1
|
Vishwakarma S, Chaudhry V, Chand S, Sagar K, Gupta KK, Bhardwaj N, Prasad R, Kumar P, Chandra H. The Potential of Fungal Endophytes in Plants: Sources of Bioactive Compounds. Indian J Microbiol 2024. [DOI: 10.1007/s12088-024-01406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/28/2024] [Indexed: 11/20/2024] Open
|
2
|
Ji Q, Xiang H, Wang WG, Matsuda Y. Mechanism Behind the Programmed Biosynthesis of Heterotrimeric Fungal Depside Thielavin A. Angew Chem Int Ed Engl 2024; 63:e202402663. [PMID: 38467568 DOI: 10.1002/anie.202402663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Thielavin A (1) is a fungal depside composed of one 3-methylorsellinic acid and two 3,5-dimethylorsellinic acid units. It displays diverse biological activities. However, the mechanism underlying the assembly of the heterotrimeric structure of 1 remains to be clarified. In this study, we identified the polyketide synthase (PKS) involved in the biosynthesis of 1. This PKS, designated as ThiA, possesses an unusual domain organization with the C-methyltransferase (MT) domain situated at the C-terminus following the thioesterase (TE) domain. Our findings indicated that the TE domain is solely responsible for two rounds of ester bond formation, along with subsequent chain hydrolysis. We identified a plausible mechanism for TE-catalyzed reactions and obtained insights into how a single PKS can selectively yield a specific heterotrimeric product. In particular, the tandem acyl carrier protein domains of ThiA are critical for programmed methylation by the MT domain. Overall, this study highlighted the occurrence of highly optimized domain-domain communication within ThiA for the selective synthesis of 1, which can advance our understanding of the programming rules of fungal PKSs.
Collapse
Affiliation(s)
- Qiaolin Ji
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Hao Xiang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission; Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education, Yunnan Minzu University, Kunming, 650031, Yunnan, China
| | - Wei-Guang Wang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission; Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education, Yunnan Minzu University, Kunming, 650031, Yunnan, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
3
|
Asomadu RO, Ezeorba TPC, Ezike TC, Uzoechina JO. Exploring the antioxidant potential of endophytic fungi: a review on methods for extraction and quantification of total antioxidant capacity (TAC). 3 Biotech 2024; 14:127. [PMID: 38585410 PMCID: PMC10997672 DOI: 10.1007/s13205-024-03970-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/26/2024] [Indexed: 04/09/2024] Open
Abstract
Endophytic fungi have emerged as a significant source of natural products with remarkable bioactivities. Recent research has identified numerous antioxidant molecules among the secondary metabolites of endophytic fungi. These organisms, whether unicellular or micro-multicellular, offer the potential for genetic manipulation to enhance the production of these valuable antioxidant compounds, which hold promise for promoting health, vitality, and various biotechnological applications. In this study, we provide a critical review of methods for extracting, purifying, characterizing, and estimating the total antioxidant capacity (TAC) of endophytic fungi metabolites. While many endophytes produce metabolites similar to those found in plants with established symbiotic associations, we also highlight the existence of novel metabolites with potential scientific interest. Additionally, we discuss how advancements in nanotechnology have opened new avenues for exploring nanoformulations of endophytic metabolites in future studies, offering opportunities for diverse biological and industrial applications.
Collapse
Affiliation(s)
- Rita Onyekachukwu Asomadu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu, 410001 Nigeria
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu, 410001 Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu, 410001 Nigeria
- Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B17 2TT UK
| | - Tobechukwu Christian Ezike
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu, 410001 Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu, 410001 Nigeria
| | - Jude Obiorah Uzoechina
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu, 410001 Nigeria
| |
Collapse
|
4
|
Rebollar-Ramos D, Ovalle-Magallanes B, Raja HA, Jacome-Rebollo M, Figueroa M, Tovar-Palacio C, Noriega LG, Madariaga-Mazón A, Mata R. Antidiabetic Potential of a Trimeric Anthranilic Acid Peptide Isolated from Malbranchea flocciformis. Chem Biodivers 2024; 21:e202301602. [PMID: 38102075 DOI: 10.1002/cbdv.202301602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
Compound 3, a trimeric anthranilic acid peptide, and another three metabolites were isolated from an organic extract from the culture medium of Malbranchea flocciformis ATCC 34530. The chemical structure proposed previously for 3 was unequivocally assigned via synthesis and X-ray diffraction analysis. Tripeptide 3 showed insulinotropic properties by decreasing the postprandial peak in healthy and hyperglycemic mice. It also increased glucose-induced insulin secretion in INS-1E at 5 μM, specifically at higher glucose concentrations. These results revealed that 3 might act as an insulin sensitizer and a non-classical insulin secretagogue. Altogether, these findings are in harmony with the in vivo oral glucose tolerance test and acute oral hypoglycemic assay. Finally, the chemical composition of the extract was established by the Global Natural Products Social Molecular Network platform. Phylogenetic analysis using the internal transcribed spacer region revealed that M. flocciformis ATCC 34530 is related to the Malbrancheaceae.
Collapse
Affiliation(s)
- Daniela Rebollar-Ramos
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | | | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC-27412, USA
| | - Mariano Jacome-Rebollo
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Mario Figueroa
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Claudia Tovar-Palacio
- Dirección de Nutrición, Instituto Nacional Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, 14080, México
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, 14080, México
| | - Abraham Madariaga-Mazón
- Instituto de Química Unidad Mérida and f Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Unidad Mérida, Universidad Nacional Autónoma de México, Mérida, Yucatán, México
| | - Rachel Mata
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| |
Collapse
|
5
|
Gupta A, Meshram V, Gupta M, Goyal S, Qureshi KA, Jaremko M, Shukla KK. Fungal Endophytes: Microfactories of Novel Bioactive Compounds with Therapeutic Interventions; A Comprehensive Review on the Biotechnological Developments in the Field of Fungal Endophytic Biology over the Last Decade. Biomolecules 2023; 13:1038. [PMID: 37509074 PMCID: PMC10377637 DOI: 10.3390/biom13071038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
The seminal discovery of paclitaxel from endophytic fungus Taxomyces andreanae was a milestone in recognizing the immense potential of endophytic fungi as prolific producers of bioactive secondary metabolites of use in medicine, agriculture, and food industries. Following the discovery of paclitaxel, the research community has intensified efforts to harness endophytic fungi as putative producers of lead molecules with anticancer, anti-inflammatory, antimicrobial, antioxidant, cardio-protective, and immunomodulatory properties. Endophytic fungi have been a valuable source of bioactive compounds over the last three decades. Compounds such as taxol, podophyllotoxin, huperzine, camptothecin, and resveratrol have been effectively isolated and characterized after extraction from endophytic fungi. These findings have expanded the applications of endophytic fungi in medicine and related fields. In the present review, we systematically compile and analyze several important compounds derived from endophytic fungi, encompassing the period from 2011 to 2022. Our systematic approach focuses on elucidating the origins of endophytic fungi, exploring the structural diversity and biological activities exhibited by these compounds, and giving special emphasis to the pharmacological activities and mechanism of action of certain compounds. We highlight the tremendous potential of endophytic fungi as alternate sources of bioactive metabolites, with implications for combating major global diseases. This underscores the significant role that fungi can play in the discovery and development of novel therapeutic agents that address the challenges posed by prevalent diseases worldwide.
