1
|
Sikorskaya TV, Ermolenko EV, Ginanova TT, Boroda AV, Efimova KV, Bogdanov M. Membrane vectorial lipidomic features of coral host cells' plasma membrane and lipid profiles of their endosymbionts Cladocopium. Commun Biol 2024; 7:878. [PMID: 39025984 PMCID: PMC11258240 DOI: 10.1038/s42003-024-06578-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
The symbiotic relationships between coral animal host and autotrophic dinoflagellates are based on the mutual exchange and tight control of nutritional inputs supporting successful growth. The corals Sinularia heterospiculata and Acropora aspera were cultivated using a flow-through circulation system supplying seawater during cold and warm seasons of the year, then sorted into host cells and symbionts and subjected to phylogenetic, morphological, and advanced lipid analyses. Here we show, that the lipidomes of the dinoflagellates Cladocopium C1/C3 and acroporide-specific Cladocopium hosted by the corals, are determined by lipidomic features of different thermosensitivity and unique betaine- and phospholipid molecular species. Phosphatidylserines and ceramiaminoethylphosphonates are not detected in the symbionts and predominantly localized on the inner leaflet of the S. heterospiculata host plasma membrane. The transmembrane distribution of phosphatidylethanolamines of S. heterospiculata host changes during different seasons of the year, possibly contributing to mutualistic nutritional exchange across this membrane complex to provide the host with a secure adaptive mechanism and ecological benefits.
Collapse
Affiliation(s)
- Tatyana V Sikorskaya
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation.
| | - Ekaterina V Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Taliya T Ginanova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Andrey V Boroda
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Kseniya V Efimova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
2
|
Pasaribu B, Purba NP, Dewanti LP, Pasaribu D, Khan AMA, Harahap SA, Syamsuddin ML, Ihsan YN, Siregar SH, Faizal I, Herawati T, Irfan M, Simorangkir TPH, Kurniawan TA. Lipid Droplets in Endosymbiotic Symbiodiniaceae spp. Associated with Corals. PLANTS (BASEL, SWITZERLAND) 2024; 13:949. [PMID: 38611478 PMCID: PMC11013053 DOI: 10.3390/plants13070949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Symbiodiniaceae species is a dinoflagellate that plays a crucial role in maintaining the symbiotic mutualism of reef-building corals in the ocean. Reef-building corals, as hosts, provide the nutrition and habitat to endosymbiotic Symbiodiniaceae species and Symbiodiniaceae species transfer the fixed carbon to the corals for growth. Environmental stress is one of the factors impacting the physiology and metabolism of the corals-dinoflagellate association. The environmental stress triggers the metabolic changes in Symbiodiniaceae species resulting in an increase in the production of survival organelles related to storage components such as lipid droplets (LD). LDs are found as unique organelles, mainly composed of triacylglycerols surrounded by phospholipids embedded with some proteins. To date, it has been reported that investigation of lipid droplets significantly present in animals and plants led to the understanding that lipid droplets play a key role in lipid storage and transport. The major challenge of investigating endosymbiotic Symbiodiniaceae species lies in overcoming the strategies in isolating lesser lipid droplets present in its intercellular cells. Here, we review the most recent highlights of LD research in endosymbiotic Symbiodiniaceae species particularly focusing on LD biogenesis, mechanism, and major lipid droplet proteins. Moreover, to comprehend potential novel ways of energy storage in the symbiotic interaction between endosymbiotic Symbiodiniaceae species and its host, we also emphasize recent emerging environmental factors such as temperature, ocean acidification, and nutrient impacting the accumulation of lipid droplets in endosymbiotic Symbiodiniaceae species.
Collapse
Affiliation(s)
- Buntora Pasaribu
- Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia; (N.P.P.); (S.A.H.); (M.L.S.); (Y.N.I.); (I.F.)
- Shallow Coastal and Aquatic Research Forensic (SCARF) Laboratory, Faculty of Fishery and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| | - Noir Primadona Purba
- Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia; (N.P.P.); (S.A.H.); (M.L.S.); (Y.N.I.); (I.F.)
| | - Lantun Paradhita Dewanti
- Department of Fisheries, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia;
| | - Daniel Pasaribu
- Faculty of Law, Social, and Political Sciences, Universitas Terbuka, Tangerang 15437, Indonesia;
| | - Alexander Muhammad Akbar Khan
- Tropical Marine Fisheries Undergraduate Programme for Pangandaran Campus, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia;
| | - Syawaludin Alisyahbana Harahap
- Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia; (N.P.P.); (S.A.H.); (M.L.S.); (Y.N.I.); (I.F.)
