1
|
Han X, Ren Y, Zhang X, Zhu D, Meng Z, Zhang Q, Chen B, Zhou P, Wei Z, Cao Y, Xu X, Zhang Z, Zou H. HMGB1 induces unexplained recurrent spontaneous abortion by mediating decidual macrophage autophagy. Int Immunopharmacol 2025; 147:113999. [PMID: 39787761 DOI: 10.1016/j.intimp.2024.113999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/04/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND The overexpression of HMGB1 at the maternal-fetal interface (MFI) is recognized as a significant factor in Unexplained Recurrent Spontaneous Abortion (URSA). This study aimed to investigate autophagy in the decidual tissues of URSA patients and to explore the relationship between HMGB1 and macrophage autophagy at the MFI in URSA. METHODS Human decidual tissues were collected from 40 patients diagnosed with URSA and from 60 women undergoing active termination of pregnancy. Mouse models of pregnancy loss URSA and in vitro cellular models were created and then subjected to treatment with an HMGB1 inhibitor (aspirin) and an anti-HMGB1 antibody, respectively. Autophagy at the MFI was evaluated using western blot analysis, immunofluorescence assays, and transmission electron microscopy (TEM). RESULTS This study revealed a high expression of LC3B and a low expression of P62 in the decidual tissue of the URSA group. These findings were further corroborated through TEM. The localization of autophagy within macrophages indicated a significant enhancement of autophagy in the decidual macrophages of the URSA group. However, treatment with low-dose aspirin resulted in a reversal of protein expression and a reduction in autophagy. In in vitro experiments, recombinant HMGB1 was found to mediate autophagy of immortalized bone marrow-derived macrophages, which could be inhibited by an anti-HMGB1 antibody. CONCLUSION This study first indicates that elevated levels of HMGB1 at the MFI trigger autophagy in macrophages, thereby promoting aseptic inflammation and contributing to the onset and progression of URSA. Furthermore, low-dose aspirin has been demonstrated to protect against URSA by inhibiting HMGB1, which in turn suppresses autophagy production.
Collapse
Affiliation(s)
- Xingxing Han
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yu Ren
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xueke Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Damin Zhu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zihan Meng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Qiqi Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Beili Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ping Zhou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiaofeng Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Zhiguo Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei 230032, Anhui, China; Innovation Research Institute of Engineering Medicine and Medical Equipment, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Huijuan Zou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei 230032, Anhui, China; Innovation Research Institute of Engineering Medicine and Medical Equipment, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
2
|
Jiang X, Wang J, Ma F, Li Y. FOXO3 Activates MFN2 Expression to Maintain the Autophagy Response in Cancer Cells Under Amino Acid Deprivation. J Cell Biochem 2025; 126:e30641. [PMID: 39175152 DOI: 10.1002/jcb.30641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
The lack of amino acids triggers the autophagic response. Some studies have shown such starvation conditions also induce mitochondrial fusion, revealing a close correlation between the two processes. Although Mitofusin-2 (MFN2) has been demonstrated to play a role in fusion regulation, its role in the autophagic response and the variables that activate MFN2 under stress remain unknown. In this investigation, we screened and confirmed that forkhead box protein O3 (FOXO3) participates in MFN2's expression during short periods of starvation. Luciferase reporter test proved that FOXO3 facilitates MFN2's transcription by binding to its promoter region, and FOXO3 downregulation directly depresses MFN2's expression. Consequently, inhibiting the FOXO3-MFN2 axis results in the loss of mitochondrial fusion, disrupting the normal morphology of mitochondria, impairing the degradation of substrates, and reducing autophagosome accumulation, ultimately leading to the blockage of the autophagy. In conclusion, our work demonstrates that the FOXO3-MFN2 pathway is essential for adaptive changes in mitochondrial morphology and cellular autophagy response under nutritional constraints.
Collapse
Affiliation(s)
- Xu Jiang
- Department of Clinical Laboratory Diagnostics, School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Jing Wang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, Anhui, China
| | - Fang Ma
- Department of Clinical Laboratory Diagnostics, School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Yuyun Li
- Department of Clinical Laboratory Diagnostics, School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| |
Collapse
|
3
|
Singh A, Perez ML, Kirsanov O, Padilla-Banks E, Guardia CM. Autophagy in reproduction and pregnancy-associated diseases. iScience 2024; 27:111268. [PMID: 39628569 PMCID: PMC11613427 DOI: 10.1016/j.isci.2024.111268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
As advantageous as sexual reproduction is during progeny generation, it is also an expensive and treacherous reproductive strategy. The viviparous eukaryote has evolved to survive stress before, during, and after pregnancy. An important and conserved intracellular pathway for the control of metabolic stress is autophagy. The autophagy process occurs in multiple stages through the coordinated action of autophagy-related genes. This review summarizes the evidence that autophagy is an integral component of reproduction. Additionally, we discuss emerging in vitro techniques that will enable cellular and molecular studies of autophagy and its associated pathways in reproduction. Finally, we discuss the role of autophagy in the pathogenesis and progression of several pregnancy-related disorders such as preterm birth, preeclampsia, and intra-uterine growth restriction, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Asmita Singh
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Maira L. Perez
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Oleksandr Kirsanov
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Elizabeth Padilla-Banks
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Carlos M. Guardia
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| |
Collapse
|
4
|
Lai Y, Fu Z, Gao Y, Ma N, Li L. Hypoxia-inducible factors (HIFs) in early pregnancy: implications for miscarriage†. Biol Reprod 2024; 111:987-999. [PMID: 39325972 DOI: 10.1093/biolre/ioae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/07/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024] Open
Abstract
Miscarriage poses a significant threat to both maternal and fetal health. Its etiology remains unknown, and there are no established effective identification or prevention strategies. A low-oxygen environment in early pregnancy is a physiological necessity for embryonic and placental growth. Hypoxia-inducible factors are a family of classic hypoxia signaling molecules whose expression level may fluctuate abnormally because of an imbalance in oxygen levels. Its unusual fluctuations initiate multiple signaling pathways at the maternal womb. Hypoxia-inducible factors are a family of classic hypoxia-signaling molecules and immune tolerance. Notably, aberrant regulation of these processes may lead to miscarriage. This review aims to clarify how the hypoxia-inducible factor-1α mediates the aberrant regulation of biological processes, including autophagy, metabolic reprogramming, et al., and how these effects impact trophoblasts and other cells at the maternal-fetal interface. These findings provide new insights into potential therapeutic and preventive strategies for miscarriage.
