1
|
Kushawaha AK, Jaiswal AK, Gupta J, Katiyar S, Ansari A, Bhatt H, Sharma SK, Choudhury AD, Bhatta RS, Singh BN, Sashidhara KV. Antitubercular evaluation of dihydropyridine-triazole conjugates: design, synthesis, in vitro screening, SAR and in silico ADME predictions. RSC Med Chem 2024; 15:2867-2881. [PMID: 39149103 PMCID: PMC11324066 DOI: 10.1039/d4md00377b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/02/2024] [Indexed: 08/17/2024] Open
Abstract
This study investigates the potential of click chemistry for the development of novel anti-tuberculosis agents. A targeted library of 1,4-dihydropyridine-1,2,3-triazole conjugates was synthesized and evaluated for their in vitro activity against Mycobacterium tuberculosis H37Ra using the resazurin microtiter assay (REMA). Among the synthesized derivatives, compounds J10, J11, J14, J22 and J23 demonstrated significant antimycobacterial activity. These compounds exhibited low MIC values ranging from 6.24 to 6.64 μg mL-1, highlighting their promising potential as lead compounds for further developing novel tuberculosis therapeutics. In addition to the promising in vitro activity, structure-activity relationship (SAR) analysis revealed that electron-withdrawing groups on the aryl-substituted ring of the dihydropyridines (J10-J24), a triazole with an unsubstituted aryl ring or with electron-donating groups (methyl or methoxy), and a geminal dimethyl group are essential structural features for the observed antitubercular activity. Furthermore, in silico ADME (absorption, distribution, metabolism, and excretion) parameters and pharmacokinetic studies supported the potential of these conjugates for oral bioavailability. These findings collectively highlight the 1,4-dihydropyridine-1,2,3-triazole scaffold as a promising platform for developing novel orally active anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Ajay Kishor Kushawaha
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031 India
| | - Arvind Kumar Jaiswal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031 India
| | - Jay Gupta
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031 India
| | - Sarita Katiyar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 U.P India
| | - Alisha Ansari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 U.P India
| | - Hemlata Bhatt
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 U.P India
| | - Sandeep K Sharma
- Molecular Microbiology & Immunology (MMI) Division, CSIR-Central Drug Research Institute BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031 India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetics Division, CSIR- Central Drug Research Institute Lucknow India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetics Division, CSIR- Central Drug Research Institute Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 U.P India
| | - Bhupendra N Singh
- Molecular Microbiology & Immunology (MMI) Division, CSIR-Central Drug Research Institute BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 U.P India
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031 India
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031 U.P India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 U.P India
| |
Collapse
|
2
|
Katiyar S, Ahmad S, Kumar A, Ansari A, Bisen AC, Ahmad I, Gulzar F, Bhatta RS, Tamrakar AK, Sashidhara KV. Design, Synthesis, and Biological Evaluation of 1,4-Dihydropyridine-Indole as a Potential Antidiabetic Agent via GLUT4 Translocation Stimulation. J Med Chem 2024; 67:11957-11974. [PMID: 39013034 DOI: 10.1021/acs.jmedchem.4c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
In the quest for the discovery of antidiabetic compounds, a series of 27 1,4-dihydropyridine-indole derivatives were synthesized using a diversity approach. These compounds were systematically evaluated for their antidiabetic activity, starting with an in vitro assessment for GLUT4 translocation stimulation in L6-GLUT4myc myotubes, followed by in vivo antihyperglycemic activity evaluation in a streptozotocin (STZ)-induced diabetic rat model. Among the synthesized compounds, 12, 14, 15, 16, 19, 27, and 35 demonstrated significant potential to stimulate GLUT4 translocation in skeletal muscle cells. Compound 19 exhibited the highest potency and was selected for in vivo evaluation. A notable reduction of 21.6% (p < 0.01) in blood glucose levels was observed after 5 h of treatment with compound 19 in STZ-induced diabetic rats. Furthermore, pharmacokinetic studies affirmed that compound 19 was favorable to oral exposure with suitable pharmacological parameters. Overall, compound 19 emerged as a promising lead compound for further structural modification and optimization.