Collapse
Affiliation(s)
- Aditi Gupta
- School of Studies in Biotechnology, Pandit Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Vineet Meshram
- School of Studies in Biotechnology, Pandit Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Mahiti Gupta
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, Haryana, India
| | - Soniya Goyal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, Haryana, India
| | - Kamal Ahmad Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Kamlesh Kumar Shukla
- School of Studies in Biotechnology, Pandit Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| |
Collapse
|
6
|
Sadaati S, Daneshamouz S, Bahig J, Shoker A, Abdelrasoul A. In-Situ Synchrotron Imaging, Experimental, and Computational Investigations on the Efficiency of Trametes versicolor Laccase on Detoxification of P-Cresyl Sulfate (PCS) Protein Bound Uremic Toxin (PBUT). J Biotechnol 2023; 368:12-30. [PMID: 37004788 DOI: 10.1016/j.jbiotec.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Protein bound uremic toxins (PBUTs) are small substances binding to larger proteins, mostly human serum albumin (HSA), and are challenging to remove by hemodialysis (HD). Among different classes of PBUTs, p-cresyl sulfate (PCS) is the most widely used marker molecule and major toxin, as 95% is bound to HSA. PCS has a pro-inflammatory effect and increases both the uremia symptom score and multiple pathophysiological activities. High-flux HD to clear PCS leads to serious loss of HSA, which results in a high mortality rate. The goal of the present study is to investigate the efficacy of PCS detoxification in serum of HD patients using a biocompatible laccase enzyme from Trametes versicolor. Molecular docking was used to gain an in-depth understanding of the interactions between PCS and the laccase to identify the functional group(s) responsible for ligand-protein receptor interactions. UV-Vis spectroscopy and gas chromatography-mass spectrometry (GC-MS) were used to assess the detoxification of PCS. GC-MS was used to identify the detoxification byproducts and their toxicity was assessed using docking commutations. In situ synchrotron radiation micro-computed tomography (SR-µCT) imaging available at the Canadian Light Source (CLS) was conducted to assess HSA binding with PCS before and after detoxification with laccase and undertake the corresponding quantitative analysis. GC-MS analyses confirmed the detoxification of PCS with laccase at a concentration of 500mg/L. The potential pathway of PCS detoxification in the presence of the laccase was identified. Increasing laccase concentration led to the formation of m-cresol, as indicated by the corresponding absorption in the UV-Vis spectra and a sharp peak on the GC-MS spectra. Our analysis provides insight into the general features of PCS binding on Sudlow site II, as well as insights into PCS detoxification product interactions. The average affinity energy for detoxification products was lower than that of PCS. Even though some byproducts showed potential toxicity, the level was lower than for PCS based on toxicity indexes (e.g., LD50/LC50, carcinogenicity, neurotoxicity, mutagenicity). In addition, these small compounds can also be more easily removed by HD compared to PCS. SR-µCT quantitative analysis showed adhesion of the HSA to a significant reduced extent in the presence of the laccase enzyme in bottom sections of the polyarylethersulfone (PAES) clinical HD membrane tested. Overall, this study opens new frontiers for PCS detoxification.
Collapse
|
7
|
Ji W, Gu L, Zou X, Li Z, Xu X, Wu J, Zhang S, Deng H. Discovery, Validation, and Target Prediction of Antibacterial and Antidiabetic Components of Archidendron clypearia Based on a Combination of Multiple Analytical Methods. Molecules 2023; 28:molecules28031329. [PMID: 36770996 PMCID: PMC9919075 DOI: 10.3390/molecules28031329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Archidendron clypearia (A. clypearia), a Fabaceae family member, is widely used as an anti-inflammatory herbal medicine; however, its antibacterial and antidiabetic properties have not been extensively investigated. This study aimed to systematically analyze the antibacterial and antidiabetic components of A. clypearia by utilizing a combination of analytical methods. First, ten different polarity extracts were analyzed through ultra-performance liquid chromatography (UPLC), and their antibacterial and antidiabetic activities were evaluated. Then the spectrum-effect relationship between the biological activity and UPLC chromatograms was analyzed by partial least squares regression and gray relational analysis, followed by corresponding validation using isolated components. Finally, network pharmacology and molecular docking were implemented to predict the main antibacterial target components of A. clypearia and the enzyme inhibition active sites of α-amylase and α-glucosidase. P15, P16, and P20 were found to be the antibacterial and antidiabetic active components. The inhibitory effect of 7-O-galloyltricetiflavan (P15) on six bacterial species may be mediated through the lipid and atherosclerosis pathway, prostate cancer, adherens junctions, and targets such as SRC, MAPK1, and AKT1. The molecular docking results revealed that 7-O-galloyltricetiflavan and 7,4'-di-O-galloyltricetiflavan (P16/P20) can bind to α-amylase and α-glucosidase pockets with binding energies lower than -6 kcal/mol. Our study provides guidance for the development of antibacterial and antidiabetic products based on A. clypearia and can be used as a reference for the evaluation of bioactivity of other herbs.
Collapse
Affiliation(s)
- Wenduo Ji
- The Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lixia Gu
- The Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xuezhe Zou
- The Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhichao Li
- The Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaohong Xu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jialin Wu
- The Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shu Zhang
- The Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hong Deng
- The Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence:
| |
Collapse
|
8
|
Usami Y, Mizobuchi Y, Ijuin M, Yamada T, Morita M, Mizuki K, Yoneyama H, Harusawa S. Synthesis of 6-Halo-Substituted Pericosine A and an Evaluation of Their Antitumor and Antiglycosidase Activities. Mar Drugs 2022; 20:md20070438. [PMID: 35877731 PMCID: PMC9323573 DOI: 10.3390/md20070438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
The enantiomers of 6-fluoro-, 6-bromo-, and 6-iodopericosine A were synthesized. An efficient synthesis of both enantiomers of pericoxide via 6-bromopericosine A was also developed. These 6-halo-substituted pericosine A derivatives were evaluated in terms of their antitumor activity against three types of tumor cells (p388, L1210, and HL-60) and glycosidase inhibitory activity. The bromo- and iodo-congeners exhibited moderate antitumor activity similar to pericosine A against the three types of tumor cell lines studied. The fluorinated compound was less active than the others, including pericosine A. In the antitumor assay, no significant difference in potency between the enantiomers was observed for any of the halogenated compounds. Meanwhile, the (−)-6-fluoro- and (−)-6-bromo-congeners inhibited α-glucosidase to a greater extent than those of their corresponding (+)-enantiomers, whereas (+)-iodopericosine A showed increased activity when compared to its (−)-enantiomer.
Collapse
Affiliation(s)
- Yoshihide Usami
- Department of Pharmaceutical Organic Chemistry, Osaka University of Pharmaceutical Sciences, Nasahara 4-20-1, Takatsuki 569-1094, Osaka, Japan; (Y.M.); (M.I.); (M.M.); (K.M.); (H.Y.); (S.H.)
