1
|
Zeni ALB, Dalmagro AP, Junges LH, Cavichioli N, Sasse OR. Psidium Exotic and Native Species from Brazil Abolish Depression-like Behavior and Oxidative Stress induced by Corticosterone in Mice. PLANTA MEDICA 2024; 90:1030-1039. [PMID: 39191412 DOI: 10.1055/a-2404-3294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Depression is a highly prevalent neuropsychiatric disorder worldwide. One currently accepted hypothesis of this pathogenesis is the hypothalamic-pituitary-adrenal axis dysfunction, which involves oxidative stress and brain damage. Therefore, antioxidants, such as phenolic compounds, could be used in depression. In this study, we investigated the antidepressant-like and antioxidant effects of an aqueous extract of the leaves of three species of the genus Psidium, Myrtaceae family, in mice. The exotic Psidium guajava L. and the natives Psidium guineense Sw. and Psidium cattleianum Sabine (10, 1, and 0.1 mg/kg, respectively) and fluoxetine (10 mg/kg) were administered orally (p. o.) once daily for 21 days, with or without corticosterone (20 mg/kg). After behavioral assessments (tail suspension, splash, and open-field tests), the hippocampus, prefrontal cortex, liver, kidneys, and plasma were examined to determine the oxidative stress status. The three extracts and fluoxetine treatment decreased the immobility time and counteracted the oxidative stress induced by corticosterone administration. The phenolic compounds identified as major components of the extracts, quercetin in P. guajava and P. guineense and o-coumaric acid in P. cattleianum, may be involved in the biological activities. Therefore, the aqueous leaf extracts of P. guajava, P. cattleianum, and P. guineense could be potential antidepressants helpful in treating depression and other diseases with elevated nitro-oxidative stress.
Collapse
Affiliation(s)
- Ana Lúcia Bertarello Zeni
- Laboratório de Avaliação de Substâncias Bioativas, Departamento de Ciências Naturais, Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
- Programa de Pós-Graduação em Biodiversidade, Departamento de Ciências Naturais, Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
| | - Ana Paula Dalmagro
- Laboratório de Avaliação de Substâncias Bioativas, Departamento de Ciências Naturais, Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
| | - Lucas Henrique Junges
- Laboratório de Avaliação de Substâncias Bioativas, Departamento de Ciências Naturais, Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
| | - Natália Cavichioli
- Laboratório de Avaliação de Substâncias Bioativas, Departamento de Ciências Naturais, Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
| | - Otto Rodolfo Sasse
- Laboratório de Avaliação de Substâncias Bioativas, Departamento de Ciências Naturais, Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
| |
Collapse
|
2
|
Strokotova AV, Sokolov DK, Molodykh OP, Koldysheva EV, Kliver EE, Ushakov VS, Politko MO, Mikhnevich NV, Kazanskaya GM, Aidagulova SV, Grigorieva EV. Prolonged use of temozolomide leads to increased anxiety and decreased content of aggrecan and chondroitin sulfate in brain tissues of aged rats. Biomed Rep 2024; 20:7. [PMID: 38124768 PMCID: PMC10729309 DOI: 10.3892/br.2023.1695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Chemotherapy with temozolomide (TMZ) is an essential part of anticancer therapy used for malignant tumors (mainly melanoma and glioblastoma); however, the long-term effects on patient health and life quality are not fully investigated. Considering that tumors often occur in elderly patients, the present study was conducted on long-term (4 months) treatment of adult Wistar rats (9 months old, n=40) with TMZ and/or dexamethasone (DXM) to investigate potential behavioral impairments or morphological and molecular changes in their brain tissues. According to the elevated plus maze test, long-term use of TMZ affected the anxiety of the adult Wistar rats, although no significant deterioration of brain morphology or cellular composition of the brain tissue was revealed. The expression levels of all studied heparan sulfate (HS) proteoglycans (HSPGs) (syndecan-1, syndecan-3, glypican-1 and HSPG2) and the majority of the studied chondroitin sulfate (CS) proteoglycans (CSPGs) (decorin, biglycan, lumican, brevican, neurocan aggrecan, versican, Cspg4/Ng2, Cspg5 and phosphacan) were not affected by TMZ/DXM, except for neurocan and aggrecan. Aggrecan was the most sensitive proteoglycan to TMZ/DXM treatment demonstrating downregulation of its mRNA and protein levels following TMZ (-10-fold), DXM (-45-fold) and TMZ-DXM (-80-fold) treatment. HS content was not affected by TMZ/DXM treatment, whereas CS content was decreased 1.5-2.5-fold in the TMZ- and DXM-treated brain tissues. Taken together, the results demonstrated that treatment of adult Wistar rats with TMZ had long-term effects on the brain tissues, such as decreased aggrecan core protein levels and CS chain content and increased anxiety of the experimental animals.
Collapse
Affiliation(s)
- Anastasia V. Strokotova
- Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Dmitry K. Sokolov
- Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Olga P. Molodykh
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center for Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Elena V. Koldysheva
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center for Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Evgenii E. Kliver
- Meshalkin National Medical Research Center, Novosibirsk 630055, Russia
- Laboratory of Cellular Biology and Fundamentals of Reproduction, Central Scientific Research Laboratory, Novosibirsk State Medical University, Novosibirsk 630091, Russia
| | - Victor S. Ushakov
- Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Maxim O. Politko
- Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Nadezhda V. Mikhnevich
- Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Galina M. Kazanskaya
- Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Svetlana V. Aidagulova
- Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine, Novosibirsk 630117, Russia
- Laboratory of Cellular Biology and Fundamentals of Reproduction, Central Scientific Research Laboratory, Novosibirsk State Medical University, Novosibirsk 630091, Russia
| | - Elvira V. Grigorieva
- Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| |
Collapse
|
3
|
Patel VK, Vaishnaw A, Shirbhate E, Kore R, Singh V, Veerasamy R, Rajak H. Cortisol as a Target for Treating Mental Disorders: A Promising Avenue for Therapy. Mini Rev Med Chem 2024; 24:588-600. [PMID: 37861053 DOI: 10.2174/0113895575262104230928042150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/19/2023] [Accepted: 08/05/2023] [Indexed: 10/21/2023]
Abstract
Cortisol, commonly known as the "stress hormone," plays a critical role in the body's response to stress. Elevated cortisol levels have been associated with various mental disorders, including anxiety, depression, and post-traumatic stress disorder. Consequently, researchers have explored cortisol modulation as a promising avenue for treating these conditions. However, the availability of research on cortisol as a therapeutic option for mental disorders is limited, and existing studies employ diverse methodologies and outcome measures. This review article aimed to provide insights into different treatment approaches, both pharmacological and non-pharmacological, which can effectively modulate cortisol levels. Pharmacological interventions involve the use of substances, such as somatostatin analogs, dopamine agonists, corticotropin-releasing hormone antagonists, and cortisol synthesis inhibitors. Additionally, non-pharmacological techniques, including cognitivebehavioral therapy, herbs and supplements, transcranial magnetic stimulation, lifestyle changes, and surgery, have been investigated to reduce cortisol levels. The emerging evidence suggests that cortisol modulation could be a promising treatment option for mental disorders. However, more research is needed to fully understand the effectiveness and safety of these therapies.