Collapse
Affiliation(s)
- Yuxuan Lai
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Zhiyu Fu
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yaxin Gao
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Population Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Ning Ma
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Population Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Lu Li
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Population Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Li MY, Shen HH, Cao XY, Gao XX, Xu FY, Ha SY, Sun JS, Liu SP, Xie F, Li MQ. Targeting a mTOR/autophagy axis: a double-edged sword of rapamycin in spontaneous miscarriage. Biomed Pharmacother 2024; 177:116976. [PMID: 38906022 DOI: 10.1016/j.biopha.2024.116976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/02/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Immune dysfunction is a primary culprit behind spontaneous miscarriage (SM). To address this, immunosuppressive agents have emerged as a novel class of tocolytic drugs, modulating the maternal immune system's tolerance towards the embryo. Rapamycin (PubChem CID:5284616), a dual-purpose compound, functions as an immunosuppressive agent and triggers autophagy by targeting the mTOR pathway. Its efficacy in treating SM has garnered significant research interest in recent times. Autophagy, the cellular process of self-degradation and recycling, plays a pivotal role in numerous health conditions. Research indicates that autophagy is integral to endometrial decidualization, trophoblast invasion, and the proper functioning of decidual immune cells during a healthy pregnancy. Yet, in cases of SM, there is a dysregulation of the mTOR/autophagy axis in decidual stromal cells or immune cells at the maternal-fetal interface. Both in vitro and in vivo studies have highlighted the potential benefits of low-dose rapamycin in managing SM. However, given mTOR's critical role in energy metabolism, inhibiting it could potentially harm the pregnancy. Moreover, while low-dose rapamycin has been deemed safe for treating recurrent implant failure, its potential teratogenic effects remain uncertain due to insufficient data. In summary, rapamycin represents a double-edged sword in the treatment of SM, balancing its impact on autophagy and immune regulation. Further investigation is warranted to fully understand its implications.
Collapse
Affiliation(s)
- Meng-Ying Li
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Hui-Hui Shen
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Xiao-Yan Cao
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Xiao-Xiao Gao
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Feng-Yuan Xu
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Si-Yao Ha
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510235, China
| | - Jian-Song Sun
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Song-Ping Liu
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China.
| | - Feng Xie
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China.
| | - Ming-Qing Li
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Department of Gynecologic Endocrinology and Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, People's Republic of China.
| |
Collapse
|
6
|
Ding SM, Shi LG, Cao ZP, Zhu NN, Liu YY, Wang MY, Cui SS, Cheng HR, Liang D, Cao YX, Liu YJ. HTR1B regulates mitochondrial homeostasis and mitophagy by activating the ERK/ MAPK signalling pathway during human embryonic arrest. Heliyon 2024; 10:e33132. [PMID: 39022094 PMCID: PMC11253063 DOI: 10.1016/j.heliyon.2024.e33132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Background Previous studies have shown that serotonin and its receptors are widely distributed in mammalian reproductive tisssues and play an important role in embryonic development. However, the specific effects of the serotonergic system on embryonic arrest (EA) and the underlying mechanism require further investigation. Methods Chorionic villi were collected from patients with EA and healthy pregnant women. Western blotting (WB) and immunohistochemistry (IHC) were used to detect serotonin receptor 1B (HTR1B) levels and evaluate mitochondrial function. Additionally, HTR-8/SVneo cells were transfected with an HTR1B overexpression plasmid. Quantitative real-time polymerase chain reaction(qRT-PCR), Cell Counting Kit-8 (CCK-8), and wound healing assays were utilized to evaluate mitophagy level, cell proliferation and cell migration, respectively. Results We discovered elevated HTR1B levels in the chorionic villi of the patients with EA compared to controls. Concurrently, we observed enhanced levels of nucleus-encoded proteins including mitofilin, succinate dehydrogenase complex subunit A (SDHA), and cytochrome c oxidase subunit 4 (COXIV), along with the mitochondrial fusion protein optic atrophy 1(OPA1), fission proteins mitochondrial fission protein 1(FIS1) and mitochondrial fission factor (MFF) in the EA group. Additionally, there was an excessive mitophagy levels in EA group. Furthermore, a notable activation of mitogen-activated protein kinase (MAPK) signaling pathway proteins including extracellular regulating kinase (ERK), c-Jun N-terminal kinase (JNK), and P38 was observed in the EA group. By overexpressing HTR1B in HTR-8/SVneo cells, we observed a significant reduction in cell proliferation and migration. HTR1B overexpression also caused an increase in levels of SDHA and FIS1, as well as an upregulation of mitophagy. Notably, the ERK inhibitor U0126 effectively mitigated these effects. Conclusion These findings show that HTR1B influences mitochondrial homeostasis, promoting excessive mitophagy and impairing cell proliferation and migration by activating the MAPK signalling pathway during post-implantation EA. Therefore, HTR1B may serve as a potential therapeutic target for patients with EA.
