1
|
Zhang Y, Lan W, Luo C, Tian G, Zhang D, Wang P, Fan D, Ge J, Lu Z, Chen F. Magnetic resonance imaging of abnormal placental shapes with correlation with pathologic findings. J Matern Fetal Neonatal Med 2024; 37:2399943. [PMID: 39231793 DOI: 10.1080/14767058.2024.2399943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
OBJECTIVE This study aimed to investigate the magnetic resonance imaging (MRI) characteristics of abnormal placental shapes (APS) compared with prenatal ultrasound. METHODS From an initial cohort of 613 women with a high prevalence of placenta accreta spectrum (PAS) disorders, the MRI findings of 27 pregnant women with APS who underwent antenatal ultrasound and MRI examinations before delivery were retrospectively analyzed. The clinicopathological findings were used as the gold standard, and the sensitivity, specificity, and accuracy of antenatal MRI and a multidisciplinary team experienced in diagnosing APS were assessed. RESULTS The 27 patients diagnosed with APS included 14 cases of succenturiate placenta, eight cases of the bilobed placenta, two cases of the circumvallate placenta, and one case each of placenta chorioangioma, placenta membranacea, and placental mesenchymal dysplasia. The sensitivity and specificity of APS classification with antenatal MRI were 40.74% (11/27) and 97.65% (498/510), respectively. Nonetheless, the multidisciplinary team achieved a higher sensitivity and specificity of up to 96.29% (26/27) and 99.22% (506/510), respectively. CONCLUSION We have demonstrated the complementary role of MRI and ultrasound in the detection of placental shapes in the setting of MRI images, highlighting the importance of radiologists communicating with sonographers in the diagnosis of APS.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Radiology, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Wenfu Lan
- Department of Radiology, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Caihong Luo
- Department of Obstetrics, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Gan Tian
- Department of Radiology, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Dawei Zhang
- Department of Radiology, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Pin Wang
- Department of Radiology, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Dazhi Fan
- Foshan Institute of Fetal Medicine, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Juan Ge
- Department of Pathology, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Zhanhui Lu
- Department of Ultrasound, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Fengying Chen
- Department of Radiology, Foshan Women and Children Hospital, Foshan, Guangdong, China
| |
Collapse
|
2
|
Zöllner FG, Sadick M. Editorial for "Cotyledon-Specific Flow Evaluation of Rhesus Macaque Placental Injury Using Ferumoxytol Dynamic Contrast-Enhanced MRI". J Magn Reson Imaging 2024; 60:2205-2206. [PMID: 38389260 DOI: 10.1002/jmri.29292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/24/2024] Open
Affiliation(s)
- Frank G Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Cooperative Core Facility Animal Scanner ZI, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Maliha Sadick
- Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
3
|
Menter T, Bruder E, Hösli I, Lapaire O, Raio L, Schneider H, Höller S, Hentschel R, Brandt S, Bode P, Schultzke S, Drack G. Pathologic findings of the placenta and clinical implications - recommendations for placental examination. Swiss Med Wkly 2024; 154:3929. [PMID: 39465447 DOI: 10.57187/s.3929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
The placenta is a unique and complex organ that combines the circulatory systems of two or more individuals within a single dynamic organ with a set, short lifespan. A diverse spectrum of disorders, including infections as well as metabolic, genetic, circulatory, and maturation defects, may affect its function. Pathology investigation of the placenta is key for identifying several pathogenic processes in both the mother and the foetus. Aberrant placentation, maternal and foetal vascular compromise, infection, inflammatory immunologic conditions, and disorders of maturation are elements of newly proposed classification schemes. The clinical impact of placental examination consists of diagnosing maternal and foetal disease, identifying the potential for recurrence, correlating clinical pathological findings with distinct morphologic features, and identifying the aetiology responsible for growth restriction or foetal death. Gestational trophoblastic disease occurs more frequently in the first trimester; however, in very rare cases, it can affect the term or third-trimester placenta. The application of reproducible nomenclature is expected to facilitate progress in the diagnosis and treatment of obstetric and foetal disorders with placental manifestation. Therefore, this review aims to facilitate communication between obstetricians, neonatologists, and pathologists involved in this diagnostic process.
Collapse
Affiliation(s)
- Thomas Menter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Elisabeth Bruder
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Irene Hösli
- Department of Obstetrics, University Hospital Basel, Basel, Switzerland
| | - Olav Lapaire
- Department of Obstetrics, University Hospital Basel, Basel, Switzerland
| | - Luigi Raio
- Department of Obstetrics and Gynaecology, University Hospital of Bern, Inselspital, Bern, Switzerland
| | - Henning Schneider
- Department of Obstetrics and Gynaecology, University Hospital of Bern, Inselspital, Bern, Switzerland
| | - Sylvia Höller
- Department of Pathology, Triemli Hospital, Zurich, Switzerland
| | - Roland Hentschel
- Division of Neonatology/Intensive Care Medicine, Department of General Pediatrics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Simone Brandt
- Pathologie Zentrum Zürich medica, Zurich, Switzerland
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Peter Bode
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
- Kantonsspital Winterthur, Winterthur, Switzerland
| | - Sven Schultzke
- Department of Neonatology, University Children's Hospital Basel UKBB, Basel, Switzerland
| | - Gero Drack
- Department of Obstetrics and Gynaecology, Kantonsspital St. Gallen, Switzerland
| |
Collapse
|
4
|
de Oliveira DC, Cheikh Sleiman H, Payette K, Hutter J, Story L, Hajnal JV, Alexander DC, Shipley RJ, Slator PJ. A flexible generative algorithm for growing in silico placentas. PLoS Comput Biol 2024; 20:e1012470. [PMID: 39374295 PMCID: PMC11486434 DOI: 10.1371/journal.pcbi.1012470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/17/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
The placenta is crucial for a successful pregnancy, facilitating oxygen exchange and nutrient transport between mother and fetus. Complications like fetal growth restriction and pre-eclampsia are linked to placental vascular structure abnormalities, highlighting the need for early detection of placental health issues. Computational modelling offers insights into how vascular architecture correlates with flow and oxygenation in both healthy and dysfunctional placentas. These models use synthetic networks to represent the multiscale feto-placental vasculature, but current methods lack direct control over key morphological parameters like branching angles, essential for predicting placental dysfunction. We introduce a novel generative algorithm for creating in silico placentas, allowing user-controlled customisation of feto-placental vasculatures, both as individual components (placental shape, chorionic vessels, placentone) and as a complete structure. The algorithm is physiologically underpinned, following branching laws (i.e. Murray's Law), and is defined by four key morphometric statistics: vessel diameter, vessel length, branching angle and asymmetry. Our algorithm produces structures consistent with in vivo measurements and ex vivo observations. Our sensitivity analysis highlights how vessel length variations and branching angles play a pivotal role in defining the architecture of the placental vascular network. Moreover, our approach is stochastic in nature, yielding vascular structures with different topological metrics when imposing the same input settings. Unlike previous volume-filling algorithms, our approach allows direct control over key morphological parameters, generating vascular structures that closely resemble real vascular densities and allowing for the investigation of the impact of morphological parameters on placental function in upcoming studies.
Collapse
Affiliation(s)
- Diana C. de Oliveira
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Hani Cheikh Sleiman
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Kelly Payette
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Smart Imaging Lab, Radiological Institute, University Hospital Erlangen, Erlangen, Germany
| | - Lisa Story
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Joseph V. Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Daniel C. Alexander
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| | - Rebecca J. Shipley
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Paddy J. Slator
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff, United Kingdom
- School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
5
|
Sun H, Jiao J, Wang Y, Zhu C, Wang S, Wang Y, Ban B, Guo Y, Ren Y. Ultrasound based radiomics model for assessment of placental function in pregnancies with preeclampsia. Sci Rep 2024; 14:21123. [PMID: 39256496 PMCID: PMC11387498 DOI: 10.1038/s41598-024-72046-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
The goal of our research is to elucidate and better assess placental function in rats with preeclampsia through an innovative application of ultrasound-based radiomics. Using a rat model induced with L-NAME, we carefully investigated placental dysfunction via microstructural analysis and immunoprotein level assessment. Employing the Boruta feature selection method on ultrasound images facilitated the identification of crucial features, consequently enabling the development of a robust model for classifying placental dysfunction. Our study included 12 pregnant rats, and thorough placental evaluations were conducted on 160 fetal rats. Distinct alterations in placental microstructure and angiogenic factor expression were evident in rats with preeclampsia. Leveraging high-throughput mining of quantitative image features, we extracted 558 radiomic features, which were subsequently used to construct an impressive evaluation model with an area under the receiver operating curve (AUC) of 0.95. This model also exhibited a remarkable sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of 88.7%, 91.5%, 90.2%, 90.4%, and 90.0%, respectively. Our findings highlight the ability of ultrasound-based radiomics to detect abnormal placental features, demonstrating its potential for evaluating both normative and impaired placental function with high precision and reliability.
Collapse
Affiliation(s)
- Hongshuang Sun
- Department of Ultrasound Medicine, Affiliated Hospital of Jining Medical College, Shandong, 272029, China
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jing Jiao
- Department of Electronic Engineering, School of Information Science and Technology, Fudan University, Handan Road, Yangpu District, Shanghai, 200433, China
- The Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, 200433, China
| | - Yicong Wang
- Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Chen Zhu
- Department of Ultrasound Medicine, Obstetrics and Gynecology Hospital of Fudan University, No. 128, Shenyang Road, Shanghai, 200090, China
| | - Shaochun Wang
- Department of Ultrasound Medicine, Affiliated Hospital of Jining Medical College, Shandong, 272029, China
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yuanyuan Wang
- Department of Electronic Engineering, School of Information Science and Technology, Fudan University, Handan Road, Yangpu District, Shanghai, 200433, China
- The Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, 200433, China
| | - Bo Ban
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China.
| | - Yi Guo
- Department of Electronic Engineering, School of Information Science and Technology, Fudan University, Handan Road, Yangpu District, Shanghai, 200433, China.
- The Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, 200433, China.
| | - Yunyun Ren
- Department of Ultrasound Medicine, Obstetrics and Gynecology Hospital of Fudan University, No. 128, Shenyang Road, Shanghai, 200090, China.
| |
Collapse
|
6
|
Roberts D, Aisagbonhi O, Parast MM. Incorporating placental pathology into clinical care and research. Trends Mol Med 2024:S1471-4914(24)00216-8. [PMID: 39299838 DOI: 10.1016/j.molmed.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/22/2024]
Abstract
Despite recent standardization of placental evaluation and establishment of criteria for diagnosis of major patterns of placental injury, placental pathological examination remains undervalued and under-utilized. The placenta can harbor a significant amount of information relevant to both the pregnant person and offspring. Placental pathology can also provide a significant context for pathophysiological study of adverse pregnancy outcomes, helping to optimally subcategorize the 'great obstetric syndromes' of pre-eclampsia (PE), spontaneous preterm birth (sPTB), and fetal growth restriction (FGR), and to identify causes of stillbirth. We hereby propose that placental evaluation should be incorporated into routine delivery of obstetric and neonatal care, and further suggest that its integration into clinical, translational, and basic research could significantly advance our understanding of pregnancy complications and adverse neonatal outcomes.
Collapse
Affiliation(s)
- Drucilla Roberts
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Omonigho Aisagbonhi
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA.
| |
Collapse
|
7
|
Zhao X, Wu S, Yun Y, Du Z, Liu S, Bo C, Gao Y, Yang L, Song L, Bai C, Su G, Li G. Integrating Transcriptomics, Proteomics, and Metabolomics to Investigate the Mechanism of Fetal Placental Overgrowth in Somatic Cell Nuclear Transfer Cattle. Int J Mol Sci 2024; 25:9388. [PMID: 39273344 PMCID: PMC11395630 DOI: 10.3390/ijms25179388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
A major factor limiting the development of somatic cell nuclear transfer (SCNT) technology is the low success rate of pregnancy, mainly due to placental abnormalities disrupting the maternal-fetal balance during pregnancy. Although there has been some progress in research on the abnormal enlargement of cloned bovine placenta, there are still few reports on the direct regulatory mechanisms of enlarged cloned bovine placenta tissue. In this study, we conducted sequencing and analysis of transcriptomics, proteomics, and metabolomics of placental tissues from SCNT cattle (n = 3) and control (CON) cattle (n = 3). The omics analysis results indicate abnormalities in biological functions such as protein digestion and absorption, glycolysis/gluconeogenesis, the regulation of lipid breakdown, as well as glycerolipid metabolism, and arginine and proline metabolism in the placenta of SCNT cattle. Integrating these analyses highlights critical metabolic pathways affecting SCNT cattle placenta, including choline metabolism and unsaturated fatty acid biosynthesis. These findings suggest that aberrant expressions of genes, proteins, and metabolites in SCNT placentas affect key pathways in protein digestion, growth hormone function, and energy metabolism. Our results suggest that abnormal protein synthesis, growth hormone function, and energy metabolism in SCNT bovine placental tissues contribute to placental hypertrophy. These findings offer valuable insights for further investigation into the mechanisms underlying SCNT bovine placental abnormalities.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Shanshan Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yuan Yun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Zhiwen Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Shuqin Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Chunjie Bo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Yuxin Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Lishuang Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| |
Collapse
|
8
|
Ma Y, Duan L, Reisch B, Kimmig R, Iannaccone A, Gellhaus A. Impact of the Immunomodulatory Factor Soluble B7-H4 in the Progress of Preeclampsia by Inhibiting Essential Functions of Extravillous Trophoblast Cells. Cells 2024; 13:1372. [PMID: 39195262 DOI: 10.3390/cells13161372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
A key aspect of preeclampsia pathophysiology is the reduced invasiveness of trophoblasts and the impairment of spiral artery remodelling. Understanding the causes of altered trophoblast function is critical to understand the development of preeclampsia. B7-H4, a checkpoint molecule, controls a wide range of processes, including T-cell activation, cytokine release, and tumour progression. Our previous findings indicated that B7-H4 levels are elevated in both maternal blood and placental villous tissue during the early stages of preeclampsia. Here, we investigated the function of B7-H4 in trophoblast physiology. Recombinant B7-H4 protein was used to treat human SGHPL-5 extravillous trophoblast cells. Biological functions were investigated using MTT, wound healing, and transwell assays. Signalling pathways were analysed by immunoblotting and immunofluorescence. The functionality of B7-H4 was further confirmed by immunoblotting and immunohistochemical analysis in placental tissues from control and preeclamptic patients following therapeutic plasma exchange (TPE) or standard of care treatment. This study showed that B7-H4 inhibited the proliferation, migration, and invasion capacities of SGHPL-5 extravillous cells while promoting apoptosis by downregulating the PI3K/Akt/STAT3 signalling pathway. These results were consistently confirmed in placental tissues from preterm controls compared to early-onset preeclamptic placental tissues from patients treated with standard of care or TPE treatment. B7-H4 may play a role in the development of preeclampsia by inhibiting essential functions of extravillous trophoblast cells during placental development. One possible mechanism by which TPE improves pregnancy outcomes in preeclampsia is through the elimination of B7-H4 amongst other factors.
