1
|
Chavez BG, Leite Dias S, D'Auria JC. The evolution of tropane alkaloids: Coca does it differently. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102606. [PMID: 39067083 DOI: 10.1016/j.pbi.2024.102606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
It is undeniable that tropane alkaloids (TAs) have been both beneficial and detrimental to human health in the modern era. Understanding their biosynthesis is vital for using synthetic biology to engineer organisms for pharmaceutical production. The most parsimonious approaches to pathway elucidation are traditionally homology-based methods. However, this approach has largely failed for TA biosynthesis in angiosperms. In the recent decade, significant progress has been made in elucidating the TA synthesis pathway in Erythroxylum coca, highlighting the parallel development of TAs in both the Solanaceae and Erythroxylaceae families. This separate evolutionary path has uncovered substantial divergence in the TAs formed by E. coca and distinct enzymatic reactions that differ from the traditional TA biosynthetic pathway found in TA-producing nightshade plants.
Collapse
Affiliation(s)
- Benjamin Gabriel Chavez
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Seeland 06466, Germany
| | - Sara Leite Dias
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Seeland 06466, Germany
| | - John Charles D'Auria
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Seeland 06466, Germany.
| |
Collapse
|
2
|
Zeng W, Shi C, Kong W, Meng Y, Song C, Xu F, Huang H, Deng L, Gao Q, Wang K, Cui M, Ning Y, Xiang H, Wang Q. A P450 superfamily member NtCYP82C4 promotes nicotine biosynthesis in Nicotiana tabacum. Biochem Biophys Res Commun 2024; 739:150550. [PMID: 39181070 DOI: 10.1016/j.bbrc.2024.150550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
In plants, cytochrome P450s are monooxygenase that play key roles in the synthesis and degradation of intracellular substances. In tobacco, the majority of studies examining the P450 superfamily have concentrated on the CYP82E subfamily, where multiple family members function as demethylases, facilitating the synthesis of nornicotine. In this study, NtCYP82C4, a tobacco P450 superfamily member, was identified from a gene-edited tobacco mutant that nicotine biosynthesis in tobacco leaves is evidently reduced. Compared to the wild-type plants, the knockout of NtCYP82C4 resulted in a significantly lower nicotine content and biomass in tobacco leaves. Transcriptome and metabolome analyses indicated that the knockout of NtCYP82C4 inhibites secondary metabolic processes in tobacco plants, leading to the accumulation of some important precursors in the nicotine synthesis process, including aspartic acid and nicotinic acid, and increases nitrogen partitioning associated with those processes such as amino acid synthesis and utilization. It is speculated that NtCYP82C4 may function as an important catalase downstream of the nicotine synthesis. Currently, most of the steps and enzymes involved in the nicotine biosynthesis process in tobacco have been elucidated. Here, our study deepens the current understanding of nicotine biosynthesis process and provides new enzyme targets for nicotine synthesis in tobacco plants.
Collapse
Affiliation(s)
- Wanli Zeng
- Yunnan Academy of Tobacco Science, Kunming, 650106, PR China
| | - Chuhan Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266100, PR China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Weisong Kong
- Yunnan Academy of Tobacco Science, Kunming, 650106, PR China
| | - Yang Meng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266100, PR China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Chunman Song
- Yunnan Academy of Tobacco Science, Kunming, 650106, PR China
| | - Fangzheng Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266100, PR China
| | - Haitao Huang
- Yunnan Academy of Tobacco Science, Kunming, 650106, PR China
| | - Lele Deng
- Yunnan Academy of Tobacco Science, Kunming, 650106, PR China
| | - Qian Gao
- Yunnan Academy of Tobacco Science, Kunming, 650106, PR China
| | - Kunmiao Wang
- Yunnan Academy of Tobacco Science, Kunming, 650106, PR China
| | - Mengmeng Cui
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266100, PR China
| | - Yang Ning
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266100, PR China
| | - Haiying Xiang
- Yunnan Academy of Tobacco Science, Kunming, 650106, PR China.
| | - Qian Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266100, PR China.
| |
Collapse
|
3
|
Rasi A, Sabokdast M, Naghavi MR, Jariani P, Dedičová B. Modulation of Tropane Alkaloids' Biosynthesis and Gene Expression by Methyl Jasmonate in Datura stramonium L.: A Comparative Analysis of Scopolamine, Atropine, and Hyoscyamine Accumulation. Life (Basel) 2024; 14:618. [PMID: 38792639 PMCID: PMC11123313 DOI: 10.3390/life14050618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Scopolamine and atropine are two medicinal alkaloids derived from Datura stramonium L. with anticholinergic properties. This study explored how methyl jasmonate (MJ), a plant growth regulator, affects the biosynthesis and accumulation of these alkaloids in different plant tissues. The expression levels of putrescine N-methyltransferase (PMT), tropinone reductase I (TR1), and hyoscyamine 6β-hydroxylase (h6h), three critical enzymes in the biosynthetic pathway, were also analyzed. The results indicated that MJ at 150 µM increased the production of scopolamine and atropine in both leaves and roots, while MJ at 300 µM had an adverse effect. Furthermore, MJ enhanced the expression of PMT, TR1, and h6h genes in the roots, the primary site of alkaloid synthesis, but not in the leaves, the primary site of alkaloid storage. These results imply that MJ can be applied to regulate the biosynthesis and accumulation of scopolamine and atropine in D. stramonium, thereby improving their production efficiency.
Collapse
Affiliation(s)
- Arash Rasi
- Department of Agriculture and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Tehran, P.O. Box 4111, Karaj 31587-11167, Iran; (A.R.); (M.R.N.); (P.J.)
| | - Manijeh Sabokdast
- Department of Agriculture and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Tehran, P.O. Box 4111, Karaj 31587-11167, Iran; (A.R.); (M.R.N.); (P.J.)
| | - Mohammad Reza Naghavi
- Department of Agriculture and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Tehran, P.O. Box 4111, Karaj 31587-11167, Iran; (A.R.); (M.R.N.); (P.J.)
| | - Parisa Jariani
- Department of Agriculture and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Tehran, P.O. Box 4111, Karaj 31587-11167, Iran; (A.R.); (M.R.N.); (P.J.)
| | - Beáta Dedičová
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU) Alnarp, Sundsvägen 10, P.O. Box 190, SE-234 22 Lomma, Sweden
| |
Collapse
|
4
|
Hu X, Liu W, Yan Y, Deng H, Cai Y. Tropinone reductase: A comprehensive review on its role as the key enzyme in tropane alkaloids biosynthesis. Int J Biol Macromol 2023; 253:127377. [PMID: 37839598 DOI: 10.1016/j.ijbiomac.2023.127377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
TAs, including hyoscyamine and scopolamine, were used to treat neuromuscular disorders ranging from nerve agent poisoning to Parkinson's disease. Tropinone reductase I (TR-I; EC 1.1.1.206) catalyzed the conversion of tropinone into tropine in the biosynthesis of TAs, directing the metabolic flow towards hyoscyamine and scopolamine. Tropinone reductase II (TR-II; EC 1.1.1.236) was responsible for the conversion of tropinone into pseudotropine, diverting the metabolic flux towards calystegine A3. The regulation of metabolite flow through both branches of the TAs pathway seemed to be influenced by the enzymatic activity of both enzymes and their accessibility to the precursor tropinone. The significant interest in the utilization of metabolic engineering for the efficient production of TAs has highlighted the importance of TRs as crucial enzymes that govern both the direction of metabolic flow and the yield of products. This review discussed recent advances for the TRs sources, properties, protein structure and biocatalytic mechanisms, and a detailed overview of its crucial role in the metabolism and synthesis of TAs was summarized. Furthermore, we conducted a detailed investigation into the evolutionary origins of these two TRs. A prospective analysis of potential challenges and applications of TRs was presented.
Collapse
Affiliation(s)
- Xiaoxiang Hu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Wenjing Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yi Yan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huaxiang Deng
- Center for Synthetic Biochemistry, Institute of Synthetic Biology, Institutes of Advanced Technologies, Shenzhen, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Yao L, Wu X, Jiang X, Shan M, Zhang Z, Li Y, Yang A, Li Y, Yang C. Subcellular compartmentalization in the biosynthesis and engineering of plant natural products. Biotechnol Adv 2023; 69:108258. [PMID: 37722606 DOI: 10.1016/j.biotechadv.2023.108258] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Plant natural products (PNPs) are specialized metabolites with diverse bioactivities. They are extensively used in the pharmaceutical, cosmeceutical and food industries. PNPs are synthesized in plant cells by enzymes that are distributed in different subcellular compartments with unique microenvironments, such as ions, co-factors and substrates. Plant metabolic engineering is an emerging and promising approach for the sustainable production of PNPs, for which the knowledge of the subcellular compartmentalization of their biosynthesis is instrumental. In this review we describe the state of the art on the role of subcellular compartments in the biosynthesis of major types of PNPs, including terpenoids, phenylpropanoids, alkaloids and glucosinolates, and highlight the efforts to target biosynthetic pathways to subcellular compartments in plants. In addition, we will discuss the challenges and strategies in the field of plant synthetic biology and subcellular engineering. We expect that newly developed methods and tools, together with the knowledge gained from the microbial chassis, will greatly advance plant metabolic engineering.