- Correspondence: ; Tel.: +81-796-90-1087; Fax: +81-796-90-1005
| | - Yoshino Mizobuchi
- Department of Pharmaceutical Organic Chemistry, Osaka University of Pharmaceutical Sciences, Nasahara 4-20-1, Takatsuki 569-1094, Osaka, Japan; (Y.M.); (M.I.); (M.M.); (K.M.); (H.Y.); (S.H.)
| | - Mai Ijuin
- Department of Pharmaceutical Organic Chemistry, Osaka University of Pharmaceutical Sciences, Nasahara 4-20-1, Takatsuki 569-1094, Osaka, Japan; (Y.M.); (M.I.); (M.M.); (K.M.); (H.Y.); (S.H.)
| | - Takeshi Yamada
- Department of Medicinal Molecular Chemistry, Osaka University of Pharmaceutical Sciences, Nasahara 4-20-1, Takatsuki 569-1094, Osaka, Japan;
| | - Mizuki Morita
- Department of Pharmaceutical Organic Chemistry, Osaka University of Pharmaceutical Sciences, Nasahara 4-20-1, Takatsuki 569-1094, Osaka, Japan; (Y.M.); (M.I.); (M.M.); (K.M.); (H.Y.); (S.H.)
| | - Koji Mizuki
- Department of Pharmaceutical Organic Chemistry, Osaka University of Pharmaceutical Sciences, Nasahara 4-20-1, Takatsuki 569-1094, Osaka, Japan; (Y.M.); (M.I.); (M.M.); (K.M.); (H.Y.); (S.H.)
| | - Hiroki Yoneyama
- Department of Pharmaceutical Organic Chemistry, Osaka University of Pharmaceutical Sciences, Nasahara 4-20-1, Takatsuki 569-1094, Osaka, Japan; (Y.M.); (M.I.); (M.M.); (K.M.); (H.Y.); (S.H.)
| | - Shinya Harusawa
- Department of Pharmaceutical Organic Chemistry, Osaka University of Pharmaceutical Sciences, Nasahara 4-20-1, Takatsuki 569-1094, Osaka, Japan; (Y.M.); (M.I.); (M.M.); (K.M.); (H.Y.); (S.H.)
| |
Collapse
|
9
|
Fungal Depsides-Naturally Inspiring Molecules: Biosynthesis, Structural Characterization, and Biological Activities. Metabolites 2021; 11:metabo11100683. [PMID: 34677398 PMCID: PMC8540757 DOI: 10.3390/metabo11100683] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/05/2021] [Accepted: 10/02/2021] [Indexed: 11/23/2022] Open
Abstract
Fungi represent a huge reservoir of structurally diverse bio-metabolites. Although there has been a marked increase in the number of isolated fungal metabolites over the past years, many hidden metabolites still need to be discovered. Depsides are a group of polyketides consisting of two or more ester-linked hydroxybenzoic acid moieties. They possess valuable bioactive properties, such as anticancer, antidiabetic, antibacterial, antiviral, anti-inflammatory, antifungal, antifouling, and antioxidant qualities, as well as various human enzyme-inhibitory activities. This review provides an overview of the reported data on fungal depsides, including their sources, biosynthesis, physical and spectral data, and bioactivities in the period from 1975 to 2020. Overall, 110 metabolites and more than 122 references are confirmed. This is the first review of these multi-faceted metabolites from fungi.
Collapse
|
10
|
Tolmie M, Bester MJ, Apostolides Z. Inhibition of α-glucosidase and α-amylase by herbal compounds for the treatment of type 2 diabetes: A validation of in silico reverse docking with in vitro enzyme assays. J Diabetes 2021; 13:779-791. [PMID: 33550683 DOI: 10.1111/1753-0407.13163] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND α-Amylase and α-glucosidase are important therapeutic targets for the management of type 2 diabetes mellitus. The inhibition of these enzymes decreases postprandial hyperglycemia. In the present study, compounds found in commercially available herbs and spices were tested for their ability to inhibit α-amylase and α-glucosidase. These compounds were acetyleugenol, apigenin, cinnamic acid, eriodictyol, myrcene, piperine, and rosmarinic acid. METHODS The enzyme inhibitory nature of the compounds was evaluated using in silico docking analysis with Maestro software and was further confirmed by in vitro α-amylase and α-glucosidase biochemical assays. RESULTS The relationships between the in silico and in vitro results were well correlated; a more negative docking score was associated with a higher in vitro inhibitory activity. There was no significant (P > .05) difference between the inhibition constant (Ki ) value of acarbose, a widely prescribed α-glucosidase and α-amylase inhibitor, and those of apigenin, eriodictyol, and piperine. For α-amylase, there was no significant (P > .05) difference between the Ki value of acarbose and those of apigenin, cinnamic acid, and rosmarinic acid. The effect of the herbal compounds on cell viability was assessed with the sulforhodamine B (SRB) assay in C2C12 and HepG2 cells. Acetyleugenol, cinnamic acid, myrcene, piperine, and rosmarinic acid had similar (P > .05) IC50 values to acarbose. CONCLUSIONS Several of the herbal compounds studied could regulate postprandial hyperglycemia. Using herbal plants has several advantages including low cost, natural origin, and easy cultivation. These compounds can easily be consumed as teas or as herbs and spices to flavor food.
Collapse
Affiliation(s)
- Morné Tolmie
- Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Megan Jean Bester
- Department of Anatomy, University of Pretoria, Pretoria, South Africa
| | - Zeno Apostolides
- Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
11
|
Agrawal S, Samanta S, Deshmukh SK. The antidiabetic potential of endophytic fungi: Future prospects as therapeutic agents. Biotechnol Appl Biochem 2021; 69:1159-1165. [PMID: 33998044 DOI: 10.1002/bab.2192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 05/12/2021] [Indexed: 11/07/2022]
Abstract
Diabetes mellitus is one of the most common systemic diseases in the world, and it occurs when the body becomes resistant to insulin or does not make enough insulin. As described by the World Health Organization, diabetes mellitus of all types has exponentially grown in the past decades across the globe and it is estimated to be 629 million by 2045. Despite this alarming prevalence of diabetes mellitus, there is still the lack of harmless preventive medicines. Natural products and compounds obtained from plants, fungi, bacteria, and other living organisms have been used for many decades in folklore medicine to prepare a varied range of natural formulations to treat multiple diseases and illnesses. Endophytic fungi reside inside the plant while causing no harm to the host plant and are relatively less explored as the primary source for the bioactive metabolites such as anticancer, antioxidant, antimicrobial, antidiabetic, and industrial enzymes. This mini-review summarizes the potential of compounds and extracts from endophytic fungi against diabetes mellitus. Not much research has been dedicated in-depth understanding of the role of extracts of endophytic fungi and their effect on diabetes mellitus. Therefore, this article will focus on recent work and warrant further commentaries on the published articles.
Collapse
Affiliation(s)
- Shivankar Agrawal
- Indian Council of Medical Research, IJMR Unit, Delhi, India.,TERI-Deakin Nano Biotechnology Centre, Biotechnology and Management of Bioresources Division, The Energy and Resources Institute, New Delhi, India
| | - Sreeparna Samanta
- TERI-Deakin Nano Biotechnology Centre, Biotechnology and Management of Bioresources Division, The Energy and Resources Institute, New Delhi, India
| | - Sunil Kumar Deshmukh
- TERI-Deakin Nano Biotechnology Centre, Biotechnology and Management of Bioresources Division, The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
12
|
Jiménez-Estrada M, Huerta-Reyes M, Tavera-Hernández R, Alvarado-Sansininea JJ, Alvarez AB. Contributions from Mexican Flora for the Treatment of Diabetes Mellitus: Molecules of Psacalium decompositum (A. Gray) H. Rob & Brettell. Molecules 2021; 26:2892. [PMID: 34068304 PMCID: PMC8153299 DOI: 10.3390/molecules26102892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 02/08/2023] Open
Abstract
Diabetes mellitus (DM) is cited as a serious worldwide health problem that occupies second place in causes of annual mortality in Mexico. Among Mexican flora, nearly 300 plant species have been employed as hypoglycemic in popular use. Thus, their study entertains great relevance In this context, this work contributes a clear and timely review of the plant species utilized in Traditional Mexican Medicine and experimental biological models in which not only have the hypoglycemic properties of the extracts and the isolated compounds been considered, but also the anti-inflammatory and antioxidant properties, taking into account an integral focus based on the complex mechanisms involved in the pathogenesis and physiopathology of DM. Among the species reviewed, we highlight Psacalium decompositum (Asteraceae), due to the potent hypoglycemic, anti-inflammatory, and antioxidant activity of the sesquiterpenes identified as majority compounds isolated from the root, such as cacalol and cacalone that also possess the capacity of increasing insulin levels. In this manner, the present manuscript attempts to contribute necessary information for the future study of bioactive molecules that are useful in the treatment of DM, as well as also being a contribution to the knowledge and diffusion of Mexican Traditional Medicine.
