1
|
Yáñez-Serrano AM, Corbera J, Portillo-Estrada M, Janssens IA, Llusià J, Filella I, Peñuelas J, Preece C, Sabater F, Fernández-Martínez M. Drivers of biogenic volatile organic compound emissions in hygrophytic bryophytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174293. [PMID: 38936717 DOI: 10.1016/j.scitotenv.2024.174293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/16/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Bryophytes can both emit and take up biogenic volatile organic compounds (BVOCs) to and from the environment. Despite the scarce study of these exchanges, BVOCs have been shown to be important for a wide range of ecological roles. Bryophytes are the most ancient clade of land plants and preserve very similar traits to those first land colonisers. Therefore, the study of these plants can help understand the early processes of BVOC emissions as an adaptation to terrestrial life. Here, we determine the emission rates of BVOCs from different bryophyte species to understand what drives such emissions. We studied 26 bryophyte species from temperate regions that can be found in mountain springs located in NE Spain. Bryophyte BVOC emission presented no significant phylogenetic signal for any of the compounds analysed. Hence, we used mixed linear models to investigate the species-specific differences and eco-physiological and environmental drivers of bryophyte BVOC emission. In general, species-specific variability was the main factor explaining bryophyte BVOC emissions; but additionally, photosynthetic rates and light intensity increased BVOC emissions. Despite emission measurements reported here were conducted at 30°, and may not directly correspond to emission rates in natural conditions, most of the screened species have never been measured before for BVOC emissions and therefore this information can help understand the drivers of the emissions of BVOCs in bryophytes.
Collapse
Affiliation(s)
- A M Yáñez-Serrano
- IDAEA-CSIC, 08034 Barcelona, Spain; CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain; CSIC, Global Ecology Unit, CREAF-CSIC-UAB, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain.
| | - J Corbera
- Delegació de la Serralada Litoral Central, ICHN, Barcelona, Catalonia, Spain
| | - M Portillo-Estrada
- PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - I A Janssens
- PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - J Llusià
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain; CSIC, Global Ecology Unit, CREAF-CSIC-UAB, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - I Filella
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain; CSIC, Global Ecology Unit, CREAF-CSIC-UAB, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - J Peñuelas
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain; CSIC, Global Ecology Unit, CREAF-CSIC-UAB, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - C Preece
- IRTA, Torre Marimón, Caldes de Montbui, Catalonia, Spain
| | - F Sabater
- BEECA-UB, Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, E08028 Barcelona, Catalonia, Spain
| | - M Fernández-Martínez
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain; CSIC, Global Ecology Unit, CREAF-CSIC-UAB, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain; Delegació de la Serralada Litoral Central, ICHN, Barcelona, Catalonia, Spain; BEECA-UB, Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, E08028 Barcelona, Catalonia, Spain
| |
Collapse
|
2
|
Wawrzyniak R, Wasiak W, Guzowska M, Bączkiewicz A, Buczkowska K. The Content of Volatile Organic Compounds in Calypogeia suecica (Calypogeiaceae, Marchantiophyta) Confirms Genetic Differentiation of This Liverwort Species into Two Groups. Molecules 2024; 29:4258. [PMID: 39275105 PMCID: PMC11397266 DOI: 10.3390/molecules29174258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024] Open
Abstract
Calypogeia is a genus of liverworts in the family Calypogeiaceae. The subject of this study was Calypogeia suecica. Samples of the liverwort Calypogeia suecica were collected from various places in southern Poland. A total of 25 samples were collected in 2021, and 25 samples were collected in 2022. Volatile organic compounds (VOCs) from liverworts were analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 107 compounds were detected, of which 38 compounds were identified. The identified compounds were dominated by compounds from the sesquiterpene group (up to 34.77%) and sesquiterpenoids (up to 48.24%). The tested samples of Calypogeia suecica also contained compounds belonging the aromatic classification (up to 5.46%), aliphatic hydrocarbons (up to 1.66%), and small amounts of monoterpenes (up to 0.17%) and monoterpenoids (up to 0.30%). Due to the observed differences in the composition of VOCs, the tested plant material was divided into two groups, in accordance with genetic diversity.
Collapse
Affiliation(s)
- Rafał Wawrzyniak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Wiesław Wasiak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Małgorzata Guzowska
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Alina Bączkiewicz
- Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Katarzyna Buczkowska
- Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
3
|
Yang Z, Chan KW, Abu Bakar MZ, Deng X. Unveiling Drimenol: A Phytochemical with Multifaceted Bioactivities. PLANTS (BASEL, SWITZERLAND) 2024; 13:2492. [PMID: 39273976 PMCID: PMC11397239 DOI: 10.3390/plants13172492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Drimenol, a phytochemical with a distinct odor is found in edible aromatic plants, such as Polygonum minus (known as kesum in Malaysia) and Drimys winteri. Recently, drimenol has received increasing attention owing to its diverse biological activities. This review offers the first extensive overview of drimenol, covering its sources, bioactivities, and derivatives. Notably, drimenol possesses a wide spectrum of biological activities, including antifungal, antibacterial, anti-insect, antiparasitic, cytotoxic, anticancer, and antioxidant effects. Moreover, some mechanisms of its activities, such as its antifungal effects against human mycoses and anticancer activities, have been investigated. However, there are still several crucial issues in the research on drimenol, such as the lack of experimental understanding of its pharmacokinetics, bioavailability, and toxicity. By synthesizing current research findings, this review aims to present a holistic understanding of drimenol, paving the way for future studies and its potential utilization in diverse fields.
Collapse
Affiliation(s)
- Zhongming Yang
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Md Zuki Abu Bakar
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Xi Deng
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
4
|
Han J, Sun Y, Zhou J, Li Y, Jin X, Zhu M, Xu Z, Zhang J, Lou H. Sacculatane Diterpenoids from the Liverwort Plagiochila nitens Collected in China. JOURNAL OF NATURAL PRODUCTS 2024; 87:1124-1130. [PMID: 38419347 DOI: 10.1021/acs.jnatprod.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Seven new terpenoids, including six sacculatane diterpenoids plagiochilarins A-F (1-6), and one ent-2,3-seco-aromandrane sesquiterpenoid plagiochilarin H (8) with a 6/7/3/5 tetracyclic scaffold, alongside three known compounds, were obtained from the Chinese liverwort Plagiochila nitens Inoue. Plagiochilarin B (2) was unpredictably converted to the more stable artifact 7 under acid catalysis through cyclic ether formation. The reaction mechanism was reasonably deduced and experimentally verified. The structures of these terpenoids were determined by analysis of MS and NMR spectroscopic data and single-crystal X-ray diffraction. The inhibitory effect of all of the isolates was evaluated on the growth of two C. albicans strains, wild strain SC5314 and efflux pump-deficient strain DSY654. However, only plagiochilarin H (8) showed a MIC value of 16 μg/mL against C. albicans DSY654.
Collapse
Affiliation(s)
- Jingjing Han
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan 250012, People's Republic of China
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, People's Republic of China
| | - Yan Sun
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan 250012, People's Republic of China
| | - Jinchuan Zhou
- School of Pharmacy, Linyi University, Linyi 27600, People's Republic of China
| | - Yi Li
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan 250012, People's Republic of China
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, People's Republic of China
| | - Xueyang Jin
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan 250012, People's Republic of China
| | - Mingzhu Zhu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan 250012, People's Republic of China
| | - Zejun Xu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan 250012, People's Republic of China
| | - Jiaozhen Zhang
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan 250012, People's Republic of China
| | - Hongxiang Lou
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan 250012, People's Republic of China
| |
Collapse
|
5
|
Tansley C, Patron NJ, Guiziou S. Engineering Plant Cell Fates and Functions for Agriculture and Industry. ACS Synth Biol 2024; 13:998-1005. [PMID: 38573786 PMCID: PMC11036505 DOI: 10.1021/acssynbio.4c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Many plant species are grown to enable access to specific organs or tissues, such as seeds, fruits, or stems. In some cases, a value is associated with a molecule that accumulates in a single type of cell. Domestication and subsequent breeding have often increased the yields of these target products by increasing the size, number, and quality of harvested organs and tissues but also via changes to overall plant growth architecture to suit large-scale cultivation. Many of the mutations that underlie these changes have been identified in key regulators of cellular identity and function. As key determinants of yield, these regulators are key targets for synthetic biology approaches to engineer new forms and functions. However, our understanding of many plant developmental programs and cell-type specific functions is still incomplete. In this Perspective, we discuss how advances in cellular genomics together with synthetic biology tools such as biosensors and DNA-recording devices are advancing our understanding of cell-specific programs and cell fates. We then discuss advances and emerging opportunities for cell-type-specific engineering to optimize plant morphology, responses to the environment, and the production of valuable compounds.
Collapse
Affiliation(s)
- Connor Tansley
- Engineering
Biology, Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ United Kingdom
- Department
of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA United
Kingdom
| | - Nicola J. Patron
- Engineering
Biology, Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ United Kingdom
- Department
of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA United
Kingdom
| | - Sarah Guiziou
- Engineering
Biology, Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ United Kingdom
| |
Collapse
|
6
|
Tanaya R, Kodama T, Lee YE, Yasuno Y, Shinada T, Takahashi H, Ito T, Morita H, Awale S, Taura F. Catalytic Potential of Cannabis Prenyltransferase to Expand Cannabinoid Scaffold Diversity. Org Lett 2023; 25:8601-8605. [PMID: 38010421 DOI: 10.1021/acs.orglett.3c03410] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Biologically active cannabinoids are derived from cannabigerolic acid (CBGA), which is biosynthesized by aromatic prenyltransferase CsPT4. We exploit the catalytic versatility of CsPT4 to synthesize various CBGA analogues, including a geranylated bibenzyl acid, the precursor to bibenzyl cannabinoids of liverwort origin. The synthesized natural and new-to-nature cannabinoids exhibit potent cytotoxicity in human pancreatic cancer cells. CsPT4 can artificially extend the cannabinoid biosynthetic diversity with novel and improved biological activities.
Collapse
Affiliation(s)
- Ryosuke Tanaya
- Institute of Natural Medicine, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Takeshi Kodama
- Institute of Natural Medicine, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Yuan-E Lee
- Institute of Natural Medicine, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Yoko Yasuno
- Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan
| | - Tetsuro Shinada
- Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan
| | - Hironobu Takahashi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Takuya Ito
- Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| | - Hiroyuki Morita
- Institute of Natural Medicine, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Suresh Awale
- Institute of Natural Medicine, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Futoshi Taura
- School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| |
Collapse
|
7
|
Wolski GJ, Kobylińska A, Sadowska B, Podsędek A, Kajszczak D, Fol M. Influence of phytocenosis on the medical potential of moss extracts: the Pleurozium schreberi (Willd. ex Brid.) Mitt. case. Sci Rep 2023; 13:20293. [PMID: 37985684 PMCID: PMC10661538 DOI: 10.1038/s41598-023-47654-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
The question was asked "whether plant phytocenosis has an impact on the medical potential of the extracts from Pleurozium schreberi". Moss samples were collected from four different phytocoenoses: mixed forest (oak-pine forest), a forest tract in pine forest, 5-15-year-old pine forest and 50-year-old pine forest. Chemical composition of the extracts, antioxidative capacity (FRAP and ABTS·+ assays), as well as biological activities including cytotoxicity for the mouse fibroblasts L929 line (MTT reduction assay), biostatic/biocidal effect against selected bacteria and fungi (broth microdilution method followed by culture on solid media), and regenerative properties on human fibroblasts HFF-1 line (scratch assay) were tested. The conducted research clearly proves that phytocenosis determines the quality of moss extracts. The analyses showed that in every examined aspect the IV-7 extract (obtained from a specimen collected in a Pinus sylvestris L. forest, monoculture up to 15 years old) exhibited the highest values and the strongest activity. Other extracts of the same species but growing in other phytocenoses-in a mixed forest (IV-5), a forest tract in a Pinus sylvestris monoculture forest (IV-6) and in a P. sylvestris forest of pine monoculture about 50 years old (IV-8) showed much weaker activity and lower values of the above-mentioned parameters. At the same time, none of the tested extracts exerted a pro-regenerative effect. The P. schreberi extracts were characterized by a varied total content of phenolic compounds in the range from 0.63 ± 0.02 to 14.01 ± 0.25 mg/g of plant material. UPLC/MS analysis showed a varied phenolic profile of the extracts, with caffeoylquinic acid and quercetin triglucoside predominating in all of them.
