1
|
Rodriguez-Caro F, Moore EC, Good JM. Evolution of parent-of-origin effects on placental gene expression in house mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554674. [PMID: 37662315 PMCID: PMC10473692 DOI: 10.1101/2023.08.24.554674] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The mammalian placenta is a hotspot for the evolution of genomic imprinting, a form of gene regulation that involves the parent-specific epigenetic silencing of one allele. Imprinted genes are central to placental development and are thought to contribute to the evolution of reproductive barriers between species. However, it is unclear how rapidly imprinting evolves or how functional specialization among placental tissues influences the evolution of imprinted expression. We compared parent-of-origin expression bias across functionally distinct placental layers sampled from reciprocal crosses within three closely related lineages of mice ( Mus ). Using genome-wide gene expression and DNA methylation data from fetal and maternal tissues, we developed an analytical strategy to minimize pervasive bias introduced by maternal contamination of placenta samples. We corroborated imprinted expression at 42 known imprinted genes and identified five candidate imprinted genes showing parent-of-origin specific expression and DNA methylation. Paternally-biased expression was enriched in the labyrinth zone, a layer specialized in nutrient transfer, and maternally-biased genes were enriched in the junctional zone, which specializes in modulation of maternal physiology. Differentially methylated regions were predominantly determined through epigenetic modification of the maternal genome and were associated with both maternally- and paternally-biased gene expression. Lastly, comparisons between lineages revealed a small set of co-regulated genes showing rapid divergence in expression levels and imprinted status in the M. m. domesticus lineage. Together, our results reveal important links between core functional elements of placental biology and the evolution of imprinted gene expression among closely related rodent species.
Collapse
|
2
|
Roach AN, Zimmel KN, Thomas KN, Basel A, Bhadsavle SS, Golding MC. Preconception paternal alcohol exposure decreases IVF embryo survival and pregnancy success rates in a mouse model. Mol Hum Reprod 2023; 29:gaad002. [PMID: 36637195 PMCID: PMC9907225 DOI: 10.1093/molehr/gaad002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/22/2022] [Indexed: 01/14/2023] Open
Abstract
Increasingly, couples struggling with fertility turn to assisted reproductive techniques, including IVF, to have children. Despite the demonstrated influence of periconception male health and lifestyle choices on offspring development, studies examining IVF success rates and child health outcomes remain exclusively focused on maternal factors. Using a physiologically relevant mouse model, we tested the hypothesis that chronic paternal preconception alcohol intake adversely affects IVF success and negatively impacts IVF offspring fetoplacental growth. Using a voluntary, binge-like mouse model, we exposed sexually mature C57BL/6J males to three preconception treatments (0% (Control), 6% EtOH or 10% EtOH) for 6 weeks, isolated and cryopreserved caudal sperm from treated males, and then used these samples to fertilize oocytes before assessing IVF embryo developmental outcomes. We found that preconception paternal alcohol use reduced IVF embryo survival and pregnancy success rates in a dose-dependent manner, with the pregnancy success rate of the 10% EtOH treatment falling to half those of the Controls. Mechanistically, we found that preconception paternal alcohol exposure disrupts embryonic gene expression, including Fgf4 and Egfr, two critical regulators of trophectoderm stem cell growth and placental patterning, with lasting impacts on the histological organization of the late-term placenta. The changes in placental histoarchitecture were accompanied by altered regulation of pathways controlling mitochondrial function, oxidative phosphorylation and some imprinted genes. Our studies indicate that male alcohol use may significantly impede IVF success rates, increasing the couple's financial burden and emotional stress, and highlights the need to expand prepregnancy messaging to emphasize the reproductive dangers of alcohol use by both parents.
Collapse
Affiliation(s)
- Alexis N Roach
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Katherine N Zimmel
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Kara N Thomas
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Alison Basel
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Sanat S Bhadsavle
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Michael C Golding
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
3
|
Chang S, Fulmer D, Hur SK, Thorvaldsen JL, Li L, Lan Y, Rhon-Calderon EA, Leu NA, Chen X, Epstein JA, Bartolomei MS. Dysregulated H19/Igf2 expression disrupts cardiac-placental axis during development of Silver-Russell syndrome-like mouse models. eLife 2022; 11:e78754. [PMID: 36441651 PMCID: PMC9704805 DOI: 10.7554/elife.78754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Dysregulation of the imprinted H19/IGF2 locus can lead to Silver-Russell syndrome (SRS) in humans. However, the mechanism of how abnormal H19/IGF2 expression contributes to various SRS phenotypes remains unclear, largely due to incomplete understanding of the developmental functions of these two genes. We previously generated a mouse model with humanized H19/IGF2 imprinting control region (hIC1) on the paternal allele that exhibited H19/Igf2 dysregulation together with SRS-like growth restriction and perinatal lethality. Here, we dissect the role of H19 and Igf2 in cardiac and placental development utilizing multiple mouse models with varying levels of H19 and Igf2. We report severe cardiac defects such as ventricular septal defects and thinned myocardium, placental anomalies including thrombosis and vascular malformations, together with growth restriction in mouse embryos that correlated with the extent of H19/Igf2 dysregulation. Transcriptomic analysis using cardiac endothelial cells of these mouse models shows that H19/Igf2 dysregulation disrupts pathways related to extracellular matrix and proliferation of endothelial cells. Our work links the heart and placenta through regulation by H19 and Igf2, demonstrating that accurate dosage of both H19 and Igf2 is critical for normal embryonic development, especially related to the cardiac-placental axis.
Collapse
Affiliation(s)
- Suhee Chang
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Diana Fulmer
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Penn Cardiovascular Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Stella K Hur
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Joanne L Thorvaldsen
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Li Li
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Penn Cardiovascular Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yemin Lan
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Eric A Rhon-Calderon
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Nicolae Adrian Leu
- Department of Biomedical Sciences, School of Veterinary Medicine, Institute for Regenerative Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Xiaowen Chen
- Penn Cardiovascular Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Penn Cardiovascular Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
4
|
Aykroyd BRL, Tunster SJ, Sferruzzi-Perri AN. Loss of imprinting of the Igf2-H19 ICR1 enhances placental endocrine capacity via sex-specific alterations in signalling pathways in the mouse. Development 2022; 149:dev199811. [PMID: 34982814 PMCID: PMC8783045 DOI: 10.1242/dev.199811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Imprinting control region (ICR1) controls the expression of the Igf2 and H19 genes in a parent-of-origin specific manner. Appropriate expression of the Igf2-H19 locus is fundamental for normal fetal development, yet the importance of ICR1 in the placental production of hormones that promote maternal nutrient allocation to the fetus is unknown. To address this, we used a novel mouse model to selectively delete ICR1 in the endocrine junctional zone (Jz) of the mouse placenta (Jz-ΔICR1). The Jz-ΔICR1 mice exhibit increased Igf2 and decreased H19 expression specifically in the Jz. This was accompanied by an expansion of Jz endocrine cell types due to enhanced rates of proliferation and increased expression of pregnancy-specific glycoprotein 23 in the placenta of both fetal sexes. However, changes in the endocrine phenotype of the placenta were related to sexually-dimorphic alterations to the abundance of Igf2 receptors and downstream signalling pathways (Pi3k-Akt and Mapk). There was no effect of Jz-ΔICR1 on the expression of targets of the H19-embedded miR-675 or on fetal weight. Our results demonstrate that ICR1 controls placental endocrine capacity via sex-dependent changes in signalling.
Collapse
Affiliation(s)
| | | | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
5
|
Li Z, Zhao S, Nelakanti RV, Lin K, Wu TP, Alderman MH, Guo C, Wang P, Zhang M, Min W, Jiang Z, Wang Y, Li H, Xiao AZ. N 6-methyladenine in DNA antagonizes SATB1 in early development. Nature 2020; 583:625-630. [PMID: 32669713 PMCID: PMC8596487 DOI: 10.1038/s41586-020-2500-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/04/2020] [Indexed: 02/08/2023]
Abstract
The recent discovery of N6-mA in mammalian genomes suggests that it may serve as an epigenetic regulatory mechanism1. However, the biological role of N6-mA and molecular pathways exerting its function remain elusive. Herein, we demonstrate that N6-mA plays a critical role in changing the epigenetic landscape during cell fate transitions in early development. We found that N6-mA is upregulated during trophoblast stem cell development, specifically at Stress Induced DNA Double Helix Destabilization (SIDD) regions2-4. It is well-known that SIDD regions are conducive to topological stress-induced double helix unpairing and play critical roles in organizing large-scale chromatin structures3,5,6. We demonstrated that the presence of N6-mA abolishes (>500-fold) the in vitro interactions between SIDD and SATB1, a critical chromatin organizer interacting with SIDD regions; N6-mA deposition also effectively antagonizes SATB1 function in vivo by preventing its binding to chromatin. Concordantly, N6-mA functions at the boundaries between eu-/hetero- chromatin to restrict the spreading of euchromatin. N6-mA mediated repression is critical for gene regulation during trophoblast development in cell culture models and in vivo. Overall, our study discovers an unexpected molecular mechanism for N6-mA function via SATB1, and reveals surprising connections between DNA modification, DNA secondary structures and large chromatin domains in early embryonic development.