Collapse
Affiliation(s)
- Lu Yao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Xiuming Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Xun Jiang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Muhammad Shan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Zhuoxiang Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Yiting Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Changqing Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China.
| |
Collapse
|
6
|
Waller S, Powell A, Noel R, Schueller MJ, Ferrieri RA. Radiocarbon Flux Measurements Reveal Mechanistic Insight into Heat-Stress Induction of Nicotine Biosynthesis in Nicotiana attenuata. Int J Mol Sci 2023; 24:15509. [PMID: 37958493 PMCID: PMC10650385 DOI: 10.3390/ijms242115509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
The effect of high-temperature (HT) stress on nicotine biosynthesis in Nicotiana attenuata was examined. Nicotine content was measured in mature leaves, young sink leaves, and in roots from well-watered plants grown at 25 °C as controls and from plants exposed to 38 °C and 43 °C temperatures applied for 24, 48, 72, and 96 h duration. At 38 °C, all leaf nicotine levels were significantly less than control plants for up to 72 h exposure but rose sharply thereafter to levels significantly greater than controls with 96 h exposure. In contrast, plants exposed to 43 °C never exhibited a reduction in leaf nicotine content and showed an increase in content with just 48 h exposure. Using radioactive 11CO2 and 13NO3-, we found that HT stress reduced both CO2 fixation and nitrate uptake. Furthermore, radiocarbon flux analysis revealed that 'new' carbon partitioning (as 11C) into the 11C-radiolabeled amino acid (AA) pool was significantly reduced with HT stress as were yields of [11C]-aspartic acid, an important AA in nicotine biosynthesis, and its beta-amido counterpart [11C]-asparagine. In contrast, [12C]-aspartic acid levels appeared unaffected at 38 °C but were elevated at 43 °C relative to controls. [12C]-Asparagine levels were noted to be elevated at both stress temperatures. Since HT reductions in carbon input and nitrogen uptake were noted to impede de novo AA biosynthesis, protein degradation at HT was examined as a source of AAs. Here, leaf total soluble protein (TSP) content was reduced 39% with long exposures to both stress temperatures. However, Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) which was 41% TSP appeared unaffected. Altogether, these results support the theory that plant proteins other than Rubisco degrade at elevated temperatures freeing up essential AAs in support of nicotine biosynthesis.
Collapse
Affiliation(s)
- Spenser Waller
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA; (S.W.); (R.N.); (M.J.S.)
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Avery Powell
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA; (S.W.); (R.N.); (M.J.S.)
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Randi Noel
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA; (S.W.); (R.N.); (M.J.S.)
- Division of Plant Science & Technology, University of Missouri, Columbia, MO 65211, USA
| | - Michael J. Schueller
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA; (S.W.); (R.N.); (M.J.S.)
- Chemistry Department, University of Missouri, Columbia, MO 65211, USA
| | - Richard A. Ferrieri
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA; (S.W.); (R.N.); (M.J.S.)
- Division of Plant Science & Technology, University of Missouri, Columbia, MO 65211, USA
- Chemistry Department, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
7
|
Zhang Y, Zou J, Wan F, Peng F, Peng C. Update on the sources, pharmacokinetics, pharmacological action, and clinical application of anisodamine. Biomed Pharmacother 2023; 161:114522. [PMID: 37002581 DOI: 10.1016/j.biopha.2023.114522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Anisodamine is an anticholinergic drug extracted and isolated from the Anisodus tanguticus (Maxim.) Pascher of the Solanaceae family which is also a muscarinic receptor antagonist. Owing to the lack of natural sources of anisodamine, synthetic products are now used. Using ornithine and arginine as precursor compounds, putrescine is catalyzed by different enzymes and then undergoes a series of reactions to produce anisodamine. It has been used clinically to protect cardiac function and treat septic shock, acute pancreatitis, calculous renal colic, bronchial asthma, blood circulation disturbances, jaundice, analgesia, vertigo, acute poisoning, and other conditions.This review describes the relevant pharmacokinetic parameters. Anisodamine is poorly absorbed in the gastrointestinal tract, and it is not as effective as intravenous administration. For clinical medication, intravenous infusion should be used rather than rapid intravenous injection. With the advancement of research in recent years, the application scope of anisodamine has expanded, with significant developments and application values surging.This review systematically describes the sources, pharmacokinetics, pharmacological effects and clinical application of anisodamine, in order to provide a basis for clinical use.
Collapse
|
8
|
Xie X, Jin J, Wang C, Lu P, Li Z, Tao J, Cao P, Xu Y. Investigating nicotine pathway-related long non-coding RNAs in tobacco. Front Genet 2023; 13:1102183. [PMID: 36744176 PMCID: PMC9892058 DOI: 10.3389/fgene.2022.1102183] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts longer than 200 bp with low or no protein-coding ability, which play essential roles in various biological processes in plants. Tobacco is an ideal model plant for studying nicotine biosynthesis and metabolism, and there is little research on lncRNAs in this field. Therefore, how to take advantage of the mature tobacco system to profoundly investigate the lncRNAs involved in the nicotine pathway is intriguing. By exploiting 549 public RNA-Seq datasets of tobacco, 30,212 lncRNA candidates were identified, including 24,084 large intervening non-coding RNAs (lincRNAs), 5,778 natural antisense transcripts (NATs) and 350 intronic non-coding RNAs (incRNAs). Compared with protein-coding genes, lncRNAs have distinct properties in terms of exon number, sequence length, A/U content, and tissue-specific expression pattern. lincRNAs showed an asymmetric evolutionary pattern, with a higher proportion (68.71%) expressed from the Nicotiana sylvestris (S) subgenome. We predicted the potential cis/trans-regulatory effects on protein-coding genes. One hundred four lncRNAs were detected as precursors of 30 known microRNA (miRNA) family members, and 110 lncRNAs were expected to be the potential endogenous target mimics for 39 miRNAs. By combining the results of weighted gene co-expression network analysis with the differentially expressed gene analysis of topping RNA-seq data, we constructed a sub-network containing eight lncRNAs and 25 nicotine-related coding genes. We confirmed that the expression of seven lncRNAs could be affected by MeJA treatment and may be controlled by the transcription factor NtMYC2 using a quantitative PCR assay and gene editing. The results suggested that lncRNAs are involved in the nicotine pathway. Our findings further deepened the understanding of the features and functions of lncRNAs and provided new candidates for regulating nicotine biosynthesis in tobacco.
Collapse
|
9
|
Wen X, Leisinger F, Leopold V, Seebeck FP. Synthetic Reagents for Enzyme‐Catalyzed Methylation. Angew Chem Int Ed Engl 2022; 61:e202208746. [DOI: 10.1002/anie.202208746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaojin Wen
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| | - Florian Leisinger
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| | - Viviane Leopold
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| | - Florian P. Seebeck
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| |
Collapse
|
10
|
Wen X, Leisinger F, Leopold V, Seebeck FP. Synthetic reagents for enzyme‐catalyzed methylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaojin Wen
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | - Florian Leisinger
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | - Viviane Leopold
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | - Florian P. Seebeck
- University of Basel Department of Chemistry St. Johanns-Ring 19 4056 Basel SWITZERLAND
| |
Collapse
|
11
|
Mo Z, Duan L, Pu Y, Tian Z, Ke Y, Luo W, Pi K, Huang Y, Nie Q, Liu R. Proteomics and Co-expression Network Analysis Reveal the Importance of Hub Proteins and Metabolic Pathways in Nicotine Synthesis and Accumulation in Tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:860455. [PMID: 35574122 PMCID: PMC9096834 DOI: 10.3389/fpls.2022.860455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/24/2022] [Indexed: 05/31/2023]
Abstract
Nicotine is a unique alkaloid present in tobacco that is widely used in cigarettes and in the agricultural, chemical, and pharmaceutical industries. However, the research on nicotine is mostly limited to its synthesis pathways, and only a few studies have explored the effects of other metabolic pathways on nicotine precursors. Regulating the nicotine content in tobacco can greatly promoting the application of nicotine in other fields. In this study, we performed global data-independent acquisition proteomics analysis of four tobacco varieties. Of the four varieties, one had high nicotine content and three had a low nicotine content. A total of 31,259 distinct peptides and 6,018 proteins across two samples were identified. A total of 45 differentially expressed proteins (DEPs) co-existed in the three comparison groups and were mainly involved in the transport and metallic processes of the substances. Most DEPs were enriched in the biosynthesis of secondary metals, glutathione metabolism, carbon metabolism, and glycolysis/gluconeogenesis. In addition, the weighted gene co-expression network analysis identified an expression module closely related to the nicotine content (Brown, r = 0.74, P = 0.006). Gene Ontology annotation and Kyoto Encyclopaedia of Genes and Genomes enrichment analysis showed that the module proteins were mainly involved in the synthesis and metabolism of nicotine precursors such as arginine, ornithine aspartate, proline, and glutathione. The increased levels of these precursors lead to the synthesis and accumulation of nicotine in plants. More importantly, these proteins regulate nicotine synthesis by affecting the formation of putrescine, which is the core intermediate product in nicotine anabolism. Our results provide a reference for tobacco variety selection with a suitable nicotine content and regulation of the nicotine content. Additionally, the results highlight the importance of other precursor metabolism in nicotine synthesis.
Collapse
Affiliation(s)
- Zejun Mo
- College of Agriculture, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Lili Duan
- College of Agriculture, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Yuanyuan Pu
- College of Agriculture, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Zonglin Tian
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Yuzhou Ke
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Wen Luo
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Kai Pi
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Ying Huang
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Qiong Nie
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Renxiang Liu
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| |
Collapse
|
12
|
Zhang M, Zhao Y, Yang C, Shi H. The combination of transcriptome and metabolome reveals the molecular mechanism by which topping and salicylic acid treatment affect the synthesis of alkaloids in Nicotiana tabacum L. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2025915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Mengyue Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Yuanyuan Zhao
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Chunting Yang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Hongzhi Shi
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, People’s Republic of China
| |
Collapse
|
13
|
Zhao D, Yao Z, Zhang J, Zhang R, Mou Z, Zhang X, Li Z, Feng X, Chen S, Reiter RJ. Melatonin synthesis genes N-acetylserotonin methyltransferases evolved into caffeic acid O-methyltransferases and both assisted in plant terrestrialization. J Pineal Res 2021; 71:e12737. [PMID: 33844336 DOI: 10.1111/jpi.12737] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 11/28/2022]
Abstract
Terrestrialization is one of the most momentous events in the history of plant life, which leads to the subsequent evolution of plant diversity. The transition species, in this process, had to acquire a range of adaptive mechanisms to cope with the harsh features of terrestrial environments compared to that of aquatic habitat. As an ancient antioxidant, a leading regulator of ROS signaling or homeostasis, and a presumed plant master regulator, melatonin likely assisted plants transition to land and their adaption to terrestrial ecosystems. N-acetylserotonin methyltransferases (ASMT) and caffeic acid O-methyltransferases (COMT), both in the O-methyltransferase (OMT) family, catalyze the core O-methylation reaction in melatonin biosynthesis. How these two enzymes with close relevance evolved in plant evolutionary history and whether they participated in plant terrestrialization remains unknown. Using combined phylogenetic evidence and protein structure analysis, it is revealed that COMT likely evolved from ASMT by gene duplication and subsequent divergence. Newly emergent COMT gained a significantly higher ASMT activity to produce greater amounts of melatonin for immobile plants to acclimate to the stressful land environments after evolving from the more environmentally-stable aquatic conditions. The COMT genes possess more conserved substrate-binding sites at the amino acid level and more open protein conformation compared to ASMT, and getting a new function to catalyze the lignin biosynthesis. This development directly contributed to the dominance of vascular plants among the Earth's flora and prompted plant colonization of land. Thus, ASMT, together with its descendant COMT, might play key roles in plant transition to land. The current study provides new insights into plant terrestrialization with gene duplication contributing to this process along with well-known horizontal gene transfer.
