of E2 on water intake after an acute suppression of intake induced by exendin-4. The initial rebound drinking was greater in E2-treated, compared to Oil-treated, rats. Finally, to reconcile conflicting reports regarding the effect of ovariectomy on water intake, we measured daily water and food intake, and body weight in ovariectomized and sham-operated rats. Predictably, ovariectomy significantly increased food intake and body weight, but only transiently increased water intake. Together these results provide further support for independent effects of E2 on the controls of water and food intake. More importantly, this report of bidirectional effects of E2 on water intake may lead to a paradigm shift, as it challenges the prevailing view that E2 effects on fluid intake are exclusively inhibitory.
Collapse
Affiliation(s)
- Jessica Santollo
- University of Kentucky, Department of Biology, 675 Rose Street, Lexington, KY 40506, USA.
| | - Andrea A Edwards
- University of Kentucky, Department of Biology, 675 Rose Street, Lexington, KY 40506, USA
| | - Julia A Howell
- University of Kentucky, Department of Biology, 675 Rose Street, Lexington, KY 40506, USA
| | - Katherine E Myers
- University of Kentucky, Department of Biology, 675 Rose Street, Lexington, KY 40506, USA
| |
Collapse
|
9
|
Alvord VM, Kantra EJ, Pendergast JS. Estrogens and the circadian system. Semin Cell Dev Biol 2021; 126:56-65. [PMID: 33975754 DOI: 10.1016/j.semcdb.2021.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 11/26/2022]
Abstract
Circadian rhythms are ~24 h cycles of behavior and physiology that are generated by a network of molecular clocks located in nearly every tissue in the body. In mammals, the circadian system is organized hierarchically such that the suprachiasmatic nucleus (SCN) is the main circadian clock that receives light information from the eye and entrains to the light-dark cycle. The SCN then coordinates the timing of tissue clocks so internal rhythms are aligned with environmental cycles. Estrogens interact with the circadian system to regulate biological processes. At the molecular level, estrogens and circadian genes interact to regulate gene expression and cell biology. Estrogens also regulate circadian behavior across the estrous cycle. The timing of ovulation during the estrous cycle requires coincident estrogen and SCN signals. Studies using circadian gene reporter mice have also elucidated estrogen regulation of peripheral tissue clocks and metabolic rhythms. This review synthesizes current understanding of the interplay between estrogens and the circadian system, with a focus on female rodents, in regulating molecular, physiological, and behavioral processes.
Collapse
|
10
|
Fernandez-Garcia JM, Carrillo B, Tezanos P, Collado P, Pinos H. Genistein during Development Alters Differentially the Expression of POMC in Male and Female Rats. Metabolites 2021; 11:293. [PMID: 34063209 PMCID: PMC8147459 DOI: 10.3390/metabo11050293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Phytoestrogens are considered beneficial for health, but some studies have shown that they may cause adverse effects. This study investigated the effects of genistein administration during the second week of life on energy metabolism and on the circuits regulating food intake. Two different genistein doses, 10 or 50 µg/g, were administered to male and female rats from postnatal day (P) 6 to P13. Physiological parameters, such as body weight and caloric intake, were then analyzed at P90. Moreover, proopiomelanocortin (POMC) expression in the arcuate nucleus (Arc) and orexin expression in the dorsomedial hypothalamus (DMH), perifornical area (PF) and lateral hypothalamus (LH) were studied. Our results showed a delay in the emergence of sex differences in the body weight in the groups with higher genistein doses. Furthermore, a significant decrease in the number of POMC-immunoreactive (POMC-ir) cells in the Arc in the two groups of females treated with genistein was observed. In contrast, no alteration in orexin expression was detected in any of the structures analyzed in either males or females. In conclusion, genistein can modulate estradiol's programming actions on the hypothalamic feeding circuits differentially in male and female rats during development.
Collapse
Affiliation(s)
- Jose Manuel Fernandez-Garcia
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain; (J.M.F.-G.); (B.C.); (P.C.)
- Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), 28040 Madrid, Spain
| | - Beatriz Carrillo
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain; (J.M.F.-G.); (B.C.); (P.C.)
- Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), 28040 Madrid, Spain
| | - Patricia Tezanos
- Departamento de Neurociencia Traslacional, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain;
| | - Paloma Collado
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain; (J.M.F.-G.); (B.C.); (P.C.)
- Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), 28040 Madrid, Spain
| | - Helena Pinos
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain; (J.M.F.-G.); (B.C.); (P.C.)
- Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), 28040 Madrid, Spain
| |
Collapse
|
11
|
Santollo J, Edwards AA. How predictive is body weight on fluid intake in rats? It depends on sex. Physiol Behav 2020; 229:113262. [PMID: 33232737 DOI: 10.1016/j.physbeh.2020.113262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023]
Abstract
The assumption that body weight is a predictor of fluid intake is often used as rationale for normalizing intake to body weight when examining sex differences in drinking behavior. Nonuniform application of this body weight correction likely contributes to discrepancies in the literature. We, however, previously demonstrated sex differences in the relationship between body weight and angiotensin II (AngII)-stimulated water intake. Only after a pharmacological dose of AngII did water intake correlate with body weight, and only in males. Here we investigated whether body weight correlated with fluid intake stimulated by additional dipsogenic agents in male and female rats. We found that intake stimulated by either water deprivation or furosemide correlated with body weight in male rats. We found no relationship between intake and body weight after water deprivation, furosemide treatment, or isoproterenol treatment in females, nor did we find a relationship between intake and body weight after hypertonic saline treatment in either males or females. Finally, we report that daily water intake correlated with body weight in females. This effect, however, is likely the result of a relationship between body weight and food intake because when food was absent or reduced, the correlation between body weight and intake disappeared. These results demonstrate that multiple factors need to be considered when determining the best way to compare fluid intake between males and females and provides insight to help explain the discrepancies in the literature regarding sex differences in fluid intake.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Biology, University of Kentucky, Lexington, KY 40506.
| | - Andrea A Edwards
- Department of Biology, University of Kentucky, Lexington, KY 40506
| |
Collapse
|
12
|
Vail GM, Walley SN, Yasrebi A, Maeng A, Conde KN, Roepke TA. The interactions of diet-induced obesity and organophosphate flame retardant exposure on energy homeostasis in adult male and female mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:438-455. [PMID: 32546061 PMCID: PMC7337410 DOI: 10.1080/15287394.2020.1777235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Previously, sex-dependent alterations in energy homeostasis were reported in adult mice fed a standard chow attributed to exposure to a mixture of organophosphate flame retardants (OPFRs) via estrogen receptors (ERα). In this study, adult male and female mice (C57BL/6J; Taconic) were treated with the same mixture of OPFRs (1 mg/kg each of tricresyl phosphate (TCP), triphenyl phosphate (TPP), and tris(1-3-dichloro-2propyl)phosphate (TDCPP)) for 7 weeks on a low-fat diet (LFD, 10% kcal fat) or a high fat (HFD, 45% kcal fat) in a diet-induced obesity model. Consistent with our previous observations, OPFRs altered weight gain in males, differentially with diet, while females remained unaffected. OPFR treatment also revealed sex-dependent perturbations in metabolic activity. During the night (approximately 0100-0400 hr), males exhibited elevated activity and oxygen consumption, while in females these parameters were decreased, irrespective of diet. OPFR disrupted feeding behavior and abolished diurnal water intake patterns in females while increasing nighttime fluid consumption in males. Despite no marked effect of OPFRs on glucose or insulin tolerance, OPFR treatment altered circulating insulin and leptin in females and ghrelin in males. Data indicate that adult OPFR exposure might influence, and perhaps exacerbate, the effects of diet-induced obesity in adult mice by altering activity, ingestive behavior, and metabolism.
Collapse
Affiliation(s)
- Gwyndolin M. Vail
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Sabrina N. Walley
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Angela Maeng
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Kristie N. Conde
- Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Troy A. Roepke
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
- Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| |
Collapse
|
13
|
Carrillo B, Collado P, Díaz F, Chowen JA, Grassi D, Pinos H. Blocking of Estradiol Receptors ERα, ERβ and GPER During Development, Differentially Alters Energy Metabolism in Male and Female Rats. Neuroscience 2019; 426:59-68. [PMID: 31805254 DOI: 10.1016/j.neuroscience.2019.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 12/25/2022]
Abstract
Estradiol not only participates in the regulation of energy metabolism in adulthood, but also during the first stages of life as it modulates the alterations induced by under- and over-nutrition. The objectives of the present study were to determine: 1) If estradiol is involved in the normal programming of energy metabolism in rats; 2) If there is a specific window of time for this programming and 3) If males and females are differentially vulnerable to the action of this hormone. Estrogen receptors (ER) α, ERβ and GPER were blocked by their specific antagonists MPP, PHTPP and G15, respectively, from postnatal day (P) 1 (the day of birth) to P5 or from P5 to P13. Physiological parameters such as body weight, fat depots and caloric intake were then analysed at P90. Hypothalamic AgRP, POMC, MC4R, ERα, ERβ and GPER mRNA levels and plasma levels of estradiol, were also studied. We found that blocking ER receptors from P5 to P13 significantly decreases long-term body weight in males and hypothalamic POMC mRNA levels in females. The blocking of ERs from P1 to P5 only affected plasma estradiol levels in females. The present results indicate programming actions of estradiol from P5 to P13 on body weight in male and POMC expression in female rats and emphasize the importance of including both sexes in metabolic studies. It is necessary to unravel the mechanisms that underlie the actions of estradiol on food intake, both during development and in adulthood, and to determine how this programming differentially takes place in males and females.