Collapse
Affiliation(s)
- Zheng Li
- Department of Genetics and Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Shuai Zhao
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Raman V Nelakanti
- Department of Genetics and Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Kaixuan Lin
- Department of Genetics and Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Tao P Wu
- Department of Genetics and Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Myles H Alderman
- Department of Genetics and Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Cheng Guo
- Department of Chemistry, University of California, Riverside, CA, USA.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengcheng Wang
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Min Zhang
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Wang Min
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Zongliang Jiang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.
| | - Andrew Z Xiao
- Department of Genetics and Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Singh VP, McKinney S, Gerton JL. Persistent DNA Damage and Senescence in the Placenta Impacts Developmental Outcomes of Embryos. Dev Cell 2020; 54:333-347.e7. [PMID: 32800293 DOI: 10.1016/j.devcel.2020.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/17/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
Cohesin is an evolutionarily conserved chromosome-associated protein complex essential for chromosome segregation, gene expression, and repair of DNA damage. Mutations that affect this complex cause the human developmental disorder Cornelia de Lange syndrome (CdLS), thought to arise from defective embryonic transcription. We establish a significant role for placental defects in the development of CdLS mouse embryos (Nipbl and Hdac8). Placenta is a naturally senescent tissue; we demonstrate that persistent DNA damage potentiates senescence and activates cytokine signaling. Mutant embryo developmental outcomes are significantly improved in the context of a wild-type placenta or by genetically restricting cytokine signaling. Our study highlights that cohesin is required for maintaining ploidy and the repair of spontaneous DNA damage in placental cells, suggesting that genotoxic stress and ensuing placental senescence and cytokine production could represent a broad theme in embryo health and viability.
Collapse
Affiliation(s)
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
7
|
Creeth HDJ, John RM. The placental programming hypothesis: Placental endocrine insufficiency and the co-occurrence of low birth weight and maternal mood disorders. Placenta 2020; 98:52-59. [PMID: 33039032 DOI: 10.1016/j.placenta.2020.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022]
Abstract
Polypeptide hormones and steroid hormones, either expressed by the placenta or dependant on the placenta for their synthesis, are key to driving adaptations in the mother during pregnancy that support growth in utero. These adaptations include changes in maternal behaviour that take place in pregnancy and after the birth to ensure that offspring receive appropriate care and nutrition. Placentally-derived hormones implicated in the programming of maternal caregiving in rodents include prolactin-related hormones and steroid hormones. Neuromodulators produced by the placenta may act directly on the fetus to support brain development. A number of imprinted genes function antagonistically in the placenta to regulate the development of key placental endocrine lineages expressing these hormones. Gain-in-expression of the normally maternally expressed gene Phlda2 or loss-of-function of the normally paternally expressed gene Peg3 results in fewer endocrine cells in the placenta, and pups are born low birth weight. Importantly, wild type dams carrying these genetically altered pups display alterations in their behaviour with decreased focus on nurturing (Phlda2) or heightened anxiety (Peg3). These same genes may regulate placental hormones in human pregnancies, with the potential to influence birth weight and maternal mood. Consequently, the aberrant expression of imprinted genes in the placenta may underlie the reported co-occurrence of low birth weight with maternal prenatal depression.
Collapse
Affiliation(s)
- H D J Creeth
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - R M John
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
8
|
Napso T, Hung YP, Davidge ST, Care AS, Sferruzzi-Perri AN. Advanced maternal age compromises fetal growth and induces sex-specific changes in placental phenotype in rats. Sci Rep 2019; 9:16916. [PMID: 31780670 PMCID: PMC6882885 DOI: 10.1038/s41598-019-53199-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
Advanced maternal age is associated with an increased risk of pregnancy complications. It programmes sex-specific cardiovascular dysfunction in rat offspring, however the intrauterine mechanisms involved remain unknown. This study in the rat assessed the impact of advanced maternal age on placental phenotype in relation to the growth of female and male fetuses. We show that relative to young (3-4 months) dams, advanced maternal age (9.5-10 months) compromises growth of both female and male fetuses but affects the placental phenotype sex-specifically. In placentas from aged versus young dams, the size of the placental transport and endocrine zones were increased and expression of Igf2 (+41%) and placental lactogen (Prl3b1: +59%) genes were upregulated in female, but not male fetuses. Placental abundance of IGF2 protein also decreased in the placenta of males only (-95%). Moreover, in placentas from aged versus young dams, glucocorticoid metabolism (11β-hsd2: +63% and 11β-hsd1: -33%) was higher in females, but lower in males (11β-hsd2: -50% and 11β-hsd1: unaltered). There was however, no change in the placental abundance of 11β-HSD2 protein in aged versus young dams regardless of fetal sex. Levels of oxidative stress in the placenta were increased in female and male fetuses (+57% and +90%, respectively) and apoptosis increased specifically in the placenta of males from aged rat dams (+700%). Thus, advanced maternal age alters placental phenotype in a sex-specific fashion. These sexually-divergent changes may play a role in determining health outcomes of female and male offspring of aged mothers.
Collapse
Affiliation(s)
- Tina Napso
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Yin-Po Hung
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sandra T Davidge
- Department of Obstetrics and Gynaecology, Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Alison S Care
- Department of Obstetrics and Gynaecology, Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, South Australia, Australia
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Xiang M, Ma Y, Lei H, Wen L, Chen S, Wang X. In vitro fertilization placenta overgrowth in mice is associated with downregulation of the paternal imprinting gene H19. Mol Reprod Dev 2019; 86:1940-1950. [PMID: 31556166 DOI: 10.1002/mrd.23279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 09/17/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Meng Xiang
- Department of Obstetrics and GynecologyTangdu Hospital, Air Force Military Medical University Xi'an China
- Department of Obstetrics and GynecologySchool of Clinical Medicine, Xi'an Medical University Xi'an China
| | - Yuan Ma
- Department of Obstetrics and GynecologyTangdu Hospital, Air Force Military Medical University Xi'an China
| | - Hui Lei
- Department of Obstetrics and GynecologyTangdu Hospital, Air Force Military Medical University Xi'an China
| | - Liang Wen
- Department of Obstetrics and GynecologyTangdu Hospital, Air Force Military Medical University Xi'an China
| | - Shuqiang Chen
- Department of Obstetrics and GynecologyTangdu Hospital, Air Force Military Medical University Xi'an China
| | - Xiaohong Wang
- Department of Obstetrics and GynecologyTangdu Hospital, Air Force Military Medical University Xi'an China
| |
Collapse
|
10
|
Cannarella R, Condorelli RA, La Vignera S, Bellucci C, Luca G, Calafiore R, Calogero AE. IGF2 and IGF1R mRNAs Are Detectable in Human Spermatozoa. World J Mens Health 2019; 38:545-551. [PMID: 31496145 PMCID: PMC7502314 DOI: 10.5534/wjmh.190070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/24/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023] Open
Abstract
Purpose Oligozoospermia is highly prevalent worldwide. Studies have reported a lower methylation rate in the H19 differentially methylated region at the sperm level in oligozoospermic patients than in controls. IGF2/H19 are the best-known pair of imprinted genes. However, no studies have yet evaluated whether they are transcribed in human sperm. To assess whether IGF2 and IGF1R mRNAs are present in human sperm and if their levels are correlated with sperm concentration and total sperm count. Materials and Methods Sperm samples (n=22) underwent reverse-transcription quantitative polymerase chain reaction using specific primers to detect IGF2 and IGF1R mRNA levels. They were then correlated with patients' conventional sperm parameters using the Spearman (τ) and Kendall (ρ) rank correlation coefficients. Results Statistically significant positive correlations were found between IGF2 mRNA levels and sperm concentration (τ=0.403, p<0.01; ρ=0.587, p<0.005) and total sperm count (τ=0.347, p<0.024; ρ=0.509, p<0.015). IGF1R mRNA levels were positively correlated with sperm concentration (τ=0.595, p<0.001; ρ=0.774, p<0.001) and total sperm count (τ=0.547, p<0.001; ρ=0.701, p<0.001). Apart from IGF1R mRNA and sperm morphology (τ=0.325, p<0.05; ρ=0.461, p<0.05), no additional correlations were found between the levels of these transcripts and other conventional sperm parameters. Conclusions IGF2 and IGF1R mRNAs were found to be present in human spermatozoa and their transcription levels were positively correlated with sperm concentration and total sperm count. Spermatozoa are the only source of IGF2 mRNA since IGF2 is a paternally-inherited gene. Further studies are needed to evaluate its role in human fertilization.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Catia Bellucci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giovanni Luca
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Riccardo Calafiore
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
11
|
Creeth HDJ, McNamara GI, Isles AR, John RM. Imprinted genes influencing the quality of maternal care. Front Neuroendocrinol 2019; 53:100732. [PMID: 30553874 DOI: 10.1016/j.yfrne.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/15/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022]
Abstract
In mammals successful rearing imposes a cost on later reproductive fitness specifically on the mother creating the potential for parental conflict. Loss of function of three imprinted genes in the dam results in deficits in maternal care suggesting that, like maternal nutrients, maternal care is a resource over which the parental genomes are in conflict. The induction of maternal care is a complex, highly regulated process and it is unsurprising that many gene disruptions and environmental adversities result in maternal care deficits. However, recent compelling evidence for a more purposeful imprinting phenomenon comes from observing alterations in the mother's behaviour when expression of the imprinted genes Phlda2 and Peg3 has been manipulated solely in the offspring. This explicit demonstration that imprinted genes expressed in the offspring influence maternal behaviour lends significant weight to the hypothesis that maternal care is a resource that has been manipulated by the paternal genome.