Collapse
Affiliation(s)
- Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Zhengping Yao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
| | - Jiemei Zhang
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
| | - Renjun Zhang
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
| | - Zongmin Mou
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Xue Zhang
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
| | - Zonghang Li
- School of Life Science, Yunnan University, Kunming, China
| | - Xiaoli Feng
- School of Life Science, Yunnan University, Kunming, China
| | - Suiyun Chen
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, USA
| |
Collapse
|
14
|
Gamir J, Minchev Z, Berrio E, García JM, De Lorenzo G, Pozo MJ. Roots drive oligogalacturonide-induced systemic immunity in tomato. PLANT, CELL & ENVIRONMENT 2021; 44:275-289. [PMID: 33070347 PMCID: PMC7883634 DOI: 10.1111/pce.13917] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 05/21/2023]
Abstract
Oligogalacturonides (OGs) are fragments of pectin released from the plant cell wall during insect or pathogen attack. They can be perceived by the plant as damage signals, triggering local and systemic defence responses. Here, we analyse the dynamics of local and systemic responses to OG perception in tomato roots or shoots, exploring their impact across the plant and their relevance in pathogen resistance. Targeted and untargeted metabolomics and gene expression analysis in plants treated with purified OGs revealed that local responses were transient, while distal responses were stronger and more sustained. Remarkably, changes were more conspicuous in roots, even upon foliar application of the OGs. The treatments differentially activated the synthesis of defence-related hormones and secondary metabolites including flavonoids, alkaloids and lignans, some of them exclusively synthetized in roots. Finally, the biological relevance of the systemic defence responses activated upon OG perception was confirmed, as the treatment induced systemic resistance to Botrytis cinerea. Overall, this study shows the differential regulation of tomato defences upon OGs perception in roots and shoots and reveals the key role of roots in the coordination of the plant responses to damage sensing.
Collapse
Affiliation(s)
- Jordi Gamir
- Department of Soil Microbiology and Symbiotic SystemsEstación Experimental del Zaidín (CSIC)GranadaSpain
- Dipartimento di Biologia e Biotecnologie C. DarwinSapienza Università di RomaRomeItaly
| | - Zhivko Minchev
- Department of Soil Microbiology and Symbiotic SystemsEstación Experimental del Zaidín (CSIC)GranadaSpain
| | - Estefanía Berrio
- Department of Soil Microbiology and Symbiotic SystemsEstación Experimental del Zaidín (CSIC)GranadaSpain
| | - Juan M. García
- Department of Soil Microbiology and Symbiotic SystemsEstación Experimental del Zaidín (CSIC)GranadaSpain
| | - Giulia De Lorenzo
- Present address: Metabolic Integration and Cell Signaling Group, Plant Physiology Section, Unidad Asociada a la EEZ‐CSIC, Dept Ciencias Agrarias y del Medio Natural, Universitat Jaume ICastellónSpain
| | - Maria J. Pozo
- Department of Soil Microbiology and Symbiotic SystemsEstación Experimental del Zaidín (CSIC)GranadaSpain
| |
Collapse
|
15
|
Kang HH, Yun CI, Moon JY, Lee JG, Kim YJ. Validation and measurement uncertainty of GC-MS quantification method for nicotine in dried mushrooms using QuEChERS extraction. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1687-1694. [PMID: 32790494 DOI: 10.1080/19440049.2020.1800827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Nicotine is an alkaloid and a secondary plant metabolite that has been used as an insecticide. Despite their widespread application, the EU banned the use of nicotine-containing pesticides in December 2008. However, studies in Europe have found nicotine in mushrooms. Nicotine has also been detected in wild mushrooms, so there are other causes of contamination as well as pesticide. This study reports the development of GC-MS method for quantitatively analysing nicotine in mushrooms. This method provides recoveries of 89.5-92.5%, intra-day precisions of 0.32-0.85%, and inter-day precisions of 0.73-2.36%, with limits of detection and quantification of 0.38 and 1.15 μg kg-1, respectively. The relative expanded uncertainty result of 2.8-4.0% complies with CODEX requirements. The method was successfully applied to eleven mushroom samples in which nicotine was detected at levels of 0.033-1.713 mg kg-1. Therefore, this method is suitable for the quantification of nicotine in dried mushrooms to ensure pre-emptive food safety.
Collapse
Affiliation(s)
- Hyun-Hee Kang
- Department of Food Science and Technology, Seoul National University of Science & Technology , Seoul, Korea
| | - Choong-In Yun
- Lab of Nanobio, Seoul National University of Science and Technology , Seoul, Korea
| | - Ji-Young Moon
- Division of Safety Analysis, Experiment & Research Institute National Agricultural Products Quality Management Service , Gimcheon, Korea
| | - Joon-Goo Lee
- Food Standard Division, Ministry of Food and Drug Safety , Cheongju, Korea
| | - Young-Jun Kim
- Department of Food Science and Technology, Seoul National University of Science & Technology , Seoul, Korea
| |
Collapse
|
16
|
Maurya VK, Kumar S, Kabir R, Shrivastava G, Shanker K, Nayak D, Khurana A, Manchanda RK, Gadugu S, Kar SK, Verma AK, Saxena SK. Dark Classics in Chemical Neuroscience: An Evidence-Based Systematic Review of Belladonna. ACS Chem Neurosci 2020; 11:3937-3954. [PMID: 32662978 DOI: 10.1021/acschemneuro.0c00413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Belladonna has diverse pharmacotherapeutic properties with a shadowy history of beauty, life, and death. Alkaloids present in belladonna have anti-inflammatory, anticholinergic, antispasmodic, mydriatic, analgesic, anticonvulsant, and antimicrobial activities, which makes it widely applicable for the treatment of various diseases. However, because of its associated toxicity, the medicinal use of belladonna is debatable. Therefore, an evidence-based systematic review was planned to elucidate the pharmacotherapeutic potential of belladonna. A comprehensive literature search was performed in PubMed, MEDLINE, the Cochrane database, Embase, and ClinicalTrials.gov using the keywords "belladonna", "belladonna and clinical trials", and "safety and efficacy of belladonna". Articles published from 1965 to 2020 showing the efficacy of belladonna in diverse clinical conditions are included. The quality of evidence was generated using the GRADE approach, and 20 studies involving 2302 patients were included for the systematic review. Our analyses suggest that belladonna treatment appears to be safe and effective in various disease conditions, including acute encephalitis syndrome, urethral stent pain, myocardial ischemia injury, airway obstructions during sleep in infants, climacteric complaints, irritable bowel syndrome, and throbbing headache. However, better understanding of the dosage and the toxicity of tropane alkaloids of belladonna could make it an efficient remedy for treating diverse medical conditions.
Collapse
Affiliation(s)
- Vimal K. Maurya
- Centre for Advanced Research, Faculty of Medicine, King George’s Medical University, Lucknow 226003, India
| | - Swatantra Kumar
- Centre for Advanced Research, Faculty of Medicine, King George’s Medical University, Lucknow 226003, India
| | - Russell Kabir
- School of Allied Health, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford CM1 1SQ, United Kingdom
| | - Gaurav Shrivastava
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, United States
| | - Karuna Shanker
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Debadatta Nayak
- CCRH, Ministry of Ayush, Government of India, New Delhi 110058, India
| | - Anil Khurana
- CCRH, Ministry of Ayush, Government of India, New Delhi 110058, India
| | - Raj K Manchanda
- CCRH, Ministry of Ayush, Government of India, New Delhi 110058, India
| | - Srinivasulu Gadugu
- Department of Medicine, JSPS Government Medical College, Hyderabad 500013, India
| | - Sujita K. Kar
- Department of Psychiatry, King George’s Medical University, Lucknow 226003, India
| | - Anoop K. Verma
- Department of Forensic Medicine and Toxicology, King George’s Medical University, Lucknow 226003, India
| | - Shailendra K. Saxena
- Centre for Advanced Research, Faculty of Medicine, King George’s Medical University, Lucknow 226003, India
| |
Collapse
|
17
|
Lichman BR. The scaffold-forming steps of plant alkaloid biosynthesis. Nat Prod Rep 2020; 38:103-129. [PMID: 32745157 DOI: 10.1039/d0np00031k] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alkaloids from plants are characterised by structural diversity and bioactivity, and maintain a privileged position in both modern and traditional medicines. In recent years, there have been significant advances in elucidating the biosynthetic origins of plant alkaloids. In this review, I will describe the progress made in determining the metabolic origins of the so-called true alkaloids, specialised metabolites derived from amino acids containing a nitrogen heterocycle. By identifying key biosynthetic steps that feature in the majority of pathways, I highlight the key roles played by modifications to primary metabolism, iminium reactivity and spontaneous reactions in the molecular and evolutionary origins of these pathways.