Collapse
Affiliation(s)
- Sarita Katiyar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Shadab Ahmad
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Abhishek Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Alisha Ansari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ishbal Ahmad
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Farah Gulzar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Rabi Sankar Bhatta
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Akhilesh K Tamrakar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
3
|
Joshua Ashaolu T, Joshua Olatunji O, Can Karaca A, Lee CC, Mahdi Jafari S. Anti-obesity and anti-diabetic bioactive peptides: A comprehensive review of their sources, properties, and techno-functional challenges. Food Res Int 2024; 187:114427. [PMID: 38763677 DOI: 10.1016/j.foodres.2024.114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
The scourge of obesity arising from obesogens and poor dieting still ravages our planet as half of the global population may be overweight and obese by 2035. This metabolic disorder is intertwined with type 2 diabetes (T2D), both of which warrant alternative therapeutic options other than clinically approved drugs like orlistat with their tendency of abuse and side effects. In this review, we comprehensively describe the global obesity problem and its connection to T2D. Obesity, overconsumption of fats, the mechanism of fat digestion, obesogenic gut microbiota, inhibition of fat digestion, and natural anti-obesity compounds are discussed. Similar discussions are made for diabetes with regard to glucose regulation, the diabetic gut microbiota, and insulinotropic compounds. The sources and production of anti-obesity bioactive peptides (AOBPs) and anti-diabetic bioactive peptides (ADBPs) are also described while explaining their structure-function relationships, gastrointestinal behaviors, and action mechanisms. Finally, the techno-functional applications of AOBPs and ADBPs are highlighted.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Vietnam.
| | | | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Chi-Ching Lee
- Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Department of Food Engineering, Istanbul, Turkey.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
4
|
Gupta RS, Grover AS, Kumar P, Goel A, Banik SP, Chakraborty S, Rungta M, Bagchi M, Pal P, Bagchi D. A randomized double blind placebo controlled trial to assess the safety and efficacy of a patented fenugreek ( Trigonella foenum-graecum) seed extract in Type 2 diabetics. Food Nutr Res 2024; 68:10667. [PMID: 38863744 PMCID: PMC11165257 DOI: 10.29219/fnr.v68.10667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
Background Fenugreek plant (Trigonella foenum-graecum) constitutes a traditionally acclaimed herbal remedy for many human ailments including diabetes, obesity, neurodegenerative diseases, and reproductive disorders. It is also used as an effective anti-oxidative, anti-inflammatory, antibacterial, and anti-fungal agent. The seed of the plant is especially enriched in several bioactive molecules including polyphenols, saponins, alkaloids, and flavonoids and has demonstrated potential to act as an antidiabetic phytotherapeutic. A novel patented formulation (Fenfuro®) was developed in our laboratory from the fenugreek seeds which contained >45% furostanolic saponins (HPLC). Objective A placebo-controlled clinical compliance study was designed to assess the effects of complementing Fenfuro® on a randomized group of human volunteers on antidiabetic therapy (Metformin and sulphonylurea) in controlling the glycemic index along with simultaneous safety assessment. Study methodology and trial design In a randomized double-blind, placebo-controlled trial, 42 individuals (21 male and 21 female volunteers) in the treatment group (out of 57 enrolled) and 39 individuals (17 male and 22 female volunteers) in the placebo group (out of 47 enrolled), all on antidiabetic therapy with Metformin/Metformin with sulphonyl urea within the age group of 18-65 years were administered either 1,000 mg (500 mg × 2) (Fenfuro®) capsules or placebo over a period of 12 consecutive weeks. Fasting and postprandial glucose along with glycated hemoglobin were determined as primary outcomes to assess the antidiabetic potential of the formulation. Moreover, in order to evaluate the safety of the formulation, C-peptide and Thyroid Stimulating Hormone (TSH) levels as well as immunohematological parameters were assessed between the treatment and placebo groups at the completion of the study. Results After 12 weeks of administration, both fasting as well as postprandial serum glucose levels decreased by 38 and 44% respectively in the treatment group. Simultaneously, a significant reduction in glycated hemoglobin by about 34.7% was also noted. The formulation did not have any adverse effect on the study subjects as there was no significant change in C- peptide level and TSH level; liver, kidney, and cardiovascular function was also found to be normal as assessed by serum levels of key immunohematological parameters. No adverse events were reported. Conclusion This clinical compliance study re-instated and established the safety and efficacy of Fenfuro® as an effective phytotherapeutic to treat hyperglycemia.