| | - Mega Laksmini Syamsuddin
- Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia; (N.P.P.); (S.A.H.); (M.L.S.); (Y.N.I.); (I.F.)
| | - Yudi Nurul Ihsan
- Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia; (N.P.P.); (S.A.H.); (M.L.S.); (Y.N.I.); (I.F.)
| | - Sofyan Husein Siregar
- Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Riau, Pekanbaru 28291, Indonesia;
| | - Ibnu Faizal
- Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia; (N.P.P.); (S.A.H.); (M.L.S.); (Y.N.I.); (I.F.)
| | - Titin Herawati
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
- Master Program of Marine Conservation, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA;
| | | | | |
Collapse
|
3
|
Sakai R, Goto-Inoue N, Yamashita H, Aimoto N, Kitai Y, Maruyama T. Smart utilization of betaine lipids in the giant clam Tridacna crocea. iScience 2023; 26:107250. [PMID: 37485344 PMCID: PMC10362313 DOI: 10.1016/j.isci.2023.107250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/14/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
The giant clam Tridacna crocea thrives in poorly nourished coral reef water by forming a holobiont with zooxanthellae and utilizing photosynthetic products of the symbiont. However, detailed metabolic crosstalk between clams and symbionts is elusive. Here, we discovered that the nonphosphorous microalgal betaine lipid DGCC (diacylglycerylcarboxy-hydroxymethylcholine) and its deacylated derivative GCC are present in all tissues and organs, including algae-free sperm and eggs, and are metabolized. Colocalization of DGCC and PC (phosphatidylcholine) evidenced by MS imaging suggested that DGCC functions as a PC substitute. The high content of GCC in digestive diverticula (DD) suggests that the algal DGCC was digested in DD for further utilization. Lipidomics analysis showing the organ-specific distribution pattern of DGCC species suggests active utilization of DGCC as membrane lipids in the clam. Thus, the utilization of zooxanthellal DGCC in animal cells is a unique evolutionary outcome in phosphorous-deficient coral reef waters.
Collapse
Affiliation(s)
- Ryuichi Sakai
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Naoko Goto-Inoue
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 148 Fukai-Ohta, Ishigaki, Okinawa 907-0451, Japan
| | - Naoya Aimoto
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Yuto Kitai
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Tadashi Maruyama
- School of Marine Biosciences, Kitasato University, 1-15-1, Kitazato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| |
Collapse
|
4
|
Sikorskaya TV. Coral Lipidome: Molecular Species of Phospholipids, Glycolipids, Betaine Lipids, and Sphingophosphonolipids. Mar Drugs 2023; 21:335. [PMID: 37367660 DOI: 10.3390/md21060335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Coral reefs are the most biodiversity-rich ecosystems in the world's oceans. Coral establishes complex interactions with various microorganisms that constitute an important part of the coral holobiont. The best-known coral endosymbionts are Symbiodiniaceae dinoflagellates. Each member of the coral microbiome contributes to its total lipidome, which integrates many molecular species. The present study summarizes available information on the molecular species of the plasma membrane lipids of the coral host and its dinoflagellates (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), ceramideaminoethylphosphonate, and diacylglyceryl-3-O-carboxyhydroxymethylcholine), and the thylakoid membrane lipids of dinoflagellates (phosphatidylglycerol (PG) and glycolipids). Alkyl chains of PC and PE molecular species differ between tropical and cold-water coral species, and features of their acyl chains depend on the coral's taxonomic position. PS and PI structural features are associated with the presence of an exoskeleton in the corals. The dinoflagellate thermosensitivity affects the profiles of PG and glycolipid molecular species, which can be modified by the coral host. Coral microbiome members, such as bacteria and fungi, can also be the source of the alkyl and acyl chains of coral membrane lipids. The lipidomics approach, providing broader and more detailed information about coral lipid composition, opens up new opportunities in the study of biochemistry and ecology of corals.
