1
|
Winter HE, Murrieta-Coxca JM, Álvarez D, Henao-Restrepo J, Fuentes-Zacarías P, Arcila-Barrera S, Steiniger F, Groten T, Markert UR, Morales-Prieto DM. Enhanced capture of preeclampsia-derived extracellular vesicles from maternal plasma by monocytes and T lymphocytes. J Reprod Immunol 2025; 167:104417. [PMID: 39709894 DOI: 10.1016/j.jri.2024.104417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/13/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
Released from trophoblast and other fetal cells, placental extracellular vesicles (EVs) reach the maternal peripheral blood and modulate immune responses. Increased EVs in plasma of preeclampsia (PE) patients indicate their involvement in the etiology of this condition. This study addresses the uptake of plasma EVs by peripheral blood mononuclear cells (PBMCs) and explores the underlying internalization mechanisms. Plasma EVs were isolated from women with normotensive pregnancy (EVNP) and those with PE (EVPE), and characterized by cryo-transmission electron microscopy, nanoparticle tracking analysis, Western blotting, flow cytometry, and micro bicinchoninic acid assay (micro-BCA). To investigate whether the origin of PBMCs affects uptake, samples from males, pregnant women, and non-pregnant women were included. Primary PBMCs and macrophages derived from the human leukemia monocytic cell line THP-1 were incubated with PKH-stained EVs, and uptake was assessed by flow cytometry and confocal microscopy. Key molecules involved in monocyte differentiation and macrophage function were evaluated in EV-treated cells using LEGENDplex™ assay and real-time polymerase chain reaction (RT-PCR). Independent of the PBMC source, EVs were mostly captured by monocytes and in a lower proportion by T lymphocytes. Capture of EVPE was higher than of EVNP in primary T lymphocytes, monocytes, and THP-1-derived macrophages. After inhibition by Wortmannin and Cytochalasin D, EV internalization by THP-1-derived macrophages was significantly inhibited but not completely abolished. No defined polarization profile of treated THP-1-derived macrophages could be identified. These findings provide evidence of EV modifications in PE, which enhance their uptake by monocytes and other immune cells, mainly through phagocytosis and endocytosis.
Collapse
Affiliation(s)
- Hephzibah E Winter
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | | | - Daniel Álvarez
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany; Grupo Reproducción, Departamento Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | | | | | - Sebastian Arcila-Barrera
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany; Grupo de Investigación en Hormonas, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá 111321, Colombia
| | - Frank Steiniger
- Centre for Electron Microscopy, Jena University Hospital, Jena, Germany
| | - Tanja Groten
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - Udo R Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany.
| | | |
Collapse
|
2
|
Panneerselvam D, Murugesan A, Raveendran SK, Kumar JS, Venkataraman P. Examining the hidden dangers: Understanding how microplastics affect pregnancy. Eur J Obstet Gynecol Reprod Biol 2025; 304:53-62. [PMID: 39580908 DOI: 10.1016/j.ejogrb.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Microplastics, a fast-growing environmental concern, play a crucial role in developing the major pollution crisis that affects nearly the entire surface of the planet. Microplastics are tiny particles, measuring less than 5 mm which are ubiquitous, in occurrence, and found in a wide array of products including plastic packaging, synthetic textiles, seafood, fruits, vegetables, salt, sugar, bottled water, and even personal care products. The presence of microplastics in our environment and the potential adverse health effects they may cause have made them a significant perturbation in recent years. Pregnancy is a potentially life-changing experience that entails several apprehensions and new responsibilities for women. For expectant mothers, it is imperative to be aware of the implications of microplastics during pregnancy. One threatened concern is the potential transfer of microplastics across the placenta, which could expose the developing fetus to these particles. Although research on the impact of microplastics on pregnancy is still in its early stages, preliminary findings indicate potential risks that expectant mothers should be aware of. The timing of exposure during pregnancy may play a significant role in the potential risks associated with these tiny particles. In this review, we will delve into the topic, exploring how microplastics enter the body and the potential mechanism by which they pose risks to pregnancy outcomes.
Collapse
Affiliation(s)
- Deboral Panneerselvam
- Department of Obstetrics and Gynaecology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Anuradha Murugesan
- Department of Obstetrics and Gynaecology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| | - Sajeetha Kumari Raveendran
- Department of Obstetrics and Gynaecology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Janardanan Subramonia Kumar
- Department of General Medicine, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - P Venkataraman
- Department of Medical Research, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
3
|
Kinkade JA, Singh P, Verma M, Khan T, Ezashi T, Bivens NJ, Roberts RM, Joshi T, Rosenfeld CS. Small and Long Non-Coding RNA Analysis for Human Trophoblast-Derived Extracellular Vesicles and Their Effect on the Transcriptome Profile of Human Neural Progenitor Cells. Cells 2024; 13:1867. [PMID: 39594615 PMCID: PMC11593255 DOI: 10.3390/cells13221867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
In mice, the fetal brain is dependent upon the placenta for factors that guide its early development. This linkage between the two organs has given rise to the term, the placenta-brain axis. A similar interrelationship between the two organs may exist in humans. We hypothesize that extracellular vesicles (EVs) released from placental trophoblast (TB) cells transport small RNA and other informational biomolecules from the placenta to the brain where their contents have pleiotropic effects. Here, EVs were isolated from the medium in which human trophoblasts (TBs) had been differentiated in vitro from induced pluripotent stem cells (iPSC) and from cultured iPSC themselves, and their small RNA content analyzed by bulk RNA-seq. EVs derived from human TB cells possess unique profiles of miRs, including hsa-miR-0149-3p, hsa-302a-5p, and many long non-coding RNAs (lncRNAs) relative to EVs isolated from parental iPSC. These miRs and their mRNA targets are enriched in neural tissue. Human neural progenitor cells (NPCs), generated from the same iPSC, were exposed to EVs from either TB or iPSC controls. Both sets of EVs were readily internalized. EVs from TB cells upregulate several transcripts in NPCs associated with forebrain formation and neurogenesis; those from control iPSC upregulated a transcriptional phenotype that resembled glial cells more closely than neurons. These results shed light on the possible workings of the placenta-brain axis. Understanding how the contents of small RNA within TB-derived EVs affect NPCs might yield new insights, possible biomarkers, and potential treatment strategies for neurobehavioral disorders that originate in utero, such as autism spectrum disorders (ASDs).
Collapse
Affiliation(s)
- Jessica A. Kinkade
- Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA;
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (M.V.); (T.E.)
| | - Pallav Singh
- MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA;
| | - Mohit Verma
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (M.V.); (T.E.)
| | - Teka Khan
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (T.K.); (R.M.R.)
| | - Toshihiko Ezashi
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (M.V.); (T.E.)
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (T.K.); (R.M.R.)
- Colorado Center for Reproductive Medicine, Lone Tree, CO 80124, USA
| | - Nathan J. Bivens
- Department of Genomics Technology Core Facility, University of Missouri, Columbia MO 65211, USA;
| | - R. Michael Roberts
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (T.K.); (R.M.R.)
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Trupti Joshi
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (M.V.); (T.E.)
- MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA;
- Department of Biomedical Informatics, Biostatistics and Medical Epidemiology (BBME), University of Missouri, Columbia, MO 65212, USA
| | - Cheryl S. Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA;
- MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA;
- Department of Genetics Area Program, University of Missouri, Columbia, MO 65211, USA
- Department of Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
4
|
Owen MD, Kennedy MG, Quilang RC, Scott EM, Forbes K. The role of microRNAs in pregnancies complicated by maternal diabetes. Clin Sci (Lond) 2024; 138:1179-1207. [PMID: 39289953 PMCID: PMC11409017 DOI: 10.1042/cs20230681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
With the global prevalence of diabetes increasing, more people of reproductive age are experiencing hyperglycaemic pregnancies. Maternal Type 1 (T1DM) or Type 2 (T2DM) diabetes mellitus, and gestational diabetes mellitus (GDM) are associated with maternal cardiovascular and metabolic complications. Pregnancies complicated by maternal diabetes also increase the risk of short- and long-term health complications for the offspring, including altered fetal growth and the onset of T2DM and cardiometabolic diseases throughout life. Despite advanced methods for improving maternal glucose control, the prevalence of adverse maternal and offspring outcomes associated with maternal diabetes remains high. The placenta is a key organ at the maternal-fetal interface that regulates fetal growth and development. In pregnancies complicated by maternal diabetes, altered placental development and function has been linked to adverse outcomes in both mother and fetus. Emerging evidence suggests that microRNAs (miRNAs) are key molecules involved in mediating these changes. In this review, we describe the role of miRNAs in normal pregnancy and discuss how miRNA dysregulation in the placenta and maternal circulation is associated with suboptimal placental development and pregnancy outcomes in individuals with maternal diabetes. We also discuss evidence demonstrating that miRNA dysregulation may affect the long-term health of mothers and their offspring. As such, miRNAs are potential candidates as biomarkers and therapeutic targets in diabetic pregnancies at risk of adverse outcomes.
Collapse
Affiliation(s)
- Manon D Owen
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Margeurite G Kennedy
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Anthony Nolan Research Institute, Royal Free Hospital, Hampstead, London, U.K
- UCL Cancer Institute, Royal Free Campus, London, U.K
| | - Rachel C Quilang
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Eleanor M Scott
- Division of Clinical and Population Sciences, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Karen Forbes
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| |
Collapse
|
5
|
Rosenfeld CS. Placenta Extracellular Vesicles: Messengers Connecting Maternal and Fetal Systems. Biomolecules 2024; 14:995. [PMID: 39199382 PMCID: PMC11352387 DOI: 10.3390/biom14080995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
The placenta operates during gestation as the primary communication organ between the mother and fetus. It is essential for gas, nutrient exchange, and fetal waste transfer. The placenta also produces a wide range of hormones and other factors that influence maternal physiology, including survival and activity of the corpus luteum of the ovary, but the means whereby the placenta shapes fetal development remain less clear, although the fetal brain is thought to be dependent upon the placenta for factors that play roles in its early differentiation and growth, giving rise to the term "placenta-brain axis". Placental hormones transit via the maternal and fetal vasculature, but smaller placental molecules require protection from fetal and maternal metabolism. Such biomolecules include small RNA, mRNA, peptides, lipids, and catecholamines that include serotonin and dopamine. These compounds presumably shuttle to maternal and fetal systems via protective extracellular vesicles (EVs). Placental EVs (pEVs) and their components, in particular miRNA (miRs), are known to play important roles in regulating maternal systems, such as immune, cardiovascular, and reproductive functions. A scant amount is known about how pEVs affect fetal cells and tissues. The composition of pEVs can be influenced by gestational diseases. This review will provide critical insight into the roles of pEVs as the intermediary link between maternal and fetal systems, the impact of maternal pathologies on pEV cargo contents, and how an understanding of biomolecular changes within pEVs in health and disease might be utilized to design early diagnostic and mitigation strategies to prevent gestational diseases and later offspring disorders.
Collapse
Affiliation(s)
- Cheryl S. Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA;
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Department of Genetics Area Program, University of Missouri, Columbia, MO 65211, USA
- Department of Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
6
|
Bogdanov A, Sokolova M, Bakloushinskaya I. Specificity of Key Sex Determination Genes in a Mammal with Ovotestes: The European Mole Talpa europaea. Animals (Basel) 2024; 14:2180. [PMID: 39123706 PMCID: PMC11311037 DOI: 10.3390/ani14152180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Here, for the first time, the structure of genes involved in sex determination in mammals (full Sry and partial Rspo1, Eif2s3x, and Eif2s3y) was analyzed for the European mole Talpa europaea with ovotestes in females. We confirmed male-specificity for Eif2s3y and Sry. Five exons were revealed for Rspo1 and the deep similarity with the structure of this gene in T. occidentalis was proved. The most intriguing result was obtained for the Sry gene, which, in placental mammals, initiates male development. We described two exons for this canonically single-exon gene: the first (initial) exon is only 15 bp while the second exon includes 450 bp. The exons are divided by an extended intron of about 1894 bp, including the fragment of the LINE retroposon. Moreover, in chromatogram fragments, which correspond to intron and DNA areas, flanking both exons, we revealed double peaks, similar to heterozygous nucleotide sites of autosomal genes. This may indicate the existence of two or more copies of the Sry gene. Proof of copies requires an additional in-depth study. We hypothesize that unusual structure and possible supernumerary copies of Sry may be involved in ovotestes formation.
Collapse
Affiliation(s)
- Alexey Bogdanov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.B.); (M.S.)
| | - Maria Sokolova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.B.); (M.S.)
- Biological Department, Lomonosov State University, 119234 Moscow, Russia
| | - Irina Bakloushinskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.B.); (M.S.)
| |
Collapse
|
7
|
Akyüz B, Sohel MMH, Konca Y, Arslan K, Gürbulak K, Abay M, Kaliber M, White SN, Cinar MU. Effects of Low and High Maternal Protein Intake on Fetal Skeletal Muscle miRNAome in Sheep. Animals (Basel) 2024; 14:1594. [PMID: 38891641 PMCID: PMC11171157 DOI: 10.3390/ani14111594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Prenatal maternal feeding plays an important role in fetal development and has the potential to induce long-lasting epigenetic modifications. MicroRNAs (miRNAs) are non-coding, single-stranded RNAs that serve as one epigenetic mechanism. Though miRNAs have crucial roles in fetal programming, growth, and development, there is limited data regarding the maternal diet and miRNA expression in sheep. Therefore, we analyzed high and low maternal dietary protein for miRNA expression in fetal longissimus dorsi. Pregnant ewes were fed an isoenergetic high-protein (HP, 160-270 g/day), low-protein (LP, 73-112 g/day), or standard-protein diet (SP, 119-198 g/day) during pregnancy. miRNA expression profiles were evaluated using the Affymetrix GeneChip miRNA 4.0 Array. Twelve up-regulated, differentially expressed miRNAs (DE miRNAs) were identified which are targeting 65 genes. The oar-3957-5p miRNA was highly up-regulated in the LP and SP compared to the HP. Previous transcriptome analysis identified that integrin and non-receptor protein tyrosine phosphatase genes targeted by miRNAs were detected in the current experiment. A total of 28 GO terms and 10 pathway-based gene sets were significantly (padj < 0.05) enriched in the target genes. Most genes targeted by the identified miRNAs are involved in immune and muscle disease pathways. Our study demonstrated that dietary protein intake during pregnancy affected fetal skeletal muscle epigenetics via miRNA expression.
Collapse
Affiliation(s)
- Bilal Akyüz
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38039, Türkiye; (B.A.); (M.M.H.S.); (K.A.)
| | - Md Mahmodul Hasan Sohel
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38039, Türkiye; (B.A.); (M.M.H.S.); (K.A.)
- Genome and Stem Cell Centre, Erciyes University, Kayseri 38039, Türkiye
| | - Yusuf Konca
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Kayseri 38039, Türkiye; (Y.K.); (M.K.)
| | - Korhan Arslan
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38039, Türkiye; (B.A.); (M.M.H.S.); (K.A.)
| | - Kutlay Gürbulak
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38039, Türkiye; (K.G.); (M.A.)
| | - Murat Abay
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38039, Türkiye; (K.G.); (M.A.)
| | - Mahmut Kaliber
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Kayseri 38039, Türkiye; (Y.K.); (M.K.)
| | - Stephen N. White
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA 99164, USA;
| | - Mehmet Ulas Cinar
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Kayseri 38039, Türkiye; (Y.K.); (M.K.)
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA 99164, USA;
| |
Collapse
|
8
|
Graf I, Urbschat C, Arck PC. The 'communicatome' of pregnancy: spotlight on cellular and extravesicular chimerism. EMBO Mol Med 2024; 16:700-714. [PMID: 38467841 PMCID: PMC11018796 DOI: 10.1038/s44321-024-00045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/13/2024] Open
Abstract
Communication via biological mediators between mother and fetus are key to reproductive success and offspring's future health. The repertoire of mediators coding signals between mother and fetus is broad and includes soluble factors, membrane-bound particles and immune as well as non-immune cells. Based on the emergence of technological advancements over the last years, considerable progress has been made toward deciphering the "communicatome" between fetus and mother during pregnancy and even after birth. In this context, pregnancy-associated chimerism has sparked the attention among immunologists, since chimeric cells-although low in number-are maintained in the allogeneic host (mother or fetus) for years after birth. Other non-cellular structures of chimerism, e.g. extracellular vesicles (EVs), are increasingly recognized as modulators of pregnancy outcome and offspring's health. We here discuss the origin, distribution and function of pregnancy-acquired microchimerism and chimeric EVs in mother and offspring. We also highlight the pioneering concept of maternal microchimeric cell-derived EVs in offspring. Such insights expand the understanding of pregnancy-associated health or disease risks in mother and offspring.
Collapse
Affiliation(s)
- Isabel Graf
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher Urbschat
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra C Arck
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
9
|
Wang Y, Cai S, Chen X, Sun Q, Yin T, Diao L. The role of extracellular vesicles from placenta and endometrium in pregnancy: Insights from tumor biology. J Reprod Immunol 2024; 162:104210. [PMID: 38359619 DOI: 10.1016/j.jri.2024.104210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/13/2024] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Extracellular vesicles (EVs) are small membrane-bound particles secreted by various cell types that play a critical role in intercellular communication by packaging and delivering biomolecules. In recent years, EVs have emerged as essential messengers in mediating physiological and pathological processes in tumor biology. The tumor microenvironment (TME) plays a pivotal role in tumor generation, progression, and metastasis. In this review, we provide an overview of the impact of tumor-derived EVs on both tumor cells and the TME. Moreover, we draw parallels between tumor biology and pregnancy, as successful embryo implantation also requires intricate intercellular communication between the placental trophecepiblast and the endometrial epithelium. Additionally, we discuss the involvement of EVs in targeting immune responses, trophoblast invasion, migration, and angiogenesis, which are shared biological processes between tumors and pregnancy. Specifically, we highlight the effects of placenta-derived EVs on the fetal-maternal interface, placenta, endometrium, and maternal system, as well as the role of endometrium-derived EVs in embryo-endometrial communication. However, challenges still exist in EVs research, including the standardization of EVs isolation methods for diagnostic testing, which also apply to reproductive systems where EVs-mediated communication is proposed to take place. Through this review, we aim to deepen the understanding of EVs, particularly in the context of reproductive biology, and encourage further investigation in this field.
Collapse
Affiliation(s)
- Yanjun Wang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Songchen Cai
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen 518045, PR China
| | - Xian Chen
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen 518045, PR China
| | - Qing Sun
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen 518045, PR China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China.
| | - Lianghui Diao
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen 518045, PR China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen 518045, PR China.
| |
Collapse
|
10
|
Kinkade JA, Seetharam AS, Sachdev S, Bivens NJ, Phinney BS, Grigorean G, Roberts RM, Tuteja G, Rosenfeld CS. Extracellular vesicles from mouse trophoblast cells: Effects on neural progenitor cells and potential participants in the placenta-brain axis†. Biol Reprod 2024; 110:310-328. [PMID: 37883444 PMCID: PMC10873279 DOI: 10.1093/biolre/ioad146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/12/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023] Open
Abstract
The fetal brain of the mouse is thought to be dependent upon the placenta as a source of serotonin (5-hydroxytryptamine; 5-HT) and other factors. How factors reach the developing brain remains uncertain but are postulated here to be part of the cargo carried by placental extracellular vesicles (EV). We have analyzed the protein, catecholamine, and small RNA content of EV from mouse trophoblast stem cells (TSC) and TSC differentiated into parietal trophoblast giant cells (pTGC), potential primary purveyors of 5-HT. Current studies examined how exposure of mouse neural progenitor cells (NPC) to EV from either TSC or pTGC affect their transcriptome profiles. The EV from trophoblast cells contained relatively high amounts of 5-HT, as well as dopamine and norepinephrine, but there were no significant differences between EV derived from pTGC and from TSC. Content of miRNA and small nucleolar (sno)RNA, however, did differ according to EV source, and snoRNA were upregulated in EV from pTGC. The primary inferred targets of the microRNA (miRNA) from both pTGC and TSC were mRNA enriched in the fetal brain. NPC readily internalized EV, leading to changes in their transcriptome profiles. Transcripts regulated were mainly ones enriched in neural tissues. The transcripts in EV-treated NPC that demonstrated a likely complementarity with miRNA in EV were mainly up- rather than downregulated, with functions linked to neuronal processes. Our results are consistent with placenta-derived EV providing direct support for fetal brain development and being an integral part of the placenta-brain axis.
Collapse
Affiliation(s)
- Jessica A Kinkade
- Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Arun S Seetharam
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Shrikesh Sachdev
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Nathan J Bivens
- Genomics Technology Core Facility, University of Missouri, Columbia, MO, USA
| | - Brett S Phinney
- Proteomics Core UC Davis Genome Center, University of California, Davis, CA, USA
| | - Gabriela Grigorean
- Proteomics Core UC Davis Genome Center, University of California, Davis, CA, USA
| | - R Michael Roberts
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Geetu Tuteja
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Cheryl S Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO, USA
- MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO, USA
- Genetics Area Program, University of Missouri, Columbia, MO, USA
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, USA
| |
Collapse
|
11
|
Zhang Y, Tang Y, Chen X, Sun X, Zhao M, Chen Q. Therapeutic potential of miRNAs in placental extracellular vesicles in ovarian and endometrial cancer. Hum Cell 2024; 37:285-296. [PMID: 37801261 DOI: 10.1007/s13577-023-00986-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023]
Abstract
There is a cross-link between the placenta and cancer development, as the placenta is grown as a highly invasive tumour-like organ. However, placental development is strictly controlled. Although the underlying mechanism of this control is largely unknown, it is now well-recognised that extracellular vesicles (EVs) released from the placenta play an important role in controlling placenta proliferation and invasion, as placental EVs have shown their effect on regulating maternal adaptation. Better understanding the tumour-like mechanism of the placenta could help to develop a therapeutic potential in cancers. In this study, by RNA sequencing of placental EVs, 20 highly expressed microRNAs (miRNAs) in placental EVs were selected and analysed for their functions on ovarian and endometrial cancer. There were up to seven enriched miRNAs, including miRNA-199a-3p, miRNA-143-3p, and miRNA-519a-5p in placental EVs showing effects on the inhibition of ovarian and endometrial cancer cell proliferation and migration, and promotion of cancer cell death, reported in the literature. Most of these miRNAs have been reported to be downregulated in ovarian and endometrial cancer. Transfection of ovarian and endometrial cancer cells with mimics of miRNA-199a-3p, miRNA-143-3p, and miRNA-519a-5p significantly reduced the cell viability. Our findings could provide strategies for using these naturally occurring miRNAs to develop a novel method to treat ovarian and endometrial cancer in the future.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Obstetrics & Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Yunhui Tang
- Department of Family Planning, The Hospital of Obstetrics & Gynaecology, Fudan University, Shanghai, China
| | - Xinyue Chen
- Department of Obstetrics & Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Xinyi Sun
- Department of Obstetrics & Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Min Zhao
- Department of Gynaecological Cancer, Wuxi School of Medicine, Wuxi Maternity and Child Health Hospital, Jiangnan University, Wuxi, Jiangsu, China.
| | - Qi Chen
- Department of Obstetrics & Gynaecology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Butt Z, Tinning H, O'Connell MJ, Fenn J, Alberio R, Forde N. Understanding conceptus-maternal interactions: what tools do we need to develop? Reprod Fertil Dev 2023; 36:81-92. [PMID: 38064186 DOI: 10.1071/rd23181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Communication between the maternal endometrium and developing embryo/conceptus is critical to support successful pregnancy to term. Studying the peri-implantation period of pregnancy is critical as this is when most pregnancy loss occurs in cattle. Our current understanding of these interactions is limited, due to the lack of appropriate in vitro models to assess these interactions. The endometrium is a complex and heterogeneous tissue that is regulated in a transcriptional and translational manner throughout the oestrous cycle. While there are in vitro models to study endometrial function, they are static and 2D in nature or explant models and are limited in how well they recapitulate the in vivo endometrium. Recent developments in organoid systems, microfluidic approaches, extracellular matrix biology, and in silico approaches provide a new opportunity to develop in vitro systems that better model the in vivo scenario. This will allow us to investigate in a more high-throughput manner the fundamental molecular interactions that are required for successful pregnancy in cattle.
Collapse
Affiliation(s)
- Zenab Butt
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Haidee Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Mary J O'Connell
- Computational and Molecular Evolutionary Biology Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jonathan Fenn
- Computational and Molecular Evolutionary Biology Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Niamh Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
13
|
Sun B, Jiang T, Yong J, Peng J, Dong S, Gu Y, Ji X, Luo L, Chang WL. MiR-135b-5p targets ADAM12 to suppress invasion and accelerate trophoblast apoptosis in preeclampsia. Placenta 2023; 143:69-79. [PMID: 37864886 DOI: 10.1016/j.placenta.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/14/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023]
Abstract
INTRODUCTION Preeclampsia was a serious complication often leaded to adverse pregnancy outcomes. Abnormal placental miR-135b-5p expression in preeclampsia was observed in our preliminary investigation. However, the role of miR-135b-5p in preeclampsia was unclear. METHODS We determined the miR-135b-5p expression pattern at the fetomaternal interface and levels in placental tissue and exosomes. MiR-135b-5p expression in the trophoblast cell line HTR8/SVneo was manipulated by transient agomir or antagomir transfection or establishment of HTR8/SVneo cell line stably overexpressing miR-135b or miR-135b-5p-sponger. Then the function of miR-135b-5p on the motility of HTR8/SVneo cells, and its effects on cell viability was determined. Finally, we confirmed the relationship between miR-135b-5p and ADAM12. RESULTS MiR-135b-5p exclusively expressed in the villous cytotrophoblast, and extravillous trophoblast. Significant miR-135b-5p upregulation was observed in the placenta and peripheral plasma exosomes in preeclampsia, and could be a highly sensitive molecular marker for preeclampsia. Elevated miR-135b-5p expression significantly promoted apoptosis and inhibited HTR8/SVneo cell invasion and migration. Binding of miR-135b-5p to the ADAM12 mRNA 3'-untranslated region was predicted by bioinformatics analysis and confirmed using a dual-luciferase reporter assay. High miR-135-5p levels inhibit the invasion and migration of trophoblastic cells, possibly by directly binding to the 3'-UTR of DADM12 and suppressing its translation efficiency, thereby nullifying the promotion of trophoblast invasion and migration via ADAM12. DISCUSSION Abnormal upregulation of miR-135b-5p may be involved in preeclampsia through triggering trophoblast apoptosis and impeding trophoblast invasion and migration by targeting ADAM12.
Collapse
Affiliation(s)
- Bo Sun
- Department of Obstetrics, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, 518101, China; Department of Obstetrics, The Second People's Hospital of Shenzhen, Shenzhen, 518035, China
| | - Taotao Jiang
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518109, China
| | - Jiayao Yong
- Department of Gynaecology and Obstetrics, Shenzhen Hospital of Southern Medical University, Shenzhen, 510086, China
| | - Julan Peng
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518109, China
| | - Shangkun Dong
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518109, China; College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yanli Gu
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518109, China
| | - Xinmei Ji
- Department of Gynaecology, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518109, China
| | - Liqiong Luo
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518109, China
| | - Wen-Lin Chang
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518109, China; Department of Gynaecology, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518109, China.
| |
Collapse
|
14
|
Mészáros B, Kukor Z, Valent S. Recent Advances in the Prevention and Screening of Preeclampsia. J Clin Med 2023; 12:6020. [PMID: 37762960 PMCID: PMC10532380 DOI: 10.3390/jcm12186020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Throughout the history of medicine, preeclampsia has remained an enigmatic field of obstetrics. In 2023, despite its prevalence and impact, preeclampsia's exact cause and effective treatment remain elusive; the current options are limited to delivery. The purpose of this review is to summarize the knowledge of the possible novel prophylactic therapies and screening methods for preeclampsia, thereby providing valuable insights for healthcare professionals and researchers. Aspirin and LMWH have already been widely used; meanwhile, calcium, vitamin D, and pravastatin show promise, and endothelin receptor antagonists are being explored. Stress reduction, dietary changes, and lifestyle modifications are also being investigated. Another interesting and fast-growing area is AI- and software-based screening methods. It is also key to find novel biomarkers, which, in some cases, are not only able to predict the development of the disease, but some of them hold promise to be a potential therapeutic target. We conclude that, while a definitive cure for preeclampsia may not be eligible in the near future, it is likely that the assessment and enhancement of preventive methods will lead to the prevention of many cases. However, it is also important to highlight that more additional research is needed in the future to clarify the exact pathophysiology of preeclampsia and to thus identify potential therapeutic targets for more improved treatment methods.
Collapse
Affiliation(s)
- Balázs Mészáros
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary
| | - Zoltán Kukor
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1082 Budapest, Hungary
| | - Sándor Valent
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary
| |
Collapse
|
15
|
Adamova P, Lotto RR, Powell AK, Dykes IM. Are there foetal extracellular vesicles in maternal blood? Prospects for diagnostic biomarker discovery. J Mol Med (Berl) 2023; 101:65-81. [PMID: 36538060 PMCID: PMC9977902 DOI: 10.1007/s00109-022-02278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 03/02/2023]
Abstract
Prenatal diagnosis of congenital disease improves clinical outcomes; however, as many as 50% of congenital heart disease cases are missed by current ultrasound screening methods. This indicates a need for improved screening technology. Extracellular vesicles (EVs) have attracted enormous interest in recent years for their potential in diagnostics. EVs mediate endocrine signalling in health and disease and are known to regulate aspects of embryonic development. Here, we critically evaluate recent evidence suggesting that EVs released from the foetus are able to cross the placenta and enter the maternal circulation. Furthermore, EVs from the mother appear to be transported in the reverse direction, whilst the placenta itself acts as a source of EVs. Experimental work utilising rodent models employing either transgenically encoded reporters or application of fluorescent tracking dyes provide convincing evidence of foetal-maternal crosstalk. This is supported by clinical data demonstrating expression of placental-origin EVs in maternal blood, as well as limited evidence for the presence of foetal-origin EVs. Together, this work raises the possibility that foetal EVs present in maternal blood could be used for the diagnosis of congenital disease. We discuss the challenges faced by researchers in translating these basic science findings into a clinical non-invasive prenatal test.
Collapse
Affiliation(s)
- Petra Adamova
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom St, Liverpool, L3 3AF, UK.,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK
| | - Robyn R Lotto
- Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK.,School of Nursing and Allied Health, Liverpool John Moores University, Tithebarn St, Liverpool, L2 2ER, UK
| | - Andrew K Powell
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom St, Liverpool, L3 3AF, UK.,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK
| | - Iain M Dykes
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom St, Liverpool, L3 3AF, UK. .,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
16
|
Mesenchymal stem cell-derived extracellular vesicles carrying miR-99b-3p restrain microglial activation and neuropathic pain by stimulating autophagy. Int Immunopharmacol 2023; 115:109695. [PMID: 36638658 DOI: 10.1016/j.intimp.2023.109695] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
Neuropathic pain is a complex condition that seriously affects human quality of life. This study aimed to investigate the therapeutic mechanism of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) and try to discover new targets for alleviating neuropathic pain. Extracellular vesicles were isolated and identified via ultracentrifugation. BV-2 microglial cells were stimulated with lipopolysaccharide (LPS) in the presence or absence of MSC-EVs. Further, microglial activation and neuroinflammation were evaluated by flow cytometry, RT-qPCR, and ELISA. High-throughput sequencing analysis was performed to reveal the differentially expressed (DE) miRNAs in BV-2 microglia. Autophagy-related regulators were assessed by Western blotting and Immunofluorescence staining. Chronic constriction injury (CCI) model was used to induce neuropathic pain in rats, and the mechanical withdrawal threshold (MWT) was measured. High-throughput sequencing analysis identified 17 DE miRNAs, which were mainly enriched in PI3K-AKT and mTOR signaling pathways. MSC-EVs inhibited the activation of PI3K/AKT/mTOR signaling pathway in LPS-stimulated microglia. Moreover, MSC-EVs treatment enhanced the autophagy level in activated microglia, whereas autophagy inhibitor 3-MA reversed the suppressing effects of MSC-EVs on microglial activation and neuroinflammation. The MSC-EV-mediated transfer of miR-99b-3p was verified to promote microglial autophagy, and miR-99b-3p overexpression suppressed the expression of pro-inflammatory factors in activated microglia. During in vivo studies, intrathecal injection of MSC-EVs significantly up-regulated the expression of miR-99b-3p, and alleviated mechanical allodynia caused by activated microglia in the spinal cord dorsal horn of CCI rats. Moreover, MSC-EVs treatment repaired CCI-induced autophagic impairment by stimulating autophagy in the spinal cord. Collectively, our findings demonstrated that MSC-EVs had an analgesic effect on neuropathic pain via promoting autophagy, and these antinociceptive effects were at least in part caused by MSC-EV-mediated transfer of miR-99b-3p, thereby inhibiting microglial activation and pro-inflammatory cytokines expression.
Collapse
|
17
|
Sood A, Kumar A, Gupta VK, Kim CM, Han SS. Translational Nanomedicines Across Human Reproductive Organs Modeling on Microfluidic Chips: State-of-the-Art and Future Prospects. ACS Biomater Sci Eng 2023; 9:62-84. [PMID: 36541361 DOI: 10.1021/acsbiomaterials.2c01080] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Forecasting the consequence of nanoparticles (NPs) and therapeutically significant molecules before materializing for human clinical trials is a mainstay for drug delivery and screening processes. One of the noteworthy obstacles that has prevented the clinical translation of NP-based drug delivery systems and novel drugs is the lack of effective preclinical platforms. As a revolutionary technology, the organ-on-a-chip (OOC), a coalition of microfluidics and tissue engineering, has surfaced as an alternative to orthodox screening platforms. OOC technology recapitulates the structural and physiological features of human organs along with intercommunications between tissues on a chip. The current review discusses the concept of microfluidics and confers cutting-edge fabrication processes for chip designing. We also outlined the advantages of microfluidics in analyzing NPs in terms of characterization, transport, and degradation in biological systems. The review further elaborates the scope and research on translational nanomedicines in human reproductive organs (testis, placenta, uterus, and menstrual cycle) by taking the advantages offered by microfluidics and shedding light on their potential future implications. Finally, we accentuate the existing challenges for clinical translation and scale-up dynamics for microfluidics chips and emphasize its future perspectives.
Collapse
Affiliation(s)
- Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.,Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College, Edinburgh EH9 3JG, United Kingdom
| | - Chul Min Kim
- Department of Mechatronics Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju, Gyeongsangnam-do 52725, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.,Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| |
Collapse
|
18
|
Sun Z, Wu Y, Gao F, Li H, Wang C, Du L, Dong L, Jiang Y. In situ detection of exosomal RNAs for cancer diagnosis. Acta Biomater 2023; 155:80-98. [PMID: 36343908 DOI: 10.1016/j.actbio.2022.10.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Exosomes are considered as biomarkers reflecting the physiological state of the human body. Studies have revealed that the expression levels of specific exosomal RNAs are closely associated with certain cancers. Thus, detection of exosomal RNA offers a new avenue for liquid biopsy of cancers. Many exosomal RNA detection methods based on various principles have been developed, and most of the methods detect the extracted RNAs after lysing exosomes. Besides complex and time-consuming extraction steps, a major drawback of this approach is the degradation of the extracted RNAs in the absence of plasma membrane and cytosol. In addition, there is considerable loss of RNAs during their extraction. In situ detection of exosomal RNAs can avoid these drawbacks, thus allowing higher diagnostic reliability. In this paper, in situ detection of exosomal RNAs was systematically reviewed from the perspectives of detection methods, transport methods of the probe systems, probe structures, signal amplification strategies, and involved functional materials. Furthermore, the limitations and possible improvements of the current in situ detection methods for exosomal RNAs towards the clinical diagnostic application are discussed. This review aims to provide a valuable reference for the development of in situ exosomal RNA detection strategies for non-invasive diagnosis of cancers. STATEMENT OF SIGNIFICANCE: Certain RNAs have been identified as valuable biomarkers for some cancers, and sensitive detection of cancer-related RNAs is expected to achieve better diagnostic efficacy. Currently, the detection of exosomal RNAs is receiving increasing attention due to their high stability and significant concentration differences between patients and healthy individuals. In situ detection of exosomal RNAs has greater diagnostic reliability due to the avoidance of RNA degradation and loss. However, this mode is still limited by some factors such as detection methods, transport methods of the probe systems, probe structures, signal amplification strategies, etc. This review focuses on the progress of in situ detection of exosomal RNAs and aims to promote the development of this field.
Collapse
Affiliation(s)
- Zhiwei Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Yanqiu Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Fucheng Gao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, China.
| | - Lun Dong
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan 250012, China.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China.
| |
Collapse
|
19
|
Jaszczuk I, Winkler I, Koczkodaj D, Skrzypczak M, Filip A. The Role of Cluster C19MC in Pre-Eclampsia Development. Int J Mol Sci 2022; 23:ijms232213836. [PMID: 36430313 PMCID: PMC9699419 DOI: 10.3390/ijms232213836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Pre-eclampsia is a placenta-related complication occurring in 2-10% of all pregnancies. miRNAs are a group of non-coding RNAs regulating gene expression. There is evidence that C19MC miRNAs are involved in the development of the placenta. Deregulation of chromosome 19 microRNA cluster (C19MC) miRNAs expression leads to impaired cell differentiation, abnormal trophoblast invasion