Collapse
Affiliation(s)
- Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
18
|
Morris JS, Yu L, Facchini PJ. A single residue determines substrate preference in benzylisoquinoline alkaloid N-methyltransferases. PHYTOCHEMISTRY 2020; 170:112193. [PMID: 31765874 DOI: 10.1016/j.phytochem.2019.112193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
N-methylation is a recurring feature in the biosynthesis of many plant specialized metabolites, including alkaloids. A crucial step in the conserved central pathway that provides intermediates for the biosynthesis of benzylisoquinoline alkaloids (BIAs) involves conversion of the secondary amine (S)-coclaurine into the tertiary amine (S)-N-methylcoclaurine by coclaurine N-methyltransferase (CNMT). Subsequent enzymatic steps yield the core intermediate (S)-reticuline, from which various branch pathways for the biosynthesis of major BIAs such as morphine, noscapine and sanguinarine diverge. An additional N-methylation yielding quaternary BIAs is catalyzed by reticuline N-methyltransferase (RNMT), such as in the branch pathway leading to the taxonomically widespread and ecologically significant alkaloid magnoflorine. Despite their functional differences, analysis of primary sequence information has been unable to accurately distinguish between CNMT-like and RNMT-like enzymes, necessitating laborious in vitro screening. Furthermore, despite a recent emphasis on structural characterization of BIA NMTs, the features and mechanisms underlying the CNMT-RNMT functional dichotomy were unknown. We report the identification of structural variants tightly correlated with function in known BIA NMTs and show through reciprocal mutagenesis that a single residue acts as a switch between CNMT- and RNMT-like functions. We use yeast in vivo screening to show that this discovery allows for accurate prediction of activity strictly from primary sequence information and, on this basis, improve the annotation of previously reported putative BIA NMTs. Our results highlight the unusually short mutational distance separating ancestral CNMT-like enzymes from more evolutionarily advanced RNMT-like enzymes, and thus help explain the widespread yet sporadic occurrence of quaternary BIAs in plants. While this is the first report of structural variants controlling mono-versus di-methylation activity among plant NMT enzymes, comparison with bacterial MT enzymes also suggests possible convergent evolution.
Collapse
Affiliation(s)
- Jeremy S Morris
- University of Calgary, Department of Biological Sciences, Calgary, Alberta, T2N 1N4, Canada
| | - Lisa Yu
- University of Calgary, Department of Biological Sciences, Calgary, Alberta, T2N 1N4, Canada
| | - Peter J Facchini
- University of Calgary, Department of Biological Sciences, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
19
|
Huang JP, Fang C, Ma X, Wang L, Yang J, Luo J, Yan Y, Zhang Y, Huang SX. Tropane alkaloids biosynthesis involves an unusual type III polyketide synthase and non-enzymatic condensation. Nat Commun 2019; 10:4036. [PMID: 31492848 PMCID: PMC6731253 DOI: 10.1038/s41467-019-11987-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/14/2019] [Indexed: 12/04/2022] Open
Abstract
The skeleton of tropane alkaloids is derived from ornithine-derived N-methylpyrrolinium and two malonyl-CoA units. The enzymatic mechanism that connects N-methylpyrrolinium and malonyl-CoA units remains unknown. Here, we report the characterization of three pyrrolidine ketide synthases (PYKS), AaPYKS, DsPYKS, and AbPYKS, from three different hyoscyamine- and scopolamine-producing plants. By examining the crystal structure and biochemical activity of AaPYKS, we show that the reaction mechanism involves PYKS-mediated malonyl-CoA condensation to generate a 3-oxo-glutaric acid intermediate that can undergo non-enzymatic Mannich-like condensation with N-methylpyrrolinium to yield the racemic 4-(1-methyl-2-pyrrolidinyl)-3-oxobutanoic acid. This study therefore provides a long sought-after biosynthetic mechanism to explain condensation between N-methylpyrrolinium and acetate units and, more importantly, identifies an unusual plant type III polyketide synthase that can only catalyze one round of malonyl-CoA condensation. Tropane alkaloids are medicinally significant plant metabolites generated by an unusual condensation of ornithine-derived and malonyl-CoA precursors. Here, Huang et al. show that pyrrolidine ketide synthase catalyzes a single round of condensation, which is followed by a non-enzymatic Mannich-like condensation.
Collapse
Affiliation(s)
- Jian-Ping Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Chengli Fang
- The Key Laboratory of Synthetic Biology, and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaoyan Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,School of Chemistry and Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jing Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jianying Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yijun Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yu Zhang
- The Key Laboratory of Synthetic Biology, and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
20
|
Morris JS, Facchini PJ. Molecular Origins of Functional Diversity in Benzylisoquinoline Alkaloid Methyltransferases. FRONTIERS IN PLANT SCIENCE 2019; 10:1058. [PMID: 31543888 PMCID: PMC6730481 DOI: 10.3389/fpls.2019.01058] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/30/2019] [Indexed: 05/25/2023]
Abstract
O- and N-methylations are ubiquitous and recurring features in the biosynthesis of many specialized metabolites. Accordingly, the methyltransferase (MT) enzymes catalyzing these modifications are directly responsible for a substantial fraction of the vast chemodiversity observed in plants. Enabled by DNA sequencing and synthesizing technologies, recent studies have revealed and experimentally validated the trajectories of molecular evolution through which MTs, such as those biosynthesizing caffeine, emerge and shape plant chemistry. Despite these advances, the evolutionary origins of many other alkaloid MTs are still unclear. Focusing on benzylisoquinoline alkaloid (BIA)-producing plants such as opium poppy, we review the functional breadth of BIA N- and O-MT enzymes and their relationship with the chemical diversity of their host species. Drawing on recent structural studies, we discuss newfound insight regarding the molecular determinants of BIA MT function and highlight key hypotheses to be tested. We explore what is known and suspected concerning the evolutionary histories of BIA MTs and show that substantial advances in this domain are within reach. This new knowledge is expected to greatly enhance our conceptual understanding of the evolutionary origins of specialized metabolism.
Collapse
|
21
|
Sinatti VVC, Gonçalves CAX, Romão-Dumaresq AS. Identification of metabolites identical and similar to drugs as candidates for metabolic engineering. J Biotechnol 2019; 302:67-76. [PMID: 31254549 DOI: 10.1016/j.jbiotec.2019.06.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/20/2019] [Accepted: 06/25/2019] [Indexed: 11/18/2022]
Abstract
Natural compounds and derivatives play an essential role in the pharmaceutical industry, however, the difficulty in resynthesizing natural products or isolate them from the native host, often limit their availability, elevate costs and slow down the pharmaceutical manufacturing process. In this context, application of synthetic biology could enable the efficient production of large amounts of drugs or drug precursors in heterologous microorganisms aiming to accelerate the entire manufacturing process. Considering this perspective, here we developed a pipeline to automatically search for metabolites available in the metabolic space that are structurally similar to worldwide approved drugs. This pipeline involved the in silico screening of metabolites from a metabolic pathway meta-database using both Tanimoto coefficients based on Daylight like fingerprints and Maximum Common Substructure algorithm. The method was successfully applied to identify metabolites sharing essential scaffolds with one or more drugs as potential candidates for metabolic engineering. Three of these metabolites (Festuclavine, Scopolamine, and Baccatin III) were identified as similar to many drugs like Cabergoline, Oxitropium, Paclitaxel and had their metabolic pathways computationally mapped for their production in Saccharomyces cerevisiae with our proprietary pathway design software. These compounds are examples of new opportunities for the application of synthetic biology in pharmaceutical production.
Collapse
Affiliation(s)
- Vanessa V C Sinatti
- SENAI Innovation Institute for Biosynthetics, Technology Center for Chemical and Textile Industry, Rio de Janeiro, Brazil.
| | - Carlos Alberto X Gonçalves
- SENAI Innovation Institute for Biosynthetics, Technology Center for Chemical and Textile Industry, Rio de Janeiro, Brazil
| | - Aline S Romão-Dumaresq
- SENAI Innovation Institute for Biosynthetics, Technology Center for Chemical and Textile Industry, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Liao C, Seebeck FP. S-adenosylhomocysteine as a methyl transfer catalyst in biocatalytic methylation reactions. Nat Catal 2019. [DOI: 10.1038/s41929-019-0300-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Zenkner FF, Margis-Pinheiro M, Cagliari A. Nicotine Biosynthesis inNicotiana: A Metabolic Overview. ACTA ACUST UNITED AC 2019. [DOI: 10.3381/18-063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alkaloids are important compounds found in Nicotiana plants, essential in plant defense against herbivores. The main alkaloid of Nicotiana tabacum, nicotine, is produced in roots and translocated to the leaves. Nicotine is formed by a pyrrolidine and a pyridine ring in a process involving several enzymes. The pyridine ring of nicotine is derived from nicotinic acid, whereas the pyrrolidine ring originates from polyamine putrescine metabolism. After synthesis in root cortical cells, a set of transporters is known to transport nicotine upward to the aerial part and store it in leaf vacuoles. Moreover, nicotine can be metabolized in leaves, giving rise to nornicotine through the N-demethylation process. Some Nicotiana wild species produce acyltransferase enzymes, which allow the plant to make N-acyl-nornicotine, an alkaloid with more potent insecticidal properties than nicotine. However, although we can find a wealth of information about the alkaloid production in Nicotiana spp., our understanding about nicotine biosynthesis, transport, and metabolism is still incomplete. This review will summarize these pathways on the basis on recent literature, as well as highlighting questions that need further investigation.
Collapse
Affiliation(s)
- Fernanda Fleig Zenkner
- Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15053, Porto Alegre, RS CEP 91501-970, Brazil
- JTI Processadora de Tabaco do Brasil LTDA, Santa Cruz do Sul, RS, Brazil
| | - Márcia Margis-Pinheiro
- Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15053, Porto Alegre, RS CEP 91501-970, Brazil
| | - Alexandro Cagliari
- Universidade Estadual do Rio Grande do Sul (UERGS), Santa Cruz do Sul, RS, Brazil
| |
Collapse
|
24
|
Zhao T, Wang C, Bai F, Li S, Yang C, Zhang F, Bai G, Chen M, Lan X, Liao Z. Metabolic Characterization of Hyoscyamus niger Ornithine Decarboxylase. FRONTIERS IN PLANT SCIENCE 2019; 10:229. [PMID: 30873201 PMCID: PMC6400997 DOI: 10.3389/fpls.2019.00229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Ornithine decarboxylase (ODC) catalyzes ornithine decarboxylation to yield putrescine, a key precursor of polyamines, and tropane alkaloids (TAs). Here, to investigate in depth the role of ODC in polyamine/TA biosynthesis and to provide a candidate gene for engineering polyamine/TA production, the ODC gene (HnODC) was characterized from Hyoscyamus niger, a TA-producing plant. Our phylogenetic analysis revealed that HnODC was clustered with ODC enzymes of plants. Experimental work showed HnODC highly expressed in H. niger roots and induced by methyl jasmonate (MeJA). In the MeJA treatment, the production of both putrescine and N-methylputrescine were markedly promoted in roots, while contents of putrescine, spermidine, and spermine were all significantly increased in leaves. By contrast, MeJA did not significantly change the production of either hyoscyamine or scopolamine in H. niger plants. Building on these results, the 50-kDa His-tagged HnODC proteins were purified for enzymatic assays. When ornithine was fed to HnODC, the putrescine product was detected by HPLC, indicating HnODC catalyzed ornithine to form putrescine. Finally, we also investigated the enzymatic kinetics of HnODC. Its K m, V max, and K cat values for ornithine were respectively 2.62 ± 0.11 mM, 1.87 ± 0.023 nmol min-1 μg-1 and 1.57 ± 0.015 s-1, at pH 8.0 and at 30°C. The HnODC enzyme displays a much higher catalytic efficiency than most reported plant ODCs, suggesting it may be an ideal candidate gene for engineering polyamine/TA biosynthesis.