Collapse
Affiliation(s)
- Tatyana V Sikorskaya
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, 690041 Vladivostok, Russia
| |
Collapse
|
5
|
Clergeaud F, Giraudo M, Rodrigues AMS, Thorel E, Lebaron P, Stien D. On the Fate of Butyl Methoxydibenzoylmethane (Avobenzone) in Coral Tissue and Its Effect on Coral Metabolome. Metabolites 2023; 13:metabo13040533. [PMID: 37110191 PMCID: PMC10141135 DOI: 10.3390/metabo13040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The intensive use of sunscreen products has raised concerns regarding their environmental toxicity and the adverse impacts of ultraviolet (UV) filters on ecologically important coral communities. Prior metabolomic analyses on symbiotic coral Pocillopora damicornis exposed to the UV filter butyl methoxydibenzoylmethane (BM, avobenzone) revealed unidentified ions in the holobiont metabolome. In the present study, follow-up differential metabolomic analyses in BM-exposed P. damicornis detected 57 ions with significantly different relative concentrations in exposed corals. The results showed an accumulation of 17 BM derivatives produced through BM reduction and esterification. The major derivative identified C16:0-dihydroBM, which was synthesized and used as a standard to quantify BM derivatives in coral extracts. The results indicated that relative amounts of BM derivatives made up to 95% of the total BM (w/w) absorbed in coral tissue after 7 days of exposure. Among the remaining metabolites annotated, seven compounds significantly affected by BM exposure could be attributed to the coral dinoflagellate symbiont, indicating that BM exposure might impair the photosynthetic capacity of the holobiont. The present results suggest that the potential role of BM in coral bleaching in anthropogenic areas should be investigated and that BM derivatives should be considered in future assessments on the fate and effects of BM in the environment.
Collapse
Affiliation(s)
- Fanny Clergeaud
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, UAR3579, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Maeva Giraudo
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, UAR3579, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Alice M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, UAR3579, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
- Sorbonne Université, CNRS, Fédération de Recherche, FR3724, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Evane Thorel
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, UAR3579, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Philippe Lebaron
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, UAR3579, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, UAR3579, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| |
Collapse
|
6
|
Wang C, Wang R, Hu L, Xi M, Wang M, Ma Y, Chen J, Liu C, Song Y, Ding N, Gao P. Metabolites and metabolic pathways associated with allelochemical effects of linoleic acid on Karenia mikimotoi. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130815. [PMID: 36669412 DOI: 10.1016/j.jhazmat.2023.130815] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/25/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Linoleic acid (LA) shows great potential in inhibiting the growth of multiple red tide microalgae by disturbing algal physio-biochemical processes. However, our knowledge on the mechanisms of algal mortality at metabolic level remains limited. Herein, the response of K. mikimotoi to LA was evaluated using metabolomics, stable isotope techniques (SIT), and physiological indicators. Results showed that 100 μg/L LA promoted the growth of K. mikimotoi, which was significantly inhibited by 500 μg/L LA, along with a significant reduction of photosynthetic pigments and a significant increase of reactive oxygen species (ROS). SIT showed that LA entered algal cells, and 56 isotopologues involved in ferroptosis, carotenoid biosynthesis, and porphyrin metabolism were identified. Non-targeted metabolomics identified 90 and 111 differential metabolites (DEMs) belonging to 11 metabolic pathways under the 500 μg/L and 100 μg/L LA exposure, respectively. Among them, 34 DEMs were detected by SIT. Metabolic pathway analysis showed that 500 μg/L LA significantly promoted ferroptosis, and significantly inhibited carotenoid biosynthesis, porphyrin metabolism, sphingolipid metabolism, and lipopolysaccharide biosynthesis, presenting changes opposite to those observed in 100 μg/L LA-treated K. mikimotoi. Overall, this study revealed the metabolic response of K. mikimotoi to LA, enriching our understanding on the allelochemical mechanism of LA on K. mikimotoi.
Collapse
Affiliation(s)
- Chao Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Renjun Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, PR China.
| | - Lijun Hu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Muchen Xi
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Mengjiao Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Yujiao Ma
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Junfeng Chen
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Chunchen Liu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Yuhao Song
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Ning Ding
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Peike Gao
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, PR China.
| |
Collapse
|
7
|
Lima MS, Hamerski L, Silva TA, da Cruz MLR, Varasteh T, Tschoeke DA, Atella GC, de Souza W, Thompson FL, Thompson CC. Insights on the biochemical and cellular changes induced by heat stress in the Cladocopium isolated from coral Mussismilia braziliensis. Front Microbiol 2022; 13:973980. [PMID: 36299729 PMCID: PMC9590694 DOI: 10.3389/fmicb.2022.973980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Corals are treatened by global warming. Bleaching is one immediate effect of global warming, resulting from the loss of photosynthetic endosymbiont dinoflagellates. Understanding host-symbiont associations are critical for assessing coral’s habitat requirements and its response to environmental changes. Cladocopium (formerly family Symbiodiniaceae clade C) are dominant endosymbionts in the reef-building coral, Mussismilia braziliensis. This study aimed to investigate the effect of temperature on the biochemical and cellular features of Cladocopium. Heat stress increased oxygen (O2) and decreased proteins, pigments (Chla + Chlc2), hexadecanoic acid- methyl ester, methyl stearate, and octadecenoic acid (Z)- methyl ester molecules. In addition, there was an increase in neutral lipids such as esterified cholesterol and a decrease in free fatty acids that may have been incorporated for the production of lipid droplets. Transmission electron microscopy (TEM) demonstrated that Cladocopium cells subjected to heat stress had thinner cell walls, deformation of chloroplasts, and increased lipid droplets after 3 days at 28°C. These findings indicate that thermal stress negatively affects isolated Cladocopium spp. from Mussismilia host coral.