Collapse
Affiliation(s)
- Yuyang Ma
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, 45147 Essen, Germany
| | - Liyan Duan
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, 45147 Essen, Germany
| | - Beatrix Reisch
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, 45147 Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, 45147 Essen, Germany
| | - Antonella Iannaccone
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, 45147 Essen, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
9
|
Álvarez MGM, Madhuranthakam AJ, Udayakumar D. Quantitative non-contrast perfusion MRI in the body using arterial spin labeling. MAGMA (NEW YORK, N.Y.) 2024:10.1007/s10334-024-01188-1. [PMID: 39105949 DOI: 10.1007/s10334-024-01188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/10/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024]
Abstract
Arterial spin labeling (ASL) is a non-invasive magnetic resonance imaging (MRI) method that enables the assessment and the quantification of perfusion without the need for an exogenous contrast agent. ASL was originally developed in the early 1990s to measure cerebral blood flow. The utility of ASL has since then broadened to encompass various organ systems, offering insights into physiological and pathological states. In this review article, we present a synopsis of ASL for quantitative non-contrast perfusion MRI, as a contribution to the special issue titled "Quantitative MRI-how to make it work in the body?" The article begins with an introduction to ASL principles, followed by different labeling strategies, such as pulsed, continuous, pseudo-continuous, and velocity-selective approaches, and their role in perfusion quantification. We proceed to address the technical challenges associated with ASL in the body and outline some of the innovative approaches devised to surmount these issues. Subsequently, we summarize potential clinical applications, challenges, and state-of-the-art ASL methods to quantify perfusion in some of the highly perfused organs in the thorax (lungs), abdomen (kidneys, liver, pancreas), and pelvis (placenta) of the human body. The article concludes by discussing future directions for successful translation of quantitative ASL in body imaging.
Collapse
Affiliation(s)
| | - Ananth J Madhuranthakam
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9061, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Durga Udayakumar
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9061, USA.
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
10
|
Alimardani B, Hashemipour M, Hovsepian S, Mozafarian N, Khoshhali M, Kelishadi R. Association between maternal and cord blood thyroid hormones, and urine iodine concentration with fetal growth. J Pediatr Endocrinol Metab 2024; 37:516-524. [PMID: 38685764 DOI: 10.1515/jpem-2023-0570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVES We planned to evaluate the association of fetal and maternal thyroid hormones and maternal iodine status with neonates' anthropometric parameters. METHODS In this cross-sectional study, levels of thyrotropin were measured in maternal serum in the first trimester of pregnancy, and thyrotropin (TSH) and free thyroxin (fT4) were measured in cord blood serum samples at birth. Urinary iodine concentration (UIC) levels in random urine samples of mothers were measured in the third trimester of pregnancy. The relationship between UIC and thyroid hormone levels of mothers with neonates' anthropometric birth parameters of neonates was evaluated. RESULTS One hundred eighty-eight mother-newborn pairs completed the study. Mean (SD) of cord blood TSH (CB-TSH), cord blood-free thyroxin (CB-FT4) values, and maternal TSH (M-TSH) levels were 8.8 (7.3) mIU/L, 1.01 (0.2) ng/dL, and 2.2 (0.9) mIU/L, respectively. After adjusting for confounders, there was a positive significant association between female neonate length and maternal TSH and log log-transformed CB TSH (LN_CB-TSH) (p<0.05). Median UIC (Q1-Q3) was 157 (53-241) μg/L, and there was no association between birth weight, birth length, and head circumferences of neonates and mothers' UIC (p>0.05). CONCLUSIONS We found a positive correlation between maternal TSH in the first trimester of pregnancy and the birth length of newborns, and a negative correlation was observed between CB-TSH and birth length in girls, but it did not provide conclusive evidence for the relationship between maternal and neonatal thyroid hormone levels and birth weight. There was no association between maternal UIC levels in the third trimester and birth anthropometric parameters.
Collapse
Affiliation(s)
- Bita Alimardani
- 48455 Metabolic Liver Diseases Research Center, Isfahan University of Medical Sciences , Isfahan, Iran
| | - Mahin Hashemipour
- 48455 Metabolic Liver Diseases Research Center, Isfahan University of Medical Sciences , Isfahan, Iran
- 48455 Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences , Isfahan, Iran
| | - Silva Hovsepian
- 48455 Metabolic Liver Diseases Research Center, Isfahan University of Medical Sciences , Isfahan, Iran
- 48455 Imam Hossein Children's Hospital, Isfahan University of Medical Sciences , Isfahan, Iran
| | - Nafiseh Mozafarian
- 48455 Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences , Isfahan, Iran
| | - Mehri Khoshhali
- 48455 Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences , Isfahan, Iran
| | - Roya Kelishadi
- 48455 Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences , Isfahan, Iran
| |
Collapse
|
11
|
Yue T, Guo Y, Qi X, Zheng W, Zhang H, Wang B, Liu K, Zhou B, Zeng X, Ouzhuluobu, He Y, Su B. Sex-biased regulatory changes in the placenta of native highlanders contribute to adaptive fetal development. eLife 2024; 12:RP89004. [PMID: 38869160 PMCID: PMC11175615 DOI: 10.7554/elife.89004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Compared with lowlander migrants, native Tibetans have a higher reproductive success at high altitude though the underlying mechanism remains unclear. Here, we compared the transcriptome and histology of full-term placentas between native Tibetans and Han migrants. We found that the placental trophoblast shows the largest expression divergence between Tibetans and Han, and Tibetans show decreased immune response and endoplasmic reticulum stress. Remarkably, we detected a sex-biased expression divergence, where the male-infant placentas show a greater between-population difference than the female-infant placentas. The umbilical cord plays a key role in the sex-biased expression divergence, which is associated with the higher birth weight of the male newborns of Tibetans. We also identified adaptive histological changes in the male-infant placentas of Tibetans, including larger umbilical artery wall and umbilical artery intima and media, and fewer syncytial knots. These findings provide valuable insights into the sex-biased adaptation of human populations, with significant implications for medical and genetic studies of human reproduction.
Collapse
Affiliation(s)
- Tian Yue
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesBeijingChina
| | - Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesBeijingChina
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang HospitalKunmingChina
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
| | - Bin Wang
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang HospitalKunmingChina
| | - Kai Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Bin Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesBeijingChina
| | - Xuerui Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesBeijingChina
| | - Ouzhuluobu
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang HospitalKunmingChina
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of SciencesKunmingChina
| |
Collapse
|
12
|
Melbourne A, Schabel MC, David AL, Roberts VHJ. Magnetic resonance imaging of placental intralobule structure and function in a preclinical nonhuman primate model†. Biol Reprod 2024; 110:1065-1076. [PMID: 38442734 PMCID: PMC11180614 DOI: 10.1093/biolre/ioae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/25/2024] [Accepted: 03/04/2024] [Indexed: 03/07/2024] Open
Abstract
Although the central role of adequate blood flow and oxygen delivery is known, the lack of optimized imaging modalities to study placental structure has impeded our understanding of its vascular function. Magnetic resonance imaging is increasingly being applied in this field, but gaps in knowledge remain, and further methodological developments are needed. In particular, the ability to distinguish maternal from fetal placental perfusion and the understanding of how individual placental lobules are functioning are lacking. The potential clinical benefits of developing noninvasive tools for the in vivo assessment of blood flow and oxygenation, two key determinants of placental function, are tremendous. Here, we summarize a number of structural and functional magnetic resonance imaging techniques that have been developed and applied in animal models and studies of human pregnancy over the past decade. We discuss the potential applications and limitations of these approaches. Their combination provides a novel source of contrast to allow analysis of placental structure and function at the level of the lobule. We outline the physiological mechanisms of placental T2 and T2* decay and devise a model of how tissue composition affects the observed relaxation properties. We apply this modeling to longitudinal magnetic resonance imaging data obtained from a preclinical pregnant nonhuman primate model to provide initial proof-of-concept data for this methodology, which quantifies oxygen transfer and placental structure across and between lobules. This method has the potential to improve our understanding and clinical management of placental insufficiency once validation in a larger nonhuman primate cohort is complete.
Collapse
Affiliation(s)
- Andrew Melbourne
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Obstetrics and Maternal Fetal Medicine, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, UK
| | - Matthias C Schabel
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, USA
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| | - Anna L David
- Department of Obstetrics and Maternal Fetal Medicine, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, UK
| | - Victoria H J Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
13
|
Cromb D, Slator PJ, Hall M, Price A, Alexander DC, Counsell SJ, Hutter J. Advanced magnetic resonance imaging detects altered placental development in pregnancies affected by congenital heart disease. Sci Rep 2024; 14:12357. [PMID: 38811636 PMCID: PMC11136986 DOI: 10.1038/s41598-024-63087-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Congenital heart disease (CHD) is the most common congenital malformation and is associated with adverse neurodevelopmental outcomes. The placenta is crucial for healthy fetal development and placental development is altered in pregnancy when the fetus has CHD. This study utilized advanced combined diffusion-relaxation MRI and a data-driven analysis technique to test the hypothesis that placental microstructure and perfusion are altered in CHD-affected pregnancies. 48 participants (36 controls, 12 CHD) underwent 67 MRI scans (50 control, 17 CHD). Significant differences in the weighting of two independent placental and uterine-wall tissue components were identified between the CHD and control groups (both pFDR < 0.001), with changes most evident after 30 weeks gestation. A significant trend over gestation in weighting for a third independent tissue component was also observed in the CHD cohort (R = 0.50, pFDR = 0.04), but not in controls. These findings add to existing evidence that placental development is altered in CHD. The results may reflect alterations in placental perfusion or the changes in fetal-placental flow, villous structure and maturation that occur in CHD. Further research is needed to validate and better understand these findings and to understand the relationship between placental development, CHD, and its neurodevelopmental implications.
Collapse
Affiliation(s)
- Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Centre for Medical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Paddy J Slator
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Megan Hall
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Anthony Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Centre for Medical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK.
- Centre for Medical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Centre for Medical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Smart Imaging Lab, Radiological Institute, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
14
|
Janzen C, Lei MYY, Lee BR, Vangala S, DelRosario I, Meng Q, Ritz B, Liu J, Jerrett M, Chanlaw T, Choi S, Aliabadi A, Fortes PA, Sullivan PS, Murphy A, Vecchio GD, Thamotharan S, Sung K, Devaskar SU. A Description of the Imaging Innovations for Placental Assessment in Response to Environmental Pollution Study. Am J Perinatol 2024; 41:e853-e862. [PMID: 36241211 PMCID: PMC11111287 DOI: 10.1055/a-1961-2059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/22/2022] [Indexed: 11/01/2022]
Abstract
OBJECTIVE The aim of Placental Assessment in Response to Environmental Pollution Study (PARENTs) was to determine whether imaging of the placenta by novel multiparametric magnetic resonance imaging (MRI) techniques in early pregnancy could help predict adverse pregnancy outcomes (APOs) due to ischemic placental disease (IPD). Additionally, we sought to determine maternal characteristics and environmental risk factors that contribute to IPD and secondary APOs. STUDY DESIGN Potential patients in their first trimester of pregnancy, who agreed to MRI of the placenta and measures of assessment of environmental pollution, were recruited into PARENTs, a prospective population-based cohort study. Participants were seen at three study visits during pregnancy and again at their delivery from 2015 to 2019. We collected data from interviews, chart abstractions, and imaging. Maternal biospecimens (serum, plasma, and urine) at antepartum study visits and delivery specimens (placenta, cord, and maternal blood) were collected, processed, and stored. The primary outcome was a composite of IPD, which included any of the following: placental abruption, hypertensive disease of pregnancy, fetal growth restriction, or a newborn of small for gestational age. RESULTS In this pilot cohort, of the 190 patients who completed pregnancy to viable delivery, 50 (26%) developed IPD. Among demographic characteristics, having a history of prior IPD in multiparous women was associated with the development of IPD. In the multiple novel perfusion measurements taken of the in vivo placenta using MRI, decreased high placental blood flow (mL/100 g/min) in early pregnancy (between 14 and 16 weeks) was found to be significantly associated with the later development of IPD. CONCLUSION Successful recruitment of the PARENTs prospective cohort demonstrated the feasibility and acceptability of the use of MRI in human pregnancy to study the placenta in vivo and at the same time collect environmental exposure data. Analysis is ongoing and we hope these methods will assist researchers in the design of prospective imaging studies of pregnancy. KEY POINTS · MRI was acceptable and feasible for the study of the human placenta in vivo.. · Functional imaging of the placenta by MRI showed a significant decrease in high placental blood flow.. · Measures of environmental exposures are further being analyzed to predict IPD..