Collapse
Affiliation(s)
- Tengfei Zhao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Engineering Research Centre for Sweet Potato, TAAHC-SWU Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Changjian Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Engineering Research Centre for Sweet Potato, TAAHC-SWU Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Feng Bai
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Engineering Research Centre for Sweet Potato, TAAHC-SWU Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Siqi Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Engineering Research Centre for Sweet Potato, TAAHC-SWU Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Chunxian Yang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Engineering Research Centre for Sweet Potato, TAAHC-SWU Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Fangyuan Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Engineering Research Centre for Sweet Potato, TAAHC-SWU Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Ge Bai
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, China
| | - Min Chen
- College of Pharmaceutical Sciences, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre, Xizang Agricultural and Husbandry College, Nyingchi of Tibet, China
| | - Zhihua Liao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Engineering Research Centre for Sweet Potato, TAAHC-SWU Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
25
|
Kohnen-Johannsen KL, Kayser O. Tropane Alkaloids: Chemistry, Pharmacology, Biosynthesis and Production. Molecules 2019; 24:E796. [PMID: 30813289 PMCID: PMC6412926 DOI: 10.3390/molecules24040796] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/18/2022] Open
Abstract
Tropane alkaloids (TA) are valuable secondary plant metabolites which are mostly found in high concentrations in the Solanaceae and Erythroxylaceae families. The TAs, which are characterized by their unique bicyclic tropane ring system, can be divided into three major groups: hyoscyamine and scopolamine, cocaine and calystegines. Although all TAs have the same basic structure, they differ immensely in their biological, chemical and pharmacological properties. Scopolamine, also known as hyoscine, has the largest legitimate market as a pharmacological agent due to its treatment of nausea, vomiting, motion sickness, as well as smooth muscle spasms while cocaine is the 2nd most frequently consumed illicit drug globally. This review provides a comprehensive overview of TAs, highlighting their structural diversity, use in pharmaceutical therapy from both historical and modern perspectives, natural biosynthesis in planta and emerging production possibilities using tissue culture and microbial biosynthesis of these compounds.
Collapse
Affiliation(s)
- Kathrin Laura Kohnen-Johannsen
- Technical Biochemistry, Department of Biochemical and Chemical Engineering, Technical University Dortmund, D-44227 Dortmund, Germany.
| | - Oliver Kayser
- Technical Biochemistry, Department of Biochemical and Chemical Engineering, Technical University Dortmund, D-44227 Dortmund, Germany.
| |
Collapse
|
26
|
Maruri-López I, Jiménez-Bremont JF. Hetero- and homodimerization of Arabidopsis thaliana arginine decarboxylase AtADC1 and AtADC2. Biochem Biophys Res Commun 2017; 484:508-513. [DOI: 10.1016/j.bbrc.2017.01.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 01/04/2023]
|
27
|
Küster N, Rosahl S, Dräger B. Potato plants with genetically engineered tropane alkaloid precursors. PLANTA 2017; 245:355-365. [PMID: 27783159 DOI: 10.1007/s00425-016-2610-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
Solanum tuberosum tropinone reductase I reduced tropinone in vivo. Suppression of tropinone reductase II strongly reduced calystegines in sprouts. Overexpression of putrescine N -methyltransferase did not alter calystegine accumulation. Calystegines are hydroxylated alkaloids formed by the tropane alkaloid pathway. They accumulate in potato (Solanum tuberosum L., Solanaceae) roots and sprouting tubers. Calystegines inhibit various glycosidases in vitro due to their sugar-mimic structure, but functions of calystegines in plants are not understood. Enzymes participating in or competing with calystegine biosynthesis, including putrescine N-methyltransferase (PMT) and tropinone reductases (TRI and TRII), were altered in their activity in potato plants by RNA interference (RNAi) and by overexpression. The genetically altered potato plants were investigated for the accumulation of calystegines and for intermediates of their biosynthesis. An increase in N-methylputrescine provided by DsPMT expression was not sufficient to increase calystegine accumulation. Overexpression and gene knockdown of StTRI proved that S. tuberosum TRI is a functional tropinone reductase in vivo, but no influence on calystegine accumulation was observed. When StTRII expression was suppressed by RNAi, calystegine formation was severely compromised in the transformed plants. Under phytochamber and green house conditions, the StTRII RNAi plants did not show phenotypic alterations. Further investigation of calystegines function in potato plants under natural conditions is enabled by the calystegine deprived StTRII RNAi plants.
Collapse
Affiliation(s)
- Nadine Küster
- Department of Pharmaceutical Biology, Martin-Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Sabine Rosahl
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Birgit Dräger
- Department of Pharmaceutical Biology, Martin-Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany.
- University Leipzig, Ritterstraße 26, 04109, Leipzig, Germany.
| |
Collapse
|
28
|
Romek KM, Remaud GS, Silvestre V, Paneth P, Robins RJ. Non-statistical 13C Fractionation Distinguishes Co-incident and Divergent Steps in the Biosynthesis of the Alkaloids Nicotine and Tropine. J Biol Chem 2016; 291:16620-9. [PMID: 27288405 PMCID: PMC4974377 DOI: 10.1074/jbc.m116.734087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/26/2016] [Indexed: 11/06/2022] Open
Abstract
During the biosynthesis of natural products, isotopic fractionation occurs due to the selectivity of enzymes for the heavier or lighter isotopomers. As only some of the positions in the molecule are implicated in a given reaction mechanism, position-specific fractionation occurs, leading to a non-statistical distribution of isotopes. This can be accessed by isotope ratio monitoring (13)C NMR spectrometry. The solanaceous alkaloids S-(-)-nicotine and hyoscyamine (atropine) are related in having a common intermediate, but downstream enzymatic steps diverge, providing a relevant test case to: (a) elucidate the isotopic affiliation between carbon atoms in the alkaloids and those in the precursors; (b) obtain information about the kinetic isotope effects of as yet undescribed enzymes, thus to make predictions as to their possible mechanism(s). We show that the position-specific (13)C/(12)C ratios in the different moieties of these compounds can satisfactorily be related to their known precursors and to the known kinetic isotope effects of enzymes involved in their biosynthesis, or to similar reaction mechanisms. Thus, the pathway to the common intermediate, N-methyl-Δ(1)-pyrrolinium, is seen to introduce similar isotope distribution patterns in the two alkaloids independent of plant species, whereas the remaining atoms of each target compound, which are of different origins, reflect their specific metabolic ancestry. We further demonstrate that the measured (13)C distribution pattern can be used to deduce aspects of the reaction mechanism of enzymes still to be identified.
Collapse
Affiliation(s)
- Katarzyna M Romek
- From the Elucidation of Biosynthesis by Isotopic Spectrometry Group, Interdisciplinary Chemistry: Synthesis, Analysis, Modeling, CNRS-University of Nantes UMR6230, F-44322 Nantes, France and the Institute of Applied Radiation Chemistry, Faculty of Chemistry, Łodź University of Technology, ul. Stefana Żeromskiego 116, 90-924 Łódź, Poland
| | - Gérald S Remaud
- From the Elucidation of Biosynthesis by Isotopic Spectrometry Group, Interdisciplinary Chemistry: Synthesis, Analysis, Modeling, CNRS-University of Nantes UMR6230, F-44322 Nantes, France and
| | - Virginie Silvestre
- From the Elucidation of Biosynthesis by Isotopic Spectrometry Group, Interdisciplinary Chemistry: Synthesis, Analysis, Modeling, CNRS-University of Nantes UMR6230, F-44322 Nantes, France and
| | - Piotr Paneth
- the Institute of Applied Radiation Chemistry, Faculty of Chemistry, Łodź University of Technology, ul. Stefana Żeromskiego 116, 90-924 Łódź, Poland
| | - Richard J Robins
- From the Elucidation of Biosynthesis by Isotopic Spectrometry Group, Interdisciplinary Chemistry: Synthesis, Analysis, Modeling, CNRS-University of Nantes UMR6230, F-44322 Nantes, France and
| |
Collapse
|
29
|
Ryan SM, DeBoer KD, Hamill JD. Alkaloid production and capacity for methyljasmonate induction by hairy roots of two species in Tribe Anthocercideae, family Solanaceae. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:792-801. [PMID: 32480722 DOI: 10.1071/fp15045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/27/2015] [Indexed: 06/11/2023]
Abstract
In addition to producing medicinally important tropane alkaloids, some species in the mainly Australian Solanaceous tribe Anthocercideae, sister to genus Nicotiana, are known to also contain substantial levels of the pyridine alkaloids nicotine and nornicotine. Here, we demonstrate that axenic hairy root cultures of two tribe Anthocercideae species, Cyphanthera tasmanica Miers and Anthocercis ilicifolia ssp. ilicifolia Hook, contain considerable amounts of both nicotine and nornicotine (~0.5-1% DW), together with lower levels of the tropane alkaloid hyoscyamine (<0.2% DW). Treatment of growing hairy roots of both species with micromolar levels of the wound stress hormone methyl-jasmonate (MeJa) led to significant increases (P<0.05) in pyridine alkaloid concentrations but not of hyoscyamine. Consistent with previous studies involving Nicotiana species, we also observed that transcript levels of key genes required for pyridine alkaloid synthesis increased in hairy roots of both Anthocercideae species following MeJa treatment. We hypothesise that wound-associated induction of pyridine alkaloid synthesis in extant species of tribe Anthocercideae and genus Nicotiana was a feature of common ancestral stock that existed before the separation of both lineages ~15million years ago.