Collapse
Affiliation(s)
- H D J Creeth
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - G I McNamara
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - A R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff CF24 4HQ, UK
| | - R M John
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
12
|
Sharma A, Lacko LA, Argueta LB, Glendinning MD, Stuhlmann H. miR-126 regulates glycogen trophoblast proliferation and DNA methylation in the murine placenta. Dev Biol 2019; 449:21-34. [PMID: 30771304 DOI: 10.1016/j.ydbio.2019.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 12/21/2022]
Abstract
A functional placenta develops through a delicate interplay of its vascular and trophoblast compartments. We have identified a previously unknown expression domain for the endothelial-specific microRNA miR-126 in trophoblasts of murine and human placentas. Here, we determine the role of miR-126 in placental development using a mouse model with a targeted deletion of miR-126. In addition to vascular defects observed only in the embryo, loss of miR-126 function in the placenta leads to junctional zone hyperplasia at E15.5 at the expense of the labyrinth, reduced placental volume for nutrient exchange and intra-uterine growth restriction of the embryos. Junctional zone hyperplasia results from increased numbers of proliferating glycogen trophoblast (GlyT) progenitors at E13.5 that give rise to an expanded glycogen trophoblast population at E15.5. Transcriptomic profile of miR-126-/- placentas revealed dysregulation of a large number of GlyT (Prl6a1, Prl7c1, Pcdh12) and trophoblast-specific genes (Tpbpa, Tpbpb, Prld1) and genes with known roles in placental development. We show that miR-126-/- placentas, but not miR-126-/- embryos, display aberrant expression of imprinted genes with important roles in glycogen trophoblasts and junctional zone development, including Igf2, H19, Cdkn1c and Phlda2, during mid-gestation. We also show that miR126-/- placentas display global hypermethylation, including at several imprint control centers. Our findings uncover a novel role for miR-126 in regulating extra-embryonic energy stores, expression of imprinted genes and DNA methylation in the placenta.
Collapse
Affiliation(s)
- Abhijeet Sharma
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, United States
| | - Lauretta A Lacko
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, United States; Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, United States
| | - Lissenya B Argueta
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, United States
| | - Michael D Glendinning
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, United States
| | - Heidi Stuhlmann
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, United States.
| |
Collapse
|
13
|
Natale BV, Mehta P, Vu P, Schweitzer C, Gustin K, Kotadia R, Natale DRC. Reduced Uteroplacental Perfusion Pressure (RUPP) causes altered trophoblast differentiation and pericyte reduction in the mouse placenta labyrinth. Sci Rep 2018; 8:17162. [PMID: 30464252 PMCID: PMC6249310 DOI: 10.1038/s41598-018-35606-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
This study characterized the effect of the reduced utero-placental perfusion pressure (RUPP) model of placental insufficiency on placental morphology and trophoblast differentiation at mid-late gestation (E14.5). Altered trophoblast proliferation, reduced syncytiotrophoblast gene expression, increased numbers of sinusoidal trophoblast giant cells, decreased Vegfa and decreased pericyte presence in the labyrinth were observed in addition to changes in maternal blood spaces, the fetal capillary network and reduced fetal weight. Further, the junctional zone was characterized by reduced spongiotrophoblast and glycogen trophoblast with increased trophoblast giant cells. Increased Hif-1α and TGF-β-3 in vivo with supporting hypoxia studies in trophoblast stem (TS) cells in vitro, support hypoxia as a contributing factor to the RUPP placenta phenotype. Together, this study identifies altered cell populations within the placenta that may contribute to the phenotype, and thus support the use of RUPP in the mouse as a model of placenta insufficiency. As such, this model in the mouse provides a valuable tool for understanding the phenotypes resulting from genetic manipulation of isolated cell populations to further understand the etiology of placenta insufficiency and fetal growth restriction. Further this study identifies a novel relationship between placental insufficiency and pericyte depletion in the labyrinth layer.
Collapse
Affiliation(s)
- Bryony V Natale
- Department of Obstetrics and Gynecology in Reproductive Sciences, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Prutha Mehta
- Department of Obstetrics and Gynecology in Reproductive Sciences, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Priscilla Vu
- Department of Obstetrics and Gynecology in Reproductive Sciences, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Christina Schweitzer
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Katarina Gustin
- Department of Obstetrics and Gynecology in Reproductive Sciences, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ramie Kotadia
- Department of Obstetrics and Gynecology in Reproductive Sciences, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - David R C Natale
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada.
- Department of Obstetrics and Gynecology in Reproductive Sciences, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
14
|
Tunster SJ, Boqué-Sastre R, McNamara GI, Hunter SM, Creeth HDJ, John RM. Peg3 Deficiency Results in Sexually Dimorphic Losses and Gains in the Normal Repertoire of Placental Hormones. Front Cell Dev Biol 2018; 6:123. [PMID: 30320110 PMCID: PMC6170603 DOI: 10.3389/fcell.2018.00123] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022] Open
Abstract
Hormones from the fetally derived placenta signal to the mother throughout pregnancy to ensure optimal fetal growth and prepare the mother for her new role in nurturing her offspring. Through evolution, placental hormones have under gone remarkable diversification and species-specific expansions thought to be due to constant rebalancing of resource allocation between mother and offspring. Genomic imprinting, an epigenetic process in which parental germlines silence genes in the offspring, is thought to be the physical embodiment of a second conflicting interest, between the male and female mammal. Several genes silenced by paternal imprints normally function to limit the placental endocrine lineages of the mouse placenta. We hypothesized that paternal imprinting has adapted to overcome the rapid evolution of placental hormone gene families by directly regulating the lineages that express these hormones rather than individual hormones. This predicts the existence of genes maternally silenced in the offspring counteracting the influence of the paternal imprint. Here we report on the consequences of loss of function of Paternally expressed gene 3 (Peg3), on placental endocrine lineages. Mutant male placenta displayed a marked loss of the spongiotrophoblast, a key endocrine lineage of the placenta, and the glycogen cell lineage alongside reduced stores of placental glycogen and changes in expression of the normal repertoire of placental hormones. Peg3 is known to transcriptionally repress placental hormone genes. Peg3 consequently both positively and negatively regulates placental hormones through two independent and opposing mechanisms. Female placenta showed moderate response to loss of Peg3 with minor alterations to the junctional zone lineages and few changes in gene expression. These data highlight the important fact that female placenta compensate for the loss of Peg3 better than male placenta. This work lends further support to our novel hypothesis that the parental genomes are competing over the endocrine function of the mouse placenta and further suggests that a conflict between males and females begins in utero.