Collapse
Affiliation(s)
- Carla Janzen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Margarida Y. Y. Lei
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Brian R. Lee
- Department of Pediatrics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Sitaram Vangala
- Department of Internal Medicine and Health Services Research, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Irish DelRosario
- Department of Epidemiology, Jonathan Fielding School of Public Health at University of California Los Angeles, Los Angeles, California
| | - Qi Meng
- Department of Epidemiology, Jonathan Fielding School of Public Health at University of California Los Angeles, Los Angeles, California
| | - Beate Ritz
- Department of Epidemiology, Jonathan Fielding School of Public Health at University of California Los Angeles, Los Angeles, California
| | - Jonathan Liu
- Department of Environmental Health Sciences, Jonathan Fielding School of Public Health at University of California Los Angeles, Los Angeles, California
| | - Michael Jerrett
- Department of Environmental Health Sciences, Jonathan Fielding School of Public Health at University of California Los Angeles, Los Angeles, California
| | - Teresa Chanlaw
- Department of Pediatrics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Sarah Choi
- Department of Pediatrics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Arya Aliabadi
- Department of Internal Medicine and Health Services Research, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Precious Ann Fortes
- Department of Pathology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Peggy S. Sullivan
- Department of Pathology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Aisling Murphy
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Giorgia Del Vecchio
- Department of Pediatrics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Shanthie Thamotharan
- Department of Pediatrics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - KyungHyun Sung
- Department of Radiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Sherin U. Devaskar
- Department of Pediatrics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| |
Collapse
|
15
|
Seiter D, Chen R, Ludwig KD, Zhu A, Shah D, Wieben O, Johnson KM. Velocity-selective arterial spin labeling perfusion measurements in 2nd trimester human placenta with varying BMI. Placenta 2024; 150:72-79. [PMID: 38615536 PMCID: PMC11065564 DOI: 10.1016/j.placenta.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Proper placental development is crucial to fetal health but is challenging to functionally assess non-invasively and is thus poorly characterized in populations. Body mass index (BMI) has been linked with adverse outcomes, but the causative mechanism is uncertain. Velocity-selective arterial spin labeling (VS-ASL) MRI provides a method to non-invasively measure placental perfusion with robustness to confounding transit time delays. In this study, we report on the measurement of perfusion in the human placenta in early pregnancy using velocity-selective arterial spin labeling (VS-ASL) MRI, comparing non-obese and obese participants. METHODS Participants (N = 97) undergoing routine prenatal care were recruited and imaged with structural and VS-ASL perfusion MRI at 15 and 21 weeks gestation. Resulting perfusion images were analyzed with respect to obesity based on BMI, gestational age, and the presence of adverse outcomes. RESULTS At 15 weeks gestation BMI was not associated with placental perfusion or perfusion heterogeneity. However, at 21 weeks gestation BMI was associated with higher placental perfusion (p < 0.01) and a decrease in perfusion heterogeneity (p < 0.05). In alignment with past studies, perfusion values were also higher at 21 weeks compared to 15 weeks gestation. In a small cohort of participants with adverse outcomes, at 21 weeks lower perfusion was observed compared to participants with uncomplicated pregnancies. DISCUSSION These results suggest low placental perfusion in the early second trimester may not be the culpable factor driving associations of obesity with adverse outcomes.
Collapse
Affiliation(s)
- Daniel Seiter
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Ruiming Chen
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Kai D Ludwig
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Ante Zhu
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States; Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Dinesh Shah
- Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Oliver Wieben
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States; Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Kevin M Johnson
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States; Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States; Radiology, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
16
|
Chen JY, Yu BL, Wu XJ, Li YF, Zhong LY, Chen M. A longitudinal and cross-sectional study of placental circulation between normal and placental insufficiency pregnancies. Placenta 2024; 149:29-36. [PMID: 38490095 DOI: 10.1016/j.placenta.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/11/2024] [Accepted: 03/03/2024] [Indexed: 03/17/2024]
Abstract
INTRODUCTION To longitudinally and cross-sectionally study the differences in the uterine artery pulsatility index (UTPI), umbilical artery pulsatility index (UAPI) and placental vascularization indices (PVIs, derived from 3-dimensional power Doppler) between normal and placental insufficiency pregnancies throughout gestation. METHODS UTPI, UAPI and PVI were measured 6 times at 4- to 5- week intervals from 11 to 13+6 weeks-36 weeks. Preeclampsia (PE) and fetal growth restriction (FGR) were defined as placental insufficiency. Comparisons of UTPI, UAPI and PVI between normal and insufficiency groups were performed by one-way repeated measures analysis of variance. RESULTS A total of 125 women were included: monitored regularly from the first trimester to 36 weeks of gestation: 109 with normal pregnancies and 16 with placental insufficiency. Longitudinal study of the normal pregnancy group showed that UTPI and UAPI decreased significantly every 4 weeks, while PVIs increased significantly every 8 weeks until term. In the placental insufficiency group however, this decrease occurred slower at 8 weeks intervals and UTPI stabilized after 24 weeks. No significant difference was noted in PVIs throughout pregnancy. Cross-sectional study from different stages of gestation showed that UTPI was higher in the insufficiency group from 15 weeks onward and PVIs were lower after 32 weeks. DISCUSSION Compared to high-risk pregnancies with normal outcome, UTPI and UAPI needed a longer time to reach a significant change in those with clinical confirmation of placental insufficiency pregnancies and no significant change was found in PVI throughout gestation. UTPI was the earliest factor in detecting adverse outcome pregnancies.
Collapse
Affiliation(s)
- J Y Chen
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - B L Yu
- Department of Bio Resource Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - X J Wu
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Y F Li
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - L Y Zhong
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - M Chen
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Hori T, Okae H, Shibata S, Kobayashi N, Kobayashi EH, Oike A, Sekiya A, Arima T, Kaji H. Trophoblast stem cell-based organoid models of the human placental barrier. Nat Commun 2024; 15:962. [PMID: 38332125 PMCID: PMC10853531 DOI: 10.1038/s41467-024-45279-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Human placental villi have essential roles in producing hormones, mediating nutrient and waste exchange, and protecting the fetus from exposure to xenobiotics. Human trophoblast organoids that recapitulate the structure of villi could provide an important in vitro tool to understand placental development and the transplacental passage of xenobiotics. However, such organoids do not currently exist. Here we describe the generation of trophoblast organoids using human trophoblast stem (TS) cells. Following treatment with three kinds of culture medium, TS cells form spherical organoids with a single outer layer of syncytiotrophoblast (ST) cells that display a barrier function. Furthermore, we develop a column-type ST barrier model based on the culture condition of the trophoblast organoids. The bottom membrane of the column is almost entirely covered with syndecan 1-positive ST cells. The barrier integrity and maturation levels of the model are confirmed by measuring transepithelial/transendothelial electrical resistance (TEER) and the amount of human chorionic gonadotropin. Further analysis reveals that the model can be used to derive the apparent permeability coefficients of model compounds. In addition to providing a suite of tools for the study of placental development, our trophoblast models allow the evaluation of compound transfer and toxicity, which will facilitate drug development.
Collapse
Affiliation(s)
- Takeshi Hori
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Hiroaki Okae
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Shun Shibata
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Norio Kobayashi
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eri H Kobayashi
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Akira Oike
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Asato Sekiya
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Hirokazu Kaji
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan.
| |
Collapse
|
18
|
Cromb D, Slator P, Hall M, Price A, Alexander D, Counsell S, Hutter J. Advanced magnetic resonance imaging detects altered placental development in pregnancies affected by congenital heart disease. RESEARCH SQUARE 2024:rs.3.rs-3873412. [PMID: 38343847 PMCID: PMC10854304 DOI: 10.21203/rs.3.rs-3873412/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Congenital heart disease (CHD) is the most common congenital malformation and is associated with adverse neurodevelopmental outcomes. The placenta is crucial for healthy fetal development and placental development is altered in pregnancy when the fetus has CHD. This study utilized advanced combined diffusion-relaxation MRI and a data-driven analysis technique to test the hypothesis that placental microstructure and perfusion are altered in CHD-affected pregnancies. 48 participants (36 controls, 12 CHD) underwent 67 MRI scans (50 control, 17 CHD). Significant differences in the weighting of two independent placental and uterine-wall tissue components were identified between the CHD and control groups (both pFDR<0.001), with changes most evident after 30 weeks gestation. A Significant trend over gestation in weighting for a third independent tissue component was also observed in the CHD cohort (R = 0.50, pFDR=0.04), but not in controls. These findings add to existing evidence that placental development is altered in CHD. The results may reflect alterations in placental perfusion or the changes in fetal-placental flow, villous structure and maturation that occur in CHD. Further research is needed to validate and better understand these findings and to understand the relationship between placental development, CHD, and its neurodevelopmental implications.
Collapse
|
19
|
Karvas RM, Theunissen TW. Generation of 3D Trophoblast Organoids from Human Naïve Pluripotent Stem Cells. Methods Mol Biol 2024; 2767:85-103. [PMID: 37402094 PMCID: PMC10766861 DOI: 10.1007/7651_2023_496] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
The human placenta is a transient organ that functions to support the needs of the fetus throughout gestation. Trophoblasts are the major epithelial cells found within the placenta and comprise a variety of distinct cell types with specialized roles in fetal-maternal communication. Our understanding of human trophoblast development remains limited due to ethical and legal restrictions on accessing first-trimester placental tissues, as well as the inability of common animal models to replicate primate placental development. It is therefore important to advance in vitro models of human trophoblast development as a basis for studying pregnancy-associated complications and diseases. In this chapter, we describe a protocol for generating 3D trophoblast organoids from naïve human pluripotent stem cells (hPSCs). The resulting stem-cell-derived trophoblast organoids (SC-TOs) contain distinct cytotrophoblast (CTB), syncytiotrophoblast (STB), and extravillous trophoblast (EVT) cell types, which closely correspond to trophoblast identities in the human post-implantation embryo. We discuss methods for characterizing SC-TOs by immunofluorescence, flow cytometry, mRNA and microRNA expression profiling, and placental hormone secretion. Furthermore, SC-TOs can undergo differentiation into specialized 3D EVT organoids, which display robust invasion when co-cultured with human endometrial cells. Thus, the protocol described herein offers an accessible 3D model system of human placental development and trophoblast invasion.
Collapse
Affiliation(s)
- Rowan M Karvas
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Thorold W Theunissen
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
20
|
Vestergaard AL, Andersen MK, Olesen RV, Bor P, Larsen A. High-Dose Vitamin D Supplementation Significantly Affects the Placental Transcriptome. Nutrients 2023; 15:5032. [PMID: 38140291 PMCID: PMC10745524 DOI: 10.3390/nu15245032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Vitamin D deficiency is a highly prevalent obstetrical concern associated with an increased risk of complications like pre-eclampsia, gestational diabetes, and growth retardation. Vitamin D status in pregnancy is also linked to long-term offspring health, e.g., the risk of obesity, metabolic disease, and neurodevelopmental problems. Despite the suspected role of vitamin D in placental diseases and fetal development, there is limited knowledge on the effect of vitamin D on placental function. Thus, we performed next-generation RNA sequencing, comparing the placental transcriptome from uncomplicated term pregnancies receiving the often-recommended dose of 10 µg vitamin D/day (n = 36) with pregnancies receiving 90 µg/day (n = 34) from late first trimester to delivery. Maternal vitamin D status in the first trimester was also considered. We found that signaling pathways related to cell adhesion, immune function, and neurodevelopment were affected, supporting that increased vitamin D supplementation benefits placental function in established pregnancies without severe vitamin D deficiency, also underlining the importance of vitamin D in brain development. Specific effects of the first trimester vitamin D status and offspring sex were also identified. Further studies are warranted, addressing the optimal vitamin status during pregnancy with a focus on organ-specific vitamin D needs in individual pregnancies.
Collapse
Affiliation(s)
- Anna Louise Vestergaard
- Department of Obstetrics and Gynecology, Randers Regional Hospital, 8930 Randers, Denmark (P.B.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Matilde K. Andersen
- Department of Obstetrics and Gynecology, Randers Regional Hospital, 8930 Randers, Denmark (P.B.)