Collapse
Affiliation(s)
- Si-min Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230022, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ling-ge Shi
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230022, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhen-ping Cao
- The Third People's Hospital of Hefei, The Third Clinical Teaching Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Na-na Zhu
- The Second People's Hospital of Hefei, The Second Clinical Teaching Hospital of Anhui Medical University, Hefei, 230011, Anhui, China
| | - Yun-yun Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230022, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Meng-yao Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230022, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shuang-shuang Cui
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230022, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hui-ru Cheng
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230022, China
| | - Dan Liang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230022, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yun-xia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230022, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine,No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ya-jing Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230022, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine,No 81 Meishan Road, Hefei, 230032, Anhui, China
| |
Collapse
|
7
|
Kobayashi H, Matsubara S, Yoshimoto C, Shigetomi H, Imanaka S. Current understanding of the pathogenesis of placenta accreta spectrum disorder with focus on mitochondrial function. J Obstet Gynaecol Res 2024; 50:929-940. [PMID: 38544343 DOI: 10.1111/jog.15936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 06/04/2024]
Abstract
AIM The refinement of assisted reproductive technology, including the development of cryopreservation techniques (vitrification) and ovarian stimulation protocols, makes frozen embryo transfer (FET) an alternative to fresh ET and has contributed to the success of assisted reproductive technology. Compared with fresh ET cycles, FET cycles were associated with better in vitro fertilization outcomes; however, the occurrence of pregnancy-induced hypertension, preeclampsia, and placenta accreta spectrum (PAS) was higher in FET cycles. PAS has been increasing steadily in incidence as a life-threatening condition along with cesarean rates worldwide. In this review, we summarize the current understanding of the pathogenesis of PAS and discuss future research directions. METHODS A literature search was performed in the PubMed and Google Scholar databases. RESULTS Risk factors associated with PAS incidence include a primary defect of the decidua basalis or scar dehiscence, aberrant vascular remodeling, and abnormally invasive trophoblasts, or a combination thereof. Freezing, thawing, and hormone replacement manipulations have been shown to affect multiple cellular pathways, including cell proliferation, invasion, epithelial-to-mesenchymal transition (EMT), and mitochondrial function. Molecules involved in abnormal migration and EMT of extravillous trophoblast cells are beginning to be identified in PAS placentas. Many of these molecules were also found to be involved in mitochondrial biogenesis and dynamics. CONCLUSION The etiology of PAS may be a multifactorial genesis with intrinsic predisposition (e.g., placental abnormalities) and certain environmental factors (e.g., defective decidua) as triggers for its development. A distinctive feature of this review is its focus on the potential factors linking mitochondrial function to PAS development.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Medicine, Kei Oushin Clinic, Nishinomiya, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, Nara, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, Nara, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
8
|
Chen H, Chen Y, Zheng Q. The regulated cell death at the maternal-fetal interface: beneficial or detrimental? Cell Death Discov 2024; 10:100. [PMID: 38409106 PMCID: PMC10897449 DOI: 10.1038/s41420-024-01867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Regulated cell death (RCD) plays a fundamental role in placental development and tissue homeostasis. Placental development relies upon effective implantation and invasion of the maternal decidua by the trophoblast and an immune tolerant environment maintained by various cells at the maternal-fetal interface. Although cell death in the placenta can affect fetal development and even cause pregnancy-related diseases, accumulating evidence has revealed that several regulated cell death were found at the maternal-fetal interface under physiological or pathological conditions, the exact types of cell death and the precise molecular mechanisms remain elusive. In this review, we summarized the apoptosis, necroptosis and autophagy play both promoting and inhibiting roles in the differentiation, invasion of trophoblast, remodeling of the uterine spiral artery and decidualization, whereas ferroptosis and pyroptosis have adverse effects. RCD serves as a mode of communication between different cells to better maintain the maternal-fetal interface microenvironment. Maintaining the balance of RCD at the maternal-fetal interface is of utmost importance for the development of the placenta, establishment of an immune microenvironment, and prevention of pregnancy disorders. In addition, we also revealed an association between abnormal expression of key molecules in different types of RCD and pregnancy-related diseases, which may yield significant insights into the pathogenesis and treatment of pregnancy-related complications.
Collapse
Affiliation(s)
- Huan Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, P.R. China
| | - Yin Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, P.R. China
| | - Qingliang Zheng
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, P.R. China.
| |
Collapse
|
9
|
Yang Y, Liu B, Tian J, Teng X, Liu T. Vital role of autophagy flux inhibition of placental trophoblast cells in pregnancy disorders induced by HEV infection. Emerg Microbes Infect 2023; 12:2276336. [PMID: 37882369 PMCID: PMC10796124 DOI: 10.1080/22221751.2023.2276336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023]
Abstract
Hepatitis E virus (HEV) has become one of the important pathogens that threaten the global public health. Type 3 and 4 HEV are zoonotic, which can spread vertically and cause placental damage. At the same time, autophagy plays an important role in the process of embryo development and pregnancy maintenance. However, the relationship between HEV and autophagy, especially in the placenta tissue, has not been clarified. We found lower litter rates in HEV-infected female mice, with significant intrauterine abortion of the embryo (24.19%). To explore the effects of HEV infection on placenta autophagy, chorionic cells (JEG-3) and mice placenta have been employed as research objects, while the expression of autophagy-related proteins (ATGs) has been detected in JEG-3 cells with different times of HEV inoculation. The results demonstrated that the expression of protein LC3 decreased and p62 accumulated, meanwhile ATGs such as ATG4B, ATG5, and ATG9A in JEG-3 cells have decreased significantly. In addition, the maturation of autophagosomes, which referred to the process of the combination of autophagosomes and lysosomes was prevented by HEV infection as well. All processes of autophagic flux, which include the initiation, development, and maturation three stages, were suppressed in JEG-3 cells after HEV infection. Similarly, the protein and gene expression of LC3 were significantly decreased in the placenta of pregnant mice with HEV infection. In summary, our results suggested that HEV inhibited autophagy in JEG-3 cells and placenta of pregnant mice, which might be the important pathogenic mechanisms of HEV infection leading to embryo abortion.