Collapse
Affiliation(s)
- Simon J Tunster
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Raquel Boqué-Sastre
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Gráinne I McNamara
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Susan M Hunter
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Hugo D J Creeth
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Rosalind M John
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
15
|
Sferruzzi-Perri AN. Regulating needs: Exploring the role of insulin-like growth factor-2 signalling in materno-fetal resource allocation. Placenta 2018; 64 Suppl 1:S16-S22. [PMID: 29352601 DOI: 10.1016/j.placenta.2018.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 10/18/2022]
Abstract
During pregnancy, the fetus requires nutrients supplied by the mother to grow and develop. However, the mother also requires sufficient resources to support the pregnancy, as well as, to maintain her health. Failure to regulate resource allocation between the mother and fetus can lead to pregnancy complications with immediate and life-long consequences for maternal and offspring health. This review explores the role of insulin-like growth factor (IGF)-2 in regulating materno-fetal resource allocation, particularly via its regulation of placental development and function.
Collapse
Affiliation(s)
- Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.
| |
Collapse
|
16
|
Woods L, Perez-Garcia V, Hemberger M. Regulation of Placental Development and Its Impact on Fetal Growth-New Insights From Mouse Models. Front Endocrinol (Lausanne) 2018; 9:570. [PMID: 30319550 PMCID: PMC6170611 DOI: 10.3389/fendo.2018.00570] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/06/2018] [Indexed: 01/01/2023] Open
Abstract
The placenta is the chief regulator of nutrient supply to the growing embryo during gestation. As such, adequate placental function is instrumental for developmental progression throughout intrauterine development. One of the most common complications during pregnancy is insufficient growth of the fetus, a problem termed intrauterine growth restriction (IUGR) that is most frequently rooted in a malfunctional placenta. Together with conventional gene targeting approaches, recent advances in screening mouse mutants for placental defects, combined with the ability to rapidly induce mutations in vitro and in vivo by CRISPR-Cas9 technology, has provided new insights into the contribution of the genome to normal placental development. Most importantly, these data have demonstrated that far more genes are required for normal placentation than previously appreciated. Here, we provide a summary of common types of placental defects in established mouse mutants, which will help us gain a better understanding of the genes impacting on human placentation. Based on a recent mouse mutant screen, we then provide examples on how these data can be mined to identify novel molecular hubs that may be critical for placental development. Given the close association between placental defects and abnormal cardiovascular and brain development, these functional nodes may also shed light onto the etiology of birth defects that co-occur with placental malformations. Taken together, recent insights into the regulation of mouse placental development have opened up new avenues for research that will promote the study of human pregnancy conditions, notably those based on defects in placentation that underlie the most common pregnancy pathologies such as IUGR and pre-eclampsia.
Collapse
Affiliation(s)
- Laura Woods
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Vicente Perez-Garcia
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Vicente Perez-Garcia
| | - Myriam Hemberger
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- Myriam Hemberger
| |
Collapse
|
17
|
Sferruzzi-Perri AN, Sandovici I, Constancia M, Fowden AL. Placental phenotype and the insulin-like growth factors: resource allocation to fetal growth. J Physiol 2017; 595:5057-5093. [PMID: 28337745 DOI: 10.1113/jp273330] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/27/2017] [Indexed: 12/17/2022] Open
Abstract
The placenta is the main determinant of fetal growth and development in utero. It supplies all the nutrients and oxygen required for fetal growth and secretes hormones that facilitate maternal allocation of nutrients to the fetus. Furthermore, the placenta responds to nutritional and metabolic signals in the mother by altering its structural and functional phenotype, which can lead to changes in maternal resource allocation to the fetus. The molecular mechanisms by which the placenta senses and responds to environmental cues are poorly understood. This review discusses the role of the insulin-like growth factors (IGFs) in controlling placental resource allocation to fetal growth, particularly in response to adverse gestational environments. In particular, it assesses the impact of the IGFs and their signalling machinery on placental morphogenesis, substrate transport and hormone secretion, primarily in the laboratory species, although it draws on data from human and other species where relevant. It also considers the role of the IGFs as environmental signals in linking resource availability to fetal growth through changes in the morphological and functional phenotype of the placenta. As altered fetal growth is associated with increased perinatal morbidity and mortality and a greater risk of developing adult-onset diseases in later life, understanding the role of IGFs during pregnancy in regulating placental resource allocation to fetal growth is important for identifying the mechanisms underlying the developmental programming of offspring phenotype by suboptimal intrauterine growth.
Collapse
Affiliation(s)
- Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Ionel Sandovici
- Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology and NIHR Cambridge Biomedical Research Centre, Robinson Way, Cambridge, CB2 0SW, UK
| | - Miguel Constancia
- Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology and NIHR Cambridge Biomedical Research Centre, Robinson Way, Cambridge, CB2 0SW, UK
| | - Abigail L Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|
18
|
Moore GE, Ishida M, Demetriou C, Al-Olabi L, Leon LJ, Thomas AC, Abu-Amero S, Frost JM, Stafford JL, Chaoqun Y, Duncan AJ, Baigel R, Brimioulle M, Iglesias-Platas I, Apostolidou S, Aggarwal R, Whittaker JC, Syngelaki A, Nicolaides KH, Regan L, Monk D, Stanier P. The role and interaction of imprinted genes in human fetal growth. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140074. [PMID: 25602077 PMCID: PMC4305174 DOI: 10.1098/rstb.2014.0074] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Identifying the genetic input for fetal growth will help to understand common, serious complications of pregnancy such as fetal growth restriction. Genomic imprinting is an epigenetic process that silences one parental allele, resulting in monoallelic expression. Imprinted genes are important in mammalian fetal growth and development. Evidence has emerged showing that genes that are paternally expressed promote fetal growth, whereas maternally expressed genes suppress growth. We have assessed whether the expression levels of key imprinted genes correlate with fetal growth parameters during pregnancy, either early in gestation, using chorionic villus samples (CVS), or in term placenta. We have found that the expression of paternally expressing insulin-like growth factor 2 (IGF2), its receptor IGF2R, and the IGF2/IGF1R ratio in CVS tissues significantly correlate with crown–rump length and birthweight, whereas term placenta expression shows no correlation. For the maternally expressing pleckstrin homology-like domain family A, member 2 (PHLDA2), there is no correlation early in pregnancy in CVS but a highly significant negative relationship in term placenta. Analysis of the control of imprinted expression of PHLDA2 gave rise to a maternally and compounded grand-maternally controlled genetic effect with a birthweight increase of 93/155 g, respectively, when one copy of the PHLDA2 promoter variant is inherited. Expression of the growth factor receptor-bound protein 10 (GRB10) in term placenta is significantly negatively correlated with head circumference. Analysis of the paternally expressing delta-like 1 homologue (DLK1) shows that the paternal transmission of type 1 diabetes protective G allele of rs941576 single nucleotide polymorphism (SNP) results in significantly reduced birth weight (−132 g). In conclusion, we have found that the expression of key imprinted genes show a strong correlation with fetal growth and that for both genetic and genomics data analyses, it is important not to overlook parent-of-origin effects.
Collapse
Affiliation(s)
- Gudrun E Moore
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Miho Ishida
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Charalambos Demetriou
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Lara Al-Olabi
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Lydia J Leon
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Anna C Thomas
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Sayeda Abu-Amero
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Jennifer M Frost
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Jaime L Stafford
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Yao Chaoqun
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Andrew J Duncan
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Rachel Baigel
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Marina Brimioulle
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Isabel Iglesias-Platas
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Sophia Apostolidou
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Reena Aggarwal
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - John C Whittaker
- Noncommunicable Disease Epidemiology Unit, London School of Hygiene and Tropical Medicine, University of London, London WC1E 7HT, UK
| | - Argyro Syngelaki
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London SE5 9RS, UK
| | - Kypros H Nicolaides
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London SE5 9RS, UK
| | - Lesley Regan
- Department of Obstetrics and Gynaecology, Imperial College London, St Mary's Campus, London W2 1NY, UK
| | - David Monk
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Philip Stanier
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
19
|
Sharma N, Kubaczka C, Kaiser S, Nettersheim D, Mughal SS, Riesenberg S, Hölzel M, Winterhager E, Schorle H. Tpbpa mediated deletion of Tfap2c leads to deregulation of MAPK, P21, AKT and subsequent placental growth arrest. Development 2016; 143:787-98. [DOI: 10.1242/dev.128553] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/14/2016] [Indexed: 12/26/2022]
Abstract
Loss of Tfap2c leads to developmental defects in the extra-embryonic compartment with embryonic lethality at E7.5. To investigate requirement of Tfap2c in later placental development, deletion of Tfap2c was induced throughout extra-embryonic ectoderm at E6.5 leading to severe placental abnormalities caused by reduced trophoblast population resulting in embryonic retardation by E8.5. Deletion of Tfap2c in Tpbpa+ progenitors at E8.5 results in growth arrest of junctional zone. TFAP2C regulates its target genes p21/Cdkn1a and Dusp6, involved in repression of MAPK signaling. Loss of TFAP2C reduces activation of ERK1/2 in the placenta. Downregulation of Akt and reduced activation of pAKT in the mutant placenta are accompanied by impaired glycogen synthesis. Loss of Tfap2c led to upregulation of imprinted gene H19 and downregulation of Tex19.1 and Ascl2. The placental insufficiency post E16.5 causes fetal growth restriction with 19% lighter mutant pups. TFAP2C knockdown in human trophoblast choriocarcinoma JAr cells inhibited MAPK and AKT signaling. Thus, we present a model where Tfap2c in trophoblasts controls proliferation by repressing P21 and activating MAPK pathway and further supporting differentiation of glycogen cells via activating Akt pathway.