Collapse
Affiliation(s)
- Rajinder Singh Gupta
- Department of Medicine, Gian Sagar Medical College & Hospital, Banur, Patiala, India
| | - Amarjit Singh Grover
- Department of Surgery, Gian Sagar Medical College & Hospital, Banur, Patiala, India
| | - Pawan Kumar
- R&D Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Apurva Goel
- Regulatory Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Samudra P. Banik
- Department of Microbiology, Maulana Azad College, Kolkata, India
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, NY, USA
| | - Mehul Rungta
- R&D Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | | | - Partha Pal
- Department of Statistics, Maulana Azad College, Kolkata, India
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, and Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, USA
| |
Collapse
|
5
|
Kwon R, Lee S, Kim JH, Na H, Lee SJ, Kim HW, Wee CD, Yoo SM, Lee SH. Characterization of Seven New Steroidal Saponins from Korean Oat Cultivars by UPLC-QTOF-MS and UPLC-MS/MS. ACS OMEGA 2024; 9:14356-14367. [PMID: 38559960 PMCID: PMC10976377 DOI: 10.1021/acsomega.3c10439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Oat saponins are composed of triterpenoid and steroidal saponins, and their potential biological activities, such as antibacterial, antifungicidal, osteogenic, and anticancer activities, have been reported. In this study, qualitative and quantitative analyses of oat saponins were conducted by using UPLC-QToF-MS and UPLC-Triple Q-MS/MS. A total of 22 saponins were analyzed in seven Korean oat cultivars. Among them, 7 saponins were identified as new compounds in this source, which were tentatively confirmed as nuatigenin-type saponins with 26-O-diglucoside and 3-O-malonylglucoside forms and (25S)-furost-5-en-3β,22,26-triol-type saponins. In addition, the total content of these saponins ranged from 70.61 to 141.38 mg/100 g dry weight, and it was affected by the type of oat cultivar and the presence or absence of hulling. These detailed profiles will be suggested as fundamental data for breeding superior oat cultivars, evaluating of related products, and various industries.
Collapse
Affiliation(s)
- Ryeong
Ha Kwon
- Department of Agrofood
Resources,
National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Suji Lee
- Department of Agrofood
Resources,
National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Ju Hyung Kim
- Department of Agrofood
Resources,
National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Hyemin Na
- Department of Agrofood
Resources,
National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - So-Jeong Lee
- Department of Agrofood
Resources,
National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Heon-Woong Kim
- Department of Agrofood
Resources,
National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Chi-Do Wee
- Department of Agrofood
Resources,
National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Seon Mi Yoo
- Department of Agrofood
Resources,
National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Sang Hoon Lee
- Department of Agrofood
Resources,
National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| |
Collapse
|
6
|
Xue H, Hao Z, Gao Y, Cai X, Tang J, Liao X, Tan J. Research progress on the hypoglycemic activity and mechanisms of natural polysaccharides. Int J Biol Macromol 2023; 252:126199. [PMID: 37562477 DOI: 10.1016/j.ijbiomac.2023.126199] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/19/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
The incidence of diabetes, as a metabolic disease characterized by high blood sugar levels, is increasing every year. The predominantly western medicine treatment is associated with certain side effects, which has prompted people to turn their attention to natural active substances. Natural polysaccharide is a safe and low-toxic natural substance with various biological activities. Hypoglycemic activity is one of the important biological activities of natural polysaccharides, which has great potential for development. A systematic review of the latest research progress and possible molecular mechanisms of hypoglycemic activity of natural polysaccharides is of great significance for better understanding them. In this review, we systematically reviewed the relationship between the hypoglycemic activity of polysaccharides and their structure in terms of molecular weight, monosaccharide composition, and glycosidic bonds, and summarized underlying molecular mechanisms the hypoglycemic activity of natural polysaccharides. In addition, the potential mechanisms of natural polysaccharides improving the complications of diabetes were analyzed and discussed. This paper provides some valuable insights and important guidance for further research on the hypoglycemic mechanisms of natural polysaccharides.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Zitong Hao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Xu Cai
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Jintian Tang
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China; Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
7
|