Collapse
Affiliation(s)
- Grzegorz J Wolski
- Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Ul. Banacha 12/16, 90-237, Lodz, Poland.
| | - Agnieszka Kobylińska
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Ul. Banacha 12/16, 90-237, Lodz, Poland
| | - Beata Sadowska
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Ul. Banacha 12/16, 90-237, Lodz, Poland
| | - Anna Podsędek
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Ul. Stefanowskiego 2/22, 90-537, Lodz, Poland
| | - Dominika Kajszczak
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Ul. Stefanowskiego 2/22, 90-537, Lodz, Poland
| | - Marek Fol
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Ul. Banacha 12/16, 90-237, Lodz, Poland.
| |
Collapse
|
8
|
Wawrzyniak R, Guzowska M, Wasiak W, Jasiewicz B, Bączkiewicz A, Buczkowska K. Seasonal Variability of Volatile Components in Calypogeia integristipula. Molecules 2023; 28:7276. [PMID: 37959695 PMCID: PMC10649560 DOI: 10.3390/molecules28217276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Liverworts contain a large number of biologically active compounds that are synthesised and stored in their oil bodies. However, knowledge about the chemical composition of individual species is still incomplete. The subject of the study was Calypogeia integristipula, a species representing leafy liverworts. Plant material for chemotaxonomic studies was collected from various locations in Poland. The chemical composition was determined in 74 samples collected from the natural environment in 2021 and 2022 in three growing seasons: spring, summer and autumn, and for comparison with samples originating from in vitro culture. The plants were classified as Calypogeia integristipula on the basis of morphological characteristics, oil bodies, and DNA markers. The volatile organic compounds (VOCs) from the biological material were extracted by headspace solid phase microextraction (HS-SPME). The samples were then analysed by gas chromatography-mass spectrometry (GC-MS). A total of 79 compounds were detected, of which 44 compounds were identified. The remaining compounds were described using the MS fragmentation spectrum. Cyclical changes in the composition of compounds associated with the growing season of Calypogeia integristipula were observed. Moreover, samples from in vitro culture and samples taken from the natural environment were shown to differ in the composition of chemical compounds. In terms of quantity, among the volatile compounds, compounds belonging to the sesquiterpene group (46.54-71.19%) and sesqiuterpenoid (8.12-22.11%) dominate. A smaller number of compounds belong to aromatic compounds (2.30-10.96%), monoterpenes (0.01-0.07%), monoterpenoids (0.02-0.33%), and aliphatic hydrocarbons (1.11-6.12%). The dominant compounds in the analysed liverworts were: anastreptene (15.27-31.14%); bicyclogermacrene (6.99-18.09%), 4,5,9,10-dehydro-isolongifolene (2.00-8.72%), palustrol (4.95-9.94%), spathulenol (0.44-5.11%).
Collapse
Affiliation(s)
- Rafał Wawrzyniak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (M.G.); (W.W.); (B.J.)
| | - Małgorzata Guzowska
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (M.G.); (W.W.); (B.J.)
| | - Wiesław Wasiak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (M.G.); (W.W.); (B.J.)
| | - Beata Jasiewicz
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (M.G.); (W.W.); (B.J.)
| | - Alina Bączkiewicz
- Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (A.B.); (K.B.)
| | - Katarzyna Buczkowska
- Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (A.B.); (K.B.)
| |
Collapse
|
9
|
Klegin C, Ethur EM, Bordin J, Baia Figueiredo PL. Chemical Composition of Essential Oil from Mosses from the Brazilian Atlantic Forest. Chem Biodivers 2023; 20:e202300286. [PMID: 37714813 DOI: 10.1002/cbdv.202300286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023]
Abstract
This study aimed to report the unprecedented volatile composition of the mosses Phyllogonium viride BRID, Orthotichella rigida (MÜLL.HAL.) B. H. ALLEN & MAGILL and Schlotheimia rugifolia (HOOK.) SCHWÄGR occurring in the Brazilian Atlantic Forest, in order to elucidate the chemical composition of these species and enrich the chemotaxonomic knowledge of mosses. 28 compounds were identified, the major constituent being hexadecanoic acid, also known as palmitic acid, specifically P. viride com (38.55 %), O. rigida com (17.17 %) and S. rugifolia com (24.94 %), followed by phytol, P. viride com (3.92 %), O. rigida com (28.57 %) and S. rugifolia com (36.13 %). In addition, there was a prevalence of aliphatic hydrocarbons (25 %) and fatty acids (17.8 %) in the evaluated samples. These data contribute to the generation of new scientific information about the chemical constitution of mosses, still little studied, enriching the chemotaxonomic collection of the taxon.
Collapse
Affiliation(s)
| | | | - Juçara Bordin
- University Estadual do Rio Grande do Sul-Campus Hortênsias, Rua Assis Brasil, 842, São Francisco de Paula, Brazil
| | | |
Collapse
|
10
|
Simsek O, Canli K, Benek A, Turu D, Altuner EM. Biochemical, Antioxidant Properties and Antimicrobial Activity of Epiphytic Leafy Liverwort Frullania dilatata (L.) Dumort. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091877. [PMID: 37176934 PMCID: PMC10181397 DOI: 10.3390/plants12091877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
In this study, the biochemical, antioxidant properties, and antimicrobial activity of the epiphytic leafy liverwort Frullania dilatata (L.) Dumort were investigated. Due to the scarcity and difficulty in obtaining liverworts, research on their bioactivity is limited; thus, this study aimed to uncover the potential of F. dilatata. The antimicrobial activity was evaluated against various microorganisms, including food isolates, clinical isolates, multidrug-resistant strains, and standard strains, using the disk diffusion method and determining the minimum inhibitory concentration (MIC) values. This study represents the first antioxidant investigation on F. dilatata and an antimicrobial study using ethanol extract and the disk diffusion method. Notably, susceptibility was observed in Enterococcus faecalis ATCC 29212, Enterococcus faecium FI, Listeria monocytogenes ATCC 7644, Providencia rustigianii MDR, and Staphylococcus aureus ATCC 25923. The antioxidant capacity was assessed using the DPPH method, emphasizing the high scavenging performance. Gas chromatography-mass spectrometry (GC-MS) analysis identified the primary compounds as frullanolide (19.08%), 2,3-Dimethylanisole (15.21%), linoleic acid (11.11%), palmitic acid (9.83%), and valerenic acid (5.3%). The results demonstrated the significant antimicrobial activity of F. dilatata against the tested microorganisms and its potent antioxidant properties. These findings emphasize the potential of F. dilatata as a promising source of natural antimicrobial and antioxidant agents, underscoring the importance of further investigation into its bioactive compounds and elucidating the mechanisms of action in future studies.
Collapse
Affiliation(s)
- Ozcan Simsek
- Department of Forestry, Yenice Vocational School, Çanakkale Onsekiz Mart University, Çanakkale 17950, Türkiye
| | - Kerem Canli
- Department of Biology, Faculty of Science, Dokuz Eylül University, Izmir 35390, Türkiye
- Fauna and Flora Research and Application Center, Dokuz Eylül University, Izmir 35390, Türkiye
| | - Atakan Benek
- Department of Biology, Graduate School of Natural and Applied Sciences, Kastamonu University, Kastamonu 37150, Türkiye
| | - Dilay Turu
- Department of Biology, Graduate School of Natural and Applied Science, Dokuz Eylül University, Izmir 35390, Türkiye
| | - Ergin Murat Altuner
- Department of Biology, Faculty of Science, Kastamonu University, Kastamonu 37150, Türkiye
| |
Collapse
|
11
|
Dahal RK, Acharya B, Dutta A. Thermal Response of Biocarbon-Filled Hemp Fiber-Reinforced Bioepoxy Composites. ACS OMEGA 2023; 8:15422-15440. [PMID: 37151540 PMCID: PMC10157679 DOI: 10.1021/acsomega.3c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
We investigated the thermal conductivity of materials based on pyrolysis temperature, filler loading, filler size, and type of biomass feedstock. Hemp stalk and switchgrass were pyrolyzed at 450, 550, and 650 °C and crushed into 50, 75, and 100 μm particle sizes. Biocarbon fillers (10, 15, and 20 wt %) were added to the bioepoxy polymer matrix. The study showed increased filler loading and particle size increased thermal conductivity-the biocomposite samples with 20 wt % filler loading of 100 μm particle size of the biocarbon obtained at 650 °C showed the maximum thermal conductivity in both hemp biocarbon-filled composites (0.59 W·m-1·K-1) and switchgrass-filled composites (0.58 W·m-1·K-1) with the highest flame time. Biocarbon in biofiber-reinforced polymer composites can improve thermal conductivity and extend the flame time. These findings significantly contribute to developing hemp-based bioepoxy composite materials for thermal applications in various fields. These include insulating materials for buildings and thermal management systems, energy-efficient applications, and help in material selection and product design with a positive environmental impact.
Collapse
Affiliation(s)
- Raj Kumar Dahal
- School
of Engineering, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Bishnu Acharya
- Department
of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A9, Canada
| | - Animesh Dutta
- School
of Engineering, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
12
|
Stelmasiewicz M, Świątek Ł, Gibbons S, Ludwiczuk A. Bioactive Compounds Produced by Endophytic Microorganisms Associated with Bryophytes—The “Bryendophytes”. Molecules 2023; 28:molecules28073246. [PMID: 37050009 PMCID: PMC10096483 DOI: 10.3390/molecules28073246] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
The mutualistic coexistence between the host and endophyte is diverse and complex, including host growth regulation, the exchange of substances like nutrients or biostimulants, and protection from microbial or herbivore attack. The latter is commonly associated with the production by endophytes of bioactive natural products, which also possess multiple activities, including antibacterial, insecticidal, antioxidant, antitumor, and antidiabetic properties, making them interesting and valuable model substances for future development into drugs. The endophytes of higher plants have been extensively studied, but there is a dearth of information on the biodiversity of endophytic microorganisms associated with bryophytes and, more importantly, their bioactive metabolites. For the first time, we name bryophyte endophytes “bryendophytes” to elaborate on this important and productive source of biota. In this review, we summarize the current knowledge on the diversity of compounds produced by endophytes, emphasizing bioactive molecules from bryendophytes. Moreover, the isolation methods and biodiversity of bryendophytes from mosses, liverworts, and hornworts are described.