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark (A.L.)
| | - Rasmus V. Olesen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark (A.L.)
| | - Pinar Bor
- Department of Obstetrics and Gynecology, Randers Regional Hospital, 8930 Randers, Denmark (P.B.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Obstetrics and Gynecology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Agnete Larsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark (A.L.)
| |
Collapse
|
21
|
Guo M, Yan P, Zhu M, Choi M, Li X, Huang J, Zou J, Yuan J, Ding W, Li D, Han X, Wang Y, Wu J. Microcystin-LR prenatal exposure drives preeclampsia-like changes in mice by inhibiting the expression of TGF-β and VEGFA. Food Chem Toxicol 2023; 182:114189. [PMID: 37980977 DOI: 10.1016/j.fct.2023.114189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
Microcystin-leucine-arginine (MC-LR) is widespread in the water and food, which has suspected to be associated with adverse pregnancy outcomes. In the present study, we aim to assess the interaction between MC-LR exposure and preeclampsia development and elucidate the molecular events involved. After exposure to MC-LR during pregnancy, the mice developed hypertension and proteinuria, the typical symptoms of preeclampsia. This was associated with decreased invasiveness of placental trophoblast and vascular dysplasia caused by MC-LR through down-regulating VEGFA and TGF-β expression via AKT/m-TOR/HIF-1α pathway. In addition, this conclusion has been confirmed in a case-control study. Significantly, the addition of Deferoxamine (DFM), a phosphorylated serine-threonine protein kinases (p-AKT) specific agonist, can antagonize the inhibitory effect of MC-LR on the expression of related proteins, which further ameliorate the migration and invasion ability of HTR-8/Svneo cells. To sum up, our study revealed the pathologic mechanism by which MC-LR lead to preeclampsia and emphasized the importance of pregnancy management.
Collapse
Affiliation(s)
- Meihong Guo
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Pinru Yan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Mengjiao Zhu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Manhou Choi
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xinrui Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jiahao Huang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jianghao Zou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jintao Yuan
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu, 212300, China
| | - Weidong Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yong Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Jiang Wu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
22
|
Zhou J, Tong J, Ru X, Teng Y, Geng M, Yan S, Tao F, Huang K. Placental inflammatory cytokines mRNA expression and preschool children's cognitive performance: a birth cohort study in China. BMC Med 2023; 21:449. [PMID: 37981714 PMCID: PMC10658981 DOI: 10.1186/s12916-023-03173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND The immunologic milieu at the maternal-fetal interface has profound effects on propelling the development of the fetal brain. However, accessible epidemiological studies concerning the association between placental inflammatory cytokines and the intellectual development of offspring in humans are limited. Therefore, we explored the possible link between mRNA expression of inflammatory cytokines in placenta and preschoolers' cognitive performance. METHODS Study subjects were obtained from the Ma'anshan birth cohort (MABC). Placental samples were collected after delivery, and real-time quantitative polymerase chain reaction (RT-qPCR) was utilized to measure the mRNA expression levels of IL-8, IL-1β, IL-6, TNF-α, CRP, IFN-γ, IL-10, and IL-4. Children's intellectual development was assessed at preschool age by using the Wechsler Preschool and Primary Scale of Intelligence, Fourth Edition (WPPSI-IV). Multiple linear regression and restricted cubic spline models were used for statistical analysis. RESULTS A total of 1665 pairs of mother and child were included in the analysis. After adjusting for confounders and after correction for multiple comparisons, we observed that mRNA expression of IL-8 (β = - 0.53; 95% CI, - 0.92 to - 0.15), IL-6 (β = - 0.58; 95% CI, - 0.97 to - 0.19), TNF-α (β = - 0.37; 95% CI, - 0.71 to - 0.02), and IFN-γ (β = - 0.31; 95% CI, - 0.61 to - 0.03) in the placenta was negatively associated with preschoolers' full scale intelligence quotient (FSIQ). Both higher IL-8 and IL-6 were associated with lower children's low fluid reasoning index (FRI), and higher IFN-γ was associated with lower children's working memory index (WMI). After further adjusting for confounders and children's age at cognitive testing, the integrated index of six pro-inflammatory cytokines (index 2) was found to be significantly and negatively correlated with both the FSIQ and each sub-dimension (verbal comprehension index (VCI), visual spatial index (VSI), FRI, WMI, processing speed index (PSI)). Sex-stratified analyses showed that the association of IL-8, IFN-γ, and index 2 with children's cognitive development was mainly concentrated in boys. CONCLUSIONS Evidence of an association between low cognitive performance and high expression of placental inflammatory cytokines (IL-8, IL-6, TNF-α, and IFN-γ) was found, highlighting the potential importance of intrauterine placental immune status in dissecting offspring cognitive development.
Collapse
Affiliation(s)
- Jixing Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Hefei, 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, China
| | - Juan Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Hefei, 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, China
| | - Xue Ru
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Hefei, 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, China
| | - Yuzhu Teng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Hefei, 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, China
| | - Menglong Geng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Hefei, 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, China
| | - Shuangqin Yan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Maternal and Child Health Care Center of Ma'anshan, No 24 Jiashan Road, Ma'anshan 243011, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Hefei, 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei, 230032, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Hefei, 230032, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, China.
- Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, Anhui Province, China.
| |
Collapse
|
23
|
Contini T, Béranger R, Multigner L, Klánová J, Price EJ, David A. A Critical Review on the Opportunity to Use Placenta and Innovative Biomonitoring Methods to Characterize the Prenatal Chemical Exposome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15301-15313. [PMID: 37796725 DOI: 10.1021/acs.est.3c04845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Adverse effects associated with chemical exposures during pregnancy include several developmental and reproductive disorders. However, considering the tens of thousands of chemicals present on the market, the effects of chemical mixtures on the developing fetus is still likely underestimated. In this critical review, we discuss the potential to apply innovative biomonitoring methods using high-resolution mass spectrometry (HRMS) on placenta to improve the monitoring of chemical exposure during pregnancy. The physiology of the placenta and its relevance as a matrix for monitoring chemical exposures and their effects on fetal health is first outlined. We then identify several key parameters that require further investigations before placenta can be used for large-scale monitoring in a robust manner. Most critical is the need for standardization of placental sampling. Placenta is a highly heterogeneous organ, and knowledge of the intraplacenta variability of chemical composition is required to ensure unbiased and robust interindividual comparisons. Other important variables include the time of collection, the sex of the fetus, and mode of delivery. Finally, we discuss the first applications of HRMS methods on the placenta to decipher the chemical exposome and describe how the use of placenta can complement biofluids collected on the mother or the fetus.
Collapse
Affiliation(s)
- Thomas Contini
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
| | - Rémi Béranger
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Luc Multigner
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Jana Klánová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
| | - Elliott J Price
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
| | - Arthur David
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
24
|
Zhou J, Sheridan MA, Tian Y, Dahlgren KJ, Messler M, Peng T, Ezashi T, Schulz LC, Ulery BD, Roberts RM, Schust DJ. Development of properly-polarized trophoblast stem cell-derived organoids to model early human pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560327. [PMID: 37873440 PMCID: PMC10592868 DOI: 10.1101/2023.09.30.560327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The development of human trophoblast stem cells (hTSC) and stem cell-derived trophoblast organoids has enabled investigation of placental physiology and disease and early maternal-fetal interactions during a stage of human pregnancy that previously had been severely restricted. A key shortcoming in existing trophoblast organoid methodologies is the non-physiologic position of the syncytiotrophoblast (STB) within the inner portion of the organoid, which neither recapitulates placental villous morphology in vivo nor allows for facile modeling of STB exposure to the endometrium or the contents of the intervillous space. Here we have successfully established properly-polarized human trophoblast stem cell (hTSC)-sourced organoids with STB forming on the surface of the organoid. These organoids can also be induced to give rise to the extravillous trophoblast (EVT) lineage with HLA-G + migratory cells that invade into an extracellular matrix-based hydrogel. Compared to previous hTSC organoid methods, organoids created by this method more closely mimic the architecture of the developing human placenta and provide a novel platform to study normal and abnormal human placental development and to model exposures to pharmaceuticals, pathogens and environmental insults. Motivation Human placental organoids have been generated to mimic physiological cell-cell interactions. However, those published models derived from human trophoblast stem cells (hTSCs) or placental villi display a non-physiologic "inside-out" morphology. In vivo , the placental villi have an outer layer of syncytialized cells that are in direct contact with maternal blood, acting as a conduit for gas and nutrient exchange, and an inner layer of progenitor, single cytotrophoblast cells that fuse to create the syncytiotrophoblast layer. Existing "inside-out" models put the cytotrophoblast cells in contact with culture media and substrate, making physiologic interactions between syncytiotrophoblast and other cells/tissues and normal and pathogenic exposures coming from maternal blood difficult to model. The goal of this study was to develop an hTSC-derived 3-D human trophoblast organoid model that positions the syncytiotrophoblast layer on the outside of the multicellular organoid. Graphical abstract
Collapse
|
25
|
Herrera CL, Kim MJ, Do QN, Owen DM, Fei B, Twickler DM, Spong CY. The human placenta project: Funded studies, imaging technologies, and future directions. Placenta 2023; 142:27-35. [PMID: 37634371 PMCID: PMC11257151 DOI: 10.1016/j.placenta.2023.08.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023]
Abstract
The placenta plays a critical role in fetal development. It serves as a multi-functional organ that protects and nurtures the fetus during pregnancy. However, despite its importance, the intricacies of placental structure and function in normal and diseased states have remained largely unexplored. Thus, in 2014, the National Institute of Child Health and Human Development launched the Human Placenta Project (HPP). As of May 2023, the HPP has awarded over $101 million in research funds, resulting in 41 funded studies and 459 publications. We conducted a comprehensive review of these studies and publications to identify areas of funded research, advances in those areas, limitations of current research, and continued areas of need. This paper will specifically review the funded studies by the HPP, followed by an in-depth discussion on advances and gaps within placental-focused imaging. We highlight the progress within magnetic reasonance imaging and ultrasound, including development of tools for the assessment of placental function and structure.
Collapse
Affiliation(s)
- Christina L Herrera
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, and Parkland Health Dallas, Texas, USA; Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Meredith J Kim
- University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Quyen N Do
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - David M Owen
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, and Parkland Health Dallas, Texas, USA; Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Baowei Fei
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA; Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA; Department of Bioengineering, University of Texas at Dallas, Dallas, TX, USA
| | - Diane M Twickler
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, and Parkland Health Dallas, Texas, USA; Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Catherine Y Spong
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, and Parkland Health Dallas, Texas, USA
| |
Collapse
|
26
|
Arora U, Sengupta D, Kumar M, Tirupathi K, Sai MK, Hareesh A, Sai Chaithanya ES, Nikhila V, Bhavana N, Vigneshwar P, Rani A, Yadav R. Perceiving placental ultrasound image texture evolution during pregnancy with normal and adverse outcome through machine learning prism. Placenta 2023; 140:109-116. [PMID: 37572594 DOI: 10.1016/j.placenta.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/14/2023]
Abstract
INTRODUCTION The objective was to perform placental ultrasound image texture (UPIA) in first (T1), second(T2) and third(T3) trimesters of pregnancy using machine learning( ML). METHODS In this prospective observational study the 2D placental ultrasound (US) images from 11-14 weeks, 20-24 weeks, and 28-32 weeks were taken. The image data was divided into training, validating, and testing subsets in the ratio of 80%, 10%, and 10%. Three different ML techniques, deep learning, transfer learning, and vision transformer were used for UPIA. RESULTS Out of 1008 cases included in the study, 59.5% (600/1008) had a normal outcome. The image texture classification was compared between T1&T2, T2 &T3 and T1&T3 pairs. Using Inception v3 model, to classify T1& T2 images, gave the accuracy, Cohen Kappa score of 83.3%, 0.662 respectively. The image classification between T1&T3 achieved best results using EfficientNetB0 model, having the accuracy, Cohen Kappa score, sensitivity and specificity of 87.5%, 0.749, 83.4%, and 88.9% respectively. Comparison of placental image texture among cases with materno-fetal adverse outcome and controls was done using Efficient Net B0. The F1 score, was found to be 0.824 , 0.820, and 0.892 in T1, T2 and T3 respectively. The sensitivity and specificity of the model was 77.4% at 80.2% at T1 but increased to 81.0% and 93.9% at T2 &T3 respectively. DISCUSSION The study presents a novel technique to classify placental ultrasound image texture using ML models and could differentiate first and third-trimester normal placenta and normal and adverse pregnancy outcome images with good accuracy.
Collapse
Affiliation(s)
- Urvashi Arora
- Indraprastha Institute of Information Technology Delhi, New Delhi, India
| | - Debarka Sengupta
- Indraprastha Institute of Information Technology Delhi, New Delhi, India
| | - Manisha Kumar
- Department of Obstetrics and Gynecology, Lady Hardinge Medical College, New Delhi, 110001, India.
| | | | | | - Amuru Hareesh
- Indraprastha Institute of Information Technology Delhi, New Delhi, India
| | | | | | - Nellore Bhavana
- Indraprastha Institute of Information Technology Delhi, New Delhi, India
| | - Palani Vigneshwar
- Indraprastha Institute of Information Technology Delhi, New Delhi, India
| | - Anjali Rani
- Lady Hardinge Medical College, New Delhi, 110001, India
| | - Reena Yadav
- Department of Obstetrics and Gynecology, Lady Hardinge Medical College, New Delhi, 110001, India
| |
Collapse
|
27
|
Lee B, Janzen C, Aliabadi AR, Lei MYY, Wu H, Liu D, Vangala SS, Devaskar SU, Sung K. Early pregnancy imaging predicts ischemic placental disease. Placenta 2023; 140:90-99. [PMID: 37549442 PMCID: PMC11090111 DOI: 10.1016/j.placenta.2023.07.297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION To characterize early-gestation changes in placental structure, perfusion, and oxygenation in the context of ischemic placental disease (IPD) as a composite outcome and in individual sub-groups. METHODS In a single-center prospective cohort study, 199 women were recruited from antenatal clinics between February 2017 and February 2019. Maternal magnetic resonance imaging (MRI) studies of the placenta were temporally conducted at two timepoints: 14-16 weeks gestational age (GA) and 19-24 weeks GA. The pregnancy was monitored via four additional study visits, including at delivery. Placental volume, perfusion, and oxygenation were assessed at both MRI timepoints. The primary outcome was defined as pregnancy complicated by IPD, with group assignment confirmed after delivery. RESULTS In early gestation, mothers with IPD who subsequently developed fetal growth restriction (FGR) and/or delivered small-for gestational age (SGA) infants showed significantly decreased MRI indices of placental volume, perfusion, and oxygenation compared to controls. The prediction of FGR or SGA by multiple logistic regression using placental volume, perfusion, and oxygenation revealed receiver operator characteristic curves with areas under the curve of 0.81 (Positive predictive value (PPV) = 0.84, negative predictive value (NPV) = 0.75) at 14-16 weeks GA and 0.66 (PPV = 0.78, NPV = 0.60) at 19-24 weeks GA. DISCUSSION MRI indices showing decreased placental volume, perfusion and oxygenation in early pregnancy were associated with subsequent onset of IPD, with the greatest deviation evident in subjects with FGR and/or SGA. These early-gestation MRI changes may be predictive of the subsequent development of FGR and/or SGA.