Collapse
Affiliation(s)
- Yifei Yang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Bo Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jijing Tian
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Xuepeng Teng
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Tianlong Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
10
|
Komijani E, Parhizkar F, Abdolmohammadi-Vahid S, Ahmadi H, Nouri N, Yousefi M, Aghebati-Maleki L. Autophagy-mediated immune system regulation in reproductive system and pregnancy-associated complications. J Reprod Immunol 2023; 158:103973. [PMID: 37295066 DOI: 10.1016/j.jri.2023.103973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Autophagy lysosomal degradation is the main cell mechanism in cellular, tissue and organismal homeostasis and is controlled by autophagy-related genes (ATG). Autophagy has important effects in cellular physiology, including adaptation to metabolic stress, removal of dangerous cargo (such as protein aggregates, damaged organelles, and intracellular pathogens), regeneration during differentiation and development, and prevention of genomic damage in general. Also, it has been found that autophagy is essential for pre-implantation, development, and maintaining embryo survival in mammals. Under certain conditions, autophagy may be detrimental through pro-survival effects such as cancer progression or through possible cell death-promoting effects. Hormonal changes and environmental stress can initiate autophagy in reproductive physiology. The activity of autophagy can be upregulated under conditions like a lack of nutrients, inflammation, hypoxia, and infections. In this regard the dysregulation of autophagy involved in some pregnancy complications such as preeclampsia (PE) and pregnancy loss, and has a major impact on reproductive outcomes. Therefore, we aimed to discuss the relationship between autophagy and the female reproductive system, with a special focus on the immune system, and its role in fetal and maternal health.
Collapse
Affiliation(s)
- Erfan Komijani
- Department of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Forough Parhizkar
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamid Ahmadi
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, Pécs, Hungary
| | - Narjes Nouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
11
|
Alzubaidi KRK, Mahdavi M, Dolati S, Yousefi M. Observation of increased levels of autophagy-related genes and proteins in women with preeclampsia: a clinical study. Mol Biol Rep 2023; 50:4831-4840. [PMID: 37039997 DOI: 10.1007/s11033-023-08385-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/13/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Preeclampsia is a type of pregnancy-related disease that is not fully understood underlying mechanisms of it till now. Reported results from autophagy-related studies in PE show some controversial roles of this mechanism in PE development and progression. In this study, we aimed to evaluate the autophagy process in preeclampsia women. MATERIALS AND METHODS Peripheral blood was taken from 50 preeclampsia women and 50 healthy pregnant women. After PBMC isolation, Total RNA and total protein were extracted from PBMCs to cDNA synthesis and real-time PCR and western blotting, respectively. Atg5, Atg7, beclin1, LC3B, FOXO1, FOXO3a, FOXO4, and FOXO6 genes were evaluated using real-time PCR. Atg5, beclin1, LC3B, and FOXO1 expression at the protein level was evaluated by the western blot technique. RESULTS Real-time PCR results showed an increased expression of Atg5, Atg7, beclin1, LC3B, FOXO1, FOXO3a, FOXO4, and FOXO6 genes in PE patients compared to the healthy pregnant women and also in LOPE patients in comparison with EOPE cases. Western blotting results revealed higher expression of Atg5, beclin1, LC3B, and FOXO1 proteins in PE women compared to healthy pregnant group and in LOPE patients in comparison with EOPE cases. Our findings revealed a positive correlation between proteinuria and protein levels of Atg5, beclin1, LC3B, and FOXO1 in LOPE patients. CONCLUSION Our investigation showed an elevated activation of autophagy in PE women in comparison with healthy pregnant women which is in controversy with some other studies. More targeted and comprehensive studies regarding the relationship of autophagy in pre-eclamptic women are needed.
Collapse
Affiliation(s)
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Medical School, Tabriz University of Medical Sciences, Tabriz, 5166614766, IR, Iran.
| |
Collapse
|
12
|
Nakashima A, Furuta A, Yamada K, Yoshida-Kawaguchi M, Yamaki-Ushijima A, Yasuda I, Ito M, Yamashita S, Tsuda S, Yoneda S, Cheng S, Sharma S, Shima T. The Role of Autophagy in the Female Reproduction System: For Beginners to Experts in This Field. BIOLOGY 2023; 12:biology12030373. [PMID: 36979065 PMCID: PMC10045718 DOI: 10.3390/biology12030373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Autophagy is a fundamental process involved in regulating cellular homeostasis. Autophagy has been classically discovered as a cellular process that degrades cytoplasmic components non-selectively to produce energy. Over the past few decades, this process has been shown to work in energy production, as well as in the reduction of excessive proteins, damaged organelles, and membrane trafficking. It contributes to many human diseases, such as neurodegenerative diseases, carcinogenesis, diabetes mellitus, development, longevity, and reproduction. In this review, we provide important information for interpreting results related to autophagic experiments and present the role of autophagy in this field.
Collapse
Affiliation(s)
- Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
- Correspondence: ; Tel.: +81-76-434-7357
| | - Atsushi Furuta
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Kiyotaka Yamada
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Mihoko Yoshida-Kawaguchi
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Akemi Yamaki-Ushijima
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Ippei Yasuda
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Masami Ito
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Satoshi Yamashita
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Sayaka Tsuda
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Satoshi Yoneda
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Shibin Cheng
- Departments of Pediatrics, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI 02905, USA
| | - Surendra Sharma
- Departments of Pediatrics, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI 02905, USA
| | - Tomoko Shima
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
13
|
Zhou J, Li L, Pan X, Wang J, Qi Q, Sun H, Li C, Wang L. The effect of a traditional Chinese quadri-combination therapy and its component quercetin on recurrent spontaneous abortion: A clinical trial, network pharmacology and experiments-based study. Front Pharmacol 2022; 13:965694. [PMID: 36339549 PMCID: PMC9626984 DOI: 10.3389/fphar.2022.965694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/28/2022] [Indexed: 08/02/2023] Open
Abstract
Objective: To explore the effect and mechanisms of a traditional Chinese quadri-combination therapy [Bushen, Yiqi, Lixue and Yangtai (BYLY)] in treating recurrent spontaneous abortion (RSA). Methods: A clinical trial was conducted to study the effect of BYLY on RSA. Pharmacological network analysis and UPLC-Q/TOF-mass spectrometry (MS) were applied to investigate the key active component in BYLY and potential targets. Cellular experiments based on former results were performed to examine the mechanism of BYLY in the treatment of RSA. Results: Four hundred and eighty participants enrolled in the clinical trial. The results showed that, compared with the use of BYLY or duphaston alone, a combination of duphaston and BYLY could decrease the early abortion rate in RSA (p < 0.001). Network pharmacological analysis indicated that BYLY contained 132 active components and 146 core targets, and the quercetin maybe the key effective component. In vitro experiments found that pretreatment of quercetin at the correct concentration (2 μM) prevented hypoxia-induced viability and proliferation reduction, and apoptosis and mitochondrial dysfunction. Furthermore, quercetin could modulate mitochondrial fission/fusion balance in trophoblasts, and specifically decrease the expression of Drp1 by regulating miR-34a-5p. Conclusion: BYLY could improve pregnancy outcomes of RSA, based on multi-components and multi-targets. The protective effect of quercetin on trophoblasts, through decreasing Drp1 expression via regulating miR-34a-5p, might be one possible effective mechanism.