Collapse
Affiliation(s)
- Mateusz Stelmasiewicz
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 20-093 Lublin, Poland
| | - Łukasz Świątek
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland
| | - Simon Gibbons
- Centre for Natural Products Discovery (CNPD), Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Agnieszka Ludwiczuk
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
13
|
Tholozan LV, Valério Filho A, Maron GK, Carreno NLV, da Rocha CM, Bordin J, da Rosa GS. Sphagnum perichaetiale Hampe biomass as a novel, green, and low-cost biosorbent in the adsorption of toxic crystal violet dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:52472-52484. [PMID: 36840883 DOI: 10.1007/s11356-023-26068-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
In this study, the Sphagnum perichaetiale Hampe biomass was collected, characterized, and used as a biosorbent in the removal of crystal violet from water. The chemical and morphological results suggest that even after minimal experimental procedures, the biomass presented interesting properties regarding the adsorption of contaminants. Results of adsorption showed that the pH was not a relevant parameter and the best adsorbent dosage was 0.26 g L-1. The kinetic results presented an initial fast step and the equilibrium was reached after 180 min. For the equilibrium data, the best adjustment occurred for the Sips model, reaching a maximum adsorption capacity of 271.05 mg g-1 and the removal percentage obtained in the maximum adsorbent dosage was 97.11%. The thermodynamic studies indicated a reversible process and that the mass-transfer phenomena is governed by the physisorption mechanism. In addition to its great performance as a biosorbent, Sphagnum perichaetiale biomass also presents economic and sustainable benefits, as its production does not require costs with reagents or energy, usually used in chemical and physical activation. The reversible process indicated that the biosorbent could be reused, decreasing the costs related to the treatment of the effluents. Thus, Sphagnum perichaetiale biomass can be considered an efficient low-cost and eco-friendly biosorbent.
Collapse
Affiliation(s)
- Luana Vaz Tholozan
- Chemical Engineering, Federal University of Pampa, 1650 Maria Anunciação Gomes Godoy Avenue, Bagé, Rio Grande do Sul, 96413-172, Brazil
| | - Alaor Valério Filho
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, 1 Gomes Carneiro, Pelotas, Rio Grande do Sul, 96010-610, Brazil
| | - Guilherme Kurz Maron
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, 1 Gomes Carneiro, Pelotas, Rio Grande do Sul, 96010-610, Brazil
| | - Neftali Lenin Villarreal Carreno
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, 1 Gomes Carneiro, Pelotas, Rio Grande do Sul, 96010-610, Brazil
| | - Cacinele Mariana da Rocha
- Center for Coastal Studies, Limnology and Marine, Federal University of Rio Grande do Sul, 976 Tramandaí, Imbé, Rio Grande do Sul, 95625-000, Brazil
| | - Juçara Bordin
- State University of Rio Grande do Sul, North Coast Unit, 1456 Machado de Assis, Osório, Rio Grande do Sul, 95520-000, Brazil
| | - Gabriela Silveira da Rosa
- Chemical Engineering, Federal University of Pampa, 1650 Maria Anunciação Gomes Godoy Avenue, Bagé, Rio Grande do Sul, 96413-172, Brazil.
| |
Collapse
|
14
|
Dahal RK, Acharya B, Dutta A. The Interaction Effect of the Design Parameters on the Water Absorption of the Hemp-Reinforced Biocarbon-Filled Bio-Epoxy Composites. Int J Mol Sci 2023; 24:ijms24076093. [PMID: 37047064 PMCID: PMC10094122 DOI: 10.3390/ijms24076093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Natural fiber-reinforced composites perform poorly when exposed to moisture. Biocarbon has been proven to improve the water-absorbing behavior of natural fiber composites. However, the interaction effect of the design parameters on the biocarbon-filled hemp fiber-reinforced bio-epoxy composites has not been studied. In this study, the effects of the design parameters (pyrolysis temperature, biocarbon particle size, and filler loading) on the water absorptivity and water diffusivity of hemp-reinforced biopolymer composites have been investigated. Biocarbon from the pyrolysis of hemp and switchgrass was produced at 450, 550, and 650 °C. Composite samples with 10 wt.%, 15 wt.%, and 20 wt.% of biocarbon fillers of sizes below 50, 75, and 100 microns were used. The hemp fiber in polymer composites showed a significant influence in its water uptake behavior with the value of water absorptivity 2.41 × 10-6 g/m2.s1/2. The incorporation of biocarbon fillers in the hemp biopolymer composites reduces the average water absorptivity by 44.17% and diffusivity by 42.02%. At the optimized conditions, the value of water absorptivity with hemp biocarbon and switchgrass biocarbon fillers was found to be 0.72 × 10-6 g/m2.s1/2 and 0.73 × 10-6 g/m2.s1/2, respectively. The biocarbon at 650 °C showed the least composite thickness swelling due to its higher porosity and lower surface area. Biocarbon-filled hemp composites showed higher flexural strength and energy at the break due to the enhanced mechanical interlocking between the filler particles and the matrix materials. Smaller filler particle size lowered the composite's water diffusivity, whereas the larger particle size of the biocarbon fillers in composites minimizes the water absorption. Additionally, higher filler loading results in weaker composite tensile energy at the break due to the filler agglomeration, reduced polymer-filler interactions, reduced polymer chain mobility, and inadequate dispersion of the filler.
Collapse
Affiliation(s)
- Raj Kumar Dahal
- Bio-Renewable Innovation Lab, School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Animesh Dutta
- Bio-Renewable Innovation Lab, School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
15
|
Discovery and Anticancer Activity of the Plagiochilins from the Liverwort Genus Plagiochila. Life (Basel) 2023; 13:life13030758. [PMID: 36983914 PMCID: PMC10058164 DOI: 10.3390/life13030758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
The present analysis retraces the discovery of plagiochilins A-to-W, a series of seco-aromadendrane-type sesquiterpenes isolated from diverse leafy liverworts of the genus Plagiochila. Between 1978, with the first isolation of the leader product plagiochilin A from P. yokogurensis, and 2005, with the characterization of plagiochilin X from P. asplenioides, a set of 24 plagiochilins and several derivatives (plagiochilide, plagiochilal A-B) has been isolated and characterized. Analogue compounds recently described are also evoked, such as the plagiochianins and plagicosins. All these compounds have been little studied from a pharmacological viewpoint. However, plagiochilins A and C have revealed marked antiproliferative activities against cultured cancer cells. Plagiochilin A functions as an inhibitor of the termination phase of cytokinesis: the membrane abscission stage. This unique, innovative mechanism of action, coupled with its marked anticancer action, notably against prostate cancer cells, make plagiochilin A an interesting lead molecule for the development of novel anticancer agents. There are known options to increase its potency, as deduced from structure–activity relationships. The analysis shed light on this family of bryophyte species and the little-known group of bioactive terpenoid plagiochilins. Plagiochilin A and derivatives shall be further exploited for the design of novel anticancer targeting the cytokinesis pathway.
Collapse
|
16
|
Blatt-Janmaat K, Neumann S, Schmidt F, Ziegler J, Qu Y, Peters K. Impact of in vitro phytohormone treatments on the metabolome of the leafy liverwort Radula complanata (L.) Dumort. Metabolomics 2023; 19:17. [PMID: 36892716 PMCID: PMC9998581 DOI: 10.1007/s11306-023-01979-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/15/2023] [Indexed: 03/10/2023]
Abstract
INTRODUCTION Liverworts are a group of non-vascular plants that possess unique metabolism not found in other plants. Many liverwort metabolites have interesting structural and biochemical characteristics, however the fluctuations of these metabolites in response to stressors is largely unknown. OBJECTIVES To investigate the metabolic stress-response of the leafy liverwort Radula complanata. METHODS Five phytohormones were applied exogenously to in vitro cultured R. complanata and an untargeted metabolomic analysis was conducted. Compound classification and identification was performed with CANOPUS and SIRIUS while statistical analyses including PCA, ANOVA, and variable selection using BORUTA were conducted to identify metabolic shifts. RESULTS It was found that R. complanata was predominantly composed of carboxylic acids and derivatives, followed by benzene and substituted derivatives, fatty acyls, organooxygen compounds, prenol lipids, and flavonoids. The PCA revealed that samples grouped based on the type of hormone applied, and the variable selection using BORUTA (Random Forest) revealed 71 identified and/or classified features that fluctuated with phytohormone application. The stress-response treatments largely reduced the production of the selected primary metabolites while the growth treatments resulted in increased production of these compounds. 4-(3-Methyl-2-butenyl)-5-phenethylbenzene-1,3-diol was identified as a biomarker for the growth treatments while GDP-hexose was identified as a biomarker for the stress-response treatments. CONCLUSION Exogenous phytohormone application caused clear metabolic shifts in Radula complanata that deviate from the responses of vascular plants. Further identification of the selected metabolite features can reveal metabolic biomarkers unique to liverworts and provide more insight into liverwort stress responses.
Collapse
Affiliation(s)
- Kaitlyn Blatt-Janmaat
- Department of Chemistry, University of New Brunswick, Fredericton, E3B 5A3, NB, Canada.
- Bioinformatics and Scientific Data, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
| | - Steffen Neumann
- Bioinformatics and Scientific Data, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
| | - Florian Schmidt
- Bioinformatics and Scientific Data, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Jörg Ziegler
- Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Yang Qu
- Department of Chemistry, University of New Brunswick, Fredericton, E3B 5A3, NB, Canada
| | - Kristian Peters
- Bioinformatics and Scientific Data, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle (Saale), Germany
| |
Collapse
|
17
|
Zlatković DB, Đorđević Zlatković MR, Radulović NS. On the configuration and occurrence of 2,6-cyclocuparan-3-ols: Resolving a lasting discrepancy. PHYTOCHEMISTRY 2023; 207:113566. [PMID: 36549382 DOI: 10.1016/j.phytochem.2022.113566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
2,6-Cyclocuparan-3-ols are chemical markers and major volatiles of several liverwort species. Conflicting reports on the structures of these cyclocuparanols can be found in the literature-different research groups assigned the same spectral data to different structures, yet these inconsistencies were never addressed, let alone satisfactorily explained. Following the isolation of all four diastereoisomeric cyclocuparanols from Marchantia polymorpha, their relative and absolute configurations were extensively studied by chemical and spectroscopic methods and definite stereostructures were proposed.
Collapse
Affiliation(s)
- Dragan B Zlatković
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Miljana R Đorđević Zlatković
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Niko S Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia.
| |
Collapse
|
18
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
19
|
Zhu TT, Sun CJ, Liu XY, Zhang JZ, Hou XB, Ni R, Zhang J, Cheng AX, Lou HX. Interaction of PKR with STCS1: an indispensable step in the biosynthesis of lunularic acid in Marchantia polymorpha. THE NEW PHYTOLOGIST 2023; 237:515-531. [PMID: 36062450 DOI: 10.1111/nph.18408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Unlike bibenzyls derived from the vascular plants, lunularic acid (LA), a key precursor for macrocyclic bisbibenzyl synthesis in nonvascular liverworts, exhibits the absence of one hydroxy group within the A ring. It was hypothesized that both polyketide reductase (PKR) and stilbenecarboxylate synthase 1 (STCS1) were involved in the LA biosynthesis, but the underlined mechanisms have not been clarified. This study used bioinformatics analysis with molecular, biochemical and physiological approaches to characterize STCS1s and PKRs involved in the biosynthesis of LA. The results indicated that MpSTCS1s from Marchantia polymorpha catalyzed both C2→C7 aldol-type and C6→C1 Claisen-type cyclization using dihydro-p-coumaroyl-coenzyme A (CoA) and malonyl-CoA as substrates to yield a C6-C2-C6 skeleton of dihydro-resveratrol following decarboxylation and the C6-C3-C6 type of phloretin in vitro. The protein-protein interaction of PKRs with STCS1 (PPI-PS) was revealed and proved essential for LA accumulation when transiently co-expressed in Nicotiana benthamiana. Moreover, replacement of the active domain of STCS1 with an 18-amino-acid fragment from the chalcone synthase led to the PPI-PS greatly decreasing and diminishing the formation of LA. The replacement also increased the chalcone formation in STCS1s. Our results highlight a previously unrecognized PPI in planta that is indispensable for the formation of LA.