Collapse
Affiliation(s)
- Manuel Jiménez-Estrada
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán 04510, Mexico; (R.T.-H.); (J.J.A.-S.); (A.B.A.)
| | - Maira Huerta-Reyes
- Unidad de Investigación Médica en Enfermedades Nefrológicas, Hospital de Especialidades “Dr. Bernardo Sepúlveda Gutiérrez”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Cuauhtémoc 06720, Mexico;
| | - Rosario Tavera-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán 04510, Mexico; (R.T.-H.); (J.J.A.-S.); (A.B.A.)
| | - J. Javier Alvarado-Sansininea
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán 04510, Mexico; (R.T.-H.); (J.J.A.-S.); (A.B.A.)
| | - Ana Berenice Alvarez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán 04510, Mexico; (R.T.-H.); (J.J.A.-S.); (A.B.A.)
| |
Collapse
|
13
|
Ibrahim SRM, Altyar AE, Mohamed SGA, Mohamed GA. Genus Thielavia: phytochemicals, industrial importance and biological relevance. Nat Prod Res 2021; 36:5108-5123. [PMID: 33949258 DOI: 10.1080/14786419.2021.1919105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Thielavia species (Chaetomiaceae) are a wealthy source of enzymes such as laccases, cutinases, glucuronoyl esterases, feruloyl esterases, 1,4-β-endoglucanase and lytic polysaccharide monooxygenases that reported to have various biotechnological and industrial applications in dye decolorization, bio-refinery, biomass utilization, ester biosynthesis and biodegradation. Different metabolites have been reported from this genus as depsides, azaphilones, pyrazines, naphthodianthrones and anthraquinones derivatives. These metabolites have attracted research interest due to their fascinating structures and diverse bioactivities, including antimicrobial, cytotoxic, antioxidant, anti-diabetic, and superoxide anion generation, phospholipase, prostaglandins synthesis and proteasome inhibitory activities. Therefore, these compounds can be taken into account as candidates for the development of effective and novel pharmaceutical leads. The current review represents the relevant information for the Thielavia genus, in particular, its phytoconstituents and their pharmacological activities, as well as the biotechnological applications of Thielavia species published from 1981 till now. More than 40 metabolites are described and - 71 references are cited.
Collapse
Affiliation(s)
- Sabrin R M Ibrahim
- Batterjee Medical College, Preparatory Year Program, Jeddah, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
14
|
Al Subeh ZY, Raja HA, Maldonado A, Burdette JE, Pearce CJ, Oberlies NH. Thielavins: tuned biosynthesis and LR-HSQMBC for structure elucidation. J Antibiot (Tokyo) 2021; 74:300-306. [PMID: 33495550 PMCID: PMC8084880 DOI: 10.1038/s41429-021-00405-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 02/03/2023]
Abstract
A series of thielavins I, V, and Q (1-3) and the previously undescribed thielavin Z8 (4) were isolated from cultures of a fungal Shiraia-like sp. (strain MSX60519) that were grown under a suite of media and light conditions, with enhanced biosynthesis noted using rice as a substrate with 12:12 h light:dark cycles. Conversely, oatmeal medium and continuous white light-emitting diode light exposure negatively affected the production of these compounds, at least by strain MSX60519. The structure of 4 was determined using NMR spectroscopic data and mass fragmentation patterns. Of note, the utility of LR-HSQMBC and NOESY NMR experiments in the structural elucidation of these hydrogen-deficient natural products was demonstrated. Compounds 1-4 exhibited cytotoxic activity at the micromolar level against human breast, ovarian, and melanoma cancer cell lines.
Collapse
Affiliation(s)
- Zeinab Y Al Subeh
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Amanda Maldonado
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| |
Collapse
|
15
|
He W, Xu Y, Wu D, Wang D, Gao H, Wang L, Zhu W. New alkaloids from the diversity-enhanced extracts of an endophytic fungus Aspergillus flavus GZWMJZ-288. Bioorg Chem 2021; 107:104623. [PMID: 33444984 DOI: 10.1016/j.bioorg.2020.104623] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/22/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022]
Abstract
Three new alkaloids (1-3) together with four previously reported compounds (4-7) were identified from the extracts and the diversity-enhanced extracts of the fermentation broth of the endophytic fungus, Aspergillus flavus GZWMJZ-288 associated with Garcinia multiflora. The structures of new compounds were respectively determined as 19-amino-19-dehydroxy 5-epi-α-cyclopiazonic acid (1), 2-hydroxymethyl-5-(3-oxobutan-2-yl)aminopyran-4(4H)-one (2) and 4-amino-2-hydroxymethylpyridin-5-ol (3) by spectroscopic analysis, ECD calculation and X-ray single crystal diffraction. Compounds 1 and 4 with 19-enamine were dynamic equilibrium of Z- and E- isomers in the solution but favored in Z- isomers in the solid state, while compound 7 with 19-enol was favored in Z- isomer in the solution but a mixture of Z- and E- isomers in solid state. This phenomenon could be explained by the quantum-mechanical energies calculations. Among the isolated compounds 1-7, compounds 1, 4 and 7 with a rare 1,3,4,5-tetrahydro-1-azaacenaphtho[3,4-c]pyrrolizidine skeleton showed α-glucosidase inhibitory activity with the IC50 values of 41.97 ± 0.97, 232.57 ± 11.45 and 243.95 ± 3.36 μM, respectively, and the binding modes were performed by silico docking studies.
Collapse
Affiliation(s)
- Wenwen He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yanchao Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Dan Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Dongyang Wang
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China
| | - Hai Gao
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China
| | - Liping Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.
| | - Weiming Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China.
| |
Collapse
|
16
|
In vitro evaluation of the hypoglycemic properties of lactic acid bacteria and its fermentation adaptability in apple juice. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110363] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
17
|
Molecules Isolated from Mexican Hypoglycemic Plants: A Review. Molecules 2020; 25:molecules25184145. [PMID: 32927754 PMCID: PMC7571036 DOI: 10.3390/molecules25184145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
Like in many developing countries, in Mexico, the use of medicinal plants is a common practice. Based on our own field experience, there are at least 800 plants used for treating diabetes nowadays. Thus, their investigation is essential. In this context, this work aims to provide a comprehensive and critical review of the molecules isolated from Mexican hypoglycemic plants, including their source and target tested. In the last few years, some researchers have focused on the study of Mexican hypoglycemic plants. Most works describe the hypoglycemic effect or the mechanism of action of the whole extract, as well as the phytochemical profile of the tested extract. Herein, we analyzed 85 studies encompassing 40 hypoglycemic plants and 86 active compounds belonging to different classes of natural products: 28 flavonoids, 25 aromatic compounds, other than flavonoids, four steroids, 23 terpenoids, 4 oligosaccharides, and 1 polyalcohol. These compounds have shown to inhibit α-glucosidases, increase insulin secretion levels, increase insulin sensitivity, and block hepatic glucose output. Almost half of these molecules are not common metabolites, with a narrow taxonomic distribution, which makes them more interesting as lead molecules. Altogether, this analysis provides a necessary inventory useful for future testing of these active molecules against different hypoglycemic targets, to get a better insight into the already described mechanisms, and overall, to contribute to the knowledge of Mexican medicinal plants.