Collapse
Affiliation(s)
- Neha Sharma
- Institute of Pathology, Department of Developmental Pathology, University of Bonn, Germany
| | - Caroline Kubaczka
- Institute of Pathology, Department of Developmental Pathology, University of Bonn, Germany
| | - Stephanie Kaiser
- Institute of Molecular Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Daniel Nettersheim
- Institute of Pathology, Department of Developmental Pathology, University of Bonn, Germany
| | - Sadaf S. Mughal
- Div. Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stefanie Riesenberg
- Unit of RNA Biology, Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Germany
| | - Michael Hölzel
- Unit of RNA Biology, Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Germany
| | - Elke Winterhager
- Institute of Molecular Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Hubert Schorle
- Institute of Pathology, Department of Developmental Pathology, University of Bonn, Germany
| |
Collapse
|
20
|
de Waal E, Vrooman LA, Fischer E, Ord T, Mainigi MA, Coutifaris C, Schultz RM, Bartolomei MS. The cumulative effect of assisted reproduction procedures on placental development and epigenetic perturbations in a mouse model. Hum Mol Genet 2015; 24:6975-85. [PMID: 26401051 PMCID: PMC4654053 DOI: 10.1093/hmg/ddv400] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/24/2015] [Accepted: 09/21/2015] [Indexed: 12/14/2022] Open
Abstract
Assisted reproductive technologies (ART) are associated with several complications including low birth weight, abnormal placentation and increased risk for rare imprinting disorders. Indeed, experimental studies demonstrate ART procedures independent of existing infertility induce epigenetic perturbations in the embryo and extraembryonic tissues. To test the hypothesis that these epigenetic perturbations persist and result in adverse outcomes at term, we assessed placental morphology and methylation profiles in E18.5 mouse concepti generated by in vitro fertilization (IVF) in two different genetic backgrounds. We also examined embryo transfer (ET) and superovulation procedures to ascertain if they contribute to developmental and epigenetic effects. Increased placental weight and reduced fetal-to-placental weight ratio were observed in all ART groups when compared with naturally conceived controls, demonstrating that non-surgical embryo transfer alone can impact placental development. Furthermore, superovulation further induced overgrowth of the placental junctional zone. Embryo transfer and superovulation defects were limited to these morphological changes, as we did not observe any differences in epigenetic profiles. IVF placentae, however, displayed hypomethylation of imprinting control regions of select imprinted genes and a global reduction in DNA methylation levels. Although we did not detect significant differences in DNA methylation in fetal brain or liver samples, rare IVF concepti displayed very low methylation and abnormal gene expression from the normally repressed allele. Our findings suggest that individual ART procedures cumulatively increase placental morphological abnormalities and epigenetic perturbations, potentially causing adverse neonatal and long-term health outcomes in offspring.
Collapse
Affiliation(s)
| | | | | | - Teri Ord
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA and
| | - Monica A Mainigi
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA and
| | - Christos Coutifaris
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA and
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
21
|
Cleaton MA, Edwards CA, Ferguson-Smith AC. Phenotypic Outcomes of Imprinted Gene Models in Mice: Elucidation of Pre- and Postnatal Functions of Imprinted Genes. Annu Rev Genomics Hum Genet 2014; 15:93-126. [DOI: 10.1146/annurev-genom-091212-153441] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Carol A. Edwards
- Department of Genetics, University of Cambridge, Cambridge CB2 3EG, United Kingdom;
| | | |
Collapse
|
22
|
Gårdebjer EM, Cuffe JSM, Pantaleon M, Wlodek ME, Moritz KM. Periconceptional alcohol consumption causes fetal growth restriction and increases glycogen accumulation in the late gestation rat placenta. Placenta 2013; 35:50-7. [PMID: 24239160 DOI: 10.1016/j.placenta.2013.10.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/18/2013] [Accepted: 10/18/2013] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Alcohol consumption is a common social practice among women of childbearing age. With 50% of pregnancies being unplanned, many embryos are exposed to alcohol prior to pregnancy recognition and formation of the placenta. The effects of periconceptional (PC) alcohol exposure on the placenta are unknown. METHODS Sprague-Dawley rats were exposed to alcohol (12.5% v/v ad libitum) from 4 days prior to 4 days after conception and effects on placental growth, morphology and gene/protein expression examined at embryonic day (E) 20. RESULTS PC ethanol (EtOH)-exposed fetuses were growth restricted and their placental/body weight ratio and placental cross-sectional area were increased. This was associated with an increase in cross-sectional area of the junctional zone and glycogen cells, especially in PC EtOH-exposed placentas from female fetuses. Junctional Glut1 and Igf2 mRNA levels were increased. Labyrinth Igf1 mRNA levels were decreased in placentas from both sexes, but protein IGF1R levels were decreased in placentas from male fetuses only. Labyrinth mRNA levels of Slc38a2 were decreased and Vegfa were increased in placentas following PC EtOH-exposure but only placentas from female fetuses exhibited increased Kdr expression. Augmented expression of the protective enzyme 11βHsd2 was found in PC EtOH-exposed labyrinth. DISCUSSION These observations are consistent with a stress response, apparent well beyond the period of EtOH-exposure and demonstrate that PC EtOH alters placental development in a sex specific manner. CONCLUSION Public awareness should be increased to educate women about how excessive drinking even before falling pregnant may impact on placental development and fetal health.
Collapse
Affiliation(s)
- E M Gårdebjer
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - J S M Cuffe
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - M Pantaleon
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - M E Wlodek
- The Department of Physiology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - K M Moritz
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
23
|
Chaiworapongsa T, Romero R, Whitten A, Tarca AL, Bhatti G, Draghici S, Chaemsaithong P, Miranda J, Kim CJ, Hassan SS. Differences and similarities in the transcriptional profile of peripheral whole blood in early and late-onset preeclampsia: insights into the molecular basis of the phenotype of preeclampsiaa. J Perinat Med 2013; 41:485-504. [PMID: 23793063 PMCID: PMC4164302 DOI: 10.1515/jpm-2013-0082] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/15/2013] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Preeclampsia (PE) can be sub-divided into early- and late-onset phenotypes. The pathogenesis of these two phenotypes has not been elucidated. To gain insight into the mechanisms of disease, the transcriptional profiles of whole blood from women with early- and late-onset PE were examined. METHODS A cross-sectional study was conducted to include women with: i) early-onset PE (diagnosed prior to 34 weeks, n=25); ii) late-onset PE (after 34 weeks, n=47); and iii) uncomplicated pregnancy (n=61). Microarray analysis of mRNA expression in peripheral whole blood was undertaken using Affymetrix microarrays. Differential gene expression was evaluated using a moderated t-test (false discovery rate <0.1 and fold change >1.5), adjusting for maternal white blood cell count and gestational age. Validation by real-time qRT-PCR was performed in a larger sample size [early PE (n=31), late PE (n=72) and controls (n=99)] in all differentially expressed genes. Gene ontology analysis and pathway analysis were performed. RESULTS i) 43 and 28 genes were differentially expressed in early- and late-onset PE compared to the control group, respectively; ii) qRT-PCR confirmed the microarray results for early and late-onset PE in 77% (33/43) and 71% (20/28) of genes, respectively; iii) 20 genes that are involved in coagulation (SERPINI2), immune regulation (VSIG4, CD24), developmental process (H19) and inflammation (S100A10) were differentially expressed in early-onset PE alone. In contrast, only seven genes that encoded proteins involved in innate immunity (LTF, ELANE) and cell-to-cell recognition in the nervous system (CNTNAP3) were differentially expressed in late-onset PE alone. Thirteen genes that encode proteins involved in host defense (DEFA4, BPI, CTSG, LCN2), tight junctions in blood-brain barrier (EMP1) and liver regeneration (ECT2) were differentially expressed in both early- and late-onset PE. CONCLUSION Early- and late-onset PE are characterized by a common signature in the transcriptional profile of whole blood. A small set of genes were differentially regulated in early- and late-onset PE. Future studies of the biological function, expression timetable and protein expression of these genes may provide insight into the pathophysiology of PE.