Collapse
Affiliation(s)
- Ting-Ting Zhu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Chun-Jing Sun
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xin-Yan Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jiao-Zhen Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xu-Ben Hou
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Rong Ni
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jing Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
20
|
Valeeva LR, Dzhabrailova SM, Sharipova MR. cis-Prenyltransferases of Marchantia polymorpha: Phylogenetic Analysis and Perspectives for Use as Regulators of Antimicrobial Agent Synthesis. Mol Biol 2022. [DOI: 10.1134/s002689332206019x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Zhang JZ, Wang C, Zhu TT, Fu J, Tan H, Zhang CM, Cheng AX, Lou HX. Spatial Distribution, Antioxidant Capacity, and Spore Germination-Promoting Effect of Bibenzyls from Marchantia polymorpha. Antioxidants (Basel) 2022; 11:2157. [PMID: 36358536 PMCID: PMC9686712 DOI: 10.3390/antiox11112157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 08/26/2023] Open
Abstract
Liverworts, considered to be the first plant type to successfully make the transition from water to land, can resist different oxidative stress. As characteristic constituents of liverworts, the bibenzyls are efficient antioxidants. In this study, spatial distributions of the bibenzyls within Marchantia polymorpha L., the model species of liverworts, were mapped using airflow-assisted desorption electrospray ionization imaging mass spectrometry. Bibenzyls were found to largely exist in the female receptacle of M. polymorpha, where lunularic acid was found to focus in the central region and bisbibenzyls were enriched in the periphery. The region-specific gene expression and antioxidant activities were characterized. In line with the spatial feature of bibenzyls, higher MpSTCS1A and Mp4CL expression levels and antioxidant ability were exhibited in the archegoniophore. The expression level of MpSTCS1A, and the content of total phenolic acid was increased after UV-B irradiation, suggesting bibenzyls play an important role in UV-B tolerance. Moreover, lunularic acid and extract of archegoniophore at a certain concentration can stimulate the spore germination under normal conditions and UV-B stress. These works broaden our understanding of the significance of bibenzyls in spore propagation and environmental adaptation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, College of Medicine, Shandong University, Jinan 250012, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
22
|
Faleva AV, Ul’yanovskii NV, Falev DI, Onuchina AA, Budaev NA, Kosyakov DS. New Oligomeric Dihydrochalcones in the Moss Polytrichum commune: Identification, Isolation, and Antioxidant Activity. Metabolites 2022; 12:974. [PMID: 36295876 PMCID: PMC9607112 DOI: 10.3390/metabo12100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
One of the most widespread representatives of mosses in the temperate and boreal latitudes of the Northern Hemisphere is common haircap (Polytrichum commune), which is known as the largest moss in the world and widely used in traditional herbal medicine. Polyphenolic compounds constitute one of the most important groups of biologically active secondary metabolites of P. commune, however, the available information on their chemical composition is still incomplete and contradictory. In the present study, a group of dihydrochalcone polyphenolic derivatives that were not previously found in mosses was isolated from P. commune biomass using pressurized liquid extraction with aqueous acetone. The combination of two-dimensional NMR spectroscopy and high-performance liquid chromatography-high-resolution mass spectrometry allowed for identifying them as 3-hydroxyphloretin oligomers formed through a carbon-carbon bond between phloroglucinol and pyrocatechol moieties ("head-to-tail" coupling), with a polymerization degree of 2-5. The individual compounds isolated by preparative reverse-phase HPLC had a purity of 71 to 97% and demonstrated high radical scavenging activity (17.5-42.5% with respect to Trolox) determined by the photochemiluminescence method. Along with the low toxicity predicted by QSAR/QSTR algorithms, this makes 3-hydroxyphloretin oligomers a promising source for the production of biologically active food additives and pharmaceuticals.
Collapse
Affiliation(s)
- Anna V. Faleva
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center “Arktika”, M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia
| | | | | | | | | | - Dmitry S. Kosyakov
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center “Arktika”, M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia
| |
Collapse
|
23
|
Peters K, König-Ries B. Reference bioimaging to assess the phenotypic trait diversity of bryophytes within the family Scapaniaceae. Sci Data 2022; 9:598. [PMID: 36195605 PMCID: PMC9532418 DOI: 10.1038/s41597-022-01691-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
Macro- and microscopic images of organisms are pivotal in biodiversity research. Despite that bioimages have manifold applications such as assessing the diversity of form and function, FAIR bioimaging data in the context of biodiversity are still very scarce, especially for difficult taxonomic groups such as bryophytes. Here, we present a high-quality reference dataset containing macroscopic and bright-field microscopic images documenting various phenotypic characters of the species belonging to the liverwort family of Scapaniaceae occurring in Europe. To encourage data reuse in biodiversity and adjacent research areas, we annotated the imaging data with machine-actionable metadata using community-accepted semantics. Furthermore, raw imaging data are retained and any contextual image processing like multi-focus image fusion and stitching were documented to foster good scientific practices through source tracking and provenance. The information contained in the raw images are also of particular interest for machine learning and image segmentation used in bioinformatics and computational ecology. We expect that this richly annotated reference dataset will encourage future studies to follow our principles.
Collapse
Affiliation(s)
- Kristian Peters
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany.
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle (Saale), Germany.
- Bioinformatics and Scientific Data, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
| | - Birgitta König-Ries
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
- Heinz-Nixdorf Chair for Distributed Information Systems, Friedrich Schiller University, Jena, Germany
- Michael Stifel Center Jena, Jena, Germany
| |
Collapse
|
24
|
Tissue Culture of Plagiochasma appendiculatum and the Effect of Callus Differentiation on Types and Content of Bisbibenzyls. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221106243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Plagiochasma appendiculatum, a thalloid liverwort, contains high levels of bisbibenzyls, aromatic compounds with potent antitumor as well as antifungal activities. In the present study, rapid growth callus was induced from the thallus of P. appendiculatum, and optimal culture conditions, including medium, temperature, pH, and plant growth regulators for callus production were evaluated. Under optimal culture conditions, the biomass of the callus doubled with a sigmoidal growth curve after 15 days. Differentiation and plant regeneration were studied on a medium supplemented with different plant hormones (α-naphthaleneacetic acid [NAA], 6-benzyladenine [6-BA], and 2,4-dichlorophenoxyacetic acid [2,4-D]). NAA and 6-BA stimulated rhizoid and thallus differentiation, respectively, whereas 2,4-D inhibited the differentiation of thallus and rhizoid. Different metabolic profiles of callus, differentiated thallus, and thallus in the soil were studied by high-performance liquid chromatography. The results showed that both the callus and thallus could synthesize bisbibenzyls. In addition, the kinds and content of bisbibenzyl differed significantly between the callus and thallus. In conclusion, P. appendiculatum thallus cultured in vitro possesses the ability to biosynthesize bisbibenzyl, and it may be utilized for the mass production of specific bisbibenzyls in an appropriate growth environment.
Collapse
|
25
|
Lou H, Zhu MZ, Li Y, Zhou JC, Wang T, Qian LL, Zhang JZ, Han JJ, Xu ZJ, Shen T. Unprecedented 4, 9-seco-oplopanane and seven drimane sesquiterpenoids from the Chinese Liverwort Lejeunea flava (Sw.) Nees. Chem Biodivers 2022; 19:e202200559. [PMID: 35843891 DOI: 10.1002/cbdv.202200559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/16/2022] [Indexed: 11/08/2022]
Abstract
An unprecedented 4, 9- seco -oplopanane ( 1 ), two undescribed drimane epimers ( 2 and 3 ), and five known drimane sesquiterpenoids ( 4 - 8 ) were isolated from the Chinese liverwort Lejeunea flava (Sw.) Nees. The structures of the new sesquiterpenoids were determined using nuclear magnetic resonance spectroscopy, electronic circular dichroism calculations, and single-crystal X-ray diffraction measurements. The inhibitory capacity of the new compounds against nitric oxide production in lipopolysaccharide-induced RAW 264.7 murine macrophages, along with the cytotoxicity of the new compounds against A549 and HepG-2 human cancer cell lines, were discussed.
Collapse
Affiliation(s)
- Hongxiang Lou
- Shandong University, Natural Products Chemistry and Pharmaceutical Sciences, No. 44 West Wenhua Road, 250012, Jinan, CHINA
| | - Ming-Zhu Zhu
- Shandong University, Natural Product Chemistry, No. 44 West Wenhua Road, jinan, CHINA
| | - Yi Li
- Shandong University, Natural Product Chemistry, No. 44 West Wenhua Road, jinan, CHINA
| | - Jin-Chuan Zhou
- Linyi University, School of pharmacy, ShuangLing road, linyi, CHINA
| | - Tian Wang
- Shandong University, Natural Product Chemistry, No. 44 West Wenhua Road, jinan, CHINA
| | - Li-Lin Qian
- Shandong University, Natural Product Chemistry, No. 44 West Wenhua Road, jinan, CHINA
| | - Jiao-Zhen Zhang
- Shandong University, Natural Product Chemistry, No. 44 West Wenhua Road, jinan, CHINA
| | - Jing-Jing Han
- Shandong University, Natural Product Chemistry, No. 44 West Wenhua Road, jinan, CHINA
| | - Ze-Jun Xu
- Shandong University, Natural Product Chemistry, No. 44 West Wenhua Road, jinan, CHINA
| | - Tao Shen
- Shandong University, Natural Product Chemistry, No. 44 West Wenhua Road, jinan, CHINA
| |
Collapse
|
26
|
Kulshrestha S, Jibran R, van Klink JW, Zhou Y, Brummell DA, Albert NW, Schwinn KE, Chagné D, Landi M, Bowman JL, Davies KM. Stress, senescence, and specialized metabolites in bryophytes. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4396-4411. [PMID: 35259256 PMCID: PMC9291361 DOI: 10.1093/jxb/erac085] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/07/2022] [Indexed: 05/04/2023]
Abstract
Life on land exposes plants to varied abiotic and biotic environmental stresses. These environmental drivers contributed to a large expansion of metabolic capabilities during land plant evolution and species diversification. In this review we summarize knowledge on how the specialized metabolite pathways of bryophytes may contribute to stress tolerance capabilities. Bryophytes are the non-tracheophyte land plant group (comprising the hornworts, liverworts, and mosses) and rapidly diversified following the colonization of land. Mosses and liverworts have as wide a distribution as flowering plants with regard to available environments, able to grow in polar regions through to hot desert landscapes. Yet in contrast to flowering plants, for which the biosynthetic pathways, transcriptional regulation, and compound function of stress tolerance-related metabolite pathways have been extensively characterized, it is only recently that similar data have become available for bryophytes. The bryophyte data are compared with those available for angiosperms, including examining how the differing plant forms of bryophytes and angiosperms may influence specialized metabolite diversity and function. The involvement of stress-induced specialized metabolites in senescence and nutrient response pathways is also discussed.
Collapse
Affiliation(s)
- Samarth Kulshrestha
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Rubina Jibran
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - John W van Klink
- The New Zealand Institute for Plant and Food Research Limited, Department of Chemistry, Otago University, Dunedin, New Zealand
| | - Yanfei Zhou
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - David A Brummell
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Nick W Albert
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Kathy E Schwinn
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Italy
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Kevin M Davies
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| |
Collapse
|
27
|
Jiang S, Wang M, Zafar S, Jiang L, Luo J, Zhao H, Tian S, Zhu Y, Peng C, Wang W. Phytochemistry, pharmacology and clinical applications of the traditional Chinese herb Pseudobulbus Cremastrae seu Pleiones (Shancigu): A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
28
|
Comparison of Extraction Techniques for the Determination of Volatile Organic Compounds in Liverwort Samples. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092911. [PMID: 35566263 PMCID: PMC9099673 DOI: 10.3390/molecules27092911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 11/17/2022]
Abstract
This article focuses on the comparison of four popular techniques for the extraction of volatile organic compounds (VOCs) from liverworts of the Calypogeia azurea species. Since extraction is the most important step in the sample analysis of ingredients present in botanical preparations, their strengths, and weaknesses are discussed. In order to determine the VOCs present in plants, selecting the appropriate one is a key step of the extraction technique. Extraction should ensure the isolation of all components present in the oily bodies of Calypogeia azurea without the formation of any artifacts during treatment. The best extraction method should yield the determined compounds in detectable amounts. Hydrodistillation (HD), applying Deryng apparatus and solid-liquid extraction (SLE), microwave-assisted extraction (MAE), and headspace solid-phase microextraction (HS-SPME) were used for volatile extraction. The extracts obtained were analysed by gas chromatography coupled to mass spectrometry (GC-MS) to determine the compounds.