Collapse
|
18
|
Cruz JS, da Silva CA, Hamerski L. Natural Products from Endophytic Fungi Associated with Rubiaceae Species. J Fungi (Basel) 2020; 6:E128. [PMID: 32784526 PMCID: PMC7558492 DOI: 10.3390/jof6030128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
This review presents the chemical diversity and pharmacological properties of secondary metabolites produced by endophytic fungi associated with various genera of Rubiaceae. Several classes of natural products are described for these endophytes, although, this study highlights the importance of some metabolites, which are involved in antifungal, antibacterial, anti-protozoal activities; neurodegenerative diseases; cytotoxic activity; anti-inflammatory and antioxidant activity; and hyperglycemic control.
Collapse
Affiliation(s)
- Jacqueline Santos Cruz
- Department of Chemistry, Military Institute of Engineering, Praça General Tibúrcio 80, Rio de Janeiro 22290-270, Brazil;
| | - Carla Amaral da Silva
- Walter Mors Institute of Research on Natural Products, Federal University of Rio de Janeiro, Rua Carlos Chagas Filho 373, Rio de Janeiro 21941-902, Brazil;
| | - Lidilhone Hamerski
- Walter Mors Institute of Research on Natural Products, Federal University of Rio de Janeiro, Rua Carlos Chagas Filho 373, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
19
|
Usami Y, Higuchi M, Mizuki K, Yamamoto M, Kanki M, Nakasone C, Sugimoto Y, Shibano M, Uesawa Y, Nagai J, Yoneyama H, Harusawa S. Syntheses and Glycosidase Inhibitory Activities, and in Silico Docking Studies of Pericosine E Analogs Methoxy-Substituted at C6. Mar Drugs 2020; 18:E221. [PMID: 32326065 PMCID: PMC7230162 DOI: 10.3390/md18040221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Inspired by the significant -glucosidase inhibitory activities of (+)- and (-)-pericosine E, we herein designed and synthesized 16 analogs of these marine natural products bearing a methoxy group instead of a chlorine atom at C6. Four of these compounds exhibited moderate -glucosidase inhibitory activities, which were weaker than those of the corresponding chlorine-containing species. The four compounds could be prepared by coupling reactions utilizing the (-)-pericosine B moiety. An additional in silico docking simulation suggested that the reason of reduced activity of the C6-methoxylated analogs might be an absence of hydrogen bonding between a methoxy group with the surrounding amino acid residues in the active site in -glucosidase.
Collapse
Affiliation(s)
- Yoshihide Usami
- Department of Pharmaceutical Organic Chemistry, Osaka University of Pharmaceutical Sciences, Nasahara 4-20-1, Takatsuki, Osaka 569-1094, Japan; (M.H.); (K.M.); (M.Y.); (M.K.); (C.N.); (Y.S.); (H.Y.); (S.H.)
| | - Megumi Higuchi
- Department of Pharmaceutical Organic Chemistry, Osaka University of Pharmaceutical Sciences, Nasahara 4-20-1, Takatsuki, Osaka 569-1094, Japan; (M.H.); (K.M.); (M.Y.); (M.K.); (C.N.); (Y.S.); (H.Y.); (S.H.)
| | - Koji Mizuki
- Department of Pharmaceutical Organic Chemistry, Osaka University of Pharmaceutical Sciences, Nasahara 4-20-1, Takatsuki, Osaka 569-1094, Japan; (M.H.); (K.M.); (M.Y.); (M.K.); (C.N.); (Y.S.); (H.Y.); (S.H.)
| | - Mizuki Yamamoto
- Department of Pharmaceutical Organic Chemistry, Osaka University of Pharmaceutical Sciences, Nasahara 4-20-1, Takatsuki, Osaka 569-1094, Japan; (M.H.); (K.M.); (M.Y.); (M.K.); (C.N.); (Y.S.); (H.Y.); (S.H.)
| | - Mao Kanki
- Department of Pharmaceutical Organic Chemistry, Osaka University of Pharmaceutical Sciences, Nasahara 4-20-1, Takatsuki, Osaka 569-1094, Japan; (M.H.); (K.M.); (M.Y.); (M.K.); (C.N.); (Y.S.); (H.Y.); (S.H.)
| | - Chika Nakasone
- Department of Pharmaceutical Organic Chemistry, Osaka University of Pharmaceutical Sciences, Nasahara 4-20-1, Takatsuki, Osaka 569-1094, Japan; (M.H.); (K.M.); (M.Y.); (M.K.); (C.N.); (Y.S.); (H.Y.); (S.H.)
| | - Yuya Sugimoto
- Department of Pharmaceutical Organic Chemistry, Osaka University of Pharmaceutical Sciences, Nasahara 4-20-1, Takatsuki, Osaka 569-1094, Japan; (M.H.); (K.M.); (M.Y.); (M.K.); (C.N.); (Y.S.); (H.Y.); (S.H.)
| | - Makio Shibano
- Department of Natural Products Research, Osaka University of Pharmaceutical Sciences, Nasahara 4-20-1, Takatsuki, Osaka 569-1094, Japan;
| | - Yoshihiro Uesawa
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan; (Y.U.); (J.N.)
| | - Junko Nagai
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan; (Y.U.); (J.N.)
| | - Hiroki Yoneyama
- Department of Pharmaceutical Organic Chemistry, Osaka University of Pharmaceutical Sciences, Nasahara 4-20-1, Takatsuki, Osaka 569-1094, Japan; (M.H.); (K.M.); (M.Y.); (M.K.); (C.N.); (Y.S.); (H.Y.); (S.H.)
| | - Shinya Harusawa
- Department of Pharmaceutical Organic Chemistry, Osaka University of Pharmaceutical Sciences, Nasahara 4-20-1, Takatsuki, Osaka 569-1094, Japan; (M.H.); (K.M.); (M.Y.); (M.K.); (C.N.); (Y.S.); (H.Y.); (S.H.)
| |
Collapse
|
20
|
Bruder M, Polo G, Trivella DBB. Natural allosteric modulators and their biological targets: molecular signatures and mechanisms. Nat Prod Rep 2020; 37:488-514. [PMID: 32048675 DOI: 10.1039/c9np00064j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 2008 to 2018Over the last decade more than two hundred single natural products were confirmed as natural allosteric modulators (alloNPs) of proteins. The compounds are presented and discussed with the support of a chemical space, constructed using a principal component analysis (PCA) of molecular descriptors from chemical compounds of distinct databases. This analysis showed that alloNPs are dispersed throughout the majority of the chemical space defined by natural products in general. Moreover, a cluster of alloNPs was shown to occupy a region almost devoid of allosteric modulators retrieved from a dataset composed mainly of synthetic compounds, further highlighting the importance to explore the entire natural chemical space for probing allosteric mechanisms. The protein targets which alloNPs bind to comprised 81 different proteins, which were classified into 5 major groups, with enzymes, in particular hydrolases, being the main representative group. The review also brings a critical interpretation on the mechanisms by which alloNPs display their molecular action on proteins. In the latter analysis, alloNPs were classified according to their final effect on the target protein, resulting in 3 major categories: (i) local alteration of the orthosteric site; (ii) global alteration in protein dynamics that change function; and (iii) oligomer stabilisation or protein complex destabilisation via protein-protein interaction in sites distant from the orthosteric site. G-protein coupled receptors (GPCRs), which use a combination of the three types of allosteric regulation found, were also probed by natural products. In summary, the natural allosteric modulators reviewed herein emphasise their importance for exploring alternative chemotherapeutic strategies, potentially pushing the boundaries of the druggable space of pharmacologically relevant drug targets.