Collapse
Affiliation(s)
- Beatriz Carrillo
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal n° 10, 28040 Madrid, Spain, Instituto Mixto de Investigación Escuela Nacional de Sanidad (IMIENS).
| | - Paloma Collado
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal n° 10, 28040 Madrid, Spain, Instituto Mixto de Investigación Escuela Nacional de Sanidad (IMIENS).
| | - Francisca Díaz
- Departamento de Endocrinología, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Avda. Menéndez Pelayo, N° 65 28009 Madrid, Spain, Investigación Biomédica en Red (CIBER) de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, IMDEA Food Institute, CEI UAM + CSIC.
| | - Julie A Chowen
- Departamento de Endocrinología, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Avda. Menéndez Pelayo, N° 65 28009 Madrid, Spain, Investigación Biomédica en Red (CIBER) de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, IMDEA Food Institute, CEI UAM + CSIC.
| | - Daniela Grassi
- Department of Preclinical odontology, Faculty of Biomedical Science and Health Universidad Europea de Madrid, Calle Tajo s/n, 28670 Villaviciosa de Odón, Madrid, Spain.
| | - Helena Pinos
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal n° 10, 28040 Madrid, Spain, Instituto Mixto de Investigación Escuela Nacional de Sanidad (IMIENS).
| |
Collapse
|
14
|
Stroh MA, Winter MK, McCarson KE, Thyfault JP, Zhu H. NCB5OR Deficiency in the Cerebellum and Midbrain Leads to Dehydration and Alterations in Thirst Response, Fasted Feeding Behavior, and Voluntary Exercise in Mice. THE CEREBELLUM 2019; 17:152-164. [PMID: 28887630 DOI: 10.1007/s12311-017-0880-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytosolic NADH-cytochrome-b5-oxidoreductase (NCB5OR) is ubiquitously expressed in animal tissues. We have previously reported that global ablation of NCB5OR in mice results in early-onset lean diabetes with decreased serum leptin levels and increased metabolic and feeding activities. The conditional deletion of NCB5OR in the mouse cerebellum and midbrain (conditional knock out, CKO mice) results in local iron dyshomeostasis and altered locomotor activity. It has been established that lesion to or removal of the cerebellum leads to changes in nutrient organization, visceral response, feeding behavior, and body weight. This study assessed whether loss of NCB5OR in the cerebellum and midbrain altered feeding or metabolic activity and had an effect on serum T3, cortisol, prolactin, and leptin levels. Metabolic cage data revealed that 16 week old male CKO mice had elevated respiratory quotients and decreased respiratory water expulsion, decreased voluntary exercise, and altered feeding and drinking behavior compared to wild-type littermate controls. Most notably, male CKO mice displayed higher consumption of food during refeeding after a 48-h fast. Echo MRI revealed normal body composition but decreased total water content and hydration ratios in CKO mice. Increased serum osmolality measurements confirmed the dehydration status of male CKO mice. Serum leptin levels were significantly elevated in male CKO mice while prolactin, T3, and cortisol levels remain unchanged relative to wild-type controls, consistent with elevated transcript levels for leptin receptors (short form) in the male CKO mouse cerebellum. Taken together, these findings suggest altered feeding response post starvation as a result of NCB5OR deficiency in the cerebellum.
Collapse
Affiliation(s)
- Matthew A Stroh
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Michelle K Winter
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Kenneth E McCarson
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - John P Thyfault
- Department of Molecular Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Research Service, Kansas City VA Medical Center, Kansas City, MO, 64128, USA
| | - Hao Zhu
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Department of Clinical Laboratory Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd., MSN 4048G-Eaton, Kansas City, KS, 66160, USA.