Collapse
|
29
|
Asakawa Y, Ludwiczuk A, Novakovic M, Bukvicki D, Anchang KY. Bis-bibenzyls, Bibenzyls, and Terpenoids in 33 Genera of the Marchantiophyta (Liverworts): Structures, Synthesis, and Bioactivity. JOURNAL OF NATURAL PRODUCTS 2022; 85:729-762. [PMID: 34783552 DOI: 10.1021/acs.jnatprod.1c00302] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The Marchantiophyta (liverworts) are rich sources of phenolic substances, especially cyclic and acyclic bis-bibenzyls, which are rare natural products in the plant kingdom, together with bibenzyls and characteristic terpenoids. At present, more than 125 bis-bibenzyls have been found in liverworts. They are biosynthesized from the dimerization of lunularic acid via dihydrocoumaric acid and prelunularin. The structurally unusual cyclic and acyclic bis-bibenzyls show various biological activities such as antimicrobial, antifungal, cytotoxic, muscle relaxation, antioxidant, tubulin polymerization inhibitory, and antitrypanosomal activities, among others. The present review article deals with the distribution and structure of bis-bibenzyls, bibenzyls, and several characteristic ent-sesqui- and diterpenoids in liverworts. Furthermore, the biosynthesis and total syntheses and biological activities of bis-bibenzyls are also surveyed.
Collapse
Affiliation(s)
- Yoshinori Asakawa
- Institute of Pharmacognosy, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Agnieszka Ludwiczuk
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | | | | | - Kenneth Yongabi Anchang
- Tropical Infectious Diseases and Public Health Engineering Research Group, Phytobiotechnology Research Foundation Institute, Catholic University of Cameroon, P.O. Box 921, Bamenda, Cameroon
| |
Collapse
|
30
|
Sala-Carvalho WR, Montessi-Amaral FP, Esposito MP, Campestrini R, Rossi M, Peralta DF, Furlan CM. Metabolome of Ceratodon purpureus (Hedw.) Brid., a cosmopolitan moss: the influence of seasonality. PLANTA 2022; 255:77. [PMID: 35239061 DOI: 10.1007/s00425-022-03857-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Ceratodon purpureus showed changes in disaccharides, flavonoids, and carotenoids throughout annual seasons. These changes indicate harsher environmental conditions during the dry period, directing metabolic precursors to enhance the antioxidant system. Bryophytes are a group of land plants comprising mosses (Bryophyta), liverworts (Marchantyophyta), and hornworts (Antocerotophyta). This study uses the molecular networking approach to investigate the influence of seasonality (dry and rainy seasons) on the metabolome and redox status of the moss Ceratodon purpureus (Hedw.) Brid., from Campos do Jordão, Brazil. Samples of C. purpureus were submitted to three extraction methods: 80% methanol producing the soluble fraction (intracellular compounds), followed by debris hydrolysis using sodium hydroxide producing the insoluble fraction (cell wall conjugated compounds), both analyzed by HPLC-MS; and extraction using pre-cooled methanol, separated into polar and non-polar fractions, being both analyzed by GC-MS. All fractions were processed using the Global Natural Product Social Molecular Network (GNPS). The redox status was assessed by the analysis of four enzyme activities combined with the analysis of the contents of ascorbate, glutathione, carotenoids, reactive oxygen species (ROS), and malondialdehyde acid (MDA). During the dry period, there was an increase of most biflavonoids, as well as phospholipids, disaccharides, long-chain fatty acids, carotenoids, antioxidant enzymes, ROS, and MDA. Results indicate that C. purpureus is under harsher environmental conditions during the dry period, mainly due to low temperature and less water availability (low rainfall).
Collapse
Affiliation(s)
- Wilton R Sala-Carvalho
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, SP, 05508-090, Brazil
| | - Francisco P Montessi-Amaral
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, SP, 05508-090, Brazil
| | - Marisia P Esposito
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, SP, 05508-090, Brazil
| | - Richard Campestrini
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, SP, 05508-090, Brazil
| | - Magdalena Rossi
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, SP, 05508-090, Brazil
| | - Denilson F Peralta
- Instituto de Pesquisas Ambientais, Avenida Miguel Estéfano, 3687, SP, 04301-012, Brazil
| | - Claudia M Furlan
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, SP, 05508-090, Brazil.
| |
Collapse
|
31
|
Asakawa Y, Nagashima F. Heterocyclic Stilbene and Bibenzyl Derivatives in Liverworts: Distribution, Structures, Total Synthesis and Biological Activity. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-sr(r)5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Wang H, Liu S, Fan F, Yu Q, Zhang P. A Moss 2-Oxoglutarate/Fe(II)-Dependent Dioxygenases (2-ODD) Gene of Flavonoids Biosynthesis Positively Regulates Plants Abiotic Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:850062. [PMID: 35968129 PMCID: PMC9372559 DOI: 10.3389/fpls.2022.850062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/21/2022] [Indexed: 05/14/2023]
Abstract
Flavonoids, the largest group of polyphenolic secondary metabolites present in all land plants, play essential roles in many biological processes and defense against abiotic stresses. In the flavonoid biosynthesis pathway, flavones synthase I (FNSI), flavanone 3-hydroxylase (F3H), flavonol synthase (FLS), and anthocyanidin synthase (ANS) all belong to 2-oxoglutarate/Fe(II)-dependent dioxygenases (2-ODDs) family, which catalyzes the critical oxidative reactions to form different flavonoid subgroups. Here, a novel 2-ODD gene was cloned from Antarctic moss Pohlia nutans (Pn2-ODD1) and its functions were investigated both in two model plants, Physcomitrella patens and Arabidopsis thaliana. Heterologous expression of Pn2-ODD1 increased the accumulation of anthocyanins and flavonol in Arabidopsis. Meanwhile, the transgenic P. patens and Arabidopsis with expressing Pn2-ODD1 exhibited enhanced tolerance to salinity and drought stresses, with larger gametophyte sizes, better seed germination, and longer root growth. Heterologous expression of Pn2-ODD1 in Arabidopsis also conferred the tolerance to UV-B radiation and oxidative stress by increasing antioxidant capacity. Therefore, we showed that Pn2-ODD1 participated in the accumulation of anthocyanins and flavonol in transgenic plants, and regulated the tolerance to abiotic stresses in plants, contributing to the adaptation of P. nutans to the polar environment.
Collapse
Affiliation(s)
- Huijuan Wang
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, China
| | - Shenghao Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Fenghua Fan
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, China
| | - Qian Yu
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, China
| | - Pengying Zhang
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, China
- Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
- *Correspondence: Pengying Zhang
| |
Collapse
|
33
|
Phytochemical Profile and Anticancer Potential of Endophytic Microorganisms from Liverwort Species, Marchantia polymorpha L. Molecules 2021; 27:molecules27010153. [PMID: 35011384 PMCID: PMC8746834 DOI: 10.3390/molecules27010153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/26/2021] [Indexed: 12/20/2022] Open
Abstract
Liverwort endophytes could be a source of new biologically active substances, especially when these spore-forming plants are known to produce compounds that are not found in other living organisms. Despite the significant development of plant endophytes research, there are only a few studies describing liverwort endophytic microorganisms and their metabolites. In the presented study, the analysis of the volatile compounds obtained from thallose liverwort species, Marchantia polymorpha L., and its endophytes was carried out. For this purpose, non-polar extracts of plant material and symbiotic microorganisms were obtained. The extracts were analyzed using gas chromatography coupled to mass spectrometry. Compounds with the structure of diketopiperazine in the endophyte extract were identified. Liverwort volatile extract was a rich source of cuparane-, chamigrane-, acorane-, and thujopsane-type sesquiterpenoids. The cytotoxicity of ethyl acetate extracts from endophytic microorganisms was evaluated on a panel of cancer (FaDu, HeLa, and SCC-25) cell lines and normal (VERO), and revealed significant anticancer potential towards hypopharyngeal squamous cell carcinoma and cervical adenocarcinoma.
Collapse
|
34
|
Ivković I, Bukvički D, Novaković M, Majstorović I, Leskovac A, Petrović S, Veljić M. Assessment of the Biological Effects of Pellia endiviifolia and its Constituents in Vitro. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211056422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Liverworts are characterized by a high content of bioactive compounds reported to show antimicrobial, anticancer, and antioxidant properties. In this study, the biological effects of the methanol extract of the liverwort Pellia endiviifolia and its constituents, bis-bibenzyls perrottetin E, 10′-hydroxyperrottetin E, and 10,10′-dihydroxyperrottetin E, were investigated using human peripheral blood cells as a model system. The assessment of the investigated compounds comprised testing their genotoxicity, apoptotic potential, and redox modulating activities. The genotoxicity testing indicated that medium (25 µM) and high concentrations (100 µM) of the investigated compounds displayed genotoxic and antiproliferative effects in human lymphocytes as revealed by significant, concentration-dependent enhancement of the micronuclei incidence and decrease in the cytokinesis-block proliferation index compared to the control ( P < .001). Analysis of leukocyte apoptosis showed a substantial potential of all investigated compounds to induce apoptosis, which was not concentration-dependent. The P endiviifolia extract and perrottetin E demonstrated considerable pro-apoptotic potential, even at the lowest concentration (1 µM) applied. Evaluation of the redox modulating effects, which comprised measuring erythrocyte catalase activity and the lymphocyte malondialdehyde level, showed that the investigated compounds did not induce oxidative stress in human peripheral blood cells ( P > .05). The observed genotoxic, antiproliferative, and proapoptotic effects of the investigated compounds make them suitable for further comprehensive studies related to their possible applications as anticancer agents.
Collapse
Affiliation(s)
- Ivana Ivković
- University of Belgrade, Institute of Botany and Botanical Garden “Jevremovac”, Belgrade, Serbia
| | - Danka Bukvički
- University of Belgrade, Institute of Botany and Botanical Garden “Jevremovac”, Belgrade, Serbia
| | - Miroslav Novaković
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Belgrade, Serbia
| | - Ivana Majstorović
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Andreja Leskovac
- Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sandra Petrović
- Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milan Veljić
- University of Belgrade, Institute of Botany and Botanical Garden “Jevremovac”, Belgrade, Serbia
| |
Collapse
|
35
|
Jimenez-Aleman GH, Castro V, Londaitsbehere A, Gutierrez-Rodríguez M, Garaigorta U, Solano R, Gastaminza P. SARS-CoV-2 Fears Green: The Chlorophyll Catabolite Pheophorbide A Is a Potent Antiviral. Pharmaceuticals (Basel) 2021; 14:ph14101048. [PMID: 34681272 PMCID: PMC8538351 DOI: 10.3390/ph14101048] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
SARS-CoV-2 pandemic is having devastating consequences worldwide. Although vaccination advances at good pace, effectiveness against emerging variants is unpredictable. The virus has displayed a remarkable resistance to treatments and no drugs have been proved fully effective against COVID-19. Thus, despite the international efforts, there is still an urgent need for new potent and safe antivirals against SARS-CoV-2. Here, we exploited the enormous potential of plant metabolism using the bryophyte Marchantia polymorpha L. and identified a potent SARS-CoV-2 antiviral, following a bioactivity-guided fractionation and mass-spectrometry approach. We found that the chlorophyll derivative Pheophorbide a (PheoA), a porphyrin compound similar to animal Protoporphyrin IX, has an extraordinary antiviral activity against SARS-CoV-2, preventing infection of cultured monkey and human cells, without noticeable cytotoxicity. We also show that PheoA targets the viral particle, interfering with its infectivity in a dose- and time-dependent manner. Besides SARS-CoV-2, PheoA also displayed a broad-spectrum antiviral activity against enveloped RNA viral pathogens such as HCV, West Nile, and other coronaviruses. Our results indicate that PheoA displays a remarkable potency and a satisfactory therapeutic index, which together with its previous use in photoactivable cancer therapy in humans, suggest that it may be considered as a potential candidate for antiviral therapy against SARS-CoV-2.
