1
|
Wang W, Liu K, Xu H, Zhang C, Zhang Y, Ding M, Xing C, Huang X, Wen Q, Lu C, Song L. Sleep deprivation induced fat accumulation in the visceral white adipose tissue by suppressing SIRT1/FOXO1/ATGL pathway activation. J Physiol Biochem 2024; 80:561-572. [PMID: 38856814 DOI: 10.1007/s13105-024-01024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/07/2024] [Indexed: 06/11/2024]
Abstract
Sleep is critical for maintaining overall health. Insufficient sleep duration and poor sleep quality are associated with various physical and mental health risks and chronic diseases. To date, plenty of epidemiological research has shown that sleep disorders are associated with the risk of obesity, which is usually featured by the expansion of adipose tissue. However, the underlying mechanism of increased fat accumulation upon sleep disorders remains unclear. Here we demonstrated that sleep deprivation (SD) caused triglycerides (TG) accumulation in the visceral white adipose tissue (vWAT), accompanied by a remarkable decrease in the expression of adipose triglyceride lipase (ATGL) and other two rate-limiting lipolytic enzymes. Due to the key role of ATGL in initiating and controlling lipolysis, we focused on investigating the signaling pathway leading to attenuated ATGL expression in vWAT upon SD in the following study. We observed that ATGL downregulation resulted from the suppression of ATGL transcription, which was mediated by the reduction of the transcriptional factor FOXO1 and its upstream regulator SIRT1 expression in vWAT after SD. Furthermore, impairment of SIRT1/FOXO1/ATGL pathway activation and lipolysis induced by SIRT1 inhibitor EX527 in the 3 T3-L1 adipocytes were efficiently rescued by the SIRT1 activator resveratrol. Most notably, resveratrol administration in SD mice revitalized the SIRT1/FOXO1/ATGL pathway activation and lipid mobilization in vWAT. These findings suggest that targeting the SIRT1/FOXO1/ATGL pathway may offer a promising strategy to mitigate fat accumulation in vWAT and reduce obesity risk associated with sleep disorders.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
- School of Pharmacy, Jiamus University, 258 Xuefu Street, Jiamusi, 154007, China
| | - Kun Liu
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Huan Xu
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
- Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Chongchong Zhang
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
- Henan University Joint National Laboratory for Antibody Drug Engineering, 357 Ximen Road, Kaifeng, 475004, China
| | - Yifan Zhang
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Mengnan Ding
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Chen Xing
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Xin Huang
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Qing Wen
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Chunfeng Lu
- School of Pharmacy, Jiamus University, 258 Xuefu Street, Jiamusi, 154007, China.
- Department of Pharmacology, Huzhou University, 158 Xushi Road, Huzhou, 313002, China.
| | - Lun Song
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China.
- School of Pharmacy, Jiamus University, 258 Xuefu Street, Jiamusi, 154007, China.
- Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
- College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 473007, China.
| |
Collapse
|
2
|
Sun HL, Chen P, Zhang Q, Si TL, Li YZ, Zhu HY, Zhang E, Chen M, Zhang J, Su Z, Cheung T, Ungvari GS, Jackson T, Xiang YT, Xiang M. Prevalence and network analysis of internet addiction, depression and their associations with sleep quality among commercial airline pilots: A national survey in China. J Affect Disord 2024; 356:597-603. [PMID: 38484881 DOI: 10.1016/j.jad.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/28/2024] [Accepted: 03/09/2024] [Indexed: 05/08/2024]
Abstract
OBJECTIVE Airline pilots are members of a unique occupational group that is often confronted with sleep routine disruptions, yet relatively few studies have examined their mental health status. This study assessed the prevalence and network structure of internet addiction, depression and sleep quality problems in commercial airline pilots. METHOD A total of 7055 airline pilots were included in analyses. Internet addiction and depression were measured with the Internet Addiction Test (IAT) and 9-item Patient Health Questionnaire (PHQ-9), respectively. Sleep quality was evaluated using the Pittsburgh Sleep Quality Index (PSQI). The network model was constructed based on an Ising model and its association with sleep quality was evaluated using a flow procedure. RESULTS Internet addiction, depression and sleep quality were common among airline pilots. The prevalence of internet addiction was 8.0 % (95 % CI: 7.3-8.6 %), while the rates of depression and poor sleep quality were 23.3 % (95 % CI: 22.3-24.2 %) and 33.0 % (95 % CI: 31.9-34.1 %), respectively. In the depression and internet addiction network model, "Fatigue" (PHQ4; Expected Influence (EI): 2.04) and "Depressed/moody/nervous only while being offline" (IAT20; EI: 1.76) were most central symptoms while "Fatigue" (PHQ4; Bridge EI: 1.30) was also the most important bridge symptom. The flow network model of sleep quality with internet addiction and depression showed that "Appetite" (PHQ5) had the strongest positive association with poor sleep quality. CONCLUSION Internet addiction, depression and sleep quality were common among airline pilots and warrant regular screening and timely treatment. Strategies to improve sleep hygiene may be useful in preventing onsets or exacerbations in depression and internet addiction among airline pilots.