Collapse
Affiliation(s)
- Brian Lee
- Department of Pediatrics, David Geffen School of Medicine, University of California, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.
| | - Carla Janzen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.
| | - Arya R Aliabadi
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.
| | - Margarida Y Y Lei
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.
| | - Holden Wu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, 300 Medical Plaza, B119, Los Angeles, CA 90095, USA.
| | - Dapeng Liu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, 300 Medical Plaza, B119, Los Angeles, CA 90095, USA.
| | - Sitaram S Vangala
- Department of Medicine Statistical Core, David Geffen School of Medicine, University of California, 1100 Glendon Ave Suite 1820, Los Angeles, CA, 90095, USA.
| | - Sherin U Devaskar
- Department of Pediatrics, David Geffen School of Medicine, University of California, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.
| | - Kyunghyun Sung
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, 300 Medical Plaza, B119, Los Angeles, CA 90095, USA.
| |
Collapse
|
28
|
Gualdoni GS, Barril C, Jacobo PV, Pacheco Rodríguez LN, Cebral E. Involvement of metalloproteinase and nitric oxide synthase/nitric oxide mechanisms in early decidual angiogenesis-vascularization of normal and experimental pathological mouse placenta related to maternal alcohol exposure. Front Cell Dev Biol 2023; 11:1207671. [PMID: 37670932 PMCID: PMC10476144 DOI: 10.3389/fcell.2023.1207671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023] Open
Abstract
Successful pregnancy for optimal fetal growth requires adequate early angiogenesis and remodeling of decidual spiral arterioles during placentation. Prior to the initiation of invasion and endothelial replacement by trophoblasts, interactions between decidual stromal cells and maternal leukocytes, such as uterine natural killer cells and macrophages, play crucial roles in the processes of early maternal vascularization, such as proliferation, apoptosis, migration, differentiation, and matrix and vessel remodeling. These placental angiogenic events are highly dependent on the coordination of several mechanisms at the early maternal-fetal interface, and one of them is the expression and activity of matrix metalloproteinases (MMPs) and endothelial nitric oxide synthases (NOSs). Inadequate balances of MMPs and nitric oxide (NO) are involved in several placentopathies and pregnancy complications. Since alcohol consumption during gestation can affect fetal growth associated with abnormal placental development, recently, we showed, in a mouse model, that perigestational alcohol consumption up to organogenesis induces fetal malformations related to deficient growth and vascular morphogenesis of the placenta at term. In this review, we summarize the current knowledge of the early processes of maternal vascularization that lead to the formation of the definitive placenta and the roles of angiogenic MMP and NOS/NO mechanisms during normal and altered early gestation in mice. Then, we propose hypothetical defective decidual cellular and MMP and NOS/NO mechanisms involved in abnormal decidual vascularization induced by perigestational alcohol consumption in an experimental mouse model. This review highlights the important roles of decidual cells and their MMP and NOS balances in the physiological and pathophysiological early maternal angiogenesis-vascularization during placentation in mice.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Cebral
- Laboratorio de Reproducción y Fisiología Materno-Embrionaria, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
29
|
Hiremath SC, Weaver JD. Engineering of Trophoblast Extracellular Vesicle-Delivering Hydrogels for Localized Tolerance Induction in Cell Transplantation. Cell Mol Bioeng 2023; 16:341-354. [PMID: 37811006 PMCID: PMC10550893 DOI: 10.1007/s12195-023-00778-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/03/2023] [Indexed: 10/10/2023] Open
Abstract
Purpose The need for chronic systemic immunosuppression, which presents a host of acute risks to transplantation patients, remains the primary limitation for the translation of many cell therapies, such as insulin secreting cells for the treatment of type 1 diabetes. Trophoblasts are the professional tolerogenic cells of the placenta, and they secrete a range of soluble factors to induce antigen specific tolerance toward allogeneic fetal tissue during pregnancy, including extracellular vesicles. Here we develop a trophoblast extracellular vesicle-delivering hydrogel designed for sustained, localized tolerogenic factor delivery within a transplant site to induce localized tolerance toward cell grafts. Methods We engineer a synthetic poly(ethylene glycol)-based hydrogel system to tether extracellular vesicles for sustained delivery, and compare this system to passive vesicle entrapment within an alginate hydrogel system. We characterize trophoblast extracellular vesicles for size and morphology, and evaluate vesicle tolerogenic protein content via proteomic analysis. We validate the retention and tethering of extracellular vesicles within the hydrogel systems via scanning electron and stimulated emission depletion microscopy, and measure vesicle release rate over time. Finally, we evaluate trophoblast extracellular vesicle influence on natural killer cell activation in vitro. Results We isolated trophoblast extracellular vesicles and proteomics confirmed the presence of tolerogenic factors. We confirmed the presence of extracellular vesicles within hydrogel delivery vehicles, and synthetic hydrogels extended extracellular vesicle release relative to a passive hydrogel system. Finally, extracellular vesicles reduced natural killer cell activation in vitro, confirming the tolerogenic potential of hydrogel-delivered extracellular vesicles. Conclusions This tolerogenic extracellular vesicle-delivering hydrogel platform designed for delivery within a transplant site could serve as an alternative to systemic immunosuppression in cell transplantation, potentially reducing the risks associated with cell therapies and widening the eligible patient population.
Collapse
Affiliation(s)
- Shivani C. Hiremath
- School of Biological and Health Systems Engineering, Arizona State University, 550 E. Orange St, Tempe, AZ 85281 USA
| | - Jessica D. Weaver
- School of Biological and Health Systems Engineering, Arizona State University, 550 E. Orange St, Tempe, AZ 85281 USA
| |
Collapse
|
30
|
Naama M, Buganim Y. Human trophoblast stem cell-state acquisition from pluripotent stem cells and somatic cells. Curr Opin Genet Dev 2023; 81:102084. [PMID: 37451165 DOI: 10.1016/j.gde.2023.102084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/10/2023] [Accepted: 06/11/2023] [Indexed: 07/18/2023]
Abstract
For an extended period of time, research on human embryo implantation and early placentation was hindered by ethical limitation and lack of appropriate in vitro models. Recently, an explosion of new research has significantly expanded our knowledge of early human trophoblast development and facilitated the derivation and culture of self-renewing human trophoblast stem cells (hTSCs). Multiple approaches have been undertaken in efforts to derive and understand hTSCs, including from blastocysts, early trophoblast tissue, and, more recently, from human pluripotent stem cells (hPSCs) and somatic cells. In this concise review, we summarize recent advances in derivation of hTSCs, with a focus on derivation from naive and primed hPSCs, as well as via reprogramming of somatic cells into induced hTSCs. Each of these methods harbors distinct advantages and setbacks, which are discussed. Finally, we briefly explore the possibility of the existence of trophectoderm-like hTSCs corresponding to earlier, preimplantation trophoblast cells.
Collapse
Affiliation(s)
- Moriyah Naama
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
31
|
Lappé M, Hein RJ. The Temporal Politics of Placenta Epigenetics: Bodies, Environments and Time. BODY & SOCIETY 2023; 29:49-76. [PMID: 37621557 PMCID: PMC10449375 DOI: 10.1177/1357034x211068883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
This article builds on feminist scholarship on new biologies and the body to describe the temporal politics of epigenetic research related to the human placenta. Drawing on interviews with scientists and observations at conferences and in laboratories, we argue that epigenetic research simultaneously positions placenta tissue as a way back into maternal and fetal bodies following birth, as a lens onto children's future well-being, and as a bankable resource for ongoing research. Our findings reflect how developmental models of health have helped recast the placenta as an agential organ that is uniquely responsive to environments during pregnancy and capable of embodying biological evidence about the effects of in utero experiences after birth. We develop the concept of 'recursive embodiment' to describe how placenta epigenetics is reimagining relationships between bodies and environments across developmental, epigenetic, and generational time, and the impacts this has for experiences of pregnancy and responsibilities related to children's health.
Collapse
|
32
|
van Heule M, Monteiro HF, Bazzazan A, Scoggin K, Rolston M, El-Sheikh Ali H, Weimer BC, Ball B, Daels P, Dini P. Characterization of the equine placental microbial population in healthy pregnancies. Theriogenology 2023; 206:60-70. [PMID: 37187056 DOI: 10.1016/j.theriogenology.2023.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
In spite of controversy, recent studies present evidence that a microbiome is present in the human placenta. However, there is limited information about a potential equine placental microbiome. In the present study, we characterized the microbial population in the equine placenta (chorioallantois) of healthy prepartum (280 days of gestation, n = 6) and postpartum (immediately after foaling, 351 days of gestation, n = 11) mares, using 16S rDNA sequencing (rDNA-seq). In both groups, the majority of bacteria belonged to the phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidota. The five most abundant genera were Bradyrhizobium, an unclassified Pseudonocardiaceae, Acinetobacter, Pantoea, and an unclassified Microbacteriaceae. Alpha diversity (p < 0.05) and beta diversity (p < 0.01) were significantly different between pre- and postpartum samples. Additionally, the abundance of 7 phyla and 55 genera was significantly different between pre- and postpartum samples. These differences suggest an effect of the caudal reproductive tract microbiome on the postpartum placental microbial DNA composition, since the passage of the placenta through the cervix and vagina during normal parturition had a significant influence on the composition of the bacteria found in the placenta when using 16S rDNA-seq. These data support the hypothesis that bacterial DNA is present in healthy equine placentas and opens the possibility for further exploration of the impact of the placental microbiome on fetal development and pregnancy outcome.
Collapse
Affiliation(s)
- Machteld van Heule
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA; Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | - Hugo Fernando Monteiro
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Ali Bazzazan
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Kirsten Scoggin
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Matthew Rolston
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
| | - Hossam El-Sheikh Ali
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA; Theriogenology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Bart C Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA; Department of Population Health and Reproduction, 100K Pathogen Genome Project, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Barry Ball
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Peter Daels
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | - Pouya Dini
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
33
|
Freedman AN, Clark J, Eaves LA, Roell K, Oran A, Koval L, Rager J, Santos HP, Kuban K, Joseph RM, Frazier J, Marsit CJ, Burt AA, O’Shea TM, Fry RC. A multi-omic approach identifies an autism spectrum disorder (ASD) regulatory complex of functional epimutations in placentas from children born preterm. Autism Res 2023; 16:918-934. [PMID: 36938998 PMCID: PMC10192070 DOI: 10.1002/aur.2915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/25/2023] [Indexed: 03/21/2023]
Abstract
Children born preterm are at heightened risk of neurodevelopmental impairments, including Autism Spectrum Disorder (ASD). The placenta is a key regulator of neurodevelopmental processes, though the precise underlying molecular mechanisms remain unclear. Here, we employed a multi-omic approach to identify placental transcriptomic and epigenetic modifications related to ASD diagnosis at age 10, among children born preterm. Working with the extremely low gestational age (ELGAN) cohort, we hypothesized that a pro-inflammatory placental environment would be predictive of ASD diagnosis at age 10. Placental messenger RNA (mRNA) expression, CpG methylation, and microRNA (miRNA) expression were compared among 368 ELGANs (28 children diagnosed with ASD and 340 children without ASD). A total of 111 genes displayed expression levels in the placenta that were associated with ASD. Within these ASD-associated genes is an ASD regulatory complex comprising key genes that predicted ASD case status. Genes with expression that predicted ASD case status included Ewing Sarcoma Breakpoint Region 1 (EWSR1) (OR: 6.57 (95% CI: 2.34, 23.58)) and Bromodomain Adjacent To Zinc Finger Domain 2A (BAZ2A) (OR: 0.12 (95% CI: 0.03, 0.35)). Moreover, of the 111 ASD-associated genes, nine (8.1%) displayed associations with CpG methylation levels, while 14 (12.6%) displayed associations with miRNA expression levels. Among these, LRR Binding FLII Interacting Protein 1 (LRRFIP1) was identified as being under the control of both CpG methylation and miRNAs, displaying an OR of 0.42 (95% CI: 0.17, 0.95). This gene, as well as others identified as having functional epimutations, plays a critical role in immune system regulation and inflammatory response. In summary, a multi-omic approach was used to identify functional epimutations in the placenta that are associated with the development of ASD in children born preterm, highlighting future avenues for intervention.