Collapse
Affiliation(s)
| | - Roberto Romero
- Perinatology Research Branch, NICHD, NIH, DHHS, Detroit, MI, and Bethesda, Maryland, USA
| | - Amy Whitten
- Perinatology Research Branch, NICHD, NIH, DHHS, Detroit, MI, and Bethesda, Maryland, USA,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Adi L Tarca
- Perinatology Research Branch, NICHD, NIH, DHHS, Detroit, MI, and Bethesda, Maryland, USA,Department of Computer Science, Wayne State University, Detroit, MI, USA
| | - Gaurav Bhatti
- Department of Computer Science, Wayne State University, Detroit, MI, USA
| | - Sorin Draghici
- Department of Computer Science, Wayne State University, Detroit, MI, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, NICHD, NIH, DHHS, Detroit, MI, and Bethesda, Maryland, USA,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Jezid Miranda
- Perinatology Research Branch, NICHD, NIH, DHHS, Detroit, MI, and Bethesda, Maryland, USA,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Chong Jai Kim
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sonia S Hassan
- Perinatology Research Branch, NICHD, NIH, DHHS, Detroit, MI, and Bethesda, Maryland, USA,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
24
|
Yu LL, Chang K, Lu LS, Zhao D, Han J, Zheng YR, Yan YH, Yi P, Guo JX, Zhou YG, Chen M, Li L. Lentivirus-mediated RNA interference targeting the H19 gene inhibits cell proliferation and apoptosis in human choriocarcinoma cell line JAR. BMC Cell Biol 2013; 14:26. [PMID: 23711233 PMCID: PMC3679798 DOI: 10.1186/1471-2121-14-26] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/24/2013] [Indexed: 01/09/2023] Open
Abstract
Background H19 is a paternally imprinted gene that has been shown to be highly expressed in the trophoblast tissue. Results from previous studies have initiated a debate as to whether noncoding RNA H19 acts as a tumor suppressor or as a tumor promotor in trophoblast tissue. In the present study, we developed lentiviral vectors expressing H19-specific small interfering RNA (siRNA) to specifically block the expression of H19 in the human choriocarcinoma cell line JAR. Using this approach, we investigated the impact of the H19 gene on the proliferation, invasion and apoptosis of JAR cells. Moreover, we examined the effect of H19 knockdown on the expression of insulin-like growth factor 2 (IGF2), hairy and enhancer of split homologue-1 (HES-1) and dual-specific phosphatase 5 (DUSP5) genes. Results H19 knockdown inhibited apoptosis and proliferation of JAR cells, but had no significant impact on cell invasion. In addition, H19 knockdown resulted in significant upregulation of HES-1 and DUSP5 expression, but not IGF2 expression in JAR cells. Conclusions The finding that H19 downregulation could simultaneously inhibit proliferation and apoptosis of JAR cells highlights a putative dual function for H19 in choriocarcinoma and may explain the debate on whether H19 acts as a tumor suppressor or a tumor promotor in trophoblast tissue. Furthermore, upregulation of HES-1 and DUSP5 may mediate H19 downregulation-induced suppression of proliferation and apoptosis of JAR cells.
Collapse
Affiliation(s)
- Li-Li Yu
- Department of Obstetrics and Gynecology, Daping Hospital, The Third Military Medical University, Chongqing 400042, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Epigenetic regulation of placental endocrine lineages and complications of pregnancy. Biochem Soc Trans 2013; 41:701-9. [DOI: 10.1042/bst20130002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A defining feature of mammals is the development in utero of the fetus supported by the constant flow of nutrients from the mother obtained via a specialized organ: the placenta. The placenta is also a major endocrine organ that synthesizes vast quantities of hormones and cytokines to instruct both maternal and fetal physiology. Nearly 20 years ago, David Haig and colleagues proposed that placental hormones were likely targets of the epigenetic process of genomic imprinting in response to the genetic conflicts imposed by in utero development [Haig (1993) Q. Rev. Biol. 68, 495–532]. There are two simple mechanisms through which genomic imprinting could regulate placental hormones. First, imprints could directly switch on or off alleles of specific genes. Secondly, imprinted genes could alter the expression of placental hormones by regulating the development of placental endocrine lineages. In mice, the placental hormones are synthesized in the trophoblast giant cells and spongiotrophoblast cells of the mature placenta. In the present article, I review the functional role of imprinted genes in regulating these endocrine lineages, which lends support to Haig's original hypothesis. I also discuss how imprinting defects in the placenta may adversely affect the health of the fetus and its mother during pregnancy and beyond.
Collapse
|
26
|
Tunster SJ, Jensen AB, John RM. Imprinted genes in mouse placental development and the regulation of fetal energy stores. Reproduction 2013; 145:R117-37. [PMID: 23445556 DOI: 10.1530/rep-12-0511] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Imprinted genes, which are preferentially expressed from one or other parental chromosome as a consequence of epigenetic events in the germline, are known to functionally converge on biological processes that enable in utero development in mammals. Over 100 imprinted genes have been identified in the mouse, the majority of which are both expressed and imprinted in the placenta. The purpose of this review is to provide a summary of the current knowledge regarding imprinted gene function in the mouse placenta. Few imprinted genes have been assessed with respect to their dosage-related action in the placenta. Nonetheless, current data indicate that imprinted genes converge on two key functions of the placenta, nutrient transport and placental signalling. Murine studies may provide a greater understanding of certain human pathologies, including low birth weight and the programming of metabolic diseases in the adult, and complications of pregnancy, such as pre-eclampsia and gestational diabetes, resulting from fetuses carrying abnormal imprints.
Collapse
Affiliation(s)
- S J Tunster
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales CF10 3AX, UK
| | | | | |
Collapse
|
27
|
Sandovici I, Hoelle K, Angiolini E, Constância M. Placental adaptations to the maternal-fetal environment: implications for fetal growth and developmental programming. Reprod Biomed Online 2012; 25:68-89. [PMID: 22560117 DOI: 10.1016/j.rbmo.2012.03.017] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/06/2012] [Accepted: 03/08/2012] [Indexed: 12/16/2022]
Abstract
The placenta is a transient organ found in eutherian mammals that evolved primarily to provide nutrients for the developing fetus. The placenta exchanges a wide array of nutrients, endocrine signals, cytokines and growth factors with the mother and the fetus, thereby regulating intrauterine development. Recent studies show that the placenta is not just a passive organ mediating maternal-fetal exchange. It can adapt its capacity to supply nutrients in response to intrinsic and extrinsic variations in the maternal-fetal environment. These dynamic adaptations are thought to occur to maximize fetal growth and viability at birth in the prevailing conditions in utero. However, some of these adaptations may also affect the development of individual fetal tissues, with patho-physiological consequences long after birth. Here, this review summarizes current knowledge on the causes, possible mechanisms and consequences of placental adaptive responses, with a focus on the regulation of transporter-mediated processes for nutrients. This review also highlights the emerging roles that imprinted genes and epigenetic mechanisms of gene regulation may play in placental adaptations to the maternal-fetal environment.
Collapse
Affiliation(s)
- Ionel Sandovici
- Metabolic Research Laboratories, Department of Obstetrics and Gynaecology, University of Cambridge, United Kingdom.
| | | | | | | |
Collapse
|
28
|
The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol 2012; 14:659-65. [PMID: 22684254 PMCID: PMC3389517 DOI: 10.1038/ncb2521] [Citation(s) in RCA: 643] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 05/10/2012] [Indexed: 12/15/2022]
Abstract
The H19 large intergenic noncoding RNA (lincRNA) is one of the most highly abundant and conserved transcripts in mammalian development, being expressed in both embryonic and extraembryonic cell lineages, yet its physiological function is unknown. Here we show that miR-675, a microRNA (miRNA) embedded within H19’s first exon, is expressed exclusively in the placenta from the gestational time point when placental growth normally ceases, and placentas that lack H19 continue to grow. Overexpression of miR-675 in a range of embryonic and extraembryonic cell lines results in their reduced proliferation; targets of the miRNA are upregulated in the H19 null placenta, including the growth promoting Insulin-like growth factor 1 receptor (Igf1r). Moreover, the excision of miR-675 from H19 is dynamically regulated by the stress response RNA binding protein HuR. These results suggest that H19’s main physiological role is in limiting growth of the placenta prior to birth, by regulated processing of miR-675. The controlled release of miR-675 from H19 may also allow rapid inhibition of cell proliferation in response to cellular stress or oncogenic signals.