Collapse
Affiliation(s)
- Marjorie Bruder
- Brazilian Biosciences National Laboratory (LNBio), National Centre for Research in Energy and Materials (CNPEM), 13083-970 Campinas, SP, Brazil.
| | | | | |
Collapse
|
21
|
Liao G, Fan J, Ludwig-Radtke L, Backhaus K, Li SM. Increasing Structural Diversity of Natural Products by Michael Addition with ortho-Quinone Methide as the Acceptor. J Org Chem 2020; 85:1298-1307. [PMID: 31860310 DOI: 10.1021/acs.joc.9b02971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The active form of clavatol, ortho-quinone methide, can be generated from hydroxyclavatol in an aqueous system and used as a highly reactive intermediate for coupling with diverse natural products under very mild conditions. These include flavonoids, hydroxynaphthalenes, coumarins, xanthones, anthraquinones, phloroglucinols, phenolic acids, indole derivatives, tyrosine analogues, and quinolines. The clavatol moiety was mainly attached via C-C bonds to the ortho- or para-positions of phenolic hydroxyl/amino groups and the C2-position of the indole ring.
Collapse
Affiliation(s)
- Ge Liao
- Institut für Pharmazeutische Biologie und Biotechnologie , Philipps-Universität Marburg , Robert-Koch Straße 4 , Marburg 35037 , Germany
| | - Jie Fan
- Institut für Pharmazeutische Biologie und Biotechnologie , Philipps-Universität Marburg , Robert-Koch Straße 4 , Marburg 35037 , Germany
| | - Lena Ludwig-Radtke
- Institut für Pharmazeutische Biologie und Biotechnologie , Philipps-Universität Marburg , Robert-Koch Straße 4 , Marburg 35037 , Germany
| | - Katja Backhaus
- Institut für Pharmazeutische Biologie und Biotechnologie , Philipps-Universität Marburg , Robert-Koch Straße 4 , Marburg 35037 , Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie , Philipps-Universität Marburg , Robert-Koch Straße 4 , Marburg 35037 , Germany
| |
Collapse
|
22
|
Dej-Adisai S, Phoopha S, Wattanapiromsakul C, Pitakbut T. A new stilbene derivative and isolated compounds from Bauhinia pottsii var. pottsii with their anti-alpha-glucosidase activity. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_433_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
23
|
In Vivo and In Vitro α-Glucosidase Inhibitory Activity of Perfoliatin a from Melampodium Perfoliatum. Nat Prod Commun 2019. [DOI: 10.1177/1934578x1901400102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
As part of our effort to discover new α-glucosidase inhibitors from natural sources, it was found that an aqueous extract from Melampodium perfoliatum (Cavanilles) Kunth (Asteraceae) inhibited the activity of rat-intestinal α-glucosidases in a concentration dependent manner (IC50= 958 μg/mL). Fractionation of the active extract led to the isolation of perfoliatin A (1), which was active against the mammal α-glucosidases and a recombinant α-glucosidase with maltase-glucoamylase activity obtained from Ruminococcus obeum. Kinetic analysis revealed that the interaction of 1 with R. obeum-α-glucosidase was noncompetitive. The calculated Ki was 0.68 ± 0.034 mM. In vivo testing using an oral sucrose tolerance test, in healthy and hyperglycemic mice, revealed that perfoliatin A (1) reduced significantly the postprandial peak, consistent with its α-glucosidase inhibitory activity. The effect was comparable or better to that of acarbose, a therapeutically used α-glucosidase inhibitor. Altogether, these findings clearly supported the α-glucosidase inhibitory activity of melampolide-type of sesquiterpene lactones.
Collapse
|
24
|
Wu Y, Chen Y, Huang X, Pan Y, Liu Z, Yan T, Cao W, She Z. α-Glucosidase Inhibitors: Diphenyl Ethers and Phenolic Bisabolane Sesquiterpenoids from the Mangrove Endophytic Fungus Aspergillus flavus QQSG-3. Mar Drugs 2018; 16:md16090307. [PMID: 30200400 PMCID: PMC6165285 DOI: 10.3390/md16090307] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 02/04/2023] Open
Abstract
Two new diphenyl ethers (1 and 2) and four new phenolic bisabolane sesquiterpenoids (3–6), together with five known related derivatives, were isolated from the culture of the endophytic fungus Aspergillus flavus QQSG-3 obtained from a fresh branch of Kandelia obobata, which was collected from Huizhou city in the province of Guangdong, China. The structures of compounds 1–6 were determined by analyzing NMR and HRESIMS data. The absolute configurations of 5 and 6 were assigned by comparing their experimental ECD spectra with those reported for similar compounds in the literature. All isolates were evaluated for their α-glucosidase inhibitory activity, of which compounds 3, 5, 10, and 11 showed strong inhibitory effects with IC50 values in the range of 1.5–4.5 μM.
Collapse
Affiliation(s)
- Yingnan Wu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yan Chen
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Xishan Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yahong Pan
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Zhaoming Liu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
- State Key Laboratory of Applied Microbiology, Southern China, Guangdong Institute of Microbiology, Guangzhou 510075, China.
| | - Tao Yan
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Wenhao Cao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Zhigang She
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
25
|
Bilal S, Ali L, Khan AL, Shahzad R, Asaf S, Imran M, Kang SM, Kim SK, Lee IJ. Endophytic fungus Paecilomyces formosus LHL10 produces sester-terpenoid YW3548 and cyclic peptide that inhibit urease and α-glucosidase enzyme activities. Arch Microbiol 2018; 200:1493-1502. [PMID: 30167726 DOI: 10.1007/s00203-018-1562-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/15/2018] [Accepted: 08/20/2018] [Indexed: 11/29/2022]
Abstract
Endophytic fungi have been used to obtain novel bioactive secondary metabolites with potential applications in medical and agricultural sectors, which can also act as lead targets for pharmaceutical and medicinal potential. In the present study, the endophytic fungus Paecilomyces formosus LHL10 isolated from the root of cucumber plant was tested for its enzyme inhibitory potential. The ethyl acetate (EtOAc) extract of LHL10 was screened for its inhibitory effect on acetylcholinesterase (AChE), α-glucosidase, urease, and anti-lipid peroxidation. The findings suggest that the EtOAc extract from LHL10 possesses significant inhibitory potential against urease and α-glucosidase. The EtOAc extract was thus, subjected to advanced column chromatographic techniques for the isolation of pure compounds. The structure elucidation was carried out through spectroscopic analysis and comparison with literature data, and these compounds were confirmed as known a sester-terpenoid (1) and a known cyclic peptide (2). The enzyme inhibition bioassay indicated that Compounds 1 and 2 exhibited remarkable inhibitory rate against α-glucosidase and urease, with an IC50 value of 61.80 ± 5.7, 75.68 ± 6.2 and 74.25 ± 4.3, 190.5 ± 10.31 µg/g, respectively. Thus, the current study concludes the enzyme inhibitory potential of endophyte LHL10 and provides the basis for further investigations of bioactive compounds, which could be used as potent drugs for enzyme inhibition.