Collapse
Affiliation(s)
- Guillermo H. Jimenez-Aleman
- National Centre for Biotechnology (CNB-CSIC), Department of Plant Molecular Genetics, 28049 Madrid, Spain; (G.H.J.-A.); (A.L.)
| | - Victoria Castro
- National Centre for Biotechnology (CNB-CSIC), Department of Cell & Molecular Biology, 28049 Madrid, Spain; (V.C.); (U.G.)
| | - Addis Londaitsbehere
- National Centre for Biotechnology (CNB-CSIC), Department of Plant Molecular Genetics, 28049 Madrid, Spain; (G.H.J.-A.); (A.L.)
| | - Marta Gutierrez-Rodríguez
- Medicinal Chemistry Institute (IQM-CSIC), Department of Biomimetics for Drug Discovery, 28006 Madrid, Spain;
| | - Urtzi Garaigorta
- National Centre for Biotechnology (CNB-CSIC), Department of Cell & Molecular Biology, 28049 Madrid, Spain; (V.C.); (U.G.)
| | - Roberto Solano
- National Centre for Biotechnology (CNB-CSIC), Department of Plant Molecular Genetics, 28049 Madrid, Spain; (G.H.J.-A.); (A.L.)
- Correspondence: (R.S.); (P.G.)
| | - Pablo Gastaminza
- National Centre for Biotechnology (CNB-CSIC), Department of Cell & Molecular Biology, 28049 Madrid, Spain; (V.C.); (U.G.)
- Correspondence: (R.S.); (P.G.)
| |
Collapse
|
36
|
Zhou F, Aipire A, Xia L, Halike X, Yuan P, Sulayman M, Wang W, Li J. Marchantia polymorpha L. ethanol extract induces apoptosis in hepatocellular carcinoma cells via intrinsic- and endoplasmic reticulum stress-associated pathways. Chin Med 2021; 16:94. [PMID: 34583719 PMCID: PMC8477563 DOI: 10.1186/s13020-021-00504-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/12/2021] [Indexed: 12/24/2022] Open
Abstract
Background Marchantia polymorpha L. is a kind of Chinese herbal medicine and has various biological activities including antioxidant and antifungal. However, it is not clear about the antitumor effect and mechanism of M. polymorpha. We prepared M. polymorpha ethanol extract (MPEE) and investigated its antitumor effect on hepatocellular carcinoma cells both in vitro and in vivo. Methods The viability of hepatocellular carcinoma cells was detected by MTT assay. The distribution of cell cycle was analyzed by propidium iodide (PI) staining. The morphology of nuclei was observed by Hoechst 33258 staining. Apoptosis was detected by Annexin V/PI staining. JC-1 fluorescent probe and DCFH-DA were used to detect the mitochondrial membrane potential (ΔψM) and the level of reactive oxygen species (ROS), respectively. Caspase inhibitors were used to test the function of caspase in the induction of apoptosis. Quantitative real time polymerase chain reaction (qRT-PCR) and Western blot were used to evaluate the levels of mRNA and protein, respectively. Differentially expressed genes and signaling pathways were identified by transcriptome analysis. The H22 tumor mouse model was used to detect the antitumor effect of the extract. Results MPEE significantly suppressed the migration and growth of BEL-7404, HepG2 and H22 cells in a dose- and time-dependent manner through induction of apoptosis characterized by chromosomal condensation and cell cycle arrest at G0/G1 and G2/M phases. MPEE induced mitochondria-dependent apoptosis via upregulation of Bax and downregulation of Bcl-2 to reduce mitochondrial membrane potential and increase the release of cytochrome c. The levels of cleaved caspase-8 and -9 were significantly increased, which sequentially activated caspase-3 to cleave PARP. We further found that MPEE significantly increased ROS production and activated endoplasmic reticulum (ER) stress associated-apoptotic signaling pathway. Moreover, MPEE significantly inhibited H22 tumor growth in mouse model and improved the survival of tumor mice. Conclusion These results suggested that MPEE suppressed hepatocellular carcinoma cell growth through induction of apoptosis via intrinsic- and ER stress-associated pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00504-4.
Collapse
Affiliation(s)
- Fangfang Zhou
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Adila Aipire
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Xierenguli Halike
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Pengfei Yuan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Mamtimin Sulayman
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Weilan Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
37
|
YÜCEL TB. Chemical composition and antimicrobial and antioxidant activities of essential oils of Polytrichum commune (Hedw.) and Antitrichia curtipendula (Hedw.) Brid. grown in Turkey. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2021. [DOI: 10.21448/ijsm.945405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
38
|
Paul S, Bravo Vázquez LA, Márquez Nafarrate M, Gutiérrez Reséndiz AI, Srivastava A, Sharma A. The regulatory activities of microRNAs in non-vascular plants: a mini review. PLANTA 2021; 254:57. [PMID: 34424349 DOI: 10.1007/s00425-021-03707-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/14/2021] [Indexed: 05/21/2023]
Abstract
MicroRNA-mediated gene regulation in non-vascular plants is potentially involved in several unique biological functions, including biosynthesis of several highly valuable exclusive bioactive compounds, and those small RNAs could be manipulated for the overproduction of essential bioactive compounds in the future. MicroRNAs (miRNAs) are a class of endogenous, small (20-24 nucleotides), non-coding RNA molecules that regulate gene expression through the miRNA-mediated mechanisms of either translational inhibition or messenger RNA (mRNA) cleavage. In the past years, studies have mainly focused on elucidating the roles of miRNAs in vascular plants as compared to non-vascular plants. However, non-vascular plant miRNAs have been predicted to be involved in a wide variety of specific biological mechanisms; nevertheless, some of them have been demonstrated explicitly, thus showing that the research field of this plant group owns a noteworthy potential to develop novel investigations oriented towards the functional characterization of these miRNAs. Furthermore, the insights into the roles of miRNAs in non-vascular plants might be of great importance for designing the miRNA-based genetically modified plants for valuable secondary metabolites, active compounds, and biofuels in the future. Therefore, in this current review, we provide an overview of the potential roles of miRNAs in different groups of non-vascular plants such as algae and bryophytes.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130, Querétaro, Mexico.
| | - Luis Alberto Bravo Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130, Querétaro, Mexico
| | - Marilyn Márquez Nafarrate
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Av. Eugenio Garza Sada, No. 2501 Tecnologico, CP 64849, Monterrey, Mexico
| | - Ana Isabel Gutiérrez Reséndiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130, Querétaro, Mexico
| | - Aashish Srivastava
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130, Querétaro, Mexico.
| |
Collapse
|
39
|
Takizawa R, Hatada M, Moriwaki Y, Abe S, Yamashita Y, Arimitsu R, Yamato KT, Nishihama R, Kohchi T, Koeduka T, Chen F, Matsui K. Fungal-Type Terpene Synthases in Marchantia polymorpha Are Involved in Sesquiterpene Biosynthesis in Oil Body Cells. PLANT & CELL PHYSIOLOGY 2021; 62:528-537. [PMID: 33439267 DOI: 10.1093/pcp/pcaa175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
The liverwort Marchantia polymorpha possesses oil bodies in idioblastic oil body cells scattered in its thallus. Oil bodies are subcellular organelles in which specific sesquiterpenes and bisbibenzyls are accumulated. Therefore, a specialized system for the biosynthesis and accumulation of these defense compounds specifically in oil bodies has been implied. A recent study on M. polymorpha genome sequencing revealed 10 genes that shared high similarities with fungal-type terpene synthases (TPSs). Eight of these fungal-type TPS-like genes in M. polymorpha (MpFTPSL1-6, -9 and -10) are located within a 376-kb stretch on chromosome 6 and share similarities of over 94% at the nucleotide level. Therefore, these genes have likely originated from recent gene duplication events. The expression of a subset of MpFTPSLs was induced under non-axenic growth on vermiculite, which increased the amounts of sesquiterpenes and number of oil bodies. The tdTomato fluorescent protein-based in-fusion reporter assay with MpFTPSL2 promoter revealed fluorescent signals specifically in oil body cells of the thallus, indicating that MpFTPSL2 functions in oil body cells. Recombinant MpFTPSL2 expression in Escherichia coli led to sesquiterpene synthesis from farnesyl pyrophosphate. Moreover, suppression of a subset of MpFTPSLs through RNA interference reduced sesquiterpene accumulation in thalli grown on vermiculite. Taken together, these results suggest that at least a subset of MpFTPSLs is involved in sesquiterpene synthesis in oil body cells.
Collapse
Affiliation(s)
- Ryosuke Takizawa
- Department of Biological Chemistry, Faculty of Agriculture and Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515 Japan
| | - Miki Hatada
- Department of Biological Chemistry, Faculty of Agriculture and Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515 Japan
| | - Yuta Moriwaki
- Department of Biological Chemistry, Faculty of Agriculture and Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515 Japan
| | - Sachika Abe
- Department of Biological Chemistry, Faculty of Agriculture and Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515 Japan
| | - Yuko Yamashita
- Department of Biological Chemistry, Faculty of Agriculture and Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515 Japan
| | - Ryoma Arimitsu
- Department of Biological Chemistry, Faculty of Agriculture and Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515 Japan
| | - Katsuyuki T Yamato
- Department of Biotechnological Science, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Takao Koeduka
- Department of Biological Chemistry, Faculty of Agriculture and Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515 Japan
| | - Feng Chen
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Kenji Matsui
- Department of Biological Chemistry, Faculty of Agriculture and Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515 Japan
| |
Collapse
|
40
|
Drobnik J, Stebel A. Four Centuries of Medicinal Mosses and Liverworts in European Ethnopharmacy and Scientific Pharmacy: A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10071296. [PMID: 34202287 PMCID: PMC8309153 DOI: 10.3390/plants10071296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 05/06/2023]
Abstract
(1) Medicinal use of bryophytes dates to ancient times, but it has always been marginal due to their small size, difficult identification, lack of conspicuous organs which would attract attention (flowers, fruits) and insipid taste of the herb. The earliest testimonies of their medical use come from the 1500s. The interest in medicinal bryophytes diminished considerably in the 1880s, except for Sphagnum spp., which became a source of dressing material. The second half of the 20th century saw the revival of the study of bryophyte chemistry. (2) Historical printed sources from 1616 to 1889 were queried. Bryophyte species found were taxonomically identified and presented against the background of their confirmed properties and ecology. The study was supplemented with historical vs. modern ethnomedicinal data. (3) In 26 publications, 28 species were identified. Modern usage was known for 10 of them. Medicinal properties of 16 species were confirmed. (4) Species of wide geographical distribution range were (or are still being) used in local folk medicines. Historical ethnobiological and ethnopharmaceutical uses of them are sometimes convergent with their confirmed properties, mostly external (as antimicrobial or cytotoxic remedies).