Collapse
Affiliation(s)
- Suzanne M Ryan
- School of Biological Sciences, Monash University, Building 18, Clayton, Vic. 3800, Australia
| | - Kathleen D DeBoer
- School of Biological Sciences, Monash University, Building 18, Clayton, Vic. 3800, Australia
| | - John D Hamill
- Centre for Regional and Rural Futures (CeRRF), Deakin University, Locked Bag 20000, Geelong, Vic. 3220, Australia
| |
Collapse
|
30
|
Transcriptome profiling of khat (Catha edulis) and Ephedra sinica reveals gene candidates potentially involved in amphetamine-type alkaloid biosynthesis. PLoS One 2015; 10:e0119701. [PMID: 25806807 PMCID: PMC4373857 DOI: 10.1371/journal.pone.0119701] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/15/2015] [Indexed: 12/25/2022] Open
Abstract
Amphetamine analogues are produced by plants in the genus Ephedra and by khat (Catha edulis), and include the widely used decongestants and appetite suppressants (1S,2S)-pseudoephedrine and (1R,2S)-ephedrine. The production of these metabolites, which derive from L-phenylalanine, involves a multi-step pathway partially mapped out at the biochemical level using knowledge of benzoic acid metabolism established in other plants, and direct evidence using khat and Ephedra species as model systems. Despite the commercial importance of amphetamine-type alkaloids, only a single step in their biosynthesis has been elucidated at the molecular level. We have employed Illumina next-generation sequencing technology, paired with Trinity and Velvet-Oases assembly platforms, to establish data-mining frameworks for Ephedra sinica and khat plants. Sequence libraries representing a combined 200,000 unigenes were subjected to an annotation pipeline involving direct searches against public databases. Annotations included the assignment of Gene Ontology (GO) terms used to allocate unigenes to functional categories. As part of our functional genomics program aimed at novel gene discovery, the databases were mined for enzyme candidates putatively involved in alkaloid biosynthesis. Queries used for mining included enzymes with established roles in benzoic acid metabolism, as well as enzymes catalyzing reactions similar to those predicted for amphetamine alkaloid metabolism. Gene candidates were evaluated based on phylogenetic relationships, FPKM-based expression data, and mechanistic considerations. Establishment of expansive sequence resources is a critical step toward pathway characterization, a goal with both academic and industrial implications.
Collapse
|
31
|
Biogenic amines – A possible source for nicotine in mushrooms? A discussion of published literature data. Food Chem 2015; 171:379-81. [DOI: 10.1016/j.foodchem.2014.08.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/30/2014] [Accepted: 08/23/2014] [Indexed: 11/20/2022]
|
32
|
Bedewitz MA, Góngora-Castillo E, Uebler JB, Gonzales-Vigil E, Wiegert-Rininger KE, Childs KL, Hamilton JP, Vaillancourt B, Yeo YS, Chappell J, DellaPenna D, Jones AD, Buell CR, Barry CS. A root-expressed L-phenylalanine:4-hydroxyphenylpyruvate aminotransferase is required for tropane alkaloid biosynthesis in Atropa belladonna. THE PLANT CELL 2014; 26:3745-62. [PMID: 25228340 PMCID: PMC4213168 DOI: 10.1105/tpc.114.130534] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The tropane alkaloids, hyoscyamine and scopolamine, are medicinal compounds that are the active components of several therapeutics. Hyoscyamine and scopolamine are synthesized in the roots of specific genera of the Solanaceae in a multistep pathway that is only partially elucidated. To facilitate greater understanding of tropane alkaloid biosynthesis, a de novo transcriptome assembly was developed for Deadly Nightshade (Atropa belladonna). Littorine is a key intermediate in hyoscyamine and scopolamine biosynthesis that is produced by the condensation of tropine and phenyllactic acid. Phenyllactic acid is derived from phenylalanine via its transamination to phenylpyruvate, and mining of the transcriptome identified a phylogenetically distinct aromatic amino acid aminotransferase (ArAT), designated Ab-ArAT4, that is coexpressed with known tropane alkaloid biosynthesis genes in the roots of A. belladonna. Silencing of Ab-ArAT4 disrupted synthesis of hyoscyamine and scopolamine through reduction of phenyllactic acid levels. Recombinant Ab-ArAT4 preferentially catalyzes the first step in phenyllactic acid synthesis, the transamination of phenylalanine to phenylpyruvate. However, rather than utilizing the typical keto-acid cosubstrates, 2-oxoglutarate, pyruvate, and oxaloacetate, Ab-ArAT4 possesses strong substrate preference and highest activity with the aromatic keto-acid, 4-hydroxyphenylpyruvate. Thus, Ab-ArAT4 operates at the interface between primary and specialized metabolism, contributing to both tropane alkaloid biosynthesis and the direct conversion of phenylalanine to tyrosine.
Collapse
Affiliation(s)
- Matthew A Bedewitz
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| | - Elsa Góngora-Castillo
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Joseph B Uebler
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| | | | | | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Yun-Soo Yeo
- Plant Biology Program and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40546
| | - Joseph Chappell
- Plant Biology Program and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40546
| | - Dean DellaPenna
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Cornelius S Barry
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
33
|
Sierro N, Battey JN, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch MC, Ivanov NV. The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 2014; 5:3833. [PMID: 24807620 PMCID: PMC4024737 DOI: 10.1038/ncomms4833] [Citation(s) in RCA: 333] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/08/2014] [Indexed: 11/19/2022] Open
Abstract
The allotetraploid plant Nicotiana tabacum (common tobacco) is a major crop species and a model organism, for which only very fragmented genomic sequences are currently available. Here we report high-quality draft genomes for three main tobacco varieties. These genomes show both the low divergence of tobacco from its ancestors and microsynteny with other Solanaceae species. We identify over 90,000 gene models and determine the ancestral origin of tobacco mosaic virus and potyvirus disease resistance in tobacco. We anticipate that the draft genomes will strengthen the use of N. tabacum as a versatile model organism for functional genomics and biotechnology applications.
Collapse
Affiliation(s)
- Nicolas Sierro
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - James N.D. Battey
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Sonia Ouadi
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Nicolas Bakaher
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Lucien Bovet
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Adrian Willig
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
- Present address: 25b Quai Charles-Page, CH-1205 Genève, Switzerland
| | - Simon Goepfert
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Manuel C. Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Nikolai V. Ivanov
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| |
Collapse
|
34
|
BASUKI SESANTI, MATTJIK NURHAJATI, WIRNAS DESTA, SUWARSO, SUDARSONO. Characterization of cDNA for PMT: a Partial Nicotine Biosynthesis-Related Gene Isolated from Indonesian Local Tobacco (Nicotiana tabacum cv. Sindoro1). HAYATI JOURNAL OF BIOSCIENCES 2013. [DOI: 10.4308/hjb.20.4.187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
35
|
Khandakar J, Haraguchi I, Yamaguchi K, Kitamura Y. A small-scale proteomic approach reveals a survival strategy, including a reduction in alkaloid biosynthesis, in Hyoscyamus albus roots subjected to iron deficiency. FRONTIERS IN PLANT SCIENCE 2013; 4:331. [PMID: 24009619 PMCID: PMC3755260 DOI: 10.3389/fpls.2013.00331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/06/2013] [Indexed: 05/22/2023]
Abstract
Hyoscyamus albus is a well-known source of the tropane alkaloids, hyoscyamine and scopolamine, which are biosynthesized in the roots. To assess the major biochemical adaptations that occur in the roots of this plant in response to iron deficiency, we used a small-scale proteomic approach in which 100 mg of root tips were treated with and without Fe, respectively, for 5 days. Two-dimensional mini gels showed that 48 spots were differentially accumulated between the two conditions of Fe availability and a further 36 proteins were identified from these spots using MALDI-QIT-TOF mass spectrometry. The proteins that showed elevated levels in the roots lacking Fe were found to be associated variously with carbohydrate metabolism, cell differentiation, secondary metabolism, and oxidative defense. Most of the proteins involved in carbohydrate metabolism were increased in abundance, but mitochondrial NAD-dependent malate dehydrogenase was decreased, possibly resulting in malate secretion. Otherwise, all the proteins showing diminished levels in the roots were identified as either Fe-containing or ATP-requiring. For example, a significant decrease was observed in the levels of hyoscyamine 6β-hydroxylase (H6H), which requires Fe and is involved in the conversion of hyoscyamine to scopolamine. To investigate the effects of Fe deficiency on alkaloid biosynthesis, gene expression studies were undertaken both for H6H and for another Fe-dependent protein, Cyp80F1, which is involved in the final stage of hyoscyamine biosynthesis. In addition, tropane alkaloid contents were determined. Reduced gene expression was observed in the case of both of these proteins and was accompanied by a decrease in the content of both hyoscyamine and scopolamine. Finally, we have discussed energetic and Fe-conservation strategies that might be adopted by the roots of H. albus to maintain iron homeostasis under Fe-limiting conditions.
Collapse
Affiliation(s)
| | - Izumi Haraguchi
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki UniversityNagasaki, Japan
| | - Kenichi Yamaguchi
- Graduate School of Science and Technology, Nagasaki UniversityNagasaki, Japan
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki UniversityNagasaki, Japan
- Division of Biochemistry, Faculty of Fisheries, Nagasaki UniversityNagasaki, Japan
| | - Yoshie Kitamura
- Graduate School of Science and Technology, Nagasaki UniversityNagasaki, Japan
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki UniversityNagasaki, Japan
| |
Collapse
|
36
|
Cordell GA. Fifty years of alkaloid biosynthesis in Phytochemistry. PHYTOCHEMISTRY 2013; 91:29-51. [PMID: 22721782 DOI: 10.1016/j.phytochem.2012.05.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/22/2012] [Accepted: 05/10/2012] [Indexed: 05/04/2023]
Abstract
An overview is presented of the studies related to the biosynthesis of alkaloids published in Phytochemistry in the past 50 years.