Collapse
Affiliation(s)
- Saqib Bilal
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Liaqat Ali
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman.,Department of Chemistry, University of Sargodha, Sub-Campus Mianwali, Mianwali, 42200, Pakistan
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman
| | - Raheem Shahzad
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman
| | - Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang-Kuk Kim
- Division of Crop Breeding, Gyeongsangbuk-do Provincial Agricultural Research and Extension Services, Daegu, 41404, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
26
|
Rangel-Grimaldo M, Rivero-Cruz I, Madariaga-Mazón A, Figueroa M, Mata R. α-Glucosidase Inhibitors from Preussia minimoides ‡. JOURNAL OF NATURAL PRODUCTS 2017; 80:582-587. [PMID: 27673367 DOI: 10.1021/acs.jnatprod.6b00574] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Extensive fractionation of an extract from the grain-based culture of the endophytic fungus Preussia minimoides led to the isolation of two new polyketides with novel skeletons, minimoidiones A (1) and B (2), along with the known compounds preussochromone C (3), corymbiferone (4), and 5-hydroxy-2,7-dimethoxy-8-methylnaphthoquinone (5). The structures of 1 and 2 were elucidated using 1D and 2D NMR data analysis, along with DFT calculations of 1H NMR chemical shifts. The absolute configuration of 1 was established by a single-crystal X-ray diffraction analysis and TDDFT-ECD calculations. Compounds 1-4 significantly inhibited yeast α-glucosidase.
Collapse
Affiliation(s)
- Manuel Rangel-Grimaldo
- Facultad de Química, Universidad Nacional Autónoma de México , Ciudad de México 04510, México
| | - Isabel Rivero-Cruz
- Facultad de Química, Universidad Nacional Autónoma de México , Ciudad de México 04510, México
| | - Abraham Madariaga-Mazón
- Facultad de Química, Universidad Nacional Autónoma de México , Ciudad de México 04510, México
| | - Mario Figueroa
- Facultad de Química, Universidad Nacional Autónoma de México , Ciudad de México 04510, México
| | - Rachel Mata
- Facultad de Química, Universidad Nacional Autónoma de México , Ciudad de México 04510, México
| |
Collapse
|
27
|
In Vitro and In Vivo Effects of Norathyriol and Mangiferin on α-Glucosidase. Biochem Res Int 2017; 2017:1206015. [PMID: 28168055 PMCID: PMC5259675 DOI: 10.1155/2017/1206015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/14/2016] [Indexed: 11/18/2022] Open
Abstract
Norathyriol is a metabolite of mangiferin. Mangiferin has been reported to inhibit α-glucosidase. To the best of our knowledge, no study has been conducted to determine or compare those two compounds on inhibiting α-glucosidase in vitro and in vivo by far. In this study, we determined the inhibitory activity of norathyriol and mangiferin on α-glucosidase in vitro and evaluated their antidiabetic effect in diabetic mice. The results showed that norathyriol inhibited α-glucosidase in a noncompetitive manner with an IC50 value of 3.12 μM, which is more potent than mangiferin (IC50 = 358.54 μM) and positive drug acarbose (IC50 = 479.2 μM) in the zymological experiment. Both of norathyriol and mangiferin caused significant (p < 0.05) reduction in fasting blood glucose and the blood glucose levels at two hours after carbohydrate loading and it was interesting that mangiferin and norathyriol can make the decline of the blood glucose earlier than other groups ever including normal group in the starch tolerance test. However, norathyriol and mangiferin did not significantly influence carbohydrate absorption in the glucose tolerance test. Therefore, the antidiabetic effects of norathyriol and mangiferin might be associated with α-glucosidase, and norathyriol was more potent than mangiferin.
Collapse
|
28
|
Joshi RK. A Perspective on the Phytopharmaceuticals Responsible for the Therapeutic Applications. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The word phytopharmaceutical deals with a complex mixture of compounds derived from the plant source that is used as a medicine or drug. Primitive human societies have been depending on plants and plant products for various remedies. Several plants in the different forms have been reported in traditional medicine and to find a rational for the treatment of various diseases than to isolated single compounds. Many of the single compounds isolated from the plant origin are effectively used in the medicine. The search of natural products in drug discovery has been greatly enhanced in the last few years. The impetus to use phytopharmaceutical agents for the treatment of disease, most of the plant based drugs are quite safe and have lesser adverse effects and are claimed that it works as synergistic effects.
Collapse
Affiliation(s)
- Rajesh K. Joshi
- Regional Medical Research Centre (Indian Council of Medical Research), India
| |
Collapse
|
29
|
López D, Cherigo L, Spadafora C, Loza-Mejía MA, Martínez-Luis S. Phytochemical composition, antiparasitic and α-glucosidase inhibition activities from Pelliciera rhizophorae. Chem Cent J 2015; 9:53. [PMID: 26435737 PMCID: PMC4586009 DOI: 10.1186/s13065-015-0130-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Panama has an extensive mangrove area and it is one of the countries with the highest biodiversity in America. Mangroves are widely used in traditional medicine, nevertheless, there are very few studies that validates their medicinal properties in America. Given the urgent need for therapeutic options to treat several diseases of public health importance, mangrove ecosystem could be an interesting source of new bioactive molecules. This study was designed to evaluate the potential of Pelliciera rhizophorae as a source of bioactive compounds. RESULTS The present investigation was undertaken to explore the possible antiparasitic potential and α-glucosidase inhibition by compounds derived from the Panamanian mangrove Pelliciera rhizophorae. Bioassay-guided fractionation of the crude extract led to the isolation of ten chemical compounds: α-amyrine (1), β-amyrine (2), ursolic acid (3), oleanolic acid (4), betulinic acid (5), brugierol (6) iso-brugierol (7), kaempferol (8), quercetin (9), and quercetrin (10). The structures of these compounds were established by spectroscopic analyses including APCI-HR-MS and NMR. Compounds 4 (IC50 = 5.3 µM), 8 (IC50 = 22.9 µM) and 10 (IC50 = 3.4 µM) showed selective antiparasitic activity against Leishmania donovani, while compounds 1 (IC50 = 19.0 µM) and 5 (IC50 = 18.0 µM) exhibited selectivity against Tripanosoma cruzi and Plasmodium falciparum, respectively. Moreover, compounds 1-5 inhibited α-glucosidase enzyme in a concentration-dependent manner with IC50 values of 1.45, 0.02, 1.08, 0.98 and 2.37 µM, respectively. Their inhibitory activity was higher than that of antidiabetic drug acarbose (IC50 217.7 µM), used as a positive control. Kinetic analysis established that the five compounds acted as competitive inhibitors. Docking analysis predicted that all triterpenes bind at the same site that acarbose in the human intestinal α-glucosidase (PDB: 3TOP). CONCLUSIONS Three groups of compounds were isolated in this study (triterpenes, flavonols and dithiolanes). Triterpenes and flavones showed activity in at least one bioassay (antiparasitic or α-glucosidase). In addition, only the pentacyclic triterpenes exhibited a competitive type of inhibition against α-glucosidase.