Collapse
Affiliation(s)
- Anastasia N. Freedman
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jeliyah Clark
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lauren A. Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kyle Roell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ali Oran
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lauren Koval
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Julia Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hudson P Santos
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
- School of Nursing and Health Studies, University of Miami, Coral Gables, FL, USA
| | - Karl Kuban
- Department of Pediatrics, Division of Child Neurology, Boston Medical Center, Boston, Massachusetts, USA
| | - Robert M. Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jean Frazier
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School/University of Massachusetts Memorial Health Care, Worcester, MA, USA
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Amber A. Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - T. Michael O’Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
34
|
Taso M, Aramendía-Vidaurreta V, Englund EK, Francis S, Franklin S, Madhuranthakam AJ, Martirosian P, Nayak KS, Qin Q, Shao X, Thomas DL, Zun Z, Fernández-Seara MA. Update on state-of-the-art for arterial spin labeling (ASL) human perfusion imaging outside of the brain. Magn Reson Med 2023; 89:1754-1776. [PMID: 36747380 DOI: 10.1002/mrm.29609] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
This review article provides an overview of developments for arterial spin labeling (ASL) perfusion imaging in the body (i.e., outside of the brain). It is part of a series of review/recommendation papers from the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group. In this review, we focus on specific challenges and developments tailored for ASL in a variety of body locations. After presenting common challenges, organ-specific reviews of challenges and developments are presented, including kidneys, lungs, heart (myocardium), placenta, eye (retina), liver, pancreas, and muscle, which are regions that have seen the most developments outside of the brain. Summaries and recommendations of acquisition parameters (when appropriate) are provided for each organ. We then explore the possibilities for wider adoption of body ASL based on large standardization efforts, as well as the potential opportunities based on recent advances in high/low-field systems and machine-learning. This review seeks to provide an overview of the current state-of-the-art of ASL for applications in the body, highlighting ongoing challenges and solutions that aim to enable more widespread use of the technique in clinical practice.
Collapse
Affiliation(s)
- Manuel Taso
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Erin K Englund
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Susan Francis
- Sir Peter Mansfield Imaging Center, University of Nottingham, Nottingham, UK
| | - Suzanne Franklin
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Image Sciences, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ananth J Madhuranthakam
- Department of Radiology, Advanced Imaging Research Center, and Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Petros Martirosian
- Section on Experimental Radiology, Department of Radiology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Zungho Zun
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
35
|
Redline RW, Roberts DJ, Parast MM, Ernst LM, Morgan TK, Greene MF, Gyamfi-Bannerman C, Louis JM, Maltepe E, Mestan KK, Romero R, Stone J. Placental pathology is necessary to understand common pregnancy complications and achieve an improved taxonomy of obstetrical disease. Am J Obstet Gynecol 2023; 228:187-202. [PMID: 35973475 PMCID: PMC10337668 DOI: 10.1016/j.ajog.2022.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023]
Abstract
The importance of a fully functioning placenta for a good pregnancy outcome is unquestioned. Loss of function can lead to pregnancy complications and is often detected by a thorough placental pathologic examination. Placental pathology has advanced the science and practice of obstetrics and neonatal-perinatal medicine by classifying diseases according to underlying biology and specific patterns of injury. Many past obstacles have limited the incorporation of placental findings into both clinical studies and day-to-day practice. Limitations have included variability in the nomenclature used to describe placental lesions, a shortage of perinatal pathologists fully competent to analyze placental specimens, and a troubling lack of understanding of placental diagnoses by clinicians. However, the potential use of placental pathology for phenotypic classification, improved understanding of the biology of adverse pregnancy outcomes, the development of treatment and prevention, and patient counseling has never been greater. This review, written partly in response to a recent critique published in a major obstetrics-gynecology journal, reexamines the role of placental pathology by reviewing current concepts of biology; explaining the most recent terminology; emphasizing the usefulness of specific diagnoses for obstetrician-gynecologists, neonatologists, and patients; previewing upcoming changes in recommendations for placental submission; and suggesting future improvements. These improvements should include further consideration of overall healthcare costs, cost-effectiveness, the clinical value added of placental assessment, improvements in placental pathology education and practice, and leveraging of placental pathology to identify new biomarkers of disease and evaluate novel therapies tailored to specific clinicopathologic phenotypes of both women and infants.
Collapse
Affiliation(s)
- Raymond W Redline
- Department of Pathology and Reproductive Biology, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center and Cleveland, OH.
| | - Drucilla J Roberts
- Department of Pathology, Harvard Medical School and Massachusetts General Hospital, Boston, MA
| | - Mana M Parast
- Department of Pathology, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA
| | - Linda M Ernst
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, IL
| | - Terry K Morgan
- Department of Pathology and Obstetrics and Gynecology, Center for Developmental Health, Oregon Health Sciences University, Portland, OR
| | - Michael F Greene
- Department of Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School and Massachusetts General Hospital, Boston, MA
| | - Cynthia Gyamfi-Bannerman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA
| | - Judette M Louis
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University South Florida, Tampa, FL
| | - Emin Maltepe
- Department of Pediatrics, University California, San Francisco, San Francisco, CA
| | - Karen K Mestan
- Department of Pediatrics and Neonatology, University of California, San Diego, School of Medicine and Rady Children's Hospital, San Diego, CA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI; Detroit Medical Center, Detroit, MI
| | - Joanne Stone
- Raquel and Jaime Gilinski Department of Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
36
|
Huang J, Shahedi M, Do QN, Xi Y, Lewis MA, Herrera CL, Owen D, Spong CY, Madhuranthakam AJ, Twickler DM, Fei B. Topography-based feature extraction of the human placenta from prenatal MR images. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12464:1246420. [PMID: 38501056 PMCID: PMC10947417 DOI: 10.1117/12.2653663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Magnetic resonance imaging (MRI) has gained popularity in the field of prenatal imaging due to the ability to provide high quality images of soft tissue. In this paper, we presented a novel method for extracting different textural and morphological features of the placenta from MRI volumes using topographical mapping. We proposed polar and planar topographical mapping methods to produce common placental features from a unique point of observation. The features extracted from the images included the entire placenta surface, as well as the thickness, intensity, and entropy maps displayed in a convenient two-dimensional format. The topography-based images may be useful for clinical placental assessments as well as computer-assisted diagnosis, and prediction of potential pregnancy complications.
Collapse
Affiliation(s)
- James Huang
- Department of Bioengineering, The University of Texas at Dallas, TX
- Center for Imaging and Surgical Innovation, The University of Texas at Dallas, TX
| | - Maysam Shahedi
- Department of Bioengineering, The University of Texas at Dallas, TX
- Center for Imaging and Surgical Innovation, The University of Texas at Dallas, TX
| | - Quyen N. Do
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Yin Xi
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX
- Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Matthew A. Lewis
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Christina L. Herrera
- Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX
| | - David Owen
- Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Catherine Y. Spong
- Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Diane M. Twickler
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX
- Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Baowei Fei
- Department of Bioengineering, The University of Texas at Dallas, TX
- Center for Imaging and Surgical Innovation, The University of Texas at Dallas, TX
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
37
|
Sun Z, Wu W, Zhao P, Wang Q, Woodard PK, Nelson DM, Odibo A, Cahill A, Wang Y. Association of intraplacental oxygenation patterns on dual-contrast MRI with placental abnormality and fetal brain oxygenation. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 61:215-223. [PMID: 35638228 PMCID: PMC9708928 DOI: 10.1002/uog.24959] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 05/27/2023]
Abstract
OBJECTIVES Most human in-vivo placental imaging techniques are unable to distinguish and characterize various placental compartments, such as the intervillous space (IVS), placental vessels (PV) and placental tissue (PT), limiting their specificity. We describe a method that employs T2* and diffusion-weighted magnetic resonance imaging (MRI) data to differentiate automatically placental compartments, quantify their oxygenation properties and identify placental lesions (PL) in vivo. We also investigate the association between placental oxygenation patterns and fetal brain oxygenation. METHODS This was a prospective study conducted between 2018 and 2021 in which dual-contrast clinical MRI data (T2* and diffusion-weighted MRI) were acquired from patients between 20 and 38 weeks' gestation. We trained a fuzzy clustering method to analyze T2* and diffusion-weighted MRI data and assign placental voxels to one of four clusters, based on their distinct imaging domain features. The new method divided automatically the placenta into IVS, PV, PT and PL compartments and characterized their oxygenation changes throughout pregnancy. RESULTS A total of 27 patients were recruited, of whom five developed pregnancy complications. Total placental oxygenation level and T2* did not demonstrate a statistically significant temporal correlation with gestational age (GA) (R2 = 0.060, P = 0.27). In contrast, the oxygenation level reflected by T2* values in the placental IVS (R2 = 0.51, P = 0.0002) and PV (R2 = 0.76, P = 1.1 × 10-7 ) decreased significantly with advancing GA. Oxygenation levels in the PT did not show any temporal change during pregnancy (R2 = 0.00044, P = 0.93). A strong spatial-dependent correlation between PV oxygenation level and GA was observed. The strongest negative correlation between PV oxygenation and GA (R2 = 0.73, P = 4.5 × 10-7 ) was found at the fetal-vessel-dominated region close to the chorionic plate. The location and extent of the placental abnormality were automatically delineated and quantified in the five women with clinically confirmed placental pathology. Compared to the averaged total placental oxygenation, placental IVS oxygenation level best reflected fetal brain oxygenation level during fetal development. CONCLUSION Based on clinically feasible dual-MRI, our method enables accurate spatiotemporal quantification of placental compartment and fetal brain oxygenation across different GAs. This information should improve our knowledge of human placenta development and its relationship with normal and abnormal pregnancy. © 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- Z. Sun
- Department of Biomedical EngineeringWashington University in St LouisSt LouisMOUSA
- Department of Obstetrics and GynecologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
| | - W. Wu
- Department of Biomedical EngineeringWashington University in St LouisSt LouisMOUSA
- Department of Obstetrics and GynecologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
| | - P. Zhao
- Department of Obstetrics and GynecologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
| | - Q. Wang
- Mallinckrodt Institute of RadiologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
| | - P. K. Woodard
- Department of Biomedical EngineeringWashington University in St LouisSt LouisMOUSA
- Mallinckrodt Institute of RadiologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
| | - D. M. Nelson
- Department of Obstetrics and GynecologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
| | - A. Odibo
- Department of Obstetrics and GynecologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
| | - A. Cahill
- Department of Women's HealthUniversity of Texas at Austin, Dell Medical SchoolAustinTXUSA
| | - Y. Wang
- Department of Biomedical EngineeringWashington University in St LouisSt LouisMOUSA
- Department of Obstetrics and GynecologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
- Mallinckrodt Institute of RadiologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
- Department of Electrical & Systems EngineeringWashington University in St LouisSt LouisMOUSA
| |
Collapse
|
38
|
Lee B, Janzen C, Wu H, Vangala SS, Devaskar SU, Sung K. Utility of In Vivo Magnetic Resonance Imaging Is Predictive of Gestational Diabetes Mellitus During Early Pregnancy. J Clin Endocrinol Metab 2023; 108:281-294. [PMID: 36251771 PMCID: PMC9844964 DOI: 10.1210/clinem/dgac602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/11/2022] [Indexed: 01/22/2023]
Abstract
CONTEXT Gestational diabetes (GDM) imposes long-term adverse health effects on the mother and fetus. The role of magnetic resonance imaging (MRI) during early gestation in GDM has not been well-studied. OBJECTIVE To investigate the role of quantitative MRI measurements of placental volume and perfusion, with distribution of maternal adiposity, during early gestation in GDM. METHODS At UCLA outpatient antenatal obstetrics clinics, ∼200 pregnant women recruited in the first trimester were followed temporally through pregnancy until parturition. Two placental MRI scans were prospectively performed at 14 to 16 weeks and 19 to 24 weeks gestational age (GA). Placental volume and blood flow (PBF) were calculated from placental regions of interest; maternal adiposity distribution was assessed by subcutaneous fat area ratio (SFAR) and visceral fat area ratio (VFAR). Statistical comparisons were performed using the two-tailed t test. Predictive logistic regression modeling was evaluated by area under the curve (AUC). RESULTS Of a total 186 subjects, 21 subjects (11.3%) developed GDM. VFAR was higher in GDM vs the control group, at both time points (P < 0.001 each). Placental volume was greater in GDM vs the control group at 19 to 24 weeks GA (P = 0.01). Combining VFAR, placental volume and perfusion, improved the AUC to 0.83 at 14 to 16 weeks (positive predictive value [PPV] = 0.77, negative predictive value [NPV] = 0.83), and 0.81 at 19 to 24 weeks GA (PPV = 0.73, NPV = 0.86). CONCLUSION A combination of MRI-based placental volume, perfusion, and visceral adiposity during early pregnancy demonstrates significant changes in GDM and provides a proof of concept for predicting the subsequent development of GDM.
Collapse
Affiliation(s)
- Brian Lee
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Carla Janzen
- Department of Obstetrics and Gynecology, Division of Perinatology Maternal Fetal Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Holden Wu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Sitaram S Vangala
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Sherin U Devaskar
- Correspondence: Sherin U. Devaskar, MD, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, 10833, Le Conte Avenue, Los Angeles, CA 90095-1752, USA.
| | - Kyunghyun Sung
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
39
|
Zhang C, Guo Y, Yang Y, Du Z, Fan Y, Zhao Y, Yuan S. Oxidative stress on vessels at the maternal-fetal interface for female reproductive system disorders: Update. Front Endocrinol (Lausanne) 2023; 14:1118121. [PMID: 36967779 PMCID: PMC10036807 DOI: 10.3389/fendo.2023.1118121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Considerable evidence shows that oxidative stress exists in the pathophysiological process of female reproductive system diseases. At present, there have been many studies on oxidative stress of placenta during pregnancy, especially for preeclampsia. However, studies that directly focus on the effects of oxidative stress on blood vessels at the maternal-fetal interface and their associated possible outcomes are still incomplete and ambiguous. To provide an option for early clinical prediction and therapeutic application of oxidative stress in female reproductive system diseases, this paper briefly describes the composition of the maternal-fetal interface and the molecular mediators produced by oxidative stress, focuses on the sources of oxidative stress and the signaling pathways of oxidative stress at the maternal-fetal interface, expounds the adverse consequences of oxidative stress on blood vessels, and deeply discusses the relationship between oxidative stress and some pregnancy complications and other female reproductive system diseases.