Bisen AC, Rawat P, Sharma G, Sanap SN, Agrawal S, Kumar S, Kumar A, Choudhury AD, Kamboj S, Narender T, Shukla SK, Kanojiya S, Bhatta RS. Hesperidin: Enrichment, forced degradation, and structural elucidation of potential degradation products using spectral techniques. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9615. [PMID: 37706431 DOI: 10.1002/rcm.9615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/08/2023] [Accepted: 07/17/2023] [Indexed: 09/15/2023]
Abstract
RATIONALE Hesperidin (HES) is a well-known citrus bioflavonoid phyto-nutraceutical agent with polypharmacological properties. After 2019, HES was widely used for prophylaxis and COVID-19 treatment. Moreover, it is commonly prescribed for treating varicose veins and other diseases in routine clinical practice. Pharmaceutical impurities and degradation products (DP) impact the drug's quality and safety and thus its effectiveness. Therefore, forced degradation studies help study drug stability, degradation mechanisms, and their DPs. This study was performed because stress stability studies using detailed structural characterization of hesperidin are currently unavailable in the literature. METHODS In the HES enrichment method crude HES was converted to its pure form (98% purity) using column chromatography and then subjected to forced degradation under acid, base, and neutral hydrolyses followed by oxidative, reductive, photolytic, and thermal stress testing (International Conference on Harmonization guidelines). The stability-indicating analytical method (SIAM) was developed to determine DPs using reversed-phase high-performance liquid chromatography (C18 column with methanol and 0.1% v/v acetic acid in deionized water [70:30, v/v] at 284 nm). Further, structural characterization of DPs was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) and nuclear magnetic resonance (NMR) spectroscopy. In addition, in silico toxicity predictions were performed using pKCSM and DataWarior freeware. RESULTS HES was found to be susceptible to acidic and basic hydrolytic conditions and yielded three DPs in each, which were detected using designed SIAM. Of six DPs, three were pseudo-DPs (short lived), and the remaining were characterized using LC-MS/MS and NMR spectroscopy. The tentative mechanism of the formation of proposed DPs was explained. The proposed DPs were found inactive from in silico toxicity predictions. CONCLUSIONS Hesperidin was labile under acidic and basic stress conditions. The potential DPs were characterized using LC-ESI-MS/MS and NMR spectral techniques. The proposed mechanism of formation was hypothesized. In addition, to identify and characterize the DPs, a SIAM, which has broad biomedical applications, was successfully developed.
Collapse
Affiliation(s)
- Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Priyanka Rawat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Gaurav Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Sristi Agrawal
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Shiv Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Ashok Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sakshi Kamboj
- Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Tadigoppula Narender
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sanjeev K Shukla
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sanjeev Kanojiya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
8
|
Pandey AR, Singh SP, Ramalingam K, Yadav K, Bisen AC, Bhatta RS, Srivastava M, Tripathi R, Goyal N, Sashidhara KV. Antileishmanial evaluation of triazole-butenolide conjugates: design, synthesis, in vitro screening, SAR and in silico ADME predictions. RSC Med Chem 2023; 14:1131-1142. [PMID: 37360388 PMCID: PMC10285739 DOI: 10.1039/d2md00464j] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/25/2023] [Indexed: 06/28/2023] Open
Abstract
In the quest to discover novel scaffolds with leishmanicidal effects, a series of 23 compounds containing the most promising 1,2,3-triazole and highly potent butenolide in one framework were synthesized. The synthesized conjugates were screened against Leishmania donovani parasite; five of them showed moderate antileishmanial activity against promastigotes (IC50 30.6 to 35.5 μM) and eight of them exhibited significant activity against amastigotes (IC50 ≤12 μM). Compound 10u was found to be the most active (IC50 8.4 ± 0.12 μM) with the highest safety index (20.47). The series was further evaluated against Plasmodium falciparum (3D7 strain) and seven compounds were found to be moderately active. Among them, again 10u emerged as the most active compound (IC50 3.65 μM). In antifilarial assays against adult female Brugia malayi, five compounds showed grade II inhibition (50-74%). Structure-activity relationship (SAR) analysis suggested a substituted phenyl ring, triazole and butenolide as essential structural features for bioactivity. Moreover, the results of in silico ADME parameter and pharmacokinetic studies indicated that the synthesized triazole-butenolide conjugates abide by the required criteria for the development of orally active drugs, and thus this scaffold can be used as a pharmacologically active framework that should be considered for the development of potential antileishmanial hits.