Collapse
Affiliation(s)
- Michele S. Lima
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Lidilhone Hamerski
- Walter Mors Institute of Research on Natural Products, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Tatiana A. Silva
- Laboratory of Celullar Ultrastructure Hertha Meyer, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging (Cenabio), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Maria Luíza R. da Cruz
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Tooba Varasteh
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diogo A. Tschoeke
- Biomedical Engineering Program – COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Georgia C. Atella
- Laboratory of Lipids Biochemistry and Lipoprotein, Biochemistry Institute Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratory of Celullar Ultrastructure Hertha Meyer, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging (Cenabio), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano L. Thompson
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Center of Technology-CT2, SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- *Correspondence: Fabiano L. Thompson, ; Cristiane C. Thompson,
| | - Cristiane C. Thompson
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- *Correspondence: Fabiano L. Thompson, ; Cristiane C. Thompson,
| |
Collapse
|
8
|
Nitschke MR, Rosset SL, Oakley CA, Gardner SG, Camp EF, Suggett DJ, Davy SK. The diversity and ecology of Symbiodiniaceae: A traits-based review. ADVANCES IN MARINE BIOLOGY 2022; 92:55-127. [PMID: 36208879 DOI: 10.1016/bs.amb.2022.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Among the most successful microeukaryotes to form mutualisms with animals are dinoflagellates in the family Symbiodiniaceae. These photosynthetic symbioses drive significant primary production and are responsible for the formation of coral reef ecosystems but are particularly sensitive when environmental conditions become extreme. Annual episodes of widespread coral bleaching (disassociation of the mutualistic partnership) and mortality are forecasted from the year 2060 under current trends of ocean warming. However, host cnidarians and dinoflagellate symbionts display exceptional genetic and functional diversity, and meaningful predictions of the future that embrace this biological complexity are difficult to make. A recent move to trait-based biology (and an understanding of how traits are shaped by the environment) has been adopted to move past this problem. The aim of this review is to: (1) provide an overview of the major cnidarian lineages that are symbiotic with Symbiodiniaceae; (2) summarise the symbiodiniacean genera associated with cnidarians with reference to recent changes in taxonomy and systematics; (3) examine the knowledge gaps in Symbiodiniaceae life history from a trait-based perspective; (4) review Symbiodiniaceae trait variation along three abiotic gradients (light, nutrients, and temperature); and (5) provide recommendations for future research of Symbiodiniaceae traits. We anticipate that a detailed understanding of traits will further reveal basic knowledge of the evolution and functional diversity of these mutualisms, as well as enhance future efforts to model stability and change in ecosystems dependent on cnidarian-dinoflagellate organisms.
Collapse
Affiliation(s)
- Matthew R Nitschke
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia.
| | - Sabrina L Rosset
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Stephanie G Gardner
- Center for Marine Science and Innovation, University of New South Wales Sydney, Kensington, NSW, Australia
| | - Emma F Camp
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia
| | - David J Suggett
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
9
|
Coral Holobionts Possess Distinct Lipid Profiles That May Be Shaped by Symbiodiniaceae Taxonomy. Mar Drugs 2022; 20:md20080485. [PMID: 36005488 PMCID: PMC9410212 DOI: 10.3390/md20080485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Symbiotic relationships are very important for corals. Abiotic stressors cause the acclimatization of cell membranes in symbionts, which possess different membrane acclimatization strategies. Membrane stability is determined by a unique lipid composition and, thus, the profile of thylakoid lipids can depend on coral symbiont species. We have analyzed and compared thylakoid lipidomes (mono- and digalactosyldiacylglycerols (MGDG and DGDG), sulfoquinovosyldiacylglycerols (SQDG), and phosphatidylglycerols (PG)) of crude extracts from symbiotic reef-building coral Acropora sp., the hydrocoral Millepora platyphylla, and the octocoral Sinularia flexibilis. S. flexibilis crude extracts were characterized by a very high SQDG/PG ratio, a DGDG/MGDG ratio < 1, a lower degree of galactolipid unsaturation, a higher content of SQDG with polyunsaturated fatty acids, and a thinner thylakoid membrane which may be explained by the presence of thermosensitive dinoflagellates Cladocopium C3. In contrast, crude extracts of M. platyphylla and Acropora sp. exhibited the lipidome features of thermotolerant Symbiodiniaceae. M. platyphylla and Acropora sp. colonies contained Cladocopium C3u and Cladocopium C71/C71a symbionts, respectively, and their lipidome profiles showed features that indicate thermotolerance. We suggest that an association with symbionts that exhibit the thermotolerant thylakoid lipidome features, combined with a high Symbiodiniaceae diversity, may facilitate further acclimatization/adaptation of M. platyphylla and Acropora sp. holobionts in the South China Sea.