Collapse
Affiliation(s)
- Chenlu Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaxin Guo
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Yang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaojin Du
- Reproductive Medical Center, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Yunhui Fan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Yin Zhao, ; Suzhen Yuan,
| | - Suzhen Yuan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Yin Zhao, ; Suzhen Yuan,
| |
Collapse
|
40
|
Magri F, Bellingeri C, De Maggio I, Croce L, Coperchini F, Rotondi M, Chiovato L, Spinillo A, Beneventi F. A first-trimester serum TSH in the 4-10 mIU/L range is associated with obstetric complications in thyroid peroxidase antibody-negative women. J Endocrinol Invest 2022:10.1007/s40618-022-01996-z. [PMID: 36562959 DOI: 10.1007/s40618-022-01996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE The impact of mild subclinical hypothyroidism on pregnancy outcomes in TPOAb-negative women is poorly explored. The aim of the present study was the evaluation in a wide cohort of TPOAb-negative pregnant women the role of subclinical hypothyroidism (SCH) on several pregnancy outcomes. METHODS The study included women aged ≥ 18 years with a singleton pregnancy without known thyroid disease with serum TSH concentration between 0.4 and 10 mIU/L and TPOAb negative. Data about clinical and demographic features were collected. A blood sample was drown to test TSH, TPOAb, ANA and ENA concentration. The mean uterine artery pulsatility index was measured. Risk of adverse obstetric and fetal outcomes was collected. RESULTS The cohort included 2135 pregnant women. Pregnant women with TSH 4-10 mUI/L had a significantly higher frequency of family history of thyroid diseases, and personal history of celiac disease diseases, type 1 diabetes mellitus, rheumatic disease, antinuclear antibody (ANA) and anti-extractable nuclear antigen (ENA) positive tests. The risk for pre-eclampsia and small for gestational age (SGA) was significantly higher in pregnant women with first-trimester TSH 4-10 mIU/L. A first-trimester TSH serum level greater than 4 mIU/L was associated with a significant increase in the occurrence of abnormal uterine artery pulsatility index, with a more than threefold increase in the risk of developing pre-eclampsia and with the risk of SGA. CONCLUSIONS In TPOAb-negative pregnant women, a first-trimester serum TSH level ranging from 4 to 10 mIU/L is significantly and independently linked to an increased uterine artery pulsatility index as well as to negative pregnancy outcomes such as pre-eclampsia, SGA and gestational diabetes.
Collapse
Affiliation(s)
- F Magri
- Unit of Internal Medicine and Endocrinology, Department of Internal Medicine and Therapeutics, Istituti Clinici Scientifici Maugeri IRCCS, University of Pavia, via Maugeri 10, 27100, Pavia, Italy.
| | - C Bellingeri
- Department of Obstetrics and Gynecology, IRCCS Foundation Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - I De Maggio
- Department of Obstetrics and Gynecology, IRCCS Foundation Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - L Croce
- Unit of Internal Medicine and Endocrinology, Department of Internal Medicine and Therapeutics, Istituti Clinici Scientifici Maugeri IRCCS, University of Pavia, via Maugeri 10, 27100, Pavia, Italy
| | - F Coperchini
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - M Rotondi
- Unit of Internal Medicine and Endocrinology, Department of Internal Medicine and Therapeutics, Istituti Clinici Scientifici Maugeri IRCCS, University of Pavia, via Maugeri 10, 27100, Pavia, Italy
| | - L Chiovato
- Unit of Internal Medicine and Endocrinology, Department of Internal Medicine and Therapeutics, Istituti Clinici Scientifici Maugeri IRCCS, University of Pavia, via Maugeri 10, 27100, Pavia, Italy
| | - A Spinillo
- Department of Obstetrics and Gynecology, IRCCS Foundation Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - F Beneventi
- Department of Obstetrics and Gynecology, IRCCS Foundation Policlinico San Matteo, University of Pavia, Pavia, Italy
| |
Collapse
|
41
|
Mercuri ND, Cox BJ. The need for more research into reproductive health and disease. eLife 2022; 11:e75061. [PMID: 36511240 PMCID: PMC9771341 DOI: 10.7554/elife.75061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Reproductive diseases have a significant impact on human health, especially on women's health: endometriosis affects 10% of all reproductive-aged women but is often undiagnosed for many years, and preeclampsia claims over 70,000 maternal and 500,000 neonatal lives every year. Infertility rates are also rising. However, relatively few new treatments or diagnostics for reproductive diseases have emerged in recent decades. Here, based on analyses of PubMed, we report that the number of research articles published on non-reproductive organs is 4.5 times higher than the number published on reproductive organs. Moreover, for the two most-researched reproductive organs (breast and prostate), the focus is on non-reproductive diseases such as cancer. Further, analyses of grant databases maintained by the Canadian Institutes of Health Research and the National Institutes of Health in the United States show that the number of grants for research on non-reproductive organs is 6-7 times higher than the number for reproductive organs. Our results suggest that there are too few researchers working in the field of reproductive health and disease, and that funders, educators and the research community must take action to combat this longstanding disregard for reproductive science.
Collapse
Affiliation(s)
| | - Brian J Cox
- Department of Physiology, University of TorontoTorontoCanada
| |
Collapse
|
42
|
Cao C, Fleming MD. Loss of the placental iron exporter ferroportin 1 causes embryonic demise in late-gestation mouse pregnancy. Development 2022; 149:285826. [PMID: 36398730 DOI: 10.1242/dev.201160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
Fetal development relies on adequate iron supply by the placenta. The placental syncytiotrophoblasts (SCTB) express high levels of iron transporters, including ferroportin1 (Fpn1). Whether they are essential in the placenta has not been tested directly, mainly due to the lack of gene manipulation tools in SCTB. Here, we aimed to generate a SCTB-specific Cre mouse and use it to determine the role of placental Fpn1. Using CRISPR/Cas9 technology, we created a syncytin b (Synb) Cre line (SynbCre) targeting the fetal-facing SCTB layer in mouse placental labyrinth. SynbCre deleted Fpn1 in late gestation mouse placentas reliably with high efficiency. Embryos without placental Fpn1 were pale and runted, and died before birth. Fpn1 null placentas had reduced transferrin receptor expression, increased oxidative stress and detoxification responses, and accumulated ferritin in the SCTB instead of the fetal endothelium. In summary, we demonstrate that SynbCre is an effective and specific tool to investigate placental gene function in vivo. The loss of Fpn1 in late gestation mouse placenta is embryonically lethal, providing direct evidence for an essential role of Fpn1 in placental iron transport.
Collapse
Affiliation(s)
- Chang Cao
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
43
|
Liu W, Li S, Zhou Q, Fu Z, Liu P, Cao X, Xi S. 2, 2', 4, 4'-tetrabromodiphenyl ether induces placental toxicity via activation of p38 MAPK signaling pathway in vivo and in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114034. [PMID: 36063615 DOI: 10.1016/j.ecoenv.2022.114034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) is one of the most important polybrominated diphenyl ethers (PBDEs) congeners, and epidemiological studies have shown that it can cause adverse pregnancy outcomes. The aim of our study was to investigate the role of placental injury in BDE-47-induced adverse pregnancy outcomes through in vivo and in vitro models. From day 0.5 to day 16.5 of pregnancy of ICR mice, BDE-47 oral doses of 0, 25, 50 and 100 mg/kg/day were administered. Immunohistochemical staining found that BDE-47 inhibited the expression of CD34 in mouse placenta, and ELISA results showed that BDE-47 reduced the levels of VEGF and PlGF in the serum of pregnant mice. Western blot assays found that the expression levels of VEGF-A and invasion-related factors were decreased in the placentas of BDE-47-treated group, which indicated that BDE-47 could impair placental angiogenesis. Furthermore, BDE-47 inhibited proliferation, increased apoptosis and autophagy, and activated p38 MAPK signaling pathway in mouse placental tissue. In vitro, HTR-8/SVneo cells were treated with 0, 5, 10, 20 μM BDE-47 for 24 h. Wound healing assays and Transwell assays showed that BDE-47 inhibited the migration and invasion ability of HTR-8/SVneo cells. We also found that BDE-47 inhibited the proliferation of HTR-8/SVneo cells and increased apoptosis and autophagy. BDE-47 activated p38 MAPK signaling pathway in HTR-8/SVneo cells, and inhibition of p38 MAPK signaling pathway in HTR-8/SVneo cells restored the effects caused by BDE-47. In conclusion, BDE-47 impairs placental angiogenesis by inhibiting cell migration and invasion, and induces placental toxicity by inhibiting proliferation, increasing apoptosis and autophagy. In vitro, activation of p38 MAPK signaling pathway is involved in the processes of placental injury by BDE-47.
Collapse
Affiliation(s)
- Weijue Liu
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, No. 77 Puhe Rood, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China.
| | - Sihao Li
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, No. 77 Puhe Rood, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China.
| | - Qing Zhou
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, No. 77 Puhe Rood, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China.
| | - Zhushan Fu
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, No. 77 Puhe Rood, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China.
| | - Pinya Liu
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, No. 77 Puhe Rood, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China.
| | - Xiyue Cao
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, No. 77 Puhe Rood, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China.
| | - Shuhua Xi
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, No. 77 Puhe Rood, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China.
| |
Collapse
|
44
|
Sherwani N, Singh N, Neral A, Jaiswal J, Nagaria T, Khandwal O. Placental Histopathology in COVID-19-Positive Mothers. J Microbiol Biotechnol 2022; 32:1098-1102. [PMID: 36039383 PMCID: PMC9628963 DOI: 10.4014/jmb.2206.06056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 12/15/2022]
Abstract
The placenta is a captivating multifunctional organ of fetal origin and plays an essential role during pregnancy by intimately connecting mother and baby. This study explicates placental pathology and information about 25 placentas collected from the mothers infected with novel coronavirus (SARS-COV-2). So far, congenital transmission of SARS-CoV-2 seems to be remarkably uncommon in spite of many cases of COVID-19 during pregnancy. Out of the 25 placental tissue samples collected, none has shown gene expression of SARS-CoV-2 when confirmed by RT-PCR. At the same time, nasal and throat swab samples collected from newborns of SARS-CoV-2-positive mothers correspondingly tested negative by RT-PCR. The shielding properties of placental barriers against viral infections from mothers to newborns remains a mystery. Major histopathological findings have been recorded as choriodecidual tissue with necrosis, intramural fibrin deposition, chorionic villi with fibrosis, and calcification. Moreover, although recent findings are insufficient to prove direct placental transmission of COVID-19, the abundance of angiotensin-converting enzymes-2 (ACE-2) on the placental surface could potentially contribute to unpleasant outcomes during pregnancy as SARSCoV-2 gains access to human cells via ACE-2. Finally, the significance of these findings is vague and needs further study.
Collapse
Affiliation(s)
- Nikita Sherwani
- Virology Lab, Department of Microbiology, Pt. JNM Medical College, Raipur, Chhattisgarh 492001, India
| | - Neha Singh
- Virology Lab, Department of Microbiology, Pt. JNM Medical College, Raipur, Chhattisgarh 492001, India,Corresponding author Phone: +91-9010803331 Fax: +0771-2523919
| | - Arvind Neral
- Department of Pathology, Pt. JNM Medical College, Raipur, Chhattisgarh 492001, India
| | - Jyoti Jaiswal
- Department of Obstetrics and Gynaecology, Pt. JNM Medical College, Raipur 492001, Chhattisgarh, India
| | - Tripti Nagaria
- Department of Obstetrics and Gynaecology, Pt. JNM Medical College, Raipur 492001, Chhattisgarh, India
| | - Onkar Khandwal
- Department of Paediatrics, Pt. JNM Medical College, Raipur 492001, Chhattisgarh, India
| |
Collapse
|
45
|
Zhou J, Teng Y, Zhang F, Ru X, Li P, Wang J, Yan S, Zhu P, Tao F, Huang K. Sex-specific association between placental inflammatory cytokine mRNA expression and preschoolers' behavioral development: The Ma'anshan birth cohort study. Brain Behav Immun 2022; 104:110-121. [PMID: 35661681 DOI: 10.1016/j.bbi.2022.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/25/2022] [Accepted: 05/29/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Placental inflammation may contribute to brain abnormalities and childhood neuropsychiatric disorders, but limited knowledge is available on the association of placental inflammatory cytokine levels and offspring's behavioral development. This study aimed to examine the sex-specific association between placental inflammatory cytokine mRNA expression and preschoolers' behavioral development. METHODS 3474 pregnant women were recruited as the initial study population in the Ma'anshan birth cohort (MABC) study. Placentas (n = 2519) were collected during childbirth, and the mRNA expression of IL-8, IL-1β, CRP, TNF-α, IL-6, IL-10, and IL-4 was assessed. The Child Behavior Checklist 1.5-5 (CBCL 1.5-5) was used to assess children's behavioral development at 4 years old. A T-score ≥ 60 on summary scales or a score ≥ 65 on syndrome scales was regarded as the borderline clinical range. Multiple linear regression models and binary logistic regression models were applied to explore the sex-specific associations between placental inflammatory cytokines mRNA transcript levels and preschoolers' behavioral development. RESULTS Sex-specific associations between placental inflammatory cytokines mRNA expression and preschoolers' behavioral development were observed. There was a positive association between IL-8 and CBCL scores for boys on anxious/depressed problems, aggressive behaviors, externalizing problems and total problems. Logistic regression models showed that high levels of IL-8 were associated with a higher risk of girls' emotionally reactive problems and sleep problems compared to low/medium levels. High TNF-α was correlated with increased sleep problem scores in boys, and medium TNF-α (vs. low levels) was associated with an increased risk of girls' externalizing problems. Medium levels of CRP, IL-1β, and IL-6 were found to be associated with a decreased risk of girls' behavioral problems compared to low/high levels. For anti-inflammatory cytokines, medium IL-10 and IL-4 (vs. low levels) were observed to be associated with a lower risk of internalizing problems in boys and externalizing problems in girls, respectively. High IL-10 was correlated with decreased attention problem scores in boys. CONCLUSION This study indicates that placental inflammatory cytokine mRNA expression of IL-8, CRP, TNF-α, IL-1β, IL-4 and IL-10 may be associated with preschoolers' behavioral development in a sex-specific manner.