| |
Collapse
|
15
|
Santollo J, Daniels D. Anorexigenic effects of estradiol in the medial preoptic area occur through membrane-associated estrogen receptors and metabotropic glutamate receptors. Horm Behav 2019; 107:20-25. [PMID: 30462987 PMCID: PMC6348004 DOI: 10.1016/j.yhbeh.2018.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 11/22/2022]
Abstract
Activation of membrane-associated estrogen receptors (mER) decreases food and water intake in female rats. Additional studies suggest these effects are mediated, at least in part, by membrane-associated estrogen receptor alpha (ERα). Nevertheless, the critical site of action and the intracellular signaling required for the ingestive effects of ERα remain unclear. Estradiol given to the medial preoptic area (mPOA) decreases ingestive behaviors, and membrane-associated ERα has been shown to affect intracellular signaling through interactions with metabotropic glutamate receptor (mGluR) subtypes, but an involvement of this signaling pathway, in the mPOA, in ingestive behavior remains untested. To address these open questions, we first showed that activation of mER in the mPOA decreased both overnight food and water intake, and did so in a time course consistent with a genomic mechanism of action. Next, we tested the requirement of mGluR1a signaling in the mPOA for the anorexigenic and anti-dipsogenic effects of estradiol. As expected, estradiol in the mPOA decreased food intake, but only in the absence of an mGluR1a antagonist. The same was not true for estradiol effects on water intake, which were unaffected by an mGluR1a antagonist. These results suggest that estrogens require mGluR activation for at least some of their effects on ingestive behaviors, and indicate that the mPOA is a critical site of action. The results also reveal an interesting divergence in the estrogenic control of ingestive behavior by which mGluR signaling in the mPOA plays a role in the control of food intake, but not water intake.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | - Derek Daniels
- Behavioral Neuroscience Program, Department of Psychology, The State University of New York at Buffalo, Buffalo, New York 14260, USA
| |
Collapse
|
16
|
Nuñez P, Arguelles J, Perillan C. Short-term exposure to bisphenol A affects water and salt intakes differently in male and ovariectomised female rats. Appetite 2018; 120:709-715. [DOI: 10.1016/j.appet.2017.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/07/2017] [Accepted: 10/11/2017] [Indexed: 02/05/2023]
|
17
|
Schneider JE, Benton NA, Russo KA, Klingerman CM, Williams WP, Simberlund J, Abdulhay A, Brozek JM, Kriegsfeld LJ. RFamide-related Peptide-3 and the Trade-off between Reproductive and Ingestive Behavior. Integr Comp Biol 2017; 57:1225-1239. [PMID: 28985338 PMCID: PMC5886337 DOI: 10.1093/icb/icx097] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ingestive and sex behaviors are important for individual survival and reproductive success, but when environmental energy availability is limited, individuals of many different species make a trade-off, forfeiting sex for ingestive behavior. For example, food-deprived female Syrian hamsters (Mesocricetus auratus) forego vaginal scent marking and lordosis (sex behaviors) in favor of foraging, hoarding, and eating food (ingestive behavior). Reproductive processes tend to be energetically costly, and individual survival requires homeostasis in metabolic energy. Thus, during energetic challenges, the chances of survival are enhanced by decreasing the energy expended on reproductive processes. The entire hypothalamic-pituitary-gonadal (HPG) system is inhibited by severe energetic challenges, but comparatively little is known about the effects of mild energetic challenges. We hypothesized that (1) a trade-off is made between sex and ingestive behavior even when the level of food restriction is insufficient to inhibit the HPG system; (2) mild energetic challenges force a trade-off between appetitive ingestive and sex behaviors, but not consummatory versions of the same behaviors; and (3) the trade-off is orchestrated by ovarian steroid modulation of RFamide-related peptide 3 (RFRP-3). In other species, RFRP-3, an ortholog of avian gonadotropin-inhibitory hormone, is implicated in control of behavior in response to energetic challenges and stressful stimuli. In support of our three hypotheses, there is a "dose-response" effect of food restriction and re-feeding on the activation of RFRP-3-immunoreactive cells in the dorsomedial hypothalamus and on appetitive behaviors (food hoarding and sexual motivation), but not on consummatory behaviors (food intake and lordosis), with no significant effect on circulating levels of estradiol or progesterone. The effect of food restriction on the activation of RFRP-3 cells is modulated at the time of estrus in gonadally-intact females and in ovariectomized females treated with progesterone alone or with estradiol plus progesterone. Intracerebral treatment with RFRP-3 results in significant decreases in sexual motivation and results in significant but small increases in food hoarding in hamsters fed ad libitum. These and other results are consistent with the idea that ovarian steroids and RFRP-3 are part of a system that orchestrates trade-offs in appetitive behaviors in environments where energy availability fluctuates.