Collapse
|
37
|
Petersson EV, Arif U, Schulzova V, Krtková V, Hajšlová J, Meijer J, Andersson HC, Jonsson L, Sitbon F. Glycoalkaloid and calystegine levels in table potato cultivars subjected to wounding, light, and heat treatments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5893-902. [PMID: 23692427 DOI: 10.1021/jf400318p] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Potato tubers naturally contain a number of defense substances, some of which are of major concern for food safety. Among these substances are the glycoalkaloids and calystegines. We have here analyzed levels of glycoalkaloids (α-chaconine and α-solanine) and calystegines (A₃, B₂, and B₄) in potato tubers subjected to mechanical wounding, light exposure, or elevated temperature: stress treatments that are known or anticipated to induce glycoalkaloid levels. Basal glycoalkaloid levels in tubers varied between potato cultivars. Wounding and light exposure, but not heat, increased tuber glycoalkaloid levels, and the relative response differed among the cultivars. Also, calystegine levels varied between cultivars, with calystegine B4 showing the most marked variation. However, the total calystegine level was not affected by wounding or light exposure. The results demonstrate a strong variation among potato cultivars with regard to postharvest glycoalkaloid increases, and they suggest that the biosynthesis of glycoalkaloids and calystegines occurs independently of each other.
Collapse
Affiliation(s)
- Erik V Petersson
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences , and Linnean Centre for Plant Biology, P.O. Box 7080, 750 07 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sierro N, Battey JND, Ouadi S, Bovet L, Goepfert S, Bakaher N, Peitsch MC, Ivanov NV. Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol 2013; 14:R60. [PMID: 23773524 PMCID: PMC3707018 DOI: 10.1186/gb-2013-14-6-r60] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 05/10/2013] [Accepted: 06/17/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nicotiana sylvestris and Nicotiana tomentosiformis are members of the Solanaceae family that includes tomato, potato, eggplant and pepper. These two Nicotiana species originate from South America and exhibit different alkaloid and diterpenoid production. N. sylvestris is cultivated largely as an ornamental plant and it has been used as a diploid model system for studies of terpenoid production, plastid engineering, and resistance to biotic and abiotic stress. N. sylvestris and N. tomentosiformis are considered to be modern descendants of the maternal and paternal donors that formed Nicotiana tabacum about 200,000 years ago through interspecific hybridization. Here we report the first genome-wide analysis of these two Nicotiana species. RESULTS Draft genomes of N. sylvestris and N. tomentosiformis were assembled to 82.9% and 71.6% of their expected size respectively, with N50 sizes of about 80 kb. The repeat content was 72-75%, with a higher proportion of retrotransposons and copia-like long terminal repeats in N. tomentosiformis. The transcriptome assemblies showed that 44,000-53,000 transcripts were expressed in the roots, leaves or flowers. The key genes involved in terpenoid metabolism, alkaloid metabolism and heavy metal transport showed differential expression in the leaves, roots and flowers of N. sylvestris and N. tomentosiformis. CONCLUSIONS The reference genomes of N. sylvestris and N. tomentosiformis represent a significant contribution to the SOL100 initiative because, as members of the Nicotiana genus of Solanaceae, they strengthen the value of the already existing resources by providing additional comparative information, thereby helping to improve our understanding of plant metabolism and evolution.
Collapse
Affiliation(s)
- Nicolas Sierro
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - James ND Battey
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Sonia Ouadi
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Lucien Bovet
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Simon Goepfert
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Nicolas Bakaher
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| |
Collapse
|
39
|
Junker A, Fischer J, Sichhart Y, Brandt W, Dräger B. Evolution of the key alkaloid enzyme putrescine N-methyltransferase from spermidine synthase. FRONTIERS IN PLANT SCIENCE 2013; 4:260. [PMID: 23908659 PMCID: PMC3725402 DOI: 10.3389/fpls.2013.00260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/26/2013] [Indexed: 05/09/2023]
Abstract
Putrescine N-methyltransferases (PMTs) are the first specific enzymes of the biosynthesis of nicotine and tropane alkaloids. PMTs transfer a methyl group onto the diamine putrescine from S-adenosyl-l-methionine (SAM) as coenzyme. PMT proteins have presumably evolved from spermidine synthases (SPDSs), which are ubiquitous enzymes of polyamine metabolism. SPDSs use decarboxylated SAM as coenzyme to transfer an aminopropyl group onto putrescine. In an attempt to identify possible and necessary steps in the evolution of PMT from SPDS, homology based modeling of Datura stramonium SPDS1 and PMT was employed to gain deeper insight in the preferred binding positions and conformations of the substrate and the alternative coenzymes. Based on predictions of amino acids responsible for the change of enzyme specificities, sites of mutagenesis were derived. PMT activity was generated in D. stramonium SPDS1 after few amino acid exchanges. Concordantly, Arabidopsis thaliana SPDS1 was mutated and yielded enzymes with both, PMT and SPDS activities. Kinetic parameters were measured for enzymatic characterization. The switch from aminopropyl to methyl transfer depends on conformational changes of the methionine part of the coenzyme in the binding cavity of the enzyme. The rapid generation of PMT activity in SPDS proteins and the wide-spread occurrence of putative products of N-methylputrescine suggest that PMT activity is present frequently in the plant kingdom.
Collapse
Affiliation(s)
- Anne Junker
- Faculty of Science I, Institute of Pharmacy, Martin-Luther-University Halle-WittenbergHalle (Saale), Germany
| | - Juliane Fischer
- Department of Bioorganic Chemistry, Leibniz Institute of Plant BiochemistryHalle (Saale), Germany
| | - Yvonne Sichhart
- Faculty of Science I, Institute of Pharmacy, Martin-Luther-University Halle-WittenbergHalle (Saale), Germany
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant BiochemistryHalle (Saale), Germany
| | - Birgit Dräger
- Faculty of Science I, Institute of Pharmacy, Martin-Luther-University Halle-WittenbergHalle (Saale), Germany
- *Correspondence: Birgit Dräger, Faculty of Science I, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, D-06120 Halle (Saale), Germany e-mail:
| |
Collapse
|
40
|
Jang SJ, Wi SJ, Choi YJ, An G, Park KY. Increased polyamine biosynthesis enhances stress tolerance by preventing the accumulation of reactive oxygen species: T-DNA mutational analysis of Oryza sativa lysine decarboxylase-like protein 1. Mol Cells 2012; 34:251-62. [PMID: 22965749 PMCID: PMC3887846 DOI: 10.1007/s10059-012-0067-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 07/02/2012] [Accepted: 07/11/2012] [Indexed: 12/24/2022] Open
Abstract
A highly oxidative stress-tolerant japonica rice line was isolated by T-DNA insertion mutation followed by screening in the presence of 50 mM H(2)O(2). The T-DNA insertion was mapped to locus Os09g0547500, the gene product of which was annotated as lysine decarboxylase-like protein (GenBank accession No. AK062595). We termed this gene OsLDC-like 1, for Oryza sativa lysine decarboxylase-like 1. The insertion site was in the second exon and resulted in a 27 amino acid N-terminal deletion. Despite this defect in OsLDC-like 1, the mutant line exhibited enhanced accumulation of the polyamines (PAs) putrescine, spermidine, and spermine under conditions of oxidative stress. The generation of reactive oxygen species (ROS) in the mutant line was assessed by qRT-PCR analysis of NADPH oxidase (RbohD and RbohF), and by DCFH-DA staining. Cellular levels of ROS in osldc-like 1 leaves were significantly lower than those in the wild-type (WT) rice after exposure to oxidative, high salt and acid stresses. Exogenously-applied PAs such as spermidine and spermine significantly inhibited the stress-induced accumulation of ROS and cell damage in WT leaves. Additionally, the activities of ROS-detoxifying enzymes were increased in the homozygous mutant line in the presence or absence of H(2)O(2). Thus, mutation of OsLDC-like 1 conferred an oxidative stress-tolerant phenotype. These results suggest that increased cellular PA levels have a physiological role in preventing stress-induced ROS and ethylene accumulation and the resultant cell damage.
Collapse
Affiliation(s)
- Su Jin Jang
- Department of Biology, Sunchon National University, Sunchon 540-742,
Korea
| | - Soo Jin Wi
- Department of Biology, Sunchon National University, Sunchon 540-742,
Korea
| | - Yoo Jin Choi
- Department of Biology, Sunchon National University, Sunchon 540-742,
Korea
| | | | - Ky Young Park
- Department of Biology, Sunchon National University, Sunchon 540-742,
Korea
| |
Collapse
|
41
|
Polyamines under Abiotic Stress: Metabolic Crossroads and Hormonal Crosstalks in Plants. Metabolites 2012; 2:516-28. [PMID: 24957645 PMCID: PMC3901213 DOI: 10.3390/metabo2030516] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/06/2012] [Accepted: 08/10/2012] [Indexed: 12/30/2022] Open
Abstract
Polyamines are essential compounds for cell survival and have key roles in plant stress protection. Current evidence points to the occurrence of intricate cross-talks between polyamines, stress hormones and other metabolic pathways required for their function. In this review we integrate the polyamine metabolic pathway in the context of its immediate metabolic network which is required to understand the multiple ways by which polyamines can maintain their homeostasis and participate in plant stress responses.
Collapse
|
42
|
Docimo T, Reichelt M, Schneider B, Kai M, Kunert G, Gershenzon J, D'Auria JC. The first step in the biosynthesis of cocaine in Erythroxylum coca: the characterization of arginine and ornithine decarboxylases. PLANT MOLECULAR BIOLOGY 2012; 78:599-615. [PMID: 22311164 DOI: 10.1007/s11103-012-9886-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 01/19/2012] [Indexed: 05/25/2023]
Abstract
Despite the long history of cocaine use among humans and its social and economic significance today, little information is available about the biochemical and molecular aspects of cocaine biosynthesis in coca (Erythroxylum coca) in comparison to what is known about the formation of other pharmacologically-important tropane alkaloids in species of the Solanaceae. In this work, we investigated the site of cocaine biosynthesis in E. coca and the nature of the first step. The two principal tropane alkaloids of E. coca, cocaine and cinnamoyl cocaine, were present in highest concentrations in buds and rolled leaves. These are also the organs in which the rate of alkaloid biosynthesis was the highest based on the incorporation of ¹³CO₂. In contrast, tropane alkaloids in the Solanaceae are biosynthesized in the roots and translocated to the leaves. A collection of EST sequences from a cDNA library made from young E. coca leaves was employed to search for genes encoding the first step in tropane alkaloid biosynthesis. Full-length cDNA clones were identified encoding two candidate enzymes, ornithine decarboxylase (ODC) and arginine decarboxylase (ADC), and the enzymatic activities of the corresponding proteins confirmed by heterologous expression in E. coli and complementation of a yeast mutant. The transcript levels of both ODC and ADC genes were highest in buds and rolled leaves and lower in other organs. The levels of both ornithine and arginine themselves showed a similar pattern, so it was not possible to assign a preferential role in cocaine biosynthesis to one of these proteins.