Collapse
|
41
|
Özerkan D, Erol A, Altuner EM, Canlı K, Kuruca DS. Some Bryophytes Trigger Cytotoxicity of Stem Cell-like Population in 5-Fluorouracil Resistant Colon Cancer Cells. Nutr Cancer 2021; 74:1012-1022. [PMID: 34151658 DOI: 10.1080/01635581.2021.1933098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Colorectal cancer is the third most common cancer worldwide. Cancer stem cells are known to play an important role in relapse, and metastases of the disease after chemotherapy. Investigation of new drugs, and their combinations targeting these cells and thus eliminating cancer is one of the most urgent needs of today's chemotherapy. The aim of the present study was to evaluate the effects of Bryophytes like Abietinella abietina (AA), Homolothecium sericeum (HS), Tortella tortuosa (TT), Syntrichia ruralis (SR), and Bryoerythrophyllum rubrum (BR) species extracted with ethyl alcohol on 5-fluorouracil(5-FU) resistant colorectal cancer cell lines (HCT116 and HT29). After extraction, stock solutions of bryophytes were prepared, and IC50 values were detected in drug-resistant cells obtained with 5-FU application. CD24+, CD44+/CD133+ surface markers and P-glycoprotein (P-gp) mediated efflux were isolated from both 5-FU treated cells and analyzed using the flow cytometry. In all bryophyte-treated groups, the binding Rho123low (low Rho fluorescence) and Rhohigh (high Rho fluorescence) were sorted from 5-FU resistant HCT116, and HT-29 cells. All types of bryophytes were found cytotoxic. Bryophyte extract reduced the percentage of Rholow cells in cultures incubated with 5-FU. In summary, the implementation of these bryophytes might be regarded as an effective approach for treatment of colorectal cancer due to their cytotoxic effect that decreases the recurrence of the disease.Supplemental data for this article is available online at https://doi.org/10.1080/01635581.2021.1933098.
Collapse
Affiliation(s)
- Dilşad Özerkan
- Faculty of Health Sciences, Molecular Cancer Research Center, İstinye University, İstanbul, Turkey
| | - Ayşe Erol
- Department of Medical Biology, Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Ergin Murat Altuner
- Department of Biology, Faculty of Science and Literature, Kastamonu University, Kastamonu, Turkey
| | - Kerem Canlı
- Department of Biology, Faculty of Sciences, Dokuz Eylül University, İzmir, Turkey
| | - Dürdane Serap Kuruca
- Department of Physiology, Faculty of Medicine, Istanbul University, İstanbul, Turkey
| |
Collapse
|
42
|
KABADERE S, BİRGİ F, ÖZTOPÇU VATAN P, FILIK ISCEN C, İLHAN S. Some Biological Activities of the Moss Brachythecium populeum (Hedw.) Bruch, Schimp. & W.Gumbel (Bryophyta). GAZI UNIVERSITY JOURNAL OF SCIENCE 2021. [DOI: 10.35378/gujs.750754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Zhang CY, Gao Y, Zhou JC, Xu ZJ, Qiao YN, Zhang JZ, Lou HX. Diverse Prenylated Bibenzyl Enantiomers from the Chinese Liverwort Radula apiculata and Their Cytotoxic Activities. JOURNAL OF NATURAL PRODUCTS 2021; 84:1459-1468. [PMID: 33913326 DOI: 10.1021/acs.jnatprod.0c01264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An EtOH extract of the Chinese liverwort Radula apiculata showed cytotoxic activity against the A549 lung cancer cell line. Bioassay-guided fractionation led to the isolation of 19 prenylated bibenzyls, including eight previously unknown dimeric prenylated bibenzyls [radulapins A-H (1-8)], four new prenylated bibenzyls (9-12), and seven known compounds (13-19). Compounds 1-11 were analyzed as racemates by chiral-phase separation. Their structures were determined by detailed analysis of their spectroscopic data and by single-crystal X-ray diffraction, chiral resolutions, and electronic circular dichroism measurements. Using an MTT assay, these dimers (1-8) showed significant cytotoxic activity against a panel of human cancer cell lines. Further investigation revealed that compound 4 induces PC-3 cell death via mitochondrial-derived apoptosis.
Collapse
Affiliation(s)
- Chun-Yang Zhang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology of the Ministry of Education, Shandong University, Jinan 250012, People's Republic of China
| | - Yun Gao
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology of the Ministry of Education, Shandong University, Jinan 250012, People's Republic of China
| | - Jin-Chuan Zhou
- School of Pharmacy, Linyi University, Linyi 276000, People's Republic of China
| | - Ze-Jun Xu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology of the Ministry of Education, Shandong University, Jinan 250012, People's Republic of China
| | - Ya-Nan Qiao
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology of the Ministry of Education, Shandong University, Jinan 250012, People's Republic of China
| | - Jiao-Zhen Zhang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology of the Ministry of Education, Shandong University, Jinan 250012, People's Republic of China
| | - Hong-Xiang Lou
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology of the Ministry of Education, Shandong University, Jinan 250012, People's Republic of China
| |
Collapse
|
44
|
Ivković I, Novaković M, Veljić M, Mojsin M, Stevanović M, Marin PD, Bukvički D. Bis-Bibenzyls from the Liverwort Pellia endiviifolia and Their Biological Activity. PLANTS 2021; 10:plants10061063. [PMID: 34073157 PMCID: PMC8227020 DOI: 10.3390/plants10061063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/03/2022]
Abstract
Based on previous investigations where bis-bibenzyls isolated from liverworts showed various biological activities (cytotoxic, antimicrobial, and antiviral), we investigated their cytotoxic activity in several human cancer cell lines. From the methylene-chloride/methanol extract of the liverwort Pellia endiviifolia, three bis-bibenzyls of the perrottetin type were isolated, namely perrottetin E, 10′-hydroxyperrottetin E, and 10,10′-dihydroxyperrottetin E. The last two were found for the first time in this species. Their structures were resolved using 1D and 2D NMR, as well as by comparison with data in the literature. Cytotoxic activity of the isolated compounds was tested on three human leukemia cell lines, HL-60 (acute promyelocytic leukemia cells), U-937 (acute monocytic leukemia cells), and K-562 (human chronic myelogenous leukemia cells), as well as on human embryonal teratocarcinoma cell line (NT2/D1) and human glioblastoma cell lines A-172 and U-251, and compared to the previously isolated bis-bibenzyls (perrottetins) of similar structure. The isolated compounds exhibited modest activity against leukemia cells and significant activity against NT2/D1 and A-172. Overall, the most active cytotoxic compounds in this investigation were perrottetin E (1), isolated in this work from Pellia endiviifolia, and perrottetin F phenanthrene derivative (7), previously isolated from Lunularia cruciata and added for a comparison of their cytotoxic activity.
Collapse
Affiliation(s)
- Ivana Ivković
- Institute of Botany and Botanical Garden “Jevremovac”, Faculty of Biology, University of Belgrade, 11000 Begrade, Serbia; (I.I.); (M.V.); (P.D.M.)
| | - Miroslav Novaković
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milan Veljić
- Institute of Botany and Botanical Garden “Jevremovac”, Faculty of Biology, University of Belgrade, 11000 Begrade, Serbia; (I.I.); (M.V.); (P.D.M.)
| | - Marija Mojsin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (M.M.); (M.S.)
| | - Milena Stevanović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (M.M.); (M.S.)
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, 11001 Belgrade, Serbia
| | - Petar D. Marin
- Institute of Botany and Botanical Garden “Jevremovac”, Faculty of Biology, University of Belgrade, 11000 Begrade, Serbia; (I.I.); (M.V.); (P.D.M.)
| | - Danka Bukvički
- Institute of Botany and Botanical Garden “Jevremovac”, Faculty of Biology, University of Belgrade, 11000 Begrade, Serbia; (I.I.); (M.V.); (P.D.M.)
- Correspondence: or ; Tel.: +381-63-161-1980
| |
Collapse
|
45
|
Onder A, Yıldız A, Cinar AS, Zengin G, Ak G, Ozenoğlu H. The comparison of the phytochemical composition, antioxidant and enzyme inhibition activity of two moss species: Plagiomnium ellipticum (Brid.) T. Kop. and Antitrichia californica Sull., from southwest ecological region in Turkey. Nat Prod Res 2021; 36:2660-2665. [PMID: 33949257 DOI: 10.1080/14786419.2021.1916745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A limited number of mosses have been studied regarding antioxidant activity and enzyme inhibition effects. In the present study, the phytochemical content, antioxidant, and enzyme inhibition properties of the ether extracts from T.J.Kop.. were investigated as promising bryophyte sources. The ether extracts of P. ellipticum had the highest flavonoid content (52.41 ± 0.52, Rutin equivalent), and A. californica had the highest total phenolic content (25.84 ± 0.23, Gallic acid equivalent). While the P. ellipticum had the highest ABTS (mg TE/g extract) 6.60 ± 0.4); A. californica showed the highest metal chelating capacity (mg EDTA/g extract) with the values of 51.46 ± 0.26. In the enzyme activity tests, almost all values of the species were closed the each other, but P. ellipticum was exhibited higher tyrosinase activity (mg/KAE/g extract) with 48.64 ± 1.02. The results have indicated for the first time the potential importance of the selected mosses.
Collapse
Affiliation(s)
- Alev Onder
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Aybala Yıldız
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Ahsen Sevde Cinar
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Ankara, Turkey.,Department of Pharmaceutical Botany and Pharmacognosy, Faculty of Pharmacy, Lokman Hekim University, Ankara, Turkey
| | - Gokhan Zengin
- Department of Biology, Physiology, and Biochemistry Research Laboratory, Science Faculty, Selcuk University, Konya, Turkey
| | - Gunes Ak
- Department of Biology, Physiology, and Biochemistry Research Laboratory, Science Faculty, Selcuk University, Konya, Turkey
| | - Hatice Ozenoğlu
- Department Science Education, Adnan Menderes University, Faculty of Education Mathematics and Science Education, Aydın, Turkey
| |
Collapse
|
46
|
Peters K, Balcke G, Kleinenkuhnen N, Treutler H, Neumann S. Untargeted In Silico Compound Classification-A Novel Metabolomics Method to Assess the Chemodiversity in Bryophytes. Int J Mol Sci 2021; 22:ijms22063251. [PMID: 33806786 PMCID: PMC8005083 DOI: 10.3390/ijms22063251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022] Open
Abstract
In plant ecology, biochemical analyses of bryophytes and vascular plants are often conducted on dried herbarium specimen as species typically grow in distant and inaccessible locations. Here, we present an automated in silico compound classification framework to annotate metabolites using an untargeted data independent acquisition (DIA)–LC/MS–QToF-sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH) ecometabolomics analytical method. We perform a comparative investigation of the chemical diversity at the global level and the composition of metabolite families in ten different species of bryophytes using fresh samples collected on-site and dried specimen stored in a herbarium for half a year. Shannon and Pielou’s diversity indices, hierarchical clustering analysis (HCA), sparse partial least squares discriminant analysis (sPLS-DA), distance-based redundancy analysis (dbRDA), ANOVA with post-hoc Tukey honestly significant difference (HSD) test, and the Fisher’s exact test were used to determine differences in the richness and composition of metabolite families, with regard to herbarium conditions, ecological characteristics, and species. We functionally annotated metabolite families to biochemical processes related to the structural integrity of membranes and cell walls (proto-lignin, glycerophospholipids, carbohydrates), chemical defense (polyphenols, steroids), reactive oxygen species (ROS) protection (alkaloids, amino acids, flavonoids), nutrition (nitrogen- and phosphate-containing glycerophospholipids), and photosynthesis. Changes in the composition of metabolite families also explained variance related to ecological functioning like physiological adaptations of bryophytes to dry environments (proteins, peptides, flavonoids, terpenes), light availability (flavonoids, terpenes, carbohydrates), temperature (flavonoids), and biotic interactions (steroids, terpenes). The results from this study allow to construct chemical traits that can be attributed to biogeochemistry, habitat conditions, environmental changes and biotic interactions. Our classification framework accelerates the complex annotation process in metabolomics and can be used to simplify biochemical patterns. We show that compound classification is a powerful tool that allows to explore relationships in both molecular biology by “zooming in” and in ecology by “zooming out”. The insights revealed by our framework allow to construct new research hypotheses and to enable detailed follow-up studies.