Collapse
|
10
|
Symbiodiniaceae diversity and characterization of palytoxin in various zoantharians (Anthozoa, Hexacorallia). ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Current Progress in Lipidomics of Marine Invertebrates. Mar Drugs 2021; 19:md19120660. [PMID: 34940659 PMCID: PMC8708635 DOI: 10.3390/md19120660] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022] Open
Abstract
Marine invertebrates are a paraphyletic group that comprises more than 90% of all marine animal species. Lipids form the structural basis of cell membranes, are utilized as an energy reserve by all marine invertebrates, and are, therefore, considered important indicators of their ecology and biochemistry. The nutritional value of commercial invertebrates directly depends on their lipid composition. The lipid classes and fatty acids of marine invertebrates have been studied in detail, but data on their lipidomes (the profiles of all lipid molecules) remain very limited. To date, lipidomes or their parts are known only for a few species of mollusks, coral polyps, ascidians, jellyfish, sea anemones, sponges, sea stars, sea urchins, sea cucumbers, crabs, copepods, shrimp, and squid. This paper reviews various features of the lipid molecular species of these animals. The results of the application of the lipidomic approach in ecology, embryology, physiology, lipid biosynthesis, and in studies on the nutritional value of marine invertebrates are also discussed. The possible applications of lipidomics in the study of marine invertebrates are considered.
Collapse
|
12
|
Sikorskaya TV, Ermolenko EV, Boroda AV, Ginanova TT. Physiological processes and lipidome dynamics in the soft coral Sinularia heterospiculata under experimental bleaching. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110609. [PMID: 33957260 DOI: 10.1016/j.cbpb.2021.110609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022]
Abstract
Coral polyps host intracellular symbiotic dinoflagellates (SD). The loss of SD (referred as bleaching) under stressful environmental conditions is the main reason of coral reef destruction, and therefore, intensively studied over the world. Lipids are the structural base of biomembranes and energy reserve of corals and are directly involved in the coral bleaching. In order to establish a relationship between coral tissue morphology, physiological processes and lipidome dynamics during bleaching, the soft coral Sinularia heterospiculata was exposed to experimental heat stress (33 °C) for 72 h. A chlorophyll content, structure of cells, the level of reactive oxygen species (ROS), and molecular species of storage and structural lipids were analyzed. After 24 h of heat exposure, the level of ROS-positive SD cells did not increase, but the host tissues lost a significant part of SD. The removal of SD cells by exocytosis were suggested. Exocytosis was presumed to prevail at earlier stages of the soft coral bleaching. Symbiophagosomes with degenerative SD were observed in the stressed coral host cells. After 24 h, the content of phosphatidylinositols, which involved in apoptosis and autophagy, was significantly decreased. The innate immune response was triggered, and SD were digested by the coral host. After 48 h, a degradation of SD chloroplasts and a decrease in the specific monogalactosyldiacylglycerol molecular species were detected that confirmed a disruption of lipid biosynthesis in chloroplasts. At the end of coral bleaching, the appearance of oxidized phosphatidylethanolamines, indicating damage to the host membranes, and the degradation of the coral tissues were simultaneously observed. Thus, a switch between dominant mechanisms of the SD loss during bleaching of S. heterospiculata was found and proved by certain variations of the lipidomic profile. Lipidomic parameters may become indicators of physiological processes occurring in the symbiotic coral organism and may be used for assessing anthropogenic or natural destructive effects on coral reefs.
Collapse
Affiliation(s)
- Tatyana V Sikorskaya
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation.
| | - Ekaterina V Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Andrey V Boroda
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Taliya T Ginanova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| |
Collapse
|