Collapse
Affiliation(s)
- Teresa Docimo
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Fellenberg C, Ziegler J, Handrick V, Vogt T. Polyamine Homeostasis in Wild Type and Phenolamide Deficient Arabidopsis thaliana Stamens. FRONTIERS IN PLANT SCIENCE 2012; 3:180. [PMID: 22912643 PMCID: PMC3421149 DOI: 10.3389/fpls.2012.00180] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/23/2012] [Indexed: 05/21/2023]
Abstract
Polyamines (PAs) like putrescine, spermidine, and spermine are ubiquitous polycationic molecules that occur in all living cells and have a role in a wide variety of biological processes. High amounts of spermidine conjugated to hydroxycinnamic acids are detected in the tryphine of Arabidopsis thaliana pollen grains. Tapetum localized spermidine hydroxycinnamic acid transferase (SHT) is essential for the biosynthesis of these anther specific tris-conjugated spermidine derivatives. Sht knockout lines show a strong reduction of hydroxycinnamic acid amides (HCAAs). The effect of HCAA-deficient anthers on the level of free PAs was measured by a new sensitive and reproducible method using 9-fluorenylmethyl chloroformate (FMOC) and fluorescence detection by HPLC. PA concentrations can be accurately determined even when very limited amounts of plant material, as in the case of A. thaliana stamens, are available. Analysis of free PAs in wild type stamens compared to sht deficient mutants and transcript levels of key PA biosynthetic genes revealed a highly controlled regulation of PA homeostasis in A. thaliana anthers.
Collapse
Affiliation(s)
- Christin Fellenberg
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant BiochemistryHalle (Saale), Germany
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant BiochemistryHalle (Saale), Germany
| | - Vinzenz Handrick
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant BiochemistryHalle (Saale), Germany
| | - Thomas Vogt
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant BiochemistryHalle (Saale), Germany
- *Correspondence: Thomas Vogt, Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany. e-mail:
| |
Collapse
|
44
|
Wang Z, Fang B, Chen J, Zhang X, Luo Z, Huang L, Chen X, Li Y. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweet potato (Ipomoea batatas). BMC Genomics 2010; 11:726. [PMID: 21182800 PMCID: PMC3016421 DOI: 10.1186/1471-2164-11-726] [Citation(s) in RCA: 333] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 12/24/2010] [Indexed: 12/31/2022] Open
Abstract
Background The tuberous root of sweetpotato is an important agricultural and biological organ. There are not sufficient transcriptomic and genomic data in public databases for understanding of the molecular mechanism underlying the tuberous root formation and development. Thus, high throughput transcriptome sequencing is needed to generate enormous transcript sequences from sweetpotato root for gene discovery and molecular marker development. Results In this study, more than 59 million sequencing reads were generated using Illumina paired-end sequencing technology. De novo assembly yielded 56,516 unigenes with an average length of 581 bp. Based on sequence similarity search with known proteins, a total of 35,051 (62.02%) genes were identified. Out of these annotated unigenes, 5,046 and 11,983 unigenes were assigned to gene ontology and clusters of orthologous group, respectively. Searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) indicated that 17,598 (31.14%) unigenes were mapped to 124 KEGG pathways, and 11,056 were assigned to metabolic pathways, which were well represented by carbohydrate metabolism and biosynthesis of secondary metabolite. In addition, 4,114 cDNA SSRs (cSSRs) were identified as potential molecular markers in our unigenes. One hundred pairs of PCR primers were designed and used for validation of the amplification and assessment of the polymorphism in genomic DNA pools. The result revealed that 92 primer pairs were successfully amplified in initial screening tests. Conclusion This study generated a substantial fraction of sweetpotato transcript sequences, which can be used to discover novel genes associated with tuberous root formation and development and will also make it possible to construct high density microarrays for further characterization of gene expression profiles during these processes. Thousands of cSSR markers identified in the present study can enrich molecular markers and will facilitate marker-assisted selection in sweetpotato breeding. Overall, these sequences and markers will provide valuable resources for the sweetpotato community. Additionally, these results also suggested that transcriptome analysis based on Illumina paired-end sequencing is a powerful tool for gene discovery and molecular marker development for non-model species, especially those with large and complex genome.
Collapse
Affiliation(s)
- Zhangying Wang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 PR China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Rodríguez-Kessler M, Delgado-Sánchez P, Rodríguez-Kessler GT, Moriguchi T, Jiménez-Bremont JF. Genomic organization of plant aminopropyl transferases. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:574-590. [PMID: 20381365 DOI: 10.1016/j.plaphy.2010.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 03/05/2010] [Accepted: 03/12/2010] [Indexed: 05/29/2023]
Abstract
Aminopropyl transferases like spermidine synthase (SPDS; EC 2.5.1.16), spermine synthase and thermospermine synthase (SPMS, tSPMS; EC 2.5.1.22) belong to a class of widely distributed enzymes that use decarboxylated S-adenosylmethionine as an aminopropyl donor and putrescine or spermidine as an amino acceptor to form in that order spermidine, spermine or thermospermine. We describe the analysis of plant genomic sequences encoding SPDS, SPMS, tSPMS and PMT (putrescine N-methyltransferase; EC 2.1.1.53). Genome organization (including exon size, gain and loss, as well as intron number, size, loss, retention, placement and phase, and the presence of transposons) of plant aminopropyl transferase genes were compared between the genomic sequences of SPDS, SPMS and tSPMS from Zea mays, Oryza sativa, Malus x domestica, Populus trichocarpa, Arabidopsis thaliana and Physcomitrella patens. In addition, the genomic organization of plant PMT genes, proposed to be derived from SPDS during the evolution of alkaloid metabolism, is illustrated. Herein, a particular conservation and arrangement of exon and intron sequences between plant SPDS, SPMS and PMT genes that clearly differs with that of ACL5 genes, is shown. The possible acquisition of the plant SPMS exon II and, in particular exon XI in the monocot SPMS genes, is a remarkable feature that allows their differentiation from SPDS genes. In accordance with our in silico analysis, functional complementation experiments of the maize ZmSPMS1 enzyme (previously considered to be SPDS) in yeast demonstrated its spermine synthase activity. Another significant aspect is the conservation of intron sequences among SPDS and PMT paralogs. In addition the existence of microsynteny among some SPDS paralogs, especially in P. trichocarpa and A. thaliana, supports duplication events of plant SPDS genes. Based in our analysis, we hypothesize that SPMS genes appeared with the divergence of vascular plants by a processes of gene duplication and the acquisition of unique exons of as-yet unknown origin.
Collapse
Affiliation(s)
- Margarita Rodríguez-Kessler
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, CP 62210, Cuernavaca, Morelos, México
| | | | | | | | | |
Collapse
|
46
|
Fuell C, Elliott KA, Hanfrey CC, Franceschetti M, Michael AJ. Polyamine biosynthetic diversity in plants and algae. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:513-20. [PMID: 20227886 DOI: 10.1016/j.plaphy.2010.02.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 05/04/2023]
Abstract
Polyamine biosynthesis in plants differs from other eukaryotes because of the contribution of genes from the cyanobacterial ancestor of the chloroplast. Plants possess an additional biosynthetic route for putrescine formation from arginine, consisting of the enzymes arginine decarboxylase, agmatine iminohydrolase and N-carbamoylputrescine amidohydrolase, derived from the cyanobacterial ancestor. They also synthesize an unusual tetraamine, thermospermine, that has important developmental roles and which is evolutionarily more ancient than spermine in plants and algae. Single-celled green algae have lost the arginine route and are dependent, like other eukaryotes, on putrescine biosynthesis from the ornithine. Some plants like Arabidopsis thaliana and the moss Physcomitrella patens have lost ornithine decarboxylase and are thus dependent on the arginine route. With its dependence on the arginine route, and the pivotal role of thermospermine in growth and development, Arabidopsis represents the most specifically plant mode of polyamine biosynthesis amongst eukaryotes. A number of plants and algae are also able to synthesize unusual polyamines such as norspermidine, norspermine and longer polyamines, and biosynthesis of these amines likely depends on novel aminopropyltransferases similar to thermospermine synthase, with relaxed substrate specificity. Plants have a rich repertoire of polyamine-based secondary metabolites, including alkaloids and hydroxycinnamic amides, and a number of polyamine-acylating enzymes have been recently characterised. With the genetic tools available for Arabidopsis and other model plants and algae, and the increasing capabilities of comparative genomics, the biological roles of polyamines can now be addressed across the plant evolutionary lineage.
Collapse
Affiliation(s)
- Christine Fuell
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR47UA, UK
| | | | | | | | | |
Collapse
|
47
|
Ober D. Gene duplications and the time thereafter - examples from plant secondary metabolism. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:570-7. [PMID: 20636899 DOI: 10.1111/j.1438-8677.2009.00317.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Gene duplications are regarded as one of the central mechanisms for the origin of new genes. Recent studies in plant secondary metabolism have provided several examples of genes that originated by duplication with successive diversification. In this review, the mechanisms of gene duplication are explained and several models discussed that suggest the way that gene duplicates develop into genes with new functions. Signatures of gene duplication and diversification processes are discussed using the biosynthesis of benzoxazinones and of pyrrolizidine alkaloids as examples.
Collapse
Affiliation(s)
- D Ober
- Biochemische Okologie und Molekulare Evolution, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| |
Collapse
|