Collapse
Affiliation(s)
- Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Lisha Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Xinyao Pan
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Jing Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Qing Qi
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Hongmei Sun
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Chuyu Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| |
Collapse
|
14
|
Zhao S, Heng N, Wang H, Wang H, Zhang H, Gong J, Hu Z, Zhu H. Mitofusins: from mitochondria to fertility. Cell Mol Life Sci 2022; 79:370. [PMID: 35725948 PMCID: PMC9209398 DOI: 10.1007/s00018-022-04386-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023]
Abstract
Germ cell formation and embryonic development require ATP synthesized by mitochondria. The dynamic system of the mitochondria, and in particular, the fusion of mitochondria, are essential for the generation of energy. Mitofusin1 and mitofusin2, the homologues of Fuzzy onions in yeast and Drosophila, are critical regulators of mitochondrial fusion in mammalian cells. Since their discovery mitofusins (Mfns) have been the source of significant interest as key influencers of mitochondrial dynamics, including membrane fusion, mitochondrial distribution, and the interaction with other organelles. Emerging evidence has revealed significant insight into the role of Mfns in germ cell formation and embryonic development, as well as the high incidence of reproductive diseases such as asthenospermia, polycystic ovary syndrome, and gestational diabetes mellitus. Here, we describe the key mechanisms of Mfns in mitochondrial dynamics, focusing particularly on the role of Mfns in the regulation of mammalian fertility, including spermatogenesis, oocyte maturation, and embryonic development. We also highlight the role of Mfns in certain diseases associated with the reproductive system and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Shanjiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Nuo Heng
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Huan Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Haoyu Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Haobo Zhang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jianfei Gong
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Zhihui Hu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
15
|
Chen G, Chen L, Huang Y, Zhu X, Yu Y. Increased FUN14 domain containing 1 (FUNDC1) ubiquitination level inhibits mitophagy and alleviates the injury in hypoxia-induced trophoblast cells. Bioengineered 2021; 13:3620-3633. [PMID: 34699308 PMCID: PMC8974051 DOI: 10.1080/21655979.2021.1997132] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Preeclampsia (PE) is a pregnancy disorder characterized by excessive trophoblast cell death. This study aims to explore the exact mechanism of the ubiquitination level of FUN14 domain containing 1 (FUNDC1) in mitophagy and injury in hypoxic trophoblast cells. In this study, HTR-8/SVneo trophoblast cells were cultured under normoxic and hypoxic conditions and PE mouse model was established. We found low ubiquitination level of FUNDC1 in hypoxic trophoblast cells and placenta of pregnant women with PE. Proteasome inhibitor MG-132 and protease activator MF-094 were added into HTR-8/SVneo trophoblast cells. Proteasome inhibitor MG-132 decreased FUNDC1 ubiquitination level while protease activator MF-094 increased FUNDC1 ubiquitination level. Inhibition of FUNDC1 ubiquitination promoted mitophagy and mitochondrial membrane potential (Δψm) in normoxic trophoblast cells, increased levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and decreased levels of glutathione (GSH) and superoxide dismutase (SOD). In addition, FUNDC1 ubiquitination alleviated cell injury in PE mice in vivo. In conclusion, increased FUNDC1 ubiquitination level inhibited mitophagy and Δψm changes in hypoxic trophoblast cells, and thus alleviated oxidative injury.
Collapse
Affiliation(s)
- GuoQing Chen
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong 518028; China
| | - Lu Chen
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong 518028; China
| | - Yan Huang
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong 518028; China
| | - XiongShan Zhu
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong 518028; China
| | - YuanLan Yu
- Department of Emergency, Shenzhen Children's Hospital, Shenzhen, Guangdong 518026, China
| |
Collapse
|
16
|
Wu H, Ning Y, Yu Q, Luo S, Gao J. Identification of key molecules in recurrent miscarriage based on bioinformatics analysis. Comb Chem High Throughput Screen 2021; 25:1745-1755. [PMID: 34433394 DOI: 10.2174/1386207324666210825142340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recurrent miscarriage (RM) affects 1% to 5% of couples, and the mechanisms still stay unclear. In this study, we explored the underlying molecular mechanism and potential molecular biomarkers of RM as well as constructed a miRNA-mRNA regulation network. METHODS The microarray datasets GSE73025 and GSE22490, which represent mRNA and miRNA profiles, respectively, were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) with p-value < 0.05 and fold-change > 2 were identified while the miRNAs with p-value < 0.05 and fold-change > 1.3 were considered as significant differentially expressed miRNAs (DEMs). RESULTS A total of 373 DEGs, including 218 up-regulated genes and 155 down-regulated genes, were identified, while 138 up-regulated and 68 down-regulated DEMs were screened out. After functional enrichment analysis, we found GO biological process (BP) terms significantly enriched in the Fc-gamma receptor signaling pathway involved in phagocytosis. Moreover, signaling pathway analyses indicated that the neurotrophin signaling pathway (hsa04722) was the top KEGG enrichment. 6 hub genes (FPR1, C5AR1, CCR1, ADCY7, CXCR2, NPY) were screened out to construct a complex regulation network in RM because they had the highest degree of affecting the network. Besides, we constructed miRNA-mRNA network between DEMs target genes and DEGs in RM, including hsa-miR-1297- KLHL24 and hsa-miR-548a-5p-KLHL24 pairs. CONCLUSIONS In conclusion, the novel differentially expressed molecules in the present study could provide a new sight to explore the pathogenesis of RM as well as potential biomarkers and therapeutic targets for RM diagnosis and treatment.