Collapse
Affiliation(s)
- Jill E Schneider
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Noah A Benton
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Kim A Russo
- Department of Psychology and The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Candice M Klingerman
- Department of Biological and Allied Health Sciences, Bloomsburg University, Bloomsburg, PA 17815, USA
| | - Wilbur P Williams
- Department of Psychology and The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Jessica Simberlund
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Amir Abdulhay
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Jeremy M Brozek
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Lance J Kriegsfeld
- Department of Psychology and The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
18
|
Santollo J. Sex differences in angiotensin II-stimulated fluid intake. Exp Physiol 2017; 102:1380-1384. [PMID: 28714073 DOI: 10.1113/ep086518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/12/2017] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? This report describes sex differences in the responses to angiotensin II, with a focus on fluid intake. What advances does it highlight? There are conflicting reports on the direction of the sex difference in fluid intake in response to angiotensin II. This review highlights how accounting for differences in body weight contributes to the discrepancies in the literature. In certain conditions, body weight influences fluid intake in a sex-specific manner. This review also highlights the divergent effects of oestrogen receptor activation on fluid intake, which are likely to underlie the discussed sex differences. Sex has a clear effect on the renin-angiotensin-aldosterone system. Although sex differences in the pressor response to angiotensin II (Ang II) are well established, understanding of the sex differences in the fluid intake response to Ang II is clouded by conflicting reports. Here, I suggest that accounting for differences in body weight contributes to the discrepancies in the literature. Our recent findings demonstrate that body weight influences Ang II-stimulated water intake in certain conditions in male, but not in female rats. When differences in body weight are corrected for in the appropriate circumstances, we found that males consume more water in response to Ang II compared with females. Males and females also show differences in drinking microstructure, i.e. bottle spout lick patterns, which provide clues into the mechanism(s) underlying this sex difference. Oestrogens, which inhibit Ang II-stimulated fluid intake and circulate at higher concentrations in females, are likely to contribute to this sex difference. This review also discusses the diversity in oestrogen signalling via multiple oestrogen receptor subtypes, which selectively inhibit Ang II-stimulated fluid intake.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
19
|
Rebouças ECC, Leal S, Sá SI. Regulation of NPY and α-MSH expression by estradiol in the arcuate nucleus of Wistar female rats: a stereological study. Neurol Res 2016; 38:740-7. [PMID: 27357214 DOI: 10.1080/01616412.2016.1203124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Feeding behavior in both animals and humans is modulated by estrogens, as shown by the increased adiposity observed in women and rats upon the drop of estradiol levels at menopause. Estradiol action on food intake is mediated through its cognate receptors within several hypothalamic nuclei, namely the arcuate nucleus (ARN). The ARN contains two neuronal populations expressing peptides that exert opposing effects on the central control of feeding: the orexigenic neuropeptide Y (NPY) and the anorexigenic α-melanocyte-stimulating hormone (α-MSH). METHODS To understand the role played by estradiol in the modulation of food intake, we have used an animal model of cyclic 17β-estradiol benzoate (EB) administration and stereological methods to estimate the total number of neurons immunoreactive for NPY and α-MSH in the ARN of ovariectomized rats. RESULTS Present results show that the experimentally induced EB cyclicity prompted a decrease in food consumption and in body weight. Data also show that ovariectomy induced an increase in NPY expression and a decrease in α-MSH expression in the ARN that were reverted by EB administration. Conversely, EB blocked the expression of NPY and increased the synthesis of α-MSH in ARN neurons, without affecting the overall sum of NPY and α-MSH neurons. DISCUSSION These results suggest that estradiol affects food intake and, consequently, body weight gain, through an overriding mechanism superimposed in the physiological balance between both peptides in the ARN of female rats.
Collapse
Affiliation(s)
- Elce C C Rebouças
- a Department of Natural Sciences , State University of Southwest of Bahia , Bahia , Brazil.,b Faculty of Medicine, Department of Anatomy , University of Porto , Porto , Portugal.,c Faculty of Medicine, Center for Health Technology and Services Research (CINTESIS) , University of Porto , Porto , Portugal
| | - Sandra Leal
- b Faculty of Medicine, Department of Anatomy , University of Porto , Porto , Portugal.,c Faculty of Medicine, Center for Health Technology and Services Research (CINTESIS) , University of Porto , Porto , Portugal.,d Department of Sciences , Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS) , Advanced Institute of Health Sciences-North (ISCS-N), CESPU, CRL , Gandra , Portugal
| | - Susana I Sá
- b Faculty of Medicine, Department of Anatomy , University of Porto , Porto , Portugal.,c Faculty of Medicine, Center for Health Technology and Services Research (CINTESIS) , University of Porto , Porto , Portugal
| |
Collapse
|