Collapse
Affiliation(s)
- Alka Raj Pandey
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031 U.P India +91 522 2771942/2771970 +91 522 2772450, ext. 4684
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031 U.P India
| | - Suriya Pratap Singh
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031 U.P India +91 522 2771942/2771970 +91 522 2772450, ext. 4684
| | - Karthik Ramalingam
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031 U.P India
| | - Kanchan Yadav
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute Lucknow 226031 U.P India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute Lucknow 226031 U.P India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 U.P India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute Lucknow 226031 U.P India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 U.P India
| | - Mrigank Srivastava
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute Lucknow 226031 U.P India
| | - Renu Tripathi
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute Lucknow 226031 U.P India
| | - Neena Goyal
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031 U.P India
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031 U.P India +91 522 2771942/2771970 +91 522 2772450, ext. 4684
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031 U.P India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 U.P India
| |
Collapse
|
9
|
Pandey AR, Singh SP, Joshi P, Srivastav KS, Srivastava S, Yadav K, Chandra R, Bisen AC, Agrawal S, Sanap SN, Bhatta RS, Tripathi R, Barthwal MK, Sashidhara KV. Design, synthesis and evaluation of novel pyrrole-hydroxybutenolide hybrids as promising antiplasmodial and anti-inflammatory agents. Eur J Med Chem 2023; 254:115340. [PMID: 37054559 DOI: 10.1016/j.ejmech.2023.115340] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023]
Abstract
In the pursuance of novel scaffolds with promising antiplasmodial and anti-inflammatory activity, a series of twenty-one compounds embraced with most promising penta-substituted pyrrole and biodynamic hydroxybutenolide in single skeleton was designed and synthesized. These pyrrole-hydroxybutenolide hybrids were evaluated against Plasmodium falciparum parasite. Four hybrids 5b, 5d, 5t and 5u exhibited good activity with IC50 of 0.60, 0.88, 0.97 and 0.96 μM for chloroquine sensitive (Pf3D7) strain and 3.92, 4.31, 4.21 and 1.67 μM for chloroquine resistant (PfK1) strain, respectively. In vivo efficacy of 5b, 5d, 5t and 5u was studied against the P. yoelii nigeriensis N67 (a chloroquine-resistant) parasite in Swiss mice at a dose of 100 mg/kg/day for 4 days via oral route. 5u was found to show maximum 100% parasite inhibition with considerably increased mean survival time. Simultaneously, the series of compounds was screened for anti-inflammatory potential. In preliminary assays, nine compounds showed more than 85% inhibition in hu-TNFα cytokine levels in LPS stimulated THP-1 monocytes and seven compounds showed more than 40% decrease in fold induction in reporter gene activity analyzed via Luciferase assay. 5p and 5t were found to be most promising amongst the series, thus were taken up for further in vivo studies. Wherein, mice pre-treated with them showed a dose dependent inhibition in carrageenan induced paw swelling. Moreover, the results of in vitro and in vivo pharmacokinetic parameters indicated that the synthesized pyrrole-hydroxybutenolide conjugates abide by the required criteria for the development of orally active drug and thus this scaffold can be used as pharmacologically active framework that should be considered for the development of potential antiplasmodial and anti-inflammatory agents.
Collapse
Affiliation(s)
- Alka Raj Pandey
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Suriya Pratap Singh
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Prince Joshi
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Kunwar Satyadeep Srivastav
- Division of Pharmacology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Smriti Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Kanchan Yadav
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Ramesh Chandra
- Division of Pharmacology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Sristi Agrawal
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Renu Tripathi
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Manoj Kumar Barthwal
- Division of Pharmacology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India.
| |
Collapse
|
10
|
Zhang M, Han W, Gu J, Qiu C, Jiang Q, Dong J, Lei L, Li F. Recent advances on the regulation of bacterial biofilm formation by herbal medicines. Front Microbiol 2022; 13:1039297. [PMID: 36425031 PMCID: PMC9679158 DOI: 10.3389/fmicb.2022.1039297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/18/2022] [Indexed: 09/29/2023] Open
Abstract
Biofilm formation is a fundamental part of life cycles of bacteria which affects various aspects of bacterial-host interactions including the development of drug resistance and chronic infections. In clinical settings, biofilm-related infections are becoming increasingly difficult to treat due to tolerance to antibiotics. Bacterial biofilm formation is regulated by different external and internal factors, among which quorum sensing (QS) signals and nucleotide-based second messengers play important roles. In recent years, different kinds of anti-biofilm agents have been discovered, among which are the Chinese herbal medicines (CHMs). CHMs or traditional Chinese medicines have long been utilized to combat various diseases around the world and many of them have the ability to inhibit, impair or decrease bacterial biofilm formation either through regulation of bacterial QS system or nucleotide-based second messengers. In this review, we describe the research progresses of different chemical classes of CHMs on the regulation of bacterial biofilm formation. Though the molecular mechanisms on the regulation of bacterial biofilm formation by CHMs have not been fully understood and there are still a lot of work that need to be performed, these studies contribute to the development of effective biofilm inhibitors and will provide a novel treatment strategy to control biofilm-related infections.