Collapse
Affiliation(s)
- He-Li Sun
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao, SAR; Centre for Cognitive and Brain Sciences, University of Macau, Macao, SAR.
| | - Pan Chen
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao, SAR; Centre for Cognitive and Brain Sciences, University of Macau, Macao, SAR.
| | - Qinge Zhang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Tong Leong Si
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao, SAR.
| | - Yan-Zhang Li
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao, SAR.
| | - Han-Yu Zhu
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao, SAR.
| | - Erliang Zhang
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
| | - Minzhi Chen
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
| | - Jie Zhang
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhaohui Su
- School of Public Health, Southeast University, Nanjing, China.
| | - Teris Cheung
- School of Nursing, Hong Kong Polytechnic University, Hong Kong, SAR.
| | - Gabor S Ungvari
- Section of Psychiatry, University of Notre Dame Australia, Fremantle, Australia; Division of Psychiatry, School of Medicine, University of Western Australia, Perth, Australia
| | - Todd Jackson
- Department of Psychology, University of Macau, Macao, SAR.
| | - Yu-Tao Xiang
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao, SAR; Centre for Cognitive and Brain Sciences, University of Macau, Macao, SAR.
| | - Mi Xiang
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China; Hainan Branch, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya & School of Public Health, Shanghai, China.
| |
Collapse
|
3
|
Wang Y, Xin M, Li Z, Zang Z, Cui H, Li D, Tian J, Li B. Food-Oral Processing: Current Progress, Future Directions, and Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10725-10736. [PMID: 38686629 DOI: 10.1021/acs.jafc.4c01331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Oral processing refers to the series of physical, chemical, and biological processes inside the oral cavity when we consume food. This process affects the taste, quality, and nutrient absorption of the body. In the human diet, oral processing plays a crucial role because it impacts not only the food flavor and texture but also the absorption and utilization of nutrients. With the progress of science and technology and the increasing demand for food, the study of oral processing has become increasingly important. This paper reviews the history and definition of oral processing, its current state of research, and its applications in food science and technology, focusing on personalized taste customization, protein structure modification, food intake and nutrition, and bionic devices. It also analyzes the impact of oral processing on different types of food products and explores its potential in the food industry and science research.
Collapse
Affiliation(s)
- Yumeng Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| | - Meili Xin
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| | - Zhiying Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| | - Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| | - Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| | - Dongnan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| |
Collapse
|
4
|
Akhlaghi M, Kohanmoo A. Sleep deprivation in development of obesity, effects on appetite regulation, energy metabolism, and dietary choices. Nutr Res Rev 2023:1-21. [PMID: 37905402 DOI: 10.1017/s0954422423000264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Sleep deprivation, which is a decrease in duration and quality of sleep, is a common problem in today's life. Epidemiological and interventional investigations have suggested a link between sleep deprivation and overweight/obesity. Sleep deprivation affects homeostatic and non-homoeostatic regulation of appetite, with the food reward system playing a dominant role. Factors such as sex and weight status affect this regulation; men and individuals with excess weight seem to be more sensitive to reward-driven and hedonistic regulation of food intake. Sleep deprivation may also affect weight through affecting physical activity and energy expenditure. In addition, sleep deprivation influences food selection and eating behaviours, which are mainly managed by the food reward system. Sleep-deprived individuals mostly crave for palatable energy-dense foods and have low desire for fruit and vegetables. Consumption of meals may not change but energy intake from snacks increases. The individuals have more desire for snacks with high sugar and saturated fat content. The relationship between sleep and the diet is mutual, implying that diet and eating behaviours also affect sleep duration and quality. Consuming healthy diets containing fruit and vegetables and food sources of protein and unsaturated fats and low quantities of saturated fat and sugar may be used as a diet strategy to improve sleep. Since the effects of sleep deficiency differ between animals and humans, only evidence from human subject studies has been included, controversies are discussed and the need for future investigations is highlighted.