Collapse
|
29
|
A placenta for life. Reprod Biomed Online 2012; 25:5-11. [PMID: 22578825 DOI: 10.1016/j.rbmo.2012.03.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 11/22/2022]
Abstract
The chorioallantoic placenta is the defining organ of eutherians that has enabled prolonged intrauterine gestation. As such, normal placental development and function are essential for mammalian reproductive success. Reflecting the key role of this organ in providing nutrients to the embryo, the characteristic cell type that forms substantial parts of the placenta is called 'trophoblast' (from Greek trephein 'to feed' and blastos 'germinator'). However, in addition to regulating nutrient supply, the placenta also exerts a number of other pivotal functions that highlight the importance of normal trophoblast differentiation for a successful pregnancy. In this guest symposium, 'Trophoblast Development', several contributors summarize insights gained from recent studies in the mouse that have advanced our understanding of trophoblast biology. This includes how the earliest trophoblast cells are set aside to expand in a stem- or progenitor-cell compartment under tight genetic and epigenetic control and how subsequent differentiation into the various placental cell types is controlled to ensure normal placentation. The relevance of these contributions range from early developmental cell fate decisions, stem cell biology and placental development for healthy pregnancy to the impact of placental failures on long-term health, with important clinical implications for assisted reproductive technology procedures and pregnancy-associated complications.
Collapse
|
30
|
Lefebvre L. The placental imprintome and imprinted gene function in the trophoblast glycogen cell lineage. Reprod Biomed Online 2012; 25:44-57. [PMID: 22560119 DOI: 10.1016/j.rbmo.2012.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/08/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
Abstract
Imprinted genes represent a unique class of autosomal genes expressed from only one of the parental alleles during development. The choice of the expressed allele is not random but rather is determined by the parental origin of the allele. Consequently, the mouse genome contains more than 100 genes expressed preferentially or exclusively from the maternally or the paternally inherited allele. Current research efforts are focused on understanding the molecular mechanism of this epigenetic phenomenon as well as the biological functions of the genes under its regulation. Both theoretical considerations and experimental results support a role for genomic imprinting in the regulation of embryonic growth and placental biology. In this review, recent efforts to establish the complete set of genes showing imprinted expression in the mouse placenta are first discussed. Then, the evidence suggesting that imprinted genes might be implicated in the emergence, maintenance and function of trophoblast glycogen cells is presented. Although the origin and functions of this trophoblast cell lineage are currently unknown, the analysis of mutations in imprinted genes in the mouse are providing new insights into these issues. The implications of this work for placental pathologies in human are also discussed.
Collapse
Affiliation(s)
- Louis Lefebvre
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
31
|
Ouhilal S, Vuguin P, Cui L, Du XQ, Gelling RW, Reznik SE, Russell R, Parlow AF, Karpovsky C, Santoro N, Charron MJ. Hypoglycemia, hyperglucagonemia, and fetoplacental defects in glucagon receptor knockout mice: a role for glucagon action in pregnancy maintenance. Am J Physiol Endocrinol Metab 2012; 302:E522-31. [PMID: 22167521 PMCID: PMC3311287 DOI: 10.1152/ajpendo.00420.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Alterations in insulin signaling as well as insulin action predispose to infertility as well as adverse pregnancy outcomes; however, little is known about the role of glucagon signaling in reproduction. The glucagon receptor knockout (Gcgr(-/-)) mouse created by our laboratory was used to define the role of glucagon signaling in maintaining normal reproduction. In this mouse model, lack of glucagon signaling did not alter the hypothalamic-pituitary-ovarian axis. Pregnant Gcgr(-/-) female mice displayed persistent hypoglycemia and hyperglucagonemia. Gcgr(-/-) pregnancies were associated with decreased fetal weight, increased late-gestation fetal demise, and significant abnormalities of placentation. Gcgr(-/-) placentas contained areas of extensive mineralization, fibrinoid necrosis, narrowing of the vascular channels, and a thickened interstitium associated with trophoblast hyperplasia. Absent glucagon signaling did not alter glycogen content in Gcgr(-/-) placentas but significantly downregulated genes that control growth, adrenergic signaling, vascularization, oxidative stress, and G protein-coupled receptors. Our data suggest that, similarly to insulin, glucagon action contributes to normal female reproductive function.
Collapse
Affiliation(s)
- Sophia Ouhilal
- Department of Obstetrics and Gynecology, Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Church DN, Phillips BR, Stuckey DJ, Barnes DJ, Buffa FM, Manek S, Clarke K, Harris AL, Carter EJ, Hassan AB. Igf2 ligand dependency of Pten(+/-) developmental and tumour phenotypes in the mouse. Oncogene 2011; 31:3635-46. [PMID: 22120709 PMCID: PMC3419984 DOI: 10.1038/onc.2011.526] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The tumour suppressor PTEN is a key negative regulator of the PI3K-Akt pathway, and is frequently either reduced or lost in human tumours. Murine genetic studies have confirmed that reduction of Pten promotes tumourigenesis in multiple organs, and demonstrated dependency of tumour development on the activation of downstream components such as Akt. Insulin-like growth factors (IGFs) act via IGF1R to activate the PI3K-Akt pathway, and are commonly upregulated in cancer. A context-dependent interplay between IGFs and PTEN exists in normal tissue and tumours; increased IGF2 ligand supply induces Pten expression creating an autoregulatory negative feedback loop, whereas complete loss of PTEN may either cooperate with IGF overexpression in tumour promotion, or result in desensitisation to IGF ligand. However, it remains unknown whether neoplasia associated with Pten loss is dependent on upstream IGF ligand supply in vivo. We evaluated this by generation of Pten+/− mice with differing allelic dosage of Igf2, an imprinted gene encoding the potent embryonic and tumour growth factor Igf2. We show that biallelic Igf2 supply potentiates a previously unreported Pten+/− placental phenotype and results in strain-dependent cardiac hyperplasia and neonatal lethality. Importantly, we also show that the effects of Pten loss in vivo are modified by Igf2 supply, as lack of Igf2 results in extended survival and delayed tumour development while biallelic supply is associated with reduced lifespan and accelerated neoplasia in females. Furthermore, we demonstrate that reduction of PTEN protein to heterozygote levels in human MCF7 cells is associated with increased proliferation in response to IGF2, and does not result in desensitisation to IGF2 signalling. These data indicate that the effects of Pten loss at heterozygote levels commonly observed in human tumours are modified by Igf2 ligand, and emphasise the importance of the evaluation of upstream pathways in tumours with Pten loss.
Collapse
Affiliation(s)
- D N Church
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fischer I, Weber M, Kuhn C, Fitzgerald JS, Schulze S, Friese K, Walzel H, Markert UR, Jeschke U. Is galectin-1 a trigger for trophoblast cell fusion?: the MAP-kinase pathway and syncytium formation in trophoblast tumour cells BeWo. Mol Hum Reprod 2011; 17:747-57. [PMID: 21831883 DOI: 10.1093/molehr/gar053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Galectin-1 (gal-1), a member of the mammalian β-galactoside-binding proteins, exerts biological effects by recognition of glycan ligands, including those involved in cell adhesion and growth regulation. In a previous study, we demonstrated that gal-1 induces cell differentiation processes on the membrane of choriocarcinoma cells BeWo, including the receptor tyrosine kinases, REarranged during transfection, janus kinase 2 and vascular endothelial growth factor receptor 3. Within this study, we examined which mitogen-activated protein kinases (MAPK) and serine/threonine kinases were phoshorylated by gal-1. Out of a number of 21 different MAPKs and other serine/threonine kinases, the stimulation of BeWo cells with gal-1 showed a significant alteration of signal intensity in extracellular-regulated kinases 1/2 (ERK1/2), Akt-3, Akt-pan and glycogen synthase kinase-α/β (GSK-3α/β). We demonstrated that gal-1 significantly inhibited ERK1/2, Akt-3/pan and GSK-3α/β phosphorylation in BeWo cells and in addition induced Elk1 transcription factor activation. In contrast to gal-1 effects, MAPK inhibitor U0126 reduced syncytium formation of BeWo cells. The results of our data showed that phosphorylation of MAP kinases are involved in gal-1-induced signal transduction processes in BeWo cells. Additional results obtained with MAPK inhibitor U0126 close the gap between syncytium formation induced by gal-1 and MAPK activation in trophoblast cells. Furthermore, we demonstrated that gal-1 induces the activation of Elk1, a transcription factor that is activated by MAPK pathways.