Collapse
Affiliation(s)
- Meimei Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenyu Han
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jingmin Gu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Cao Qiu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qiujie Jiang
- Jilin Animal Disease Control Center, Changchun, China
| | - Jianbao Dong
- Department of Veterinary Medical, Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Liancheng Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Fengyang Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
11
|
Mao YP, Song YM, Pan SW, Li N, Wang WX, Feng BB, Zhang JH. Effect of Codonopsis Radix and Polygonati Rhizoma on the regulation of the IRS1/PI3K/AKT signaling pathway in type 2 diabetic mice. Front Endocrinol (Lausanne) 2022; 13:1068555. [PMID: 36589810 PMCID: PMC9794842 DOI: 10.3389/fendo.2022.1068555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Codonopsis Radix and Polygonati Rhizoma (CRPR) has a good hypoglycemic effect. The aims of the present study were to investigate the effect of CRPR on high-fat/high-sugar diet (HFHSD)- and streptozotocin (STZ)-induced type 2 diabetes mellitus (T2DM) mice as well as to investigate the involved mechanism. METHODS A T2DM mouse model was generated by combining HFHSD and STZ. After the model was established, normal and model groups received the same volume of normal saline intragastrically, and the negative control group was treated with metformin (200 mg/kg·BW). The low, medium, and high CRPR groups received four consecutive weeks of oral gavage with CRPR doses of 2.5, 5, and 10 g/kg·BW, respectively, during the course of the study. Body weight and fasting blood glucose (FBG) were measured on a weekly basis. Enzyme-linked immunosorbent assay (ELISAs) were used to evaluate the serum and liver samples. Hematoxylin and eosin (H&E) staining was utilized to observe the pathological status of the liver and pancreas. Western blot (WB) analysis was performed to evaluate the protein expression levels of PI3K, p-PI3K, AKT, and p-AKT. RESULTS Compared to model mice, each treatment group had significantly elevated levels of FBG, total cholesterol (TC), and triacylglycerol (TG) (P<0.01 and P<0.05, respectively). The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were significantly reduced in the treatment groups compared to the model group (P<0.01). Compared to the model group, fasting insulin (FINS) levels were elevated in all groups of CRPR (P<0.05), and there were significantly higher levels of high-density lipoprotein cholesterol (HDL-C) in both the low-dose and high-dose CRPR groups (P<0.05). H&E staining indicated that CRPR treatment reduced organ enlargement, improved liver lipid accumulation, and repaired islet injury in T2DM mice. Moreover, WB analysis demonstrated that all CRPR groups significantly upregulated the protein expression of IRS1, p-GSK3β, PI3K, p-Akt and p-FOXO1(P<0.05) as well as significantly downregulated p-IRS1 and FOXO1 protein expression (P<0.05). CONCLUSION The present study demonstrated that CRPR effectively improves the metabolic disturbance of lipids, repairs damaged liver tissues, repairs damaged pancreatic tissues, and reduces insulin resistance (IR) in T2DM mice. The mechanism of action may be associated with upregulation of the IRS1/PI3K/AKT signaling pathway and inhibition of IRS1 phosphorylation.
Collapse
Affiliation(s)
- Yong-po Mao
- School of Pharmacy, Chongqing Three Gorges Medical College, Chongqing, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yi-ming Song
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Sheng-wang Pan
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ning Li
- School of Pharmacy, Chongqing Three Gorges Medical College, Chongqing, China
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Wen-xiang Wang
- School of Pharmacy, Chongqing Three Gorges Medical College, Chongqing, China
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Bin-bin Feng
- School of Pharmacy, Chongqing Three Gorges Medical College, Chongqing, China
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
- *Correspondence: Bin-bin Feng, ; Jian-hai Zhang,
| | - Jian-hai Zhang
- School of Pharmacy, Chongqing Three Gorges Medical College, Chongqing, China
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
- *Correspondence: Bin-bin Feng, ; Jian-hai Zhang,
| |
Collapse
|