Collapse
Affiliation(s)
- Haiwang Wu
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou. China
| | - Yan Ning
- Department of Chinese Medicine, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen. China
| | - Qingying Yu
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou. China
| | - Songping Luo
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou. China
| | - Jie Gao
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou. China
| |
Collapse
|
17
|
Carvajal L, Gutiérrez J, Morselli E, Leiva A. Autophagy Process in Trophoblast Cells Invasion and Differentiation: Similitude and Differences With Cancer Cells. Front Oncol 2021; 11:637594. [PMID: 33937039 PMCID: PMC8082112 DOI: 10.3389/fonc.2021.637594] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Early human placental development begins with blastocyst implantation, then the trophoblast differentiates and originates the cells required for a proper fetal nutrition and placental implantation. Among them, extravillous trophoblast corresponds to a non-proliferating trophoblast highly invasive that allows the vascular remodeling which is essential for appropriate placental perfusion and to maintain the adequate fetal growth. This process involves different placental cell types as well as molecules that allow cell growth, cellular adhesion, tissular remodeling, and immune tolerance. Remarkably, some of the cellular processes required for proper placentation are common between placental and cancer cells to finally support tumor growth. Indeed, as in placentation trophoblasts invade and migrate, cancer cells invade and migrate to promote tumor metastasis. However, while these processes respond to a controlled program in trophoblasts, in cancer cells this regulation is lost. Interestingly, it has been shown that autophagy, a process responsible for the degradation of damaged proteins and organelles to maintain cellular homeostasis, is required for invasion of trophoblast cells and for vascular remodeling during placentation. In cancer cells, autophagy has a dual role, as it has been shown both as tumor promoter and inhibitor, depending on the stage and tumor considered. In this review, we summarized the similarities and differences between trophoblast cell invasion and cancer cell metastasis specifically evaluating the role of autophagy in both processes.
Collapse
Affiliation(s)
- Lorena Carvajal
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime Gutiérrez
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile
| | - Eugenia Morselli
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Autophagy Research Center, Santiago, Chile
| | - Andrea Leiva
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile
| |
Collapse
|
18
|
Cai H, Chang T, Li Y, Jia Y, Li H, Zhang M, Su P, Zhang L, Xiang W. Circular DDX10 is associated with ovarian function and assisted reproductive technology outcomes through modulating the proliferation and steroidogenesis of granulosa cells. Aging (Albany NY) 2021; 13:9592-9612. [PMID: 33742605 PMCID: PMC8064152 DOI: 10.18632/aging.202699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 02/01/2021] [Indexed: 12/29/2022]
Abstract
circRNAs are present in human ovarian tissue, but how they regulate ovarian function remains unknown. In the current study, we investigated the levels of circRNAs in granulosa cells (GCs) derived from human follicular fluid, explored their correlation with female ovarian reserve function and clinical outcomes of assisted reproduction technique (ART), and investigated their effects on the biological functions of GC cell lines (COV434) in vitro. We identified that the levels of circDDX10 in GCs decreased gradually with aging (P < 0.01) and was positively correlated with AMH (r = 0.45, P < 0.01) and AFC (r = 0.32, P < 0.01), but not with FSH and estradiol (P > 0.05). Additionally, circDDX10 was related to the number of oocytes obtained, and good quality embryo rates. Silencing circDDX10 in GCs could markedly up-regulate the expression of apoptosis-related factors, reduce cell proliferation activity, inhibit the expression of steroid hormone synthesis-related factors, and prohibit the synthesis of estradiol. On the contrary, over-expression of circDDX10 had the opposite effect. circDDX10 is expected to become a novel biomarker for predicting the outcomes of ART, and may participate in the regulation of ovarian function by affecting the proliferation and apoptosis of GCs and steroid hormone synthesis.
Collapse
Affiliation(s)
- Hongcai Cai
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Tianli Chang
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yamin Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yinzhao Jia
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Huiying Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Mengdi Zhang
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Ping Su
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Ling Zhang
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Wenpei Xiang
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
19
|
Molecular and immunological developments in placentas. Hum Immunol 2021; 82:317-324. [PMID: 33581928 DOI: 10.1016/j.humimm.2021.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/03/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Cytotrophoblasts differentiate in two directions during early placentation: syncytiotrophoblasts (STBs) and extravillous trophoblasts (EVTs). STBs face maternal immune cells in placentas, and EVTs, which invade the decidua and uterine myometrium, face the cells in the uterus. This situation, in which trophoblasts come into contact with maternal immune cells, is known as the maternal-fetal interface. Despite fetuses and fetus-derived trophoblast cells being of the semi-allogeneic conceptus, fetuses and placentas are not rejected by the maternal immune system because of maternal-fetal tolerance. The acquired tolerance develops during normal placentation, resulting in normal fetal development in humans. In this review, we introduce placental development from the viewpoint of molecular biology. In addition, we discuss how the disruption of placental development could lead to complications in pregnancy, such as hypertensive disorder of pregnancy, fetal growth restriction, or miscarriage.