Collapse
Affiliation(s)
- Masoumeh Akhlaghi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Kohanmoo
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Meyhöfer S, Chamorro R, Hallschmid M, Spyra D, Klinsmann N, Schultes B, Lehnert H, Meyhöfer SM, Wilms B. Late, but Not Early, Night Sleep Loss Compromises Neuroendocrine Appetite Regulation and the Desire for Food. Nutrients 2023; 15:2035. [PMID: 37432152 DOI: 10.3390/nu15092035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 07/12/2023] Open
Abstract
OBJECTIVE There is evidence that reduced sleep duration increases hunger, appetite, and food intake, leading to metabolic diseases, such as type 2 diabetes and obesity. However, the impact of sleep timing, irrespective of its duration and on the regulation of hunger and appetite, is less clear. We aimed to evaluate the impact of sleep loss during the late vs. early part of the night on the regulation of hunger, appetite, and desire for food. METHODS Fifteen normal-weight ([mean ± SEM] body-mass index: 23.3 ± 0.4 kg/m2) healthy men were studied in a randomized, balanced, crossover design, including two conditions of sleep loss, i.e., 4 h sleep during the first night-half ('late-night sleep loss'), 4 h sleep during the second night-half ('early-night sleep loss'), and a control condition with 8h sleep ('regular sleep'), respectively. Feelings of hunger and appetite were assessed through visual analogue scales, and plasma ghrelin and leptin were measured from blood samples taken before, during, and after night-time sleep. RESULTS Ghrelin and feelings of hunger and appetite, as well as the desire for food, were increased after 'late-night sleep loss', but not 'early-night sleep loss', whereas leptin remained unaffected by the timing of sleep loss. CONCLUSIONS Our data indicate that timing of sleep restriction modulates the effects of acute sleep loss on ghrelin and appetite regulation in healthy men. 'Late-night sleep loss' might be a risk factor for metabolic diseases, such as obesity and type 2 diabetes. Thereby, our findings highlight the metabolic relevance of chronobiological sleep timing.
Collapse
Affiliation(s)
- Svenja Meyhöfer
- Institute for Endocrinology and Diabetes, University of Lübeck, 23562 Lübeck, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Department of Internal Medicine 1, Endocrinology & Diabetes, University of Lübeck, 23538 Lübeck, Germany
- Center of Brain, Behavior & Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Rodrigo Chamorro
- Institute for Endocrinology and Diabetes, University of Lübeck, 23562 Lübeck, Germany
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Manfred Hallschmid
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, University of Tübingen (IDM), 72076 Tübingen, Germany
| | - Denisa Spyra
- Institute for Endocrinology and Diabetes, University of Lübeck, 23562 Lübeck, Germany
| | - Nelli Klinsmann
- Institute for Endocrinology and Diabetes, University of Lübeck, 23562 Lübeck, Germany
| | - Bernd Schultes
- Institute for Endocrinology and Diabetes, University of Lübeck, 23562 Lübeck, Germany
| | - Hendrik Lehnert
- Center of Brain, Behavior & Metabolism, University of Lübeck, 23562 Lübeck, Germany
- University of Salzburg, A-5020 Salzburg, Austria
| | - Sebastian M Meyhöfer
- Institute for Endocrinology and Diabetes, University of Lübeck, 23562 Lübeck, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Center of Brain, Behavior & Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Britta Wilms
- Institute for Endocrinology and Diabetes, University of Lübeck, 23562 Lübeck, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Center of Brain, Behavior & Metabolism, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
6
|
Karl JP, Whitney CC, Wilson MA, Fagnant HS, Radcliffe PN, Chakraborty N, Campbell R, Hoke A, Gautam A, Hammamieh R, Smith TJ. Severe, short-term sleep restriction reduces gut microbiota community richness but does not alter intestinal permeability in healthy young men. Sci Rep 2023; 13:213. [PMID: 36604516 PMCID: PMC9816096 DOI: 10.1038/s41598-023-27463-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Sleep restriction alters gut microbiota composition and intestinal barrier function in rodents, but whether similar effects occur in humans is unclear. This study aimed to determine the effects of severe, short-term sleep restriction on gut microbiota composition and intestinal permeability in healthy adults. Fecal microbiota composition, measured by 16S rRNA sequencing, and intestinal permeability were measured in 19 healthy men (mean ± SD; BMI 24.4 ± 2.3 kg/m2, 20 ± 2 years) undergoing three consecutive nights of adequate sleep (AS; 7-9 h sleep/night) and restricted sleep (SR; 2 h sleep/night) in random order with controlled diet and physical activity. α-diversity measured by amplicon sequencing variant (ASV) richness was 21% lower during SR compared to AS (P = 0.03), but α-diversity measured by Shannon and Simpson indexes did not differ between conditions. Relative abundance of a single ASV within the family Ruminococcaceae was the only differentially abundant taxon (q = 0.20). No between-condition differences in intestinal permeability or β-diversity were observed. Findings indicated that severe, short-term sleep restriction reduced richness of the gut microbiota but otherwise minimally impacted community composition and did not affect intestinal permeability in healthy young men.