Collapse
Affiliation(s)
- Kristian Peters
- Bioinformatics & Scientific Data, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; (H.T.); (S.N.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
- Correspondence: ; Tel.: +49-345-5582-1475
| | - Gerd Balcke
- Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany;
| | - Niklas Kleinenkuhnen
- Max Planck Research Group Chromatin and Ageing, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany;
- MS-Platform, Cluster of Excellence on Plant Sciences, Botanical Institute (CEPLAS), University of Cologne, 50931 Cologne, Germany
| | - Hendrik Treutler
- Bioinformatics & Scientific Data, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; (H.T.); (S.N.)
- Datameer GmbH, Magdeburger Straße 23, 06112 Halle (Saale), Germany
| | - Steffen Neumann
- Bioinformatics & Scientific Data, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; (H.T.); (S.N.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|
47
|
Miranda TG, Alves RJM, de Souza RF, Maia JGS, Figueiredo PLB, Tavares-Martins ACC. Volatile concentrate from the neotropical moss Neckeropsis undulata (Hedw.) Reichardt, existing in the brazilian Amazon. BMC Chem 2021; 15:7. [PMID: 33494804 PMCID: PMC7836487 DOI: 10.1186/s13065-021-00736-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/16/2021] [Indexed: 11/22/2022] Open
Abstract
Background Many natural compounds have been identified and synthesized by the advancement of bryophytes phytochemistry studies. This work aimed to report the composition of Neckeropsis undulata (Hedw.) Reichardt moss volatiles, sampled in the Combú Island, Belém city, Pará state, Brazil. The volatile concentrate of N. undulata was obtained by a simultaneous distillation-extraction micro-system, analyzed by GC and GC-MS, and reported for the first time. Results Ten compounds were identified in the volatile concentrate, corresponding to 91.6% of the total, being 1-octen-3-ol (35.7%), α-muurolol (21.4%), naphthalene (11.3%), and n-hexanal (10.0 %) the main constituents. Most of the constituents of the N. undulata volatile concentrate have been previously identified in other mosses, and liverworts spread wide in the world. Conclusions 1-Octen-3-ol, n-hexanal, 2-ethylhexanol, isoamyl propionate, and octan-3-one are already known metabolic products obtained from enzymatic oxidation of polyunsaturated fatty acids, belonging to the large family of minor oxygenated compounds known as oxylipins. The knowledge of the composition of volatiles from moss N. undulata could contribute to the Neckeraceae species’ chemotaxonomy.
Collapse
Affiliation(s)
- Thyago G Miranda
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Raynon Joel M Alves
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Ronilson F de Souza
- Departamento de Ciências Naturais, Universidade do Estado do Pará, Belém, PA, 66050-540, Brazil
| | - José Guilherme S Maia
- Programa de Pós-Graduação em Química, Universidade Federal do Maranhão, São Luís, MA, 64080-040, Brazil
| | - Pablo Luis B Figueiredo
- Departamento de Ciências Naturais, Universidade do Estado do Pará, Belém, PA, 66050-540, Brazil.
| | - Ana Cláudia C Tavares-Martins
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil.,Departamento de Ciências Naturais, Universidade do Estado do Pará, Belém, PA, 66050-540, Brazil
| |
Collapse
|
48
|
Commisso M, Guarino F, Marchi L, Muto A, Piro A, Degola F. Bryo-Activities: A Review on How Bryophytes Are Contributing to the Arsenal of Natural Bioactive Compounds against Fungi. PLANTS (BASEL, SWITZERLAND) 2021; 10:203. [PMID: 33494524 PMCID: PMC7911284 DOI: 10.3390/plants10020203] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 01/05/2023]
Abstract
Usually regarded as less evolved than their more recently diverged vascular sisters, which currently dominate vegetation landscape, bryophytes seem having nothing to envy to the defensive arsenal of other plants, since they had acquired a suite of chemical traits that allowed them to adapt and persist on land. In fact, these closest modern relatives of the ancestors to the earliest terrestrial plants proved to be marvelous chemists, as they traditionally were a popular remedy among tribal people all over the world, that exploit their pharmacological properties to cure the most different diseases. The phytochemistry of bryophytes exhibits a stunning assortment of biologically active compounds such as lipids, proteins, steroids, organic acids, alcohols, aliphatic and aromatic compounds, polyphenols, terpenoids, acetogenins and phenylquinones, thus it is not surprising that substances obtained from various species belonging to such ancestral plants are widely employed as antitumor, antipyretic, insecticidal and antimicrobial. This review explores in particular the antifungal potential of the three Bryophyta divisions-mosses (Musci), hornworts (Anthocerotae) and liverworts (Hepaticae)-to be used as a sources of interesting bioactive constituents for both pharmaceutical and agricultural areas, providing an updated overview of the latest relevant insights.
Collapse
Affiliation(s)
- Mauro Commisso
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona (VR), Italy;
| | - Francesco Guarino
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy;
| | - Laura Marchi
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Via Gramsci 14, 43125 Parma (PR), Italy;
| | - Antonella Muto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Via Ponte P. Bucci 6b, Arcavacata di Rende, 87036 Cosenza (CS), Italy;
| | - Amalia Piro
- Laboratory of Plant Biology and Plant Proteomics (Lab.Bio.Pro.Ve), Department of Chemistry and Chemical Technologies, University of Calabria, Ponte P. Bucci 12 C, Arcavacata di Rende, 87036 Cosenza (CS), Italy;
| | - Francesca Degola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco delle Scienze 11/A, 43124 Parma (PR), Italy
| |
Collapse
|
49
|
Klegin C, de Moura NF, Oliveira de Sousa MH, Frassini R, Roesch-Ely M, Bruno AN, Bitencourt TC, Flach A, Bordin J. Chemical Composition and Cytotoxic Evaluation of the Essential Oil of Phyllogonium viride (Phyllogoniaceae, Bryophyta). Chem Biodivers 2021; 18:e2000794. [PMID: 33463005 DOI: 10.1002/cbdv.202000794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/18/2021] [Indexed: 01/02/2023]
Abstract
The present study aimed to determine the chemical composition and biological activity of the essential oil obtained from Phyllogonium viride Brid. (Phyllogoniaceae, Bryophyta), whose samples were collected in southern Brazil. For the first time, the cytotoxic activity of the essential oil of P. viride in breast and colorectal tumor cells (MCF-7 and HCT-116) was evaluated, as well as the cytotoxic potential of this oil in non-tumoral cells of human immortalized keratinocytes (HaCaT) via MTT assay. The compounds majorly found in P. viride essential oil were β-bazzanene (20.30 %), β-caryophyllene (17.06 %), β-chamigrene (14.02), and germacrene B (11.72 %). Treatment with P. viride essential oil in the different tested cell lines did not induce any toxicity in most of the tested concentrations. These data contribute to generating new scientific information about this understudied plant species. Furthermore, the chemical characterization of the compounds present in the essential oil of P. viride can lead to greater elucidation of its biotechnological potential.
Collapse
Affiliation(s)
- Christchellyn Klegin
- Programa de Pós-graduação em Ambiente e Sustentabilidade, Universidade Estadual do Rio Grande do Sul (UERGS) - Campus Hortênsias, Rua Assis Brasil, No. 842, Centro, CEP, 95400-000, São Francisco de Paula, RS, Brazil
| | - Neusa Fernandes de Moura
- Universidade Federal do Rio Grande - Campus Santo Antônio da Patrulha (FURG/SAP), Rua Coronel Francisco Borges de Lima, 3005, Bairro Bom Princípio, CEP, 955900-000, Santo Antônio da Patrulha, RS, Brazil
| | - Matheus Henrique Oliveira de Sousa
- Universidade Federal do Rio Grande - Campus Santo Antônio da Patrulha (FURG/SAP), Rua Coronel Francisco Borges de Lima, 3005, Bairro Bom Princípio, CEP, 955900-000, Santo Antônio da Patrulha, RS, Brazil
| | - Rafaele Frassini
- Universidade de Caxias do Sul - Campus Sede, Rua Francisco Getúlio Vargas, 1130, Bairro Petrópolis, CEP, RS 95070-560, Caxias do Sul, Brazil
| | - Mariana Roesch-Ely
- Universidade de Caxias do Sul - Campus Sede, Rua Francisco Getúlio Vargas, 1130, Bairro Petrópolis, CEP, RS 95070-560, Caxias do Sul, Brazil
| | - Alessandra Nejar Bruno
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - Campus Porto Alegre (IFRS/POA), Rua Cel. Vicente, 281, Bairro Centro Histórico, CEP, 90030-041, Porto Alegre, RS, Brazil
| | - Thais Cardoso Bitencourt
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - Campus Porto Alegre (IFRS/POA), Rua Cel. Vicente, 281, Bairro Centro Histórico, CEP, 90030-041, Porto Alegre, RS, Brazil
| | - Adriana Flach
- Universidade Federal de Roraima - Campus do Paricarana, Av. Cap. Enê Garcêz, 2413, Bloco III, Aeroporto, CEP, 69310-000, Paricarana, RR, Brazil
| | - Juçara Bordin
- Programa de Pós-graduação em Ambiente e Sustentabilidade, Universidade Estadual do Rio Grande do Sul (UERGS) - Campus Hortênsias, Rua Assis Brasil, No. 842, Centro, CEP, 95400-000, São Francisco de Paula, RS, Brazil.,Universidade Estadual do Rio Grande do Sul - Campus Litoral Norte (UERGS/LN), Rua Machado de Assis, No. 1456, Sulbrasileiro, CEP, 95520-000, Osório, RS, Brazil
| |
Collapse
|
50
|
Nandy S, Dey A. Bibenzyls and bisbybenzyls of bryophytic origin as promising source of novel therapeutics: pharmacology, synthesis and structure-activity. Daru 2020; 28:701-734. [PMID: 32803687 PMCID: PMC7429097 DOI: 10.1007/s40199-020-00341-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The amphibian, non-vascular, gametophyte-dominant, bio-indicator class, bryophytes; with their wide ranges of habitat have attained importance due to their promising medicinal attributions and therapeutic role; mostly aided by presence of aromatic bibenzyl and bisbybenzyl class of compounds. Bibenzyls are steroidal ethane derivatives, resembling the structural moiety of bioactive dihydro-stilbenoids or iso-quinoline alkaloids. These stress triggered secondary metabolites are the by-products of the flavonoid biosynthetic pathway. Different classes of bryophytes (Bryophyta, Marchantiophyta and Anthocerotophyta) possess different subtypes of bibenzyls and dimeric bisbibenzyls. Among the liverwort, hornwort and mosses, former one is mostly enriched with bibenzyl type constituents as per the extensive study conducted for phytochemical deposit. Considering macrocyclic and acyclic group of bibenzyls and bisbybenzyls, generally marchantin type compounds are reported vividly for significant biological activity that includes neuro-nephro-cardio-protection besides anti-allergic, anti-microbial, anti-apoptotic and cytotoxic activities studied on in-vitro and in-vivo models or on cell lines. RESULT The critical analysis of reported chemical and pharmaceutical attributions of bibenzyls and bis-bibenzyls yielded detailed report on this compound class along with their application, mode of action, natural source, techniques of synthesis, extraction procedure, isolation and characterization. Further, the structure activity relationship studies and bioactivity of bibenzyls derived from non-bryophytic origin were also summarized. CONCLUSION This review encompasses prospective biological application of botanical reservoir of this primarily ignored, primeval land plant group where recent technical advances has paved the way for qualitative and quantitative isolation and estimation of novel compounds as well as marker components to study their impact on environment, as bio-control agents and as key leads in future drug designing. Graphical abstract.
Collapse
Affiliation(s)
- Samapika Nandy
- Research Scholar, Department of Life Sciences, Presidency University, Kolkata, 700073 India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, 700073 India
| |
Collapse
|