Collapse
|
20
|
Fraichard C, Bonnet-Serrano F, Laguillier-Morizot C, Hebert-Schuster M, Lai-Kuen R, Sibiude J, Fournier T, Cohen M, Guibourdenche J. Protease Inhibitor Anti-HIV, Lopinavir, Impairs Placental Endocrine Function. Int J Mol Sci 2021; 22:E683. [PMID: 33445576 PMCID: PMC7827556 DOI: 10.3390/ijms22020683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
Protease Inhibitors (PI e.g., ritonavir (RTV) and lopinavir (LPV)) used to treat pregnant mothers infected by HIV induce prematurity and endocrine dysfunctions. The maintenance of pregnancy relies on placental hormone production (human Chorionic Gonadotrophin (hCG) and progesterone (P4)). Those functions are ensured by the villous trophoblast and are mainly regulated by the Unfolded Protein Response (UPR) pathway and mitochondria. We investigated, in vitro, if PI impair hCG and P4 production and the potential intracellular mechanisms involved. Term villous cytotrophoblast (VCT) were cultured with or without RTV or LPV from 6 to 48 h. VCT differentiation into syncytiotrophoblast (ST) was followed measuring hCG and P4 secretion. We evaluated the expression of P4 synthesis partners (Metastatic Lymph Node 64 (MLN64), cholesterol side-chain cleavage (P450SCC), Hydroxy-delta-5-Steroid Dehydrogenase and 3 Beta-and steroid delta-isomerase 1 (HSD3B1)), of mitochondrial pro-fusion factors (Mitofusin 2 (Mfn2), Optic Atrophy 1 (OPA1)) and of UPR factors (Glucose-Regulated Protein 78 (GRP78), Activating Transcription Factor 4 (ATF4), Activating Transcription Factor 6 (ATF6), spliced X-box Binding Protein 1 (sXBP1)). RTV had no significant effect on hCG and P4 secretion, whereas lopinavir significantly decreased both secretions. LPV also decreased P450SCC and HSD3B1 expression, whereas it increased Mfn2, GRP78 and sXBP1 expression in ST. RTV has no effect on the endocrine placenta. LPV impairs both villous trophoblast differentiation and P4 production. It is likely to act via mitochondrial fusion and UPR pathway activation. These trophoblastic alterations may end in decreased P4 levels in maternal circulation, inducing prematurity.
Collapse
Affiliation(s)
- Camille Fraichard
- INSERM UMR-S 1139, Faculté de Pharmacie, Université de Paris, 75006 Paris, France; (C.F.); (C.L.-M.); (T.F.)
| | | | - Christelle Laguillier-Morizot
- INSERM UMR-S 1139, Faculté de Pharmacie, Université de Paris, 75006 Paris, France; (C.F.); (C.L.-M.); (T.F.)
- Service d’Hormonologie, CHU Cochin, HUPC, AP-HP, 75014 Paris, France;
| | - Marylise Hebert-Schuster
- Service de Gynécologie-Obstétrique, Faculté de Médecine, Université de Genève, 1206 Genève, Suisse; (M.H.-S.); (M.C.)
| | - René Lai-Kuen
- INSERM UMS 025—CNRS UMS 3612, Faculté de Pharmacie, Université de Paris, 75006 Paris, France;
| | - Jeanne Sibiude
- Service de Gynécologie-Obstétrique, CHU Louis Mourier, HUPN, AP-HP, 92700 Colombes, France;
| | - Thierry Fournier
- INSERM UMR-S 1139, Faculté de Pharmacie, Université de Paris, 75006 Paris, France; (C.F.); (C.L.-M.); (T.F.)
| | - Marie Cohen
- Service de Gynécologie-Obstétrique, Faculté de Médecine, Université de Genève, 1206 Genève, Suisse; (M.H.-S.); (M.C.)
| | - Jean Guibourdenche
- INSERM UMR-S 1139, Faculté de Pharmacie, Université de Paris, 75006 Paris, France; (C.F.); (C.L.-M.); (T.F.)
- Service d’Hormonologie, CHU Cochin, HUPC, AP-HP, 75014 Paris, France;
| |
Collapse
|
21
|
Pan Y, Yan L, Chen Q, Wei C, Dai Y, Tong X, Zhu H, Lu M, Zhang Y, Jin X, Zhang T, Lin X, Zhou F, Zhang S. Dysfunction of Shh signaling activates autophagy to inhibit trophoblast motility in recurrent miscarriage. Exp Mol Med 2021; 53:52-66. [PMID: 33390589 PMCID: PMC8080798 DOI: 10.1038/s12276-020-00530-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/23/2020] [Accepted: 10/20/2020] [Indexed: 01/29/2023] Open
Abstract
In early pregnancy, the placenta anchors the conceptus and supports embryonic development and survival. This study aimed to investigate the underlying functions of Shh signaling in recurrent miscarriage (RM), a serious disorder of pregnancy. In the present study, Shh and Gli2 were mainly observed in cytotrophoblasts (CTBs), Ptch was mainly observed in syncytiotrophoblasts (STBs), and Smo and Gli3 were expressed in both CTBs and STBs. Shh signaling was significantly impaired in human placenta tissue from recurrent miscarriage patients compared to that of gestational age-matched normal controls. VEGF-A and CD31 protein levels were also significantly decreased in recurrent miscarriage patients. Furthermore, inhibition of Shh signaling impaired the motility of JAR cells by regulating the expression of Gli2 and Gli3. Intriguingly, inhibition of Shh signaling also triggered autophagy and autolysosome accumulation. Additionally, knockdown of BECN1 reversed Gant61-induced motility inhibition. In conclusion, our results showed that dysfunction of Shh signaling activated autophagy to inhibit trophoblast motility, which suggests the Shh pathway and autophagy as potential targets for RM therapy.