Collapse
Affiliation(s)
- J. Philip Karl
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA USA
| | - Claire C. Whitney
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA USA
| | - Marques A. Wilson
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA USA
| | - Heather S. Fagnant
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA USA
| | - Patrick N. Radcliffe
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA USA ,grid.410547.30000 0001 1013 9784Oak Ridge Institute of Science and Education, Oak Ridge, TN USA
| | - Nabarun Chakraborty
- grid.507680.c0000 0001 2230 3166Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Ross Campbell
- grid.507680.c0000 0001 2230 3166Geneva Foundation, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Allison Hoke
- grid.507680.c0000 0001 2230 3166Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Aarti Gautam
- grid.507680.c0000 0001 2230 3166Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Rasha Hammamieh
- grid.507680.c0000 0001 2230 3166Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Tracey J. Smith
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA USA
| |
Collapse
|
7
|
Culver MN, McMillan NK, Cross BL, Robinson AT, Montoye AH, Riemann BL, Flatt AA, Grosicki GJ. Sleep duration irregularity is associated with elevated blood pressure in young adults. Chronobiol Int 2022; 39:1320-1328. [PMID: 35844152 DOI: 10.1080/07420528.2022.2101373] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sleep irregularity (i.e., highly variable sleep patterns) is an emerging risk factor for cardiometabolic disease. Though irregular sleep patterns are common among young adults, the cardiometabolic health (CMH) repercussions of sleep irregularity in this population are unclear. We examined associations between sleep duration and irregularity with measures of CMH in 44 (24 M/20 F, 23 ± 5y, BMI 26 ± 4 kg/m2, blood pressure (BP): 125/71 ± 14/9 mmHg) young adults. Participants wore actigraphy monitors for seven-days and sleep duration irregularity was operationalized as the standard deviation of nightly sleep duration (sleep SD). CMH variables of interest included brachial and aortic BP, arterial stiffness (cf-PWV), augmentation index (AIx75), and fasting blood glucose and lipids. Associations between sleep duration and sleep SD with CMH variables were assessed via correlations adjusted for sex and BMI. Sleep duration generally was not associated with CMH indices. However, sleep SD was associated with brachial systolic (r = 0.433, p = .027) and diastolic BP (r = 0.415, p = .035). Similarly, sleep duration SD was associated with aortic systolic BP (r = 0.447, p = .022). Our findings show that sleep irregularity, but not duration, is associated with higher brachial and central BP in young adults.Abbreviations: AIx75: augmentation index at a heart rate of 75 beats per minute; BP: blood pressure; CMH: cardiometabolic health; cf-PWV: carotid-femoral pulse wave velocity; DXA: dual x-ray absorptiometry; mg/dl: milligrams per deciliter; PWA: pulse wave analysis; PWV: pulse wave velocity; sleep duration SD: standard deviation of nightly sleep duration.
Collapse
Affiliation(s)
- Meral N Culver
- Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, Georgia, USA.,Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, USA
| | - Nathan K McMillan
- Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, Georgia, USA
| | - Brett L Cross
- Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, Georgia, USA
| | - Austin T Robinson
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, USA
| | - Alexander Hk Montoye
- Department of Integrative Physiology and Health Science, Alma College, Alma, Michigan, USA
| | - Bryan L Riemann
- Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, Georgia, USA
| | - Andrew A Flatt
- Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, Georgia, USA
| | - Gregory J Grosicki
- Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, Georgia, USA
| |
Collapse
|
8
|
Charlot K, Millet J, Pasquier F, Oustric P, Finlayson G, Van Beers P, Monin J, Sauvet F, Tardo-Dino PE, Malgoyre A. The impact of 16-h heat exposure on appetite and food reward in adults. Appetite 2022; 177:106144. [PMID: 35753442 DOI: 10.1016/j.appet.2022.106144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
Abstract
Heat exposure is thought to reduce energy intake (EI) but studies are sparse and results not always concordant. The aim of this study was to examine whether a 16-h exposure to 32 °C leads to reduced EI compared to a control session (22 °C) and whether modifications in appetite sensations or food reward are implied. Sixteen healthy, lean, and active participants (9 women and 7 men, 25 ± 5 yo, body mass index: 22.0 ± 2.4 kg.m-2) were passively exposed to two different thermal temperatures from 4:00 pm to 8:00 am under controlled conditions. Hunger and thirst scores were regularly assessed using visual analogue scales. A fixed dinner meal (3670 ± 255 kJ) was consumed at 7:30 pm and an ad libitum breakfast buffet (20 foods/drinks varying in temperature, fat, and carbohydrate content) at 7:30 am. Components of reward (explicit liking [EL] and implicit wanting [EI]) for fat and sweet properties of food were assessed before each meal using the Leeds Food Preference Questionnaire (LFPQ). Ad libitum EI at breakfast did not differ between sessions (2319 ± 1108 vs 2329 ± 1141 kJ, in 22 and 32 °C sessions, respectively; p = 0.955). While thirst scores were higher in the 32 than the 22 °C session (p < 0.001), hunger scores did not differ (p = 0.580). EL and IW for high fat foods relative to low fat foods were decreased in 32 compared to 22 °C before dinner and breakfast (p < 0.001 for all). Although EI and hunger were not affected by a 16-h exposure to heat, modifications in food reward suggested a reduction in the preference of high-fat foods. Future research should investigate whether reduced EI in response to heat exposure is due to spontaneous selection of low-fat foods rather than altered appetite sensations.