Collapse
Affiliation(s)
- Jixing Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, China
| | - Yuzhu Teng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, China
| | - Fu Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, China
| | - Xue Ru
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, China
| | - Peixuan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, China
| | - Jianqing Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University
| | - Shuangqin Yan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Maternal and Child Health Care Center of Ma'anshan, No 24 Jiashan Road, Ma'anshan 243011, Anhui, China
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, China; Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, Anhui Province, China.
| |
Collapse
|
46
|
Schabel MC, Roberts VHJ, Gibbins KJ, Rincon M, Gaffney JE, Streblow AD, Wright AM, Lo JO, Park B, Kroenke CD, Szczotka K, Blue NR, Page JM, Harvey K, Varner MW, Silver RM, Frias AE. Quantitative longitudinal T2* mapping for assessing placental function and association with adverse pregnancy outcomes across gestation. PLoS One 2022; 17:e0270360. [PMID: 35853003 PMCID: PMC9295947 DOI: 10.1371/journal.pone.0270360] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
Existing methods for evaluating in vivo placental function fail to reliably detect pregnancies at-risk for adverse outcomes prior to maternal and/or fetal morbidity. Here we report the results of a prospective dual-site longitudinal clinical study of quantitative placental T2* as measured by blood oxygen-level dependent magnetic resonance imaging (BOLD-MRI). The objectives of this study were: 1) to quantify placental T2* at multiple time points across gestation, and its consistency across sites, and 2) to investigate the association between placental T2* and adverse outcomes. 797 successful imaging studies, at up to three time points between 11 and 38 weeks of gestation, were completed in 316 pregnancies. Outcomes were stratified into three groups: (UN) uncomplicated/normal pregnancy, (PA) primary adverse pregnancy, which included hypertensive disorders of pregnancy, birthweight <5th percentile, and/or stillbirth or fetal death, and (SA) secondary abnormal pregnancy, which included abnormal prenatal conditions not included in the PA group such as spontaneous preterm birth or fetal anomalies. Of the 316 pregnancies, 198 (62.6%) were UN, 70 (22.2%) PA, and 48 (15.2%) SA outcomes. We found that the evolution of placental T2* across gestation was well described by a sigmoid model, with T2* decreasing continuously from a high plateau level early in gestation, through an inflection point around 30 weeks, and finally approaching a second, lower plateau in late gestation. Model regression revealed significantly lower T2* in the PA group than in UN pregnancies starting at 15 weeks and continuing through 33 weeks. T2* percentiles were computed for individual scans relative to UN group regression, and z-scores and receiver operating characteristic (ROC) curves calculated for association of T2* with pregnancy outcome. Overall, differences between UN and PA groups were statistically significant across gestation, with large effect sizes in mid- and late- pregnancy. The area under the curve (AUC) for placental T2* percentile and PA pregnancy outcome was 0.71, with the strongest predictive power (AUC of 0.76) at the mid-gestation time period (20–30 weeks). Our data demonstrate that placental T2* measurements are strongly associated with pregnancy outcomes often attributed to placental insufficiency. Trial registration: ClinicalTrials.gov: NCT02749851.
Collapse
Affiliation(s)
- Matthias C. Schabel
- Advanced Imaging Research Center, Oregon Health and Science University (OHSU), Portland, Oregon, United States of America
| | - Victoria H. J. Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center (ONPRC), OHSU, Portland, Oregon, United States of America
- * E-mail:
| | - Karen J. Gibbins
- Department of Obstetrics and Gynecology, OHSU, Portland, Oregon, United States of America
| | - Monica Rincon
- Department of Obstetrics and Gynecology, OHSU, Portland, Oregon, United States of America
| | - Jessica E. Gaffney
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center (ONPRC), OHSU, Portland, Oregon, United States of America
| | - Aaron D. Streblow
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center (ONPRC), OHSU, Portland, Oregon, United States of America
| | - Adam M. Wright
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center (ONPRC), OHSU, Portland, Oregon, United States of America
| | - Jamie O. Lo
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center (ONPRC), OHSU, Portland, Oregon, United States of America
- Department of Obstetrics and Gynecology, OHSU, Portland, Oregon, United States of America
| | - Byung Park
- Biostatistics Shared Resource, Knight Cancer Institute, OHSU, Portland, Oregon, United States of America
| | - Christopher D. Kroenke
- Advanced Imaging Research Center, Oregon Health and Science University (OHSU), Portland, Oregon, United States of America
- Division of Neuroscience, ONPRC, OHSU, Portland, Oregon, United States of America
| | - Kathryn Szczotka
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, Utah, United States of America
| | - Nathan R. Blue
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, Utah, United States of America
| | - Jessica M. Page
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, Utah, United States of America
| | - Kathy Harvey
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, Utah, United States of America
| | - Michael W. Varner
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, Utah, United States of America
| | - Robert M. Silver
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, Utah, United States of America
| | - Antonio E. Frias
- Department of Obstetrics and Gynecology, OHSU, Portland, Oregon, United States of America
| |
Collapse
|
47
|
Human Placental Mesenchymal Stem Cells for the Treatment of ARDS in Rat. Stem Cells Int 2022; 2022:8418509. [PMID: 35756754 PMCID: PMC9226970 DOI: 10.1155/2022/8418509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/21/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
The acute respiratory distress syndrome (ARDS) is one of the main causes of high mortality in patients with coronavirus (COVID-19). In recent years, due to the coronavirus pandemic, the number of patients with ARDS has increased significantly. Unfortunately, until now, there are no effective treatments for ARDS caused by COVID-19. Many drugs are either ineffective or have a low effect. Currently, there have been reports of efficient use of mesenchymal stem cells (MSCs) for the treatment of ARDS caused by COVID-19. We investigated the influence of freeze-dried human placenta-derived mesenchymal stem cells (HPMSCs) in ARDS rat model. All animals have received intratracheal injection of 6 mg/kg of lipopolysaccharide (LPS). The rats were randomly divided into five groups: I: LPS, II: LPS+dexamethasone, III: LPS+HPMSCs, IV: HPMSC, and V: saline. ARDS observation time was short-term and amounted to 168 hours. The study has shown that HPMSCs are able to migrate and attach to damaged lung tissue, contributing to the resolution of pathology, restoration of function, and tissue repair in the alveolar space. Studies have also shown that the administration of HPMSCs in animals with ARDS model significantly reduced the levels of key cytokines such as IL-1β, IL-6, and TNF-α. Freeze-dried placental stem cell is a very promising biomaterial for the treatment of ARDS. The human placenta can be easily obtained because it is considered as a medical waste. At the same time, a huge number of MSCs can be obtained from the placental tissue, and there is no ethical controversy around their use. The freeze-dried MSCs from human placental tissue can be stored sterile at room temperature for a long time before use.
Collapse
|
48
|
Mice lacking DCAF2 in placenta die at the gastrulation stage. Cell Tissue Res 2022; 389:559-572. [PMID: 35711069 DOI: 10.1007/s00441-022-03655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
Abstract
UV-damaged DNA-binding protein 1 (DDB1) and cullin 4-associated factor 2 (DCAF2, also known as DTL or CDT2) is an evolutionarily highly conserved substrate recognition factor in the cullin 4 RING E3 ubiquitin ligase (CRL4) complex. This complex degrades multiple DNA replication and cell cycle-associated proteins to maintain genome stability. To clarify the function of DCAF2 in vivo, we used Cre recombinase driven by the Elf5 promoter to generate knockout mouse model that was specifically deleted Dcaf2 in the trophoblast lineage (Elf5-Cre; Dcaf2fl/fl, Dcaf2 cKO). Here, we show that mice with the genotype Elf5-Cre; Dcaf2fl/+ are normal and fertile. However, after mating of Elf5-Cre; Dcaf2fl/+ mice with Dcaf2fl/fl, no Dcaf2 cKO pups were born. Timed pregnancy studies have shown that Dcaf2 cKO mice developed abnormally on embryonic day 5.5 and died at gastrulation stage. It is worth noting that the extraembryonic ectoderm of Dcaf2 cKO mice is severely reduced or missing and leading to embryonic death. We also proved that stronger DNA damage accumulated in the trophoblastic cells of Dcaf2 cKO mice at E8.5. In addition, higher expression of Caspase-3 was found in the embryonic and trophoblastic cells of these cKO mice. In general, our research shows that the placental DCAF2 is crucial to the formation of gastrula.
Collapse
|
49
|
Chae SA, Son JS, Zhao L, Gao Y, Liu X, Marie de Avila J, Zhu MJ, Du M. Exerkine apelin reverses obesity-associated placental dysfunction by accelerating mitochondrial biogenesis in mice. Am J Physiol Endocrinol Metab 2022; 322:E467-E479. [PMID: 35403440 PMCID: PMC9126223 DOI: 10.1152/ajpendo.00023.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maternal exercise (ME) protects against adverse effects of maternal obesity (MO) on fetal development. As a cytokine stimulated by exercise, apelin (APN) is elevated due to ME, but its roles in mediating the effects of ME on placental development remain to be defined. Two studies were conducted. In the first study, 18 female mice were assigned to control (CON), obesogenic diet (OB), or OB with exercise (OB/Ex) groups (n = 6); in the second study, the same number of female mice were assigned to three groups; CON with PBS injection (CD/PBS), OB/PBS, or OB with apelin injection (OB/APN). In the exercise study, daily treadmill exercise during pregnancy significantly elevated the expression of PR domain 16 (PRDM16; P < 0.001), which correlated with enhanced oxidative metabolism and mitochondrial biogenesis in the placenta (P < 0.05). More importantly, these changes were partially mirrored in the apelin study. Apelin administration upregulated PRDM16 protein level (P < 0.001), mitochondrial biogenesis (P < 0.05), placental nutrient transporter expression (P < 0.001), and placental vascularization (P < 0.01), which were impaired due to MO (P < 0.05). In summary, MO impairs oxidative phosphorylation in the placenta, which is improved by ME; apelin administration partially mimics the beneficial effects of exercise on improving placental function, which prevents placental dysfunction due to MO.NEW & NOTEWORTHY Maternal exercise prevents metabolic disorders of mothers and offspring induced by high-fat diet. Exercise intervention enhances PRDM16 activation, oxidative metabolism, and vascularization of placenta, which are inhibited due to maternal obesity. Similar to maternal exercise, apelin administration improves placental function of obese dams.
Collapse
Affiliation(s)
- Song Ah Chae
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| | - Jun Seok Son
- Laboratory of Perinatal Kinesioepigenetics, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Liang Zhao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| | - Yao Gao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| | - Xiangdong Liu
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| | - Jeanene Marie de Avila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| |
Collapse
|
50
|
Abstract
Treatment with bone morphogenetic protein 4 (BMP4) in human primed pluripotent stem cells (PSCs) for generating trophoblast lineage cells has sparked debate that the resulting cells are closer to amnion lineage cells rather than trophoblast. This study reports that trophoblast stem-like cells (TSLCs) can be generated from human primed PSCs by a short-term treatment of BMP4 without amnion lineage marker expression. In addition, we describe that TSLCs are self-renewing in long-term culture and bipotent as they can differentiate into functional extravillous trophoblasts and syncytiotrophoblasts. We propose an alternative method to generate an available model for studying human placental development from human primed PSCs. The placenta is a transient but important multifunctional organ crucial for healthy pregnancy for both mother and fetus. Nevertheless, limited access to human placenta samples and the paucity of a proper in vitro model system have hampered our understanding of the mechanisms underlying early human placental development and placenta-associated pregnancy complications. To overcome these constraints, we established a simple procedure with a short-term treatment of bone morphogenetic protein 4 (BMP4) in trophoblast stem cell culture medium (TSCM) to convert human primed pluripotent stem cells (PSCs) to trophoblast stem-like cells (TSLCs). These TSLCs show not only morphology and global gene expression profiles comparable to bona fide human trophoblast stem cells (TSCs) but also long-term self-renewal capacity with bipotency that allows the cells to differentiate into functional extravillous trophoblasts (EVT) and syncytiotrophoblasts (ST). These indicate that TSLCs are equivalent to genuine human TSCs. Our data suggest a straightforward approach to make human TSCs directly from preexisting primed PSCs and provide a valuable opportunity to study human placenta development and pathology from patients with placenta-related diseases.
Collapse
|