Collapse
Affiliation(s)
- Yibin Pan
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Lili Yan
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China ,Beilun District Hospital of Traditional Chinese Medicine, Ningbo City, Zhejiang China
| | - Qiaoqiao Chen
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Cheng Wei
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yongdong Dai
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xiaomei Tong
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Haiyan Zhu
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Meifei Lu
- grid.13402.340000 0004 1759 700XDepartment of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanling Zhang
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xiaoying Jin
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Tai Zhang
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xiaona Lin
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Feng Zhou
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Songying Zhang
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| |
Collapse
|
22
|
Zhang X, Li BY, Fu LJ, Adu-Gyamfi EA, Xu BR, Liu TH, Chen XM, Lan X, Wang YX, Xu HB, Ding YB. Stomatin-like protein 2 (SLP2) regulates the proliferation and invasion of trophoblast cells by modulating mitochondrial functions. Placenta 2020; 100:13-23. [PMID: 32814233 DOI: 10.1016/j.placenta.2020.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 06/01/2020] [Accepted: 07/08/2020] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Stomatin-like protein 2 (SLP2) is highly expressed in human first trimester trophoblast cells, but its functions in placental morpho-physiology remain unknown. This study aimed to determine the role of SLP2 in the proliferation and invasion of human first trimester trophoblast cells. METHODS Immunofluorescence was used to determine the expression and localization of SLP2 in normal and miscarriage human first trimester placenta. Western blot was used to determine the expression of SLP2, PCNA, Cyclin D3, N-cadherin, Vimentin, PGC1α and PPARα in HTR-8/SVneo cells. SLP2 was knocked down in the HTR-8/SVneo cells by using si-Slp2. Wound healing and migration assays were used to determine the effect of SLP2 knockdown on the migration and invasion in the HTR-8/SVneo cells. Mitochondrial membrane potential, reactive oxygen species (ROS), ATP production and biogenesis were measured to assess the effects of SLP2 knockdown on mitochondrial functions. RESULT SLP2 was strongly expressed in the cytotrophoblasts (CTB), syncytiotrophoblast (STB) and extravillous trophoblasts (EVT) of normal pregnancy placenta as compared to miscarriage placenta. SLP2 was highly expressed in the invasive EVT cell lines, HTR-8/SVneo and HPT-8 compared to the CTB cell line JAR. Knockdown of SLP2 significantly inhibited the migration and invasion of HTR-8/SVneo cells and placental villous explants, and repressed mitochondrial biogenesis and functions in HTR-8/SVneo cells. DISCUSSION Silencing of SLP2 inhibited the proliferation, migration and invasion of HTR-8/SVneo cells via the impairment of mitochondrial functions. This indicates that the downregulation of SLP2 in miscarriage placenta could be part of the pathogenesis and pathophysiology of the disease.
Collapse
Affiliation(s)
- Xue Zhang
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, PR China
| | - Bing-Yi Li
- Department of Obstetrics and Gyaanecology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, PR China; Wuhan Medical & Healthcare for Woman and Children, Wuhan, 430015, PR China
| | - Li-Juan Fu
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, PR China; School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Enoch Appiah Adu-Gyamfi
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Bai-Ruo Xu
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Tai-Hang Liu
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, PR China
| | - Xue-Mei Chen
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, PR China
| | - Xi Lan
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ying-Xiong Wang
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, PR China
| | - Hong-Bing Xu
- Department of Obstetrics and Gyaanecology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Yu-Bin Ding
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, PR China.
| |
Collapse
|
23
|
Li L, Peng W, Zhou Q, Wan JP, Wang XT, Qi HB. LRP6 regulates Rab7-mediated autophagy through the Wnt/β-catenin pathway to modulate trophoblast cell migration and invasion. J Cell Biochem 2019; 121:1599-1609. [PMID: 31544984 DOI: 10.1002/jcb.29394] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/28/2019] [Indexed: 01/20/2023]
Abstract
Pre-eclampsia is a common complication during pregnancy; however, the underlying mechanisms of the crosstalk between low-density lipoprotein receptor-related protein 6 (LRP6) and autophagy in trophoblast cells are still not fully explored. Messenger RNA (mRNA) and protein levels of LRP6, beclin 1, Unc-51-like autophagy activating kinase 1 (ULK1), p62, vimentin, matrix metallopeptidase-9 (MMP-9), β-catenin, c-Myc, and Rab7, as well as the ratio of LC3-II/LC3-I, were analysed by quantitative real-time polymerase chain reaction or Western blot analysis, respectively. An MTT assay was used to measure cell growth, and transwell and wound healing assays were carried out to evaluate the invasion and migration abilities of the trophoblasts used. An immunofluorescence assay was used to measure LC3. The mRFP-GFP-LC3 tandem fluorescence assay was applied to detect autophagic flow. LRP6 overexpression was achieved by constructing pcDNA3.1-LRP6 vectors. LRP6 was expressed at low levels in HTR-8/SVneo cells under hypoxia/reoxygenation (H/R) conditions. H/R inhibited the activation of autophagy. LRP6 overexpression promoted cell proliferation and activated autophagy, which led to the upregulation of beclin 1 and ULK1, as well as the ratio of LC3-II/LC3-I and the downregulation of p62. Furthermore, LRP6 overexpression elevated the migration and invasion abilities of the indicated cells and increased vimentin and MMP-9 expression levels. Furthermore, LRP6 upregulated Rab7 and activated autophagy through the Wnt/β-catenin pathway. The late autophagy inhibitor bafilomycin A1 (Baf-A1) and the Wnt/β-catenin pathway inhibitor PKF115-584 reversed the effects of LRP6 on trophoblast autophagy, migration and invasion. LRP6 promotes Rab7-mediated autophagy by activating the Wnt/β-catenin pathway, which leads to increasing migration and invasion of trophoblast cells. Our study paves a new avenue for clinical treatment, and LRP6 may serve as an essential target in pre-eclampsia.
Collapse
Affiliation(s)
- Lei Li
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,Department of Obstetrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Department of Obstetrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei Peng
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China
| | - Qian Zhou
- Department of Obstetrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Department of Obstetrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ji-Peng Wan
- Department of Obstetrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Department of Obstetrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xie-Tong Wang
- Department of Obstetrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Department of Obstetrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hong-Bo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China
| |
Collapse
|