Collapse
Affiliation(s)
- Vijay K Patel
- Pushpendra College of Pharmacy, Ambikapur, Surguja 497101, (C.G.), India
| | - Aayush Vaishnaw
- Dr. C.V. Raman Institute of Pharmacy, Dr. C.V. Raman University, Bilaspur, C.G. 495113, India
| | - Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidas University, Bilaspur 495 009, (C.G.), India
| | - Rakesh Kore
- Department of Pharmacy, Guru Ghasidas University, Bilaspur 495 009, (C.G.), India
| | - Vaibhav Singh
- Department of Pharmacy, Guru Ghasidas University, Bilaspur 495 009, (C.G.), India
| | - Ravichandran Veerasamy
- Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidas University, Bilaspur 495 009, (C.G.), India
| |
Collapse
|
4
|
de Kloet ER. Glucocorticoid feedback paradox: a homage to Mary Dallman. Stress 2023; 26:2247090. [PMID: 37589046 DOI: 10.1080/10253890.2023.2247090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
As the end product of the hypothalamus-pituitary-adrenal (HPA) axis, the glucocorticoid hormones cortisol and corticosterone coordinate circadian activities, stress-coping, and adaptation to change. For this purpose, the hormone promotes energy metabolism and controls defense reactions in the body and brain. This life-sustaining action exerted by glucocorticoids occurs in concert with the autonomic nervous and immune systems, transmitters, growth factors/cytokines, and neuropeptides. The current contribution will focus on the glucocorticoid feedback paradox in the HPA-axis: the phenomenon that stress responsivity remains resilient if preceded by stress-induced secretion of glucocorticoid hormone, but not if this hormone is previously administered. Furthermore, in animal studies, the mixed progesterone/glucocorticoid antagonist RU486 or mifepristone switches to an apparent partial agonist upon repeated administration. To address these enigmas several interesting phenomena are highlighted. These include the conditional nature of the excitation/inhibition balance in feedback regulation, the role of glucose as a determinant of stress responsivity, and the potential of glucocorticoids in resetting the stress response system. The analysis of the feedback paradox provides also a golden opportunity to review the progress in understanding the role of glucocorticoid hormone in resilience and vulnerability during stress, the science that was burned deeply in Mary Dallman's emotions.
Collapse
Affiliation(s)
- Edo Ronald de Kloet
- Department of Clinical Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Pfalzgraff T, Skov PV. Combined antagonist treatment of glucocorticoid and mineralocorticoid receptor does not affect weight loss of fasting rainbow trout but inhibits a fasting-induced elevation of cortisol secretion. Comp Biochem Physiol A Mol Integr Physiol 2022; 274:111321. [PMID: 36169060 DOI: 10.1016/j.cbpa.2022.111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
The gastrointestinal system of fish reacts rapidly to food deprivation. The relative masses of digestive organs and activities of digestive enzymes decrease within days of fasting. This is believed to be an energy-conserving strategy as the metabolic cost of maintaining digestive capacity is high. Cortisol is known for its role in energy mobilization following stress exposure, and prolonged elevated cortisol levels have been shown to reduce growth rates in fish. Fish experiencing chronic cortisol elevations show structural changes to their digestive tissues and overall reductions in relative digestive tissue masses. In fish fasting for prolonged periods, circulating cortisol levels have been reported to be downregulated, upregulated, or unchanged compared to feeding fish. This study aimed to investigate if RU486 and spironolactone, antagonists of the glucocorticoid receptor (GR), and mineralocorticoid receptor (MR), respectively, alone or in combination affect circulating cortisol levels during prolonged starvation. In addition, we tested the effects of blocking GR and MR, on the down-regulation of relative digestive tissue mass during starvation, and its effects on weight loss. Three treatment groups of rainbow trout were intraperitoneally implanted with either GR, MR, or GR and MR blockers. A fourth group was implanted with cortisol, while a fifth group served as a control. All treatment groups were sampled over a course of four weeks of food deprivation and compared against each other and fed control fish at day 0 of the trial. Starvation for 2 weeks and longer significantly increased circulating cortisol levels in all groups except for the group implanted with GR and MR antagonists. Loss of body mass occurred most rapidly during the first week of starvation. Spironolactone treatment resulted in significantly reduced loss of mass during the first week, however, over the following weeks, no differences in mass loss were observed in the groups implanted with blockers, while cortisol-treated fish showed the highest decrease in body mass over time. Relative digestive tissue mass decreased in all groups but apparently, the fasting-induced elevation in plasma cortisol levels did not affect the relative weight loss of digestive tissues as no differences were observed between control fish and GR + MR antagonist treated fish. Very high cortisol levels caused by cortisol treatment however caused a faster decrease in the relative mass of some digestive organs, particularly the stomach.
Collapse
Affiliation(s)
- Tilo Pfalzgraff
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, 9850 Hirtshals, Denmark.
| | - Peter Vilhelm Skov
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, 9850 Hirtshals, Denmark
| |
Collapse
|
6
|
Buurstede JC, Umeoka EHL, da Silva MS, Krugers HJ, Joëls M, Meijer OC. Application of a pharmacological transcriptome filter identifies a shortlist of mouse glucocorticoid receptor target genes associated with memory consolidation. Neuropharmacology 2022; 216:109186. [PMID: 35835211 DOI: 10.1016/j.neuropharm.2022.109186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
Glucocorticoids regulate memory consolidation, facilitating long-term storage of relevant information to adequately respond to future stressors in similar conditions. This effect of glucocorticoids is well-established and is observed in multiple types of behaviour that depend on various brain regions. By and large, higher glucocorticoid levels strengthen event-related memory, while inhibition of glucocorticoid signalling impairs consolidation. The mechanism underlying this glucocorticoid effect remains unclear, but it likely involves the transcriptional effects of the glucocorticoid receptor (GR). We here used a powerful paradigm to investigate the transcriptional effects of GR in the dorsal hippocampus of mice after training in an auditory fear conditioning task, aiming to identify a shortlist of GR target genes associated to memory consolidation. Therefore, we utilized in an explorative study the properties of selective GR modulators (CORT108297 and CORT118335), alongside the endogenous agonist corticosterone and the classical GR antagonist RU486, to pinpoint GR-dependent transcriptional changes. First, we confirmed that glucocorticoids can modulate memory strength via GR activation. Subsequently, by assessing the specific effects of the available GR-ligands on memory strength, we established a pharmacological filter which we imposed on the hippocampal transcriptome data. This identified a manageable shortlist of eight genes by which glucocorticoids may modulate memory consolidation, warranting in-depth follow-up. Overall, we showcase the strength of the concept of pharmacological transcriptome filtering, which can be readily applied to other research topics with an established role of glucocorticoids.
Collapse
Affiliation(s)
- Jacobus C Buurstede
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Eduardo H L Umeoka
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, SILS-CNS, University of Amsterdam, Amsterdam, the Netherlands; Neuroscience and Behavioural Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcia Santos da Silva
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Harm J Krugers
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, SILS-CNS, University of Amsterdam, Amsterdam, the Netherlands
| | - Marian Joëls
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands; University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
7
|
The infralimbic mineralocorticoid blockage prevents the stress-induced impairment of aversive memory extinction in rats. Transl Psychiatry 2022; 12:343. [PMID: 35999226 PMCID: PMC9399104 DOI: 10.1038/s41398-022-02118-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Individuals deal with adversity and return to a normal lifestyle when adversity ends. Nevertheless, in specific cases, traumas may be preceded by memory distortions in stress-related malaises, and memory extinction impairment is strictly associated with the symptoms of post-traumatic stress disorder. Glucocorticoids (GCs), the central stress mediator, target mineralocorticoid (MR) and glucocorticoid (GR) receptors and coordinate stress responses. Despite MRs being present in brain regions essential to cognition, emotions, and initial stress processing, such as the medial prefrontal cortex (mPFC), most studies attempt to elucidate the stress-induced deleterious actions of GCs via GR. Therefore, it is necessary to understand the relationship between stress, infralimbic mPFC (IL), and memory and how MR-mediated intracellular signaling influences this relationship and modulates memory extinction. We observed that acutely restraint-stressed male Wistar rats showed high corticosterone (CORT) levels, and previous intra-IL-spironolactone administration (a selective MR antagonist) decreased it 60 min after the stress started. Intra-IL-CORT118335, a novel mixed MR/GR selective modulator, increased CORT throughout stress exposure. Ten days after stress, all rats increased freezing in the memory retrieval test and acquired the aversive contextual memory. During the extinction test, intra-IL injection of spironolactone, but not CORT118335, prevented the stress-impaired memory extinction, suggesting that the IL-MR activity controls CORT concentration, and it is crucial to the establishment of late extinction impairment. Also, the concomitant GR full activation overrode MR blockage. It increased CORT levels leading to the stress-induced extinction memory impairment, reinforcing that the MR/GR balance is crucial to predicting stress-induced behavioral outcomes.
Collapse
|
8
|
Nayana J, Shankaranarayana Rao BS, Srikumar BN. Mifepristone's effects on depression- and anxiety-like behavior in rodents. Steroids 2022; 184:109058. [PMID: 35679911 DOI: 10.1016/j.steroids.2022.109058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/17/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
Mifepristone is a non-selective progesterone (PR), glucocorticoid (GR), and androgen receptor (AR) antagonist with antidepressant and anxiolytic effects. The dose and duration of mifepristone administration vary in rodent preclinical studies to evaluate depression-like and anxiety-like behavior. This review summarizes the findings so far and attempts to reconcile some of the differences in the results. While a few studies assessed basal depression- and anxiety-like behavior, several studies have used mifepristone in conjunction with stress, corticosterone/dexamethasone (after adrenalectomy), or progesterone administration. The effect of mifepristone on depression-like behavior appears to depend not only on the dose and duration of administration but also on the intensity or type of stress. In addition, the anxiolytic effects may depend on the species and strain of the experimental animals. More reports assess antidepressant-like or anxiolytic-like effects following acute than chronic administration. These effects are dependent on the paradigms and the nature of stressors. Most mifepristone studies implicate the role of GRs, yet only two reports have confirmed its role using a genetic approach, whereas none implicate the role of PRs/ARs. There are several novel selective GR antagonists whose effects on depression- and anxiety-like behavior are yet to be studied. Future studies could aim to confirm the role of GRs and evaluate the contribution of PRs/ARs to the effects of mifepristone. Such studies will contribute to a better understanding of depression, anxiety, and other mood disorders and develop novel strategies, particularly for treatment-resistant conditions.
Collapse
Affiliation(s)
- J Nayana
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India
| | - B N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India.
| |
Collapse
|
9
|
Clarisse D, Deng L, de Bosscher K, Lother A. Approaches towards tissue-selective pharmacology of the mineralocorticoid receptor. Br J Pharmacol 2021; 179:3235-3249. [PMID: 34698367 DOI: 10.1111/bph.15719] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/23/2021] [Accepted: 10/10/2021] [Indexed: 11/29/2022] Open
Abstract
Mineralocorticoid receptor antagonists (MRAs) are highly effective therapies for cardiovascular and renal disease. However, the widespread clinical use of currently available MRAs in cardiorenal medicine is hampered by an increased risk of hyperkalemia. The mineralocorticoid receptor (MR) is a nuclear receptor responsible for fluid and electrolyte homeostasis in epithelial tissues, whereas pathophysiological MR activation in nonepithelial tissues leads to undesirable pro-inflammatory and pro-fibrotic effects. Therefore, new strategies that selectively target the deleterious effects of MR but spare its physiological function are needed. In this review, we discuss recent pharmacological developments starting from novel non-steroidal MRAs that are now entering clinical use, such as finerenone or esaxerenone, to concepts arising from the current knowledge of the MR signaling pathway, aiming at receptor-coregulator interaction, epigenetics, or downstream effectors of MR.
Collapse
Affiliation(s)
- Dorien Clarisse
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Lisa Deng
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karolien de Bosscher
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiology and Angiology I, University Heart Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Ding H, Cui SY, Cui XY, Liu YT, Hu X, Zhao HL, Qin Y, Kurban N, Zhang YH. Anti-stress effects of combined block of glucocorticoid and mineralocorticoid receptors in the paraventricular nucleus of the hypothalamus. Br J Pharmacol 2021; 178:3696-3707. [PMID: 33908038 DOI: 10.1111/bph.15511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Mineralocorticoid receptors (MRs), glucocorticoid receptors (GRs) and corticotropin-releasing factor (CRF) in the paraventricular nucleus of hypothalamus (PVN) are involved in the response to stress. The present study investigated the role of GRs and MRs in the PVN in regulating depressive and anxiety-like behaviours. EXPERIMENTAL APPROACH To model chronic stress, rats were exposed to corticosterone treatment via drinking water for 21 days, and GR antagonist RU486 and MR antagonist spironolactone, alone and combined, were directly injected in the PVN daily for the last 7 days of corticosterone treatment. Behavioural tests were run on days 22 and 23. Depressive- and anxiety-like behaviours were evaluated in forced swim test, sucrose preference test, novelty-suppressed feeding test and social interaction test. The expression of GRs, MRs and CRF were detected by western blot. KEY RESULTS Rats exposed to corticosterone exhibited depressive- and anxiety-like behaviours. The expression of GRs and MRs decreased, and CRF levels increased in the PVN. The intra-PVN administration of RU486 increased the levels of GRs and CRF without influencing depressive- or anxiety-like behaviours. The spironolactone-treated group exhibited an increase in MRs without influencing GRs and CRF in the PVN and improved anxiety-like behaviours. Interestingly, the intra-PVN administration of RU486 and spironolactone combined restored expression of GRs, MRs and CRF and improved depressive- and anxiety-like behaviours. CONCLUSION AND IMPLICATIONS In this rat model of stress, the simultaneous restoration of GRs, MRs and CRF in the PVN might play an important role in the treatment of depression and anxiety.
Collapse
Affiliation(s)
- Hui Ding
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Su-Ying Cui
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Xiang-Yu Cui
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Yu-Tong Liu
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Xiao Hu
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Hui-Ling Zhao
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Yu Qin
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Nurhumar Kurban
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Yong-He Zhang
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| |
Collapse
|
11
|
McGinn MA, Tunstall BJ, Schlosburg JE, Gregory-Flores A, George O, de Guglielmo G, Mason BJ, Hunt HJ, Koob GF, Vendruscolo LF. Glucocorticoid receptor modulators decrease alcohol self-administration in male rats. Neuropharmacology 2021; 188:108510. [PMID: 33647278 PMCID: PMC8099171 DOI: 10.1016/j.neuropharm.2021.108510] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 02/09/2023]
Abstract
Alcohol use disorder (AUD) is associated with the dysregulation of brain stress and reward systems, including glucocorticoid receptors (GRs). The mixed glucocorticoid/progesterone receptor antagonist mifepristone and selective GR antagonist CORT113176 have been shown to selectively reduce alcohol consumption in alcohol-dependent rats. Mifepristone has also been shown to decrease alcohol consumption and craving for alcohol in humans with AUD. The present study tested the effects of the GR modulators CORT118335, CORT122928, CORT108297, and CORT125134 on alcohol self-administration in nondependent (air-exposed) and alcohol-dependent (alcohol vapor-exposed) adult male rats. Different GR modulators recruit different GR-associated transcriptional cofactors. Thus, we hypothesized that these GR modulators would vary in their effects on alcohol drinking. CORT118335, CORT122928, and CORT125134 significantly reduced alcohol self-administration in both alcohol-dependent and nondependent rats. CORT108297 had no effect on alcohol self-administration in either group. The present results support the potential of GR modulators for the development of treatments for AUD. Future studies that characterize genomic and nongenomic effects of these GR modulators will elucidate potential molecular mechanisms that underlie alcohol drinking in alcohol-dependent and nondependent states.
Collapse
Affiliation(s)
- M Adrienne McGinn
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | - Brendan J Tunstall
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, USA
| | - Joel E Schlosburg
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Olivier George
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Giordano de Guglielmo
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Barbara J Mason
- Department of Molecular Medicine and Pearson Center for Alcoholism and Addiction Research, The Scripps Research Institute, La Jolla, CA, USA
| | | | - George F Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
12
|
Nguyen ET, Selmanovic D, Maltry M, Morano R, Franco-Villanueva A, Estrada CM, Solomon MB. Endocrine stress responsivity and social memory in 3xTg-AD female and male mice: A tale of two experiments. Horm Behav 2020; 126:104852. [PMID: 32949555 DOI: 10.1016/j.yhbeh.2020.104852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022]
Abstract
Stress confers risk for the development and progression of Alzheimer's disease (AD). Relative to men, women are disproportionately more likely to be diagnosed with this neurodegenerative disease. We hypothesized that sex differences in endocrine stress responsiveness may be a factor in this statistic. To test this hypothesis, we assessed basal and stress-induced corticosterone, social recognition, and coat state deterioration (surrogate for depression-like behavior) in male and female 3xTg-AD mice. Prior to reported amyloid plaque deposition, 3xTg females (4 months), but not 3xTg males, had heightened corticosterone responses to restraint exposure. Subsequently, only 3xTg females (6 months) displayed deficits in social memory concomitant with prominent β-amyloid (Aβ) immunostaining. These data suggest that elevated corticosterone stress responses may precede cognitive impairments in genetically vulnerable females. 3xTg mice of both sexes exhibited coat state deterioration relative to same-sex controls. Corticolimbic glucocorticoid receptor (GR) dysfunction is associated with glucocorticoid hypersecretion and cognitive impairment. Our findings indicate sex- and brain-region specific effects of genotype on hippocampal and amygdala GR protein expression. Because olfactory deficits may impede social recognition, in Experiment 2, we assessed olfaction and found no differences between genotypes. Notably, in this cohort, heightened corticosterone stress responses in 3xTg females was not accompanied by social memory deficits or coat state deterioration. However, coat state deterioration was consistent in 3xTg males. We report consistent heightened stress-induced corticosterone levels and Aβ pathology in female 3xTg-AD mice. However, the behavioral findings illuminate unknown inconsistencies in certain phenotypes in this AD mouse model.
Collapse
Affiliation(s)
- Elizabeth T Nguyen
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA; Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Din Selmanovic
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Marissa Maltry
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Rachel Morano
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Ana Franco-Villanueva
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Christina M Estrada
- Experimental Psychology Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| | - Matia B Solomon
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA; Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Experimental Psychology Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
13
|
Kim HR, Lee YJ, Kim TW, Lim RN, Hwang DY, Moffat JJ, Kim S, Seo JW, Ka M. Asparagus cochinchinensis extract ameliorates menopausal depression in ovariectomized rats under chronic unpredictable mild stress. BMC Complement Med Ther 2020; 20:325. [PMID: 33109198 PMCID: PMC7590795 DOI: 10.1186/s12906-020-03121-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Depression is a serious and common psychiatric disorder generally affecting more women than men. A woman's risk of developing depression increases steadily with age, and higher incidence is associated with the onset of menopause. Here we evaluated the antidepressant properties of Asparagus cochinchinensis (AC) extract and investigated its underlying mechanisms in a rat menopausal depression model. METHODS To model this menopausal depression, we induced a menopause-like state in rats via ovariectomy and exposed them to chronic unpredictable mild stress (CUMS) for 6 weeks, which promotes the development of depression-like symptoms. During the final 4 weeks of CUMS, rats were treated with either AC extract (1000 or 2000 mg/kg, PO), which has been reported to provide antidepressant effects, or with the tricyclic antidepressant imipramine (10 mg/kg, IP). RESULTS We report that CUMS promotes depression-like behavior and significantly increases serum corticosterone and inflammatory cytokine levels in the serum of ovariectomized (OVX) rats. We also found that CUMS decreases the expression of brain-derived neurotrophic factor (BDNF) and its primary receptor, tropomyosin receptor kinase B (TrkB), in OVX rats, and treatment with AC extract rescues both BDNF and TrkB expression levels. CONCLUSION These results suggest that AC extract exerts antidepressant effects, possibly via modulation of the BDNF-TrkB pathway, in a rat model of menopausal depression.
Collapse
Affiliation(s)
- Hye Ryeong Kim
- Pharmacology and Drug Abuse Research Group, Research Center for Convergence Toxicology, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea.,Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea.,Laboratory Animal Center, Korea Brain Research Institute, Daegu, 61062, Republic of Korea
| | - Young-Ju Lee
- Pharmacology and Drug Abuse Research Group, Research Center for Convergence Toxicology, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Tae-Wan Kim
- Pharmacology and Drug Abuse Research Group, Research Center for Convergence Toxicology, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Ri-Na Lim
- Pharmacology and Drug Abuse Research Group, Research Center for Convergence Toxicology, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Jeffrey J Moffat
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Soonil Kim
- Olmanfood Co., Ltd, Seoul, 03709, Republic of Korea
| | - Joung-Wook Seo
- Pharmacology and Drug Abuse Research Group, Research Center for Convergence Toxicology, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea.
| | - Minhan Ka
- Pharmacology and Drug Abuse Research Group, Research Center for Convergence Toxicology, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
14
|
Woods-Burnham L, Stiel L, Martinez SR, Sanchez-Hernandez ES, Ruckle HC, Almaguel FG, Stern MC, Roberts LR, Williams DR, Montgomery S, Casiano CA. Psychosocial Stress, Glucocorticoid Signaling, and Prostate Cancer Health Disparities in African American Men. CANCER HEALTH DISPARITIES 2020; 4:https://companyofscientists.com/index.php/chd/article/view/169/188. [PMID: 35252767 PMCID: PMC8896511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent advances in our understanding of racial disparities in prostate cancer (PCa) incidence and mortality that disproportionately affect African American (AA) men have provided important insights into the psychosocial, socioeconomic, environmental, and molecular contributors. There is, however, limited mechanistic knowledge of how the interplay between these determinants influences prostate tumor aggressiveness in AA men and other men of African ancestry. Growing evidence indicates that chronic psychosocial stress in AA populations leads to sustained glucocorticoid signaling through the glucocorticoid receptor (GR), with negative physiological and pathological consequences. Compelling evidence indicates that treatment of castration-resistant prostate cancer (CRPC) with anti-androgen therapy activates GR signaling. This enhanced GR signaling bypasses androgen receptor (AR) signaling and transcriptionally activates both AR-target genes and GR-target genes, resulting in increased prostate tumor resistance to anti-androgen therapy, chemotherapy, and radiotherapy. Given its enhanced signaling in AA men, GR-together with specific genetic drivers-may promote CRPC progression and exacerbate tumor aggressiveness in this population, potentially contributing to PCa mortality disparities. Ongoing and future CRPC clinical trials that combine standard of care therapies with GR modulators should assess racial differences in therapy response and clinical outcomes in order to improve PCa health disparities that continue to exist for AA men.
Collapse
Affiliation(s)
- Leanne Woods-Burnham
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Laura Stiel
- Loma Linda University School of Behavioral Health, Loma Linda, CA, USA
| | - Shannalee R. Martinez
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Evelyn S. Sanchez-Hernandez
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Herbert C. Ruckle
- Department of Surgical Urology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Frankis G. Almaguel
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Loma Linda University Cancer Center, Loma Linda, CA, USA
| | - Mariana C. Stern
- Departments of Preventive Medicine and Urology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Lisa R. Roberts
- Loma Linda University School of Nursing, Loma Linda, CA, USA
| | - David R. Williams
- Department of Social and Behavioral Sciences, Harvard University School of Public Health
| | - Susanne Montgomery
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Loma Linda University School of Behavioral Health, Loma Linda, CA, USA
| | - Carlos A. Casiano
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
15
|
Silkis IG. The Possible Mechanism of the Appearance of Nightmares in Post-Traumatic Stress Disorder and Approaches to Their Prevention. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419030127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
16
|
Abstract
It is a generally accepted observation that individuals act differently under stress. Recent task-based neuroimaging studies have shown that individuals under stress favor the intuitive and fast system over the deliberative and reflective system. In the present study, using a within-subjects design in thirty young adults, we examined whether and how acute social stress impacts regional neural activity in resting state. The results showed that stress induced lower coherence regional homogeneity (Cohe-ReHo) values in left hippocampus and right superior frontal gyrus, both of which are regions associated with deliberative decision making. Stress-induced cortisol change was significantly and positively correlated with the change in Cohe-ReHo value in the right midbrain, a region involved in habitual decision making. These results extend previous findings by demonstrating that stress modulates local synchrony in brain regions implicated in deliberative and intuitive decision making. Our findings might be useful in understanding the neural mechanisms underlying stress-related mental disorders.
Collapse
Affiliation(s)
- Jingjing Chang
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Rongjun Yu
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China.
- Department of Psychology, National University of Singapore, 9 Arts Link, Singapore, 117570, Singapore.
| |
Collapse
|
17
|
Antidepressants upregulate c-Fos expression in the lateral entorhinal cortex and hippocampal dorsal subiculum: Study in rats. Brain Res Bull 2019; 153:102-108. [DOI: 10.1016/j.brainresbull.2019.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022]
|
18
|
Chang J, Yu R. Hippocampal connectivity in the aftermath of acute social stress. Neurobiol Stress 2019; 11:100195. [PMID: 31832509 PMCID: PMC6889252 DOI: 10.1016/j.ynstr.2019.100195] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/06/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
The hippocampus is a core brain region that responds to stress. Previous studies have found a dysconnectivity between hippocampus and other brain regions under acute and chronic stress. However, whether and how acute social stress influences the directed connectivity patterns from and to the hippocampus remains unclear. In this study, using a within-subject design and Granger causal analysis (GCA), we investigated the alterations of resting state effective connectivity from and to hippocampal subregions after an acute social stressor (the Trier Social Stress Test). Participants were engaged in stress and control conditions spaced approximately one month apart. Our findings showed that stress altered the information flows in the thalamus-hippocampus-insula/midbrain circuit. The changes in this circuit could also predict with high accuracy the stress and control conditions at the subject level. These hippocampus-related brain networks have been documented to be involved in emotional information processing and storage, as well as habitual responses. We speculate that alterations of the effective connectivity between these brain regions may be associated with the registering and encoding of threatening stimuli under stress. Our investigation of hippocampal functional connectivity at a subregional level may help elucidate the functional neurobiology of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Jingjing Chang
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Rongjun Yu
- Department of Psychology, National University of Singapore, Singapore
| |
Collapse
|
19
|
Williams S, Ghosh C. Neurovascular glucocorticoid receptors and glucocorticoids: implications in health, neurological disorders and drug therapy. Drug Discov Today 2019; 25:89-106. [PMID: 31541713 DOI: 10.1016/j.drudis.2019.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/12/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
Abstract
Glucocorticoid receptors (GRs) are ubiquitous transcription factors widely studied for their role in controlling events related to inflammation, stress and homeostasis. Recently, GRs have reemerged as crucial targets of investigation in neurological disorders, with a focus on pharmacological strategies to direct complex mechanistic GR regulation and improve therapy. In the brain, GRs control functions necessary for neurovascular integrity, including responses to stress, neurological changes mediated by the hypothalamic-pituitary-adrenal axis and brain-specific responses to corticosteroids. Therefore, this review will examine GR regulation at the neurovascular interface in normal and pathological conditions, pharmacological GR modulation and glucocorticoid insensitivity in neurological disorders.
Collapse
Affiliation(s)
- Sherice Williams
- Brain Physiology Laboratory/Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chaitali Ghosh
- Brain Physiology Laboratory/Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine and Biomedical Engineering at Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
20
|
Nguyen ET, Berman S, Streicher J, Estrada CM, Caldwell JL, Ghisays V, Ulrich-Lai Y, Solomon MB. Effects of combined glucocorticoid/mineralocorticoid receptor modulation (CORT118335) on energy balance, adiposity, and lipid metabolism in male rats. Am J Physiol Endocrinol Metab 2019; 317:E337-E349. [PMID: 31112405 DOI: 10.1152/ajpendo.00018.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Psychological stress and excess glucocorticoids are associated with metabolic and cardiovascular diseases. Glucocorticoids act primarily through mineralocorticoid (MR) and glucocorticoid receptors (GR), and compounds modulating these receptors show promise in mitigating metabolic and cardiovascular-related phenotypes. CORT118335 (GR/MR modulator) prevents high-fat diet-induced weight gain and adiposity in mice, but the ability of this compound to reverse obesity-related symptoms is unknown. Adult male rats were subcutaneously administered CORT118335 (3, 10, or 30 mg/kg) or vehicle once daily. A 5-day treatment with CORT118335 at 30 mg/kg induced weight loss in rats fed a chow diet by decreasing food intake. However, lower doses of the compound attenuated body weight gain primarily because of decreased calorific efficiency, as there were no significant differences in food intake compared with vehicle. Notably, the body weight effects of CORT118335 persisted during a 2-wk treatment hiatus, suggesting prolonged effects of the compound. To our knowledge, we are the first to demonstrate a sustained effect of combined GR/MR modulation on body weight gain. These findings suggest that CORT118335 may have long-lasting effects, likely due to GR/MR-induced transcriptional changes. Prolonged (18 days) treatment of CORT118335 (10 mg/kg) reversed body weight gain and adiposity in animals fed a high-fat diet for 13 wk. Surprisingly, this occurred despite a worsening of the lipid profile and glucose homeostasis as well as a disrupted diurnal corticosterone rhythm, suggesting GR agonistic effects in the periphery. We conclude that species and tissue-specific targeting may result in promising leads for exploiting the metabolically beneficial aspects of GR/MR modulation.
Collapse
Affiliation(s)
- Elizabeth T Nguyen
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sarah Berman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio
| | - Joshua Streicher
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio
| | - Christina M Estrada
- Experimental Psychology Graduate Program, University of Cincinnati, Cincinnati, Ohio
| | - Jody L Caldwell
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio
| | - Valentina Ghisays
- Experimental Psychology Graduate Program, University of Cincinnati, Cincinnati, Ohio
| | - Yvonne Ulrich-Lai
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Matia B Solomon
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
21
|
High dose of dexamethasone protects against EAE-induced motor deficits but impairs learning/memory in C57BL/6 mice. Sci Rep 2019; 9:6673. [PMID: 31040362 PMCID: PMC6491620 DOI: 10.1038/s41598-019-43217-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/17/2019] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune and neuroinflammatory disease characterized by demyelination of the Central Nervous System. Immune cells activation and release of pro-inflammatory cytokines play a crucial role in the disease modulation, decisively contributing to the neurodegeneration observed in MS and the experimental autoimmune encephalomyelitis (EAE), the widely used MS animal model. Synthetic glucocorticoids, commonly used to treat the MS attacks, have controversial effects on neuroinflammation and cognition. We sought to verify the influence of dexamethasone (DEX) on the EAE progression and on EAE-induced cognitive deficits. In myelin oligodendrocyte glycoprotein peptide (MOG35-55)-induced EAE female mice, treated once with DEX (50 mg/kg) or not, on the day of immunization, DEX decreased EAE-induced motor clinical scores, infiltrating cells in the spinal cord and delayed serum corticosterone peak. At the asymptomatic phase (8-day post-immunization), DEX did not protected from the EAE-induced memory consolidation deficits, which were accompanied by increased glucocorticoid receptor (GR) activity and decreased EGR-1 expression in the hippocampus. Blunting hippocampal GR genomic activation with DnGR vectors prevented DEX effects on EAE-induced memory impairment. These data suggest that, although DEX improves clinical signs, it decreases cognitive and memory capacity by diminishing neuronal activity and potentiating some aspects of neuroinflammation in EAE.
Collapse
|
22
|
Lutein prevents corticosterone-induced depressive-like behavior in mice with the involvement of antioxidant and neuroprotective activities. Pharmacol Biochem Behav 2019; 179:63-72. [DOI: 10.1016/j.pbb.2019.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 01/14/2023]
|
23
|
Dalm S, Karssen AM, Meijer OC, Belanoff JK, de Kloet ER. Resetting the Stress System with a Mifepristone Challenge. Cell Mol Neurobiol 2018; 39:503-522. [PMID: 30173378 PMCID: PMC6469632 DOI: 10.1007/s10571-018-0614-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/18/2018] [Indexed: 12/20/2022]
Abstract
Psychotic depression is characterized by elevated circulating cortisol, and high daily doses of the glucocorticoid/progesterone antagonist mifepristone for 1 week are required for significant improvement. Using a rodent model, we find that such high doses of mifepristone are needed because the antagonist is rapidly degraded and poorly penetrates the blood–brain barrier, but seems to facilitate the entry of cortisol. We also report that in male C57BL/6J mice, after a 7-day treatment with a high dose of mifepristone, basal blood corticosterone levels were similar to that of vehicle controls. This is surprising because after the first mifepristone challenge, corticosterone remained elevated for about 16 h, and then decreased towards vehicle control levels at 24 h. At that time, stress-induced corticosterone levels of the 1xMIF were sevenfold higher than the 7xMIF group, the latter response being twofold lower than controls. The 1xMIF mice showed behavioral hyperactivity during exploration of the circular hole board, while the 7xMIF mice rather engaged in serial search patterns. To explain this rapid reset of corticosterone secretion upon recurrent mifepristone administration, we suggest the following: (i) A rebound glucocorticoid feedback after cessation of mifepristone treatment. (ii) Glucocorticoid agonism in transrepression and recruitment of cell-specific coregulator cocktails. (iii) A more prominent role of brain MR function in control of stress circuit activity. An overview table of neuroendocrine MIF effects is provided. The data are of interest for understanding the mechanistic underpinning of stress system reset as treatment strategy for stress-related diseases.
Collapse
Affiliation(s)
- Sergiu Dalm
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research and Leiden University Medical Center, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Adriaan M Karssen
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research and Leiden University Medical Center, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Onno C Meijer
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research and Leiden University Medical Center, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands.,Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Room C-7-44, Postal zone C7-Q, PO Box 9600, Leiden, The Netherlands
| | | | - E Ronald de Kloet
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research and Leiden University Medical Center, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands. .,Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Room C-7-44, Postal zone C7-Q, PO Box 9600, Leiden, The Netherlands.
| |
Collapse
|
24
|
Gao JY, Chen Y, Su DY, Marshall C, Xiao M. Depressive- and anxiety-like phenotypes in young adult APP Swe/PS1 dE9 transgenic mice with insensitivity to chronic mild stress. Behav Brain Res 2018; 353:114-123. [PMID: 30012417 DOI: 10.1016/j.bbr.2018.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023]
Abstract
Early Alzheimer's disease (AD) and depression share many symptoms, but the underlying mechanisms are not clear. Therefore, characterizing the shared and different biological changes between the two disorders will be helpful in making an early diagnosis and planning treatment. In the present study, 8-week-old APPSwe/PS1dE9 transgenic mice received chronic mild stress (CMS) for 8 weeks followed by a series of behavioral, biochemical and pathological analyses. APPSwe/PS1dE9 mice showed depressive- and anxiety-like behaviors, and reduced sociability, accompanied by high levels of soluble beta-amyloid, glial activation, neuroinflammation and brain derived neurotrophic factor signaling disturbance in the hippocampus. Notably, APPSwe/PS1dE9 mice exposure to CMS partially aggravated anxiety-like states rather than depressive-like responses and sociability deficits, with further elevated hippocampal interleukin-6 and tumor necrosis factor-α levels. These results demonstrated that young adult APPSwe/PS1dE9 have depressive- and anxiety-like phenotypes that were resistant to CMS compared to wild-type mice. This finding may help to understand the pathogenic mechanism of psychiatric symptoms associated with early AD.
Collapse
Affiliation(s)
- Jun-Ying Gao
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China; Key Laboratory for Aging &Disease, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Chen
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dong-Yuan Su
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Charles Marshall
- Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY, United States
| | - Ming Xiao
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China; Key Laboratory for Aging &Disease, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
25
|
Almeida FB, Fonseca AR, Heidrich N, Nin MS, Barros HMT. The effect of intracerebroventricular allopregnanolone on depressive-like behaviors of rats selectively bred for high and low immobility in the forced swim test. Physiol Behav 2018; 194:246-251. [PMID: 29906470 DOI: 10.1016/j.physbeh.2018.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/31/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022]
Abstract
Depression is a highly incapacitating disorder known to have a multifactorial etiology, including a hereditary genetic background. The neurosteroid allopregnanolone (ALLO) is a positive allosteric modulator of the GABAA receptor and has been shown to have an antidepressant-like effect in animals. This study aimed to assess the behavioral effect of ALLO in animals with different backgrounds of depressive-like activity. An initial population (F0) of male and female Wistar rats was screened for immobility behavior utilizing the Forced Swim Test (FST). Rats with extreme immobility scores were selected for either the High Immobility (HI) group or the Low Immobility (LI) group for breeding, giving origin to the subsequent generations F1 and F2. Guide cannulas were implanted in the lateral ventricle of F2 males for intracerebroventricular infusions of 5 μg/rat of ALLO, 5 μg/rat of imipramine (IMI) or vehicle (CTR), which occurred 24, 5 and 1 h prior to the test session of the drug FST. In the pre-drug FST, a statistically significant difference was observed between the immobility scores from the HI and LI groups of F2 rats. HI rats from F2 also showed significantly higher immobility time when compared to F0. In these HI animals, both IMI and ALLO significantly reduced immobility when compared to the CTR group. IMI-treated rats also showed lower immobility than the ALLO group. In the LI rats, no difference in immobility was found between treatments. In conclusion, two strains of rats with significantly different immobility profiles in the FST were obtained in a relatively short time, after only two generations. Infusions of both ALLO and IMI showed a strain-dependent antidepressant-like effect, being detected in the HI animals but not in the LI animals, which is in line with the clinical understanding that antidepressants have higher efficacy in more severe forms of depression.
Collapse
Affiliation(s)
- Felipe Borges Almeida
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil; Departamento de Farmacociências, Laboratório de Neuropsicofarmacologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil.
| | - Alan Rios Fonseca
- Departamento de Farmacociências, Laboratório de Neuropsicofarmacologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil
| | - Núbia Heidrich
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil; Departamento de Farmacociências, Laboratório de Neuropsicofarmacologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil
| | - Maurício Schüler Nin
- Departamento de Farmacociências, Laboratório de Neuropsicofarmacologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil; Curso de Farmácia, Centro Universitário Metodista do IPA, Rua Coronel Joaquim Pedro Salgado 80, 90420-060 Porto Alegre, RS, Brazil
| | - Helena Maria Tannhauser Barros
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil; Departamento de Farmacociências, Laboratório de Neuropsicofarmacologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil
| |
Collapse
|
26
|
Wang JM, Pei LX, Zhang YY, Cheng YX, Niu CL, Cui Y, Feng WS, Wang GF. Ethanol extract of Rehmannia glutinosa exerts antidepressant-like effects on a rat chronic unpredictable mild stress model by involving monoamines and BDNF. Metab Brain Dis 2018; 33:885-892. [PMID: 29468477 DOI: 10.1007/s11011-018-0202-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/15/2018] [Indexed: 12/14/2022]
Abstract
The dried roots of Rehmannia glutinosa Libosch. (Scrophulariaceae) are of both medicinal and nutritional importance. Our previous study has found that the 80% ethanol extract of R. glutinosa (RGEE) produced antidepressant-like activities in mouse behavioral despair depression models. However, its mechanisms are still unclear. The present study aimed to observe the antidepressant-like mechanisms of RGEE on a rat chronic unpredictable mild stress (CUMS) model by involving monoaminergic neurotransmitters and brain-derived neurotrophic factor (BDNF). CUMS-stressed rats were orally given RGEE daily (150, 300, and 600 mg/kg) or fluoxetine hydrochloride (FH) for 3 weeks after starting the CUMS procedure. Sucrose preference test was carried out to observe depression-like behavior, and serum and brain tissues were used for neurochemical and fluorescent quantitative reverse transcription PCR analysis. Results demonstrated that CUMS induced depression-like behavior, whereas RGEE and FH administration inhibited this symptom. Furthermore, CUMS caused excessively elevated levels of serum corticosterone (CORT), an index of hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, in a manner attenuated by RGEE and FH administration. RGEE administration also further elevated monoamine neurotransmitters and BDNF levels, up-regulated the mRNA expression of BDNF and tropomyosin-related kinase B (TrkB) in hippocampus of rats suffering CUMS. Together, our findings suggest that RGEE can improve CUMS-evoked depression-like behavior, and indicate its mechanisms may partially be associated with restoring HPA axis dysfunctions, enhancing monoamineergic nervous systems, and up-regulating BDNF and TrkB expression.
Collapse
Affiliation(s)
- Jun-Ming Wang
- College of Pharmacy, Henan University of Chinese Medicine, East Jinshui Road & Boxue road, Zhengzhou, 450046, China.
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, China.
| | - Li-Xin Pei
- College of Pharmacy, Henan University of Chinese Medicine, East Jinshui Road & Boxue road, Zhengzhou, 450046, China
| | - Yue-Yue Zhang
- College of Pharmacy, Henan University of Chinese Medicine, East Jinshui Road & Boxue road, Zhengzhou, 450046, China
| | - Yong-Xian Cheng
- Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Chun-Ling Niu
- College of Basic Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ying Cui
- College of Pharmacy, Henan University of Chinese Medicine, East Jinshui Road & Boxue road, Zhengzhou, 450046, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, China
| | - Wei-Sheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, East Jinshui Road & Boxue road, Zhengzhou, 450046, China.
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, China.
| | - Gui-Fang Wang
- College of Pharmacy, Henan University of Chinese Medicine, East Jinshui Road & Boxue road, Zhengzhou, 450046, China
| |
Collapse
|
27
|
Nawaz A, Batool Z, Shazad S, Rafiq S, Afzal A, Haider S. Physical enrichment enhances memory function by regulating stress hormone and brain acetylcholinesterase activity in rats exposed to restraint stress. Life Sci 2018; 207:42-49. [PMID: 29852186 DOI: 10.1016/j.lfs.2018.05.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/21/2018] [Accepted: 05/27/2018] [Indexed: 01/11/2023]
Abstract
To study the effects of stress on mental health activity is of great importance in neuropsychological studies as it may affect the lifelong performance related to brain and overall health and wellbeing of an individual. It is observed very often that exposure to stress during early life can alter the brain function which may reflect as cognitive disability. Impairment of memory is associated with increased oxidative stress which is due to enhanced production of free radicals that may lead to lipid peroxidation and disintegration of cell structure and functions. Exposure to enriched environment has shown to enhance spatial learning and memory, although the underlying mechanism covering the regulation of antioxidant capacity is limited. Here we investigated short and long term memory using Morris water maze before and after giving restraint stress procedure in rats exposed to social and physically enriched environment. Levels of malondialdehyde (MDA), activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and acetylcholinesterase (AChE) in brain tissue were estimated. Plasma corticosterone was also determined after decapitation. Results demonstrated that rats pre-exposed to physical along with social enrichment showed improved short and long term memory as compared to control group. However, restraint stress exerted differential effects in socially and physically enriched groups. Reduced lipid peroxidation and decreased activity of SOD, GPx and AChE were observed in physically enriched rats subjected to stress as compared to stressed rats kept in social environment. Levels of corticosterone were also found to be significantly reduced in rats kept in physically enriched environment. This study shows the beneficial effects of environmental enrichment on learning and spatial memory by reducing oxidative stress via reducing lipid peroxidation and regulation of antioxidant enzymes in rats.
Collapse
Affiliation(s)
- Amber Nawaz
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan; Department of Biomedical Engineering, Sir Syed University of Engineering and Technology, Karachi 75300, Pakistan
| | - Zehra Batool
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sidrah Shazad
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
| | - Sahar Rafiq
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
| | - Asia Afzal
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
| | - Saida Haider
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
28
|
Estrada CM, Ghisays V, Nguyen ET, Caldwell JL, Streicher J, Solomon MB. Estrogen signaling in the medial amygdala decreases emotional stress responses and obesity in ovariectomized rats. Horm Behav 2018; 98:33-44. [PMID: 29248436 DOI: 10.1016/j.yhbeh.2017.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 12/01/2017] [Accepted: 12/09/2017] [Indexed: 12/15/2022]
Abstract
Declining estradiol (E2), as occurs during menopause, increases risk for obesity and psychopathology (i.e., depression, anxiety). E2 modulates mood and energy homeostasis via binding to estrogen receptors (ER) in the brain. The often comorbid and bidirectional relationship between mood and metabolic disorders suggests shared hormonal and/or brain networks. The medial amygdala (MeA) is abundant in ERs and regulates mood, endocrine, and metabolic stress responses; therefore we tested the hypothesis that E2 in the MeA mitigates emotional and metabolic dysfunction in a rodent model of surgical menopause. Adult female rats were ovariectomized (OVX) and received bilateral implants of E2 or cholesterol micropellets aimed at the MeA. E2-MeA decreased anxiety-like (center entries, center time) and depression-like (immobility) behaviors in the open field and forced swim tests (FST), respectively in ovariectomized rats. E2-MeA also prevented hyperphagia, body weight gain, increased visceral adiposity, and glucose intolerance in ovariectomized rats. E2-MeA decreased caloric efficiency, suggestive of increased energy expenditure. E2-MeA also modulated c-Fos neural activity in amygdalar (central and medial) and hypothalamic (paraventricular and arcuate) brain regions that regulate mood and energy homeostasis in response to the FST, a physically demanding task. Given the shared neural circuitry between mood and body weight regulation, c-Fos expression in discrete brain regions in response to the FST may be due to the psychologically stressful and/or metabolic demands of the task. Together, these findings suggest that the MeA is a critical node for mediating estrogenic effects on mood and energy homeostasis.
Collapse
Affiliation(s)
- Christina M Estrada
- Department of Psychology Experimental Psychology Program, University of Cincinnati, Cincinnati, OH 45237, United States
| | - Valentina Ghisays
- Department of Psychology Experimental Psychology Program, University of Cincinnati, Cincinnati, OH 45237, United States
| | - Elizabeth T Nguyen
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45237, United States
| | - Jody L Caldwell
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States
| | - Joshua Streicher
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States
| | - Matia B Solomon
- Department of Psychology Experimental Psychology Program, University of Cincinnati, Cincinnati, OH 45237, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45237, United States; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States.
| |
Collapse
|
29
|
Differential effects of imipramine and CORT118335 (Glucocorticoid receptor modulator/mineralocorticoid receptor antagonist) on brain-endocrine stress responses and depression-like behavior in female rats. Behav Brain Res 2017; 336:99-110. [PMID: 28866130 DOI: 10.1016/j.bbr.2017.08.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022]
Abstract
Depression is commonly associated with hypothalamic-pituitary adrenal (HPA) axis dysfunction that primarily manifests as aberrant glucocorticoid secretion. Glucocorticoids act on Type I mineralocorticoid (MR) and Type II glucocorticoid receptors (GR) to modulate mood and endocrine responses. Successful antidepressant treatment normalizes HPA axis function, in part due to modulatory effects on MR and GR in cortico-limbic structures. Although women are twice as likely to suffer from depression, little is known about how antidepressants modulate brain, endocrine, and behavioral stress responses in females. Here, we assessed the impact of CORT118335 (GR modulator/MR antagonist) and imipramine (tricyclic antidepressant) on neuroendocrine and behavioral responses to restraint or forced swim stress (FST) in female rats (n=10-12/group). Increased immobility CORT118335 in the FST is purported to reflect passive coping or depression-like behavior. CORT118335 dampened adrenocorticotropic hormone (ACTH) and corticosterone responses to the FST, but did not affect immobility. Imipramine suppressed ACTH, but had minimal effects on corticosterone responses to FST. Despite these marginal effects, imipramine decreased immobility, suggesting antidepressant efficacy. In an effort to link brain-endocrine responses with behavior, c-Fos was assessed in HPA axis and mood modulatory regions in response to the FST. CORT118335 upregulated c-Fos expression in the paraventricular nucleus of the hypothalamus. Imipramine decreased c-Fos in the basolateral amygdala and hippocampus (CA1 and CA3), but increased c-Fos in the central amygdala. These data suggest the antidepressant-like (e.g., active coping) properties of imipramine may be due to widespread effects on cortico-limbic circuits that regulate emotional and cognitive processes.
Collapse
|