Collapse
Affiliation(s)
- Dioxelis López
- />Center for Drug Discovery and Biodiversity, Institute for Scientific Research and Technology Services (INDICASAT), Clayton, P.O. Box 0843-01103, Panama City, Republic of Panama
- />Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, 522510 India
| | - Lilia Cherigo
- />Department of Organic Chemistry, Chemistry School, Faculty of Natural Sciences, Exact and Technology, University of Panama, P.O. Box 3366, Panama City, Republic of Panama
| | - Carmenza Spadafora
- />Center for Cellular and Molecular Biology of Diseases, Institute for Scientific Research and Technology Services (INDICASAT), Clayton, P.O. Box 0843-01103, Panama City, Republic of Panama
| | - Marco A. Loza-Mejía
- />Facultad de Ciencias Químicas, Universidad La Salle, Benjamín Franklin 47, Cuauhtémoc, 06140 Mexico City, Mexico
| | - Sergio Martínez-Luis
- />Center for Drug Discovery and Biodiversity, Institute for Scientific Research and Technology Services (INDICASAT), Clayton, P.O. Box 0843-01103, Panama City, Republic of Panama
| |
Collapse
|
30
|
Flores-Bocanegra L, Pérez-Vásquez A, Torres-Piedra M, Bye R, Linares E, Mata R. α-Glucosidase Inhibitors from Vauquelinia corymbosa. Molecules 2015; 20:15330-42. [PMID: 26307962 PMCID: PMC6332183 DOI: 10.3390/molecules200815330] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 08/15/2015] [Accepted: 08/18/2015] [Indexed: 11/16/2022] Open
Abstract
The α-glucosidase inhibitory activity of an aqueous extract and compounds from the aerial parts of V. corymbosa was demonstrated with yeast and rat small intestinal α-glucosidases. The aqueous extract inhibited yeast α-glucosidase with a half maximal inhibitory concentration (IC50) of 28.6 μg/mL. Bioassay-guided fractionation of the extract led to the isolation of several compounds, including one cyanogenic glycoside [prunasin (1)], five flavonoids [(-)-epi-catechin (2), hyperoside (3), isoquercetin (4), quercitrin (5) and quercetin-3-O-(6''-benzoyl)-β-galactoside (6)] and two simple aromatic compounds [picein (7) and methylarbutin (8)]. The most active compound was 6 with IC50 values of 30 μM in the case of yeast α-glucosidase, and 437 μM in the case of the mammalian enzyme. According to the kinetic analyses performed with rat and yeast enzymes, this compound behaved as mixed-type inhibitor; the calculated inhibition constants (Ki) were 212 and 50 μM, respectively. Molecular docking analyses with yeast and mammalian α-glucosidases revealed that compound 6 bind differently to these enzymes. Altogether, the results of this work suggest that preparations of V. corymbosa might delay glucose absorption in vivo.
Collapse
Affiliation(s)
- Laura Flores-Bocanegra
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Araceli Pérez-Vásquez
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Mariana Torres-Piedra
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Robert Bye
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Edelmira Linares
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Rachel Mata
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| |
Collapse
|
31
|
Rivera-Chávez J, Figueroa M, González MDC, Glenn AE, Mata R. α-Glucosidase Inhibitors from a Xylaria feejeensis Associated with Hintonia latiflora. JOURNAL OF NATURAL PRODUCTS 2015; 78:730-735. [PMID: 25706243 DOI: 10.1021/np500897y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Two new compounds, pestalotin 4'-O-methyl-β-mannopyranoside (1) and 3S,4R-(+)-4-hydroxymellein (2), were isolated from an organic extract of a Xylaria feejeensis, which was isolated as an endophytic fungus from Hintonia latiflora. In addition, the known compounds 3S,4S-(+)-4-hydroxymellein (3), 3S-(+)-8-methoxymellein (4), and the quinone derivatives 2-hydroxy-5-methoxy-3-methylcyclohexa-2,5-diene-1,4-dione (5), 4S,5S,6S-4-hydroxy-3-methoxy-5-methyl-5,6-epoxycyclohex-2-en-1-one (6), and 4R,5R-dihydroxy-3-methoxy-5-methylcyclohexen-2-en-1-one (7) were obtained. The structures of 1 and 2 were elucidated using a set of spectroscopic and spectrometric techniques. The absolute configuration of the stereogenic centers of 1 and 2 was determined using ECD spectroscopy combined with time-dependent density functional theory calculations. In the case of 1, comparison of the experimental and theoretical (3)J6-7 coupling constants provided further evidence for the stereochemical assignments. Compounds 2 and 3 inhibited Saccharomyces cerevisiae α-glucosidase (αGHY), with IC50 values of 441 ± 23 and 549 ± 2.5 μM, respectively. Their activity was comparable to that of acarbose (IC50 = 545 ± 19 μM), used as positive control. Molecular docking predicted that both compounds bind to αGHY in a site different from the catalytic domain, which could imply an allosteric type of inhibition.
Collapse
Affiliation(s)
- José Rivera-Chávez
- †Facultad de Química, Universidad Nacional Autónoma de México, México DF 04510, Mexico
| | - Mario Figueroa
- †Facultad de Química, Universidad Nacional Autónoma de México, México DF 04510, Mexico
| | | | | | - Rachel Mata
- †Facultad de Química, Universidad Nacional Autónoma de México, México DF 04510, Mexico
| |
Collapse
|
32
|
de Medeiros LS, Abreu LM, Nielsen A, Ingmer H, Larsen TO, Nielsen KF, Rodrigues-Filho E. Dereplication-guided isolation of depsides thielavins S-T and lecanorins D-F from the endophytic fungus Setophoma sp. PHYTOCHEMISTRY 2015; 111:154-162. [PMID: 25586883 DOI: 10.1016/j.phytochem.2014.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/13/2014] [Accepted: 12/16/2014] [Indexed: 06/04/2023]
Abstract
Dereplication methodology using UHPLC-DAD-QTOFMS was applied during the metabolic profiling investigation of the endophyte Setophoma sp., a fungus isolated from symptomless guava fruits. The approach performed allowed a fast analysis of the microbial secondary metabolites. From this fungus, seven highly C-alkylated depsides were isolated and identified as polyketides thielavins S, T, U and V and lecanorins D, E and F. Their structures were elucidated through spectroscopic methods including NMR, HRMS and especially with assistance of HRMS/MS experiments. The compounds were tested for quorum sensing regulation activity in the virulence gene expression of Staphylococcus aureus, but no inhibitory effect was detected. Nevertheless, moderate antibacterial activity was encountered in three of tested depsides, particularly with thielavin T, whose MIC was 6.25 μg/mL against S. aureus.
Collapse
Affiliation(s)
- Lívia S de Medeiros
- Department of Chemistry, Universidade Federal de São Carlos, LaBioMMi, Rod. Washington Luís, Km 265, 13565-905 São Carlos, SP, Brazil.
| | - Lucas M Abreu
- Department of Phytopathology, Universidade Federal de Lavras, 37200-000 Lavras, MG, Brazil
| | - Anita Nielsen
- Department of Veterinary Disease Biology, Food Safety and Zoonoses Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg, Copenhagen, Denmark
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, Food Safety and Zoonoses Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg, Copenhagen, Denmark
| | - Thomas O Larsen
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, Søltofts Plads Building 221, 2800 Kgs. Lyngby, Denmark
| | - Kristian F Nielsen
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, Søltofts Plads Building 221, 2800 Kgs. Lyngby, Denmark
| | - Edson Rodrigues-Filho
- Department of Chemistry, Universidade Federal de São Carlos, LaBioMMi, Rod. Washington Luís, Km 265, 13565-905 São Carlos, SP, Brazil
| |
Collapse
|