Collapse
Affiliation(s)
- Isabelle Fischer
- Department of Obstetrics and Gynecology, Ludwig Maximilians University of Munich, Maistrasse 11, 80337 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fowden AL, Coan PM, Angiolini E, Burton GJ, Constancia M. Imprinted genes and the epigenetic regulation of placental phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 106:281-8. [PMID: 21108957 DOI: 10.1016/j.pbiomolbio.2010.11.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/06/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022]
Abstract
Imprinted genes are expressed in a parent-of-origin manner by epigenetic modifications that silence either the paternal or maternal allele. They are widely expressed in fetal and placental tissues and are essential for normal placental development. In general, paternally expressed genes enhance feto-placental growth while maternally expressed genes limit conceptus growth, consistent with the hypothesis that imprinting evolved in response to the conflict between parental genomes in the allocation of maternal resources to fetal growth. Using targeted deletion, uniparental duplication, loss of imprinting and transgenic approaches, imprinted genes have been shown to determine the transport capacity of the definitive mouse placenta by regulating its growth, morphology and transporter abundance. Imprinted genes in the placenta are also responsive to environmental challenges and adapt placental phenotype to the prevailing nutritional conditions, in part, by varying their epigenetic status. In addition, interplay between placental and fetal imprinted genes is important in regulating resource partitioning via the placenta both developmentally and in response to environmental factors. By balancing the opposing parental drives on resource allocation with the environmental signals of nutrient availability, imprinted genes, like the Igf2-H19 locus, may act as nutrient sensors and optimise the fetal acquisition of nutrients for growth. These genes, therefore, have a major role in the epigenetic regulation of placental phenotype with long term consequences for the developmental programming of adult health and disease.
Collapse
Affiliation(s)
- A L Fowden
- Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB23EG, United Kingdom.
| | | | | | | | | |
Collapse
|
35
|
Piedrahita JA. The role of imprinted genes in fetal growth abnormalities. ACTA ACUST UNITED AC 2011; 91:682-92. [PMID: 21648055 DOI: 10.1002/bdra.20795] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 12/13/2010] [Accepted: 01/26/2011] [Indexed: 12/20/2022]
Abstract
Epigenetics, and in particular imprinted genes, have a critical role in the development and function of the placenta, which in turn has a central role in the regulation of fetal growth and development. A unique characteristic of imprinted genes is their expression from only one allele, maternal or paternal and dependent on parent of origin. This unique expression pattern may have arisen as a mechanism to control the flow of nutrients from the mother to the fetus, with maternally expressed imprinted genes reducing the flow of resources and paternally expressed genes increasing resources to the fetus. As a result, any epigenetic deregulation affecting this balance can result in fetal growth abnormalities. Imprinting-associated disorders in humans, such as Beckwith-Wiedemann and Angelman syndrome, support the role of imprinted genes in fetal growth. Similarly, assisted reproductive technologies in animals have been shown to affect the epigenome of the early embryo and the expression of imprinted genes. Their role in disorders such as intrauterine growth restriction appears to be more complex, in that imprinted gene expression can be seen as both causative and protective of fetal growth restriction. This protective or compensatory effect needs to be explored more fully.
Collapse
Affiliation(s)
- Jorge A Piedrahita
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA.
| |
Collapse
|
36
|
Angiolini E, Coan PM, Sandovici I, Iwajomo OH, Peck G, Burton GJ, Sibley CP, Reik W, Fowden AL, Constância M. Developmental adaptations to increased fetal nutrient demand in mouse genetic models of Igf2-mediated overgrowth. FASEB J 2011; 25:1737-45. [PMID: 21282203 DOI: 10.1096/fj.10-175273] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The healthy development of the fetus depends on an optimal balance between fetal genetic drive for growth and the maternal ability to provide nutrients through the placenta. Nothing is known about fetal-placental signaling in response to increased fetal demand in the situation of overgrowth. Here, we examined this question using the H19(Δ13) mouse model, shown previously to result in elevated levels of Igf2. Fetal and placental weights in H19(Δ13) were increased by 23% and 45%, respectively, at E19, when compared with wild-type mice. Unexpectedly, we found that disproportionately large H19(Δ13) placentas transport 20-35% less (per gram placenta) glucose and system A amino acids and have similar reductions in passive permeability, despite a significantly greater surface area for nutrient exchange and theoretical diffusion capacity compared with wild-type mice. Expression of key transporter genes Slc2a3 and Slc38a4 was reduced by ∼20%. Decreasing the overgrowth of the H19(Δ13) placenta by genetically reducing levels of Igf2P0 resulted in up-regulation of system A activity and maintenance of fetal overgrowth. Our results provide direct evidence that large placentas can modify their nutrient transfer capacity to regulate fetal nutrient acquisition. Our findings are indicative of fetal-placental signaling mechanisms that limit total demand for maternal nutrients.
Collapse
Affiliation(s)
- Emily Angiolini
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
BACs as tools for the study of genomic imprinting. J Biomed Biotechnol 2010; 2011:283013. [PMID: 21197393 PMCID: PMC3010669 DOI: 10.1155/2011/283013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/20/2010] [Accepted: 10/19/2010] [Indexed: 01/28/2023] Open
Abstract
Genomic imprinting in mammals results in the expression of genes from only one parental allele. Imprinting occurs as a consequence of epigenetic marks set down either in the father's or the mother's germ line and affects a very specific category of mammalian gene. A greater understanding of this distinctive phenomenon can be gained from studies using large genomic clones, called bacterial artificial chromosomes (BACs). Here, we review the important applications of BACs to imprinting research, covering physical mapping studies and the use of BACs as transgenes in mice to study gene expression patterns, to identify imprinting centres, and to isolate the consequences of altered gene dosage. We also highlight the significant and unique advantages that rapid BAC engineering brings to genomic imprinting research.
Collapse
|
38
|
Koukoura O, Sifakis S, Zaravinos A, Apostolidou S, Jones A, Hajiioannou J, Widschwendter M, Spandidos DA. Hypomethylation along with increased H19 expression in placentas from pregnancies complicated with fetal growth restriction. Placenta 2010; 32:51-7. [PMID: 21129773 DOI: 10.1016/j.placenta.2010.10.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 10/12/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
Abstract
The expression of imprinted genes is regulated by epigenetic modifications, such as DNA methylation. Many imprinted genes are expressed in the placenta and affect nutrient transfer capacity of the placental exchange barrier. The H19 gene is abundantly expressed by the human placenta and is implicated in the pathogenesis of congenital growth disorders such as Beckwith-Wiedemann (BWS) and Silver-Russell (SRS) syndromes. The aim of this study was to investigate the role of DNA methylation on H19 transcription and imprinting, in the pathophysiology of fetal growth restriction (FGR). Thirty one and 17 placentas from FGR-complicated and normal pregnancies were collected, respectively. We studied gene transcription, genotyping and methylation analysis of the AluI H19 on exon 5 polymorphism. Placental expression levels of H19 were significantly increased in the FGR group. The H19 mRNA levels were similar between normal placental samples that demonstrated loss and maintenance of imprinting. Placentas from growth-restricted pregnancies had lower methylation levels compared to normals, in the H19 promoter region. We have demonstrated an increased H19 transcription in the FGR group of placentas. The hypomethylation of the H19 promoters is compatible with the aberrant expression. The association of these two findings is reported for the first time in placental tissues, however, its significance remains unknown. Whether the results of this study represent an adaptation of the placenta to hypoperfusion, or they are part of FGR pathophysiology has to be further investigated.
Collapse
Affiliation(s)
- O Koukoura
- Department of Obstetrics & Gynaecology, University Hospital of Heraklion, Crete Greece
| | | | | | | | | | | | | | | |
Collapse
|
39
|
John RM. Engineering mouse models to investigate the function of imprinting. Brief Funct Genomics 2010; 9:294-303. [PMID: 20675686 DOI: 10.1093/bfgp/elq010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Some insight into the developmental basis for imprinting specific genes during the evolution of mammals can be gained from conventional gene 'knockout' studies. However, the consequences of full loss of function are often wide-ranging and may obscure the critical, dosage-related phenotype. This review focuses on transgenic techniques employed to alter the dosage of imprinted genes, including the application of bacterial artificial chromosome transgenic mice, in imprinting research. Advantages of dosage-based techniques over conventional knockout studies will be discussed, with examples. Important applications of transgenic mice in imprinting research, including studying gene expression patterns, the identification of imprinting centres and isolating the consequences of altered gene dosage, are reviewed with a particular focus on the imprinted domain on mouse distal chromosome 7.
Collapse
Affiliation(s)
- Rosalind M John
- Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|