Collapse
Affiliation(s)
- Keyne Charlot
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, 1 place Général Valérie André, 91223, Brétigny Cedex, France; LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025, Evry, France.
| | - Juliette Millet
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, 1 place Général Valérie André, 91223, Brétigny Cedex, France; LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025, Evry, France
| | - Florane Pasquier
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance, EA, 7370, Paris, France
| | - Pauline Oustric
- Appetite Control Energy Balance Research Group, School of Psychology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Graham Finlayson
- Appetite Control Energy Balance Research Group, School of Psychology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Pascal Van Beers
- Unité Fatigue et Vigilance, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, 1 place Général Valérie André, 91223, Brétigny Cedex, France; EA 7330 VIFASOM, Université de Paris, 75004, Paris, France
| | - Jonathan Monin
- Centre d'expertise principal du personnel naviguant, Hôpital d'instruction des armées Percy, 94140, Clamart, France
| | - Fabien Sauvet
- Unité Fatigue et Vigilance, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, 1 place Général Valérie André, 91223, Brétigny Cedex, France; EA 7330 VIFASOM, Université de Paris, 75004, Paris, France
| | - Pierre-Emmanuel Tardo-Dino
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, 1 place Général Valérie André, 91223, Brétigny Cedex, France; LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025, Evry, France
| | - Alexandra Malgoyre
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, 1 place Général Valérie André, 91223, Brétigny Cedex, France; LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025, Evry, France
| | | |
Collapse
|
9
|
Effects of sleep manipulation on markers of insulin sensitivity: a systematic review and meta-analysis of randomized controlled trials. Sleep Med Rev 2022; 62:101594. [DOI: 10.1016/j.smrv.2022.101594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/30/2021] [Accepted: 01/18/2022] [Indexed: 01/03/2023]
|
10
|
Role of Sleep Restriction in Daily Rhythms of Expression of Hypothalamic Core Clock Genes in Mice. Curr Issues Mol Biol 2022; 44:609-625. [PMID: 35723328 PMCID: PMC8929085 DOI: 10.3390/cimb44020042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Lack of sleep time is a menace to modern people, and it leads to chronic diseases and mental illnesses. Circadian processes control sleep, but little is known about how sleep affects the circadian system. Therefore, we performed a 28-day sleep restriction (SR) treatment in mice. Sleep restriction disrupted the clock genes’ circadian rhythm. The circadian rhythms of the Cry1 and Per1/2/3 genes disappeared. The acrophase of the clock genes (Bmal1, Clock, Rev-erbα, and Rorβ) that still had a circadian rhythm was advanced, while the acrophase of negative clock gene Cry2 was delayed. Clock genes’ upstream signals ERK and EIFs also had circadian rhythm disorders. Accompanied by changes in the central oscillator, the plasma output signal (melatonin, corticosterone, IL-6, and TNF-α) had an advanced acrophase. While the melatonin mesor was decreased, the corticosterone, IL-6, and TNF-α mesor was increased. Our results indicated that chronic sleep loss could disrupt the circadian rhythm of the central clock through ERK and EIFs and affect the output signal downstream of the core biological clock.
Collapse
|
11
|
RE: Association between habitual sleep duration/quality and appetite markers in individuals with obesity. Physiol Behav 2021; 241:113577. [PMID: 34499906 DOI: 10.1016/j.physbeh.2021.113577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/02/2021] [Indexed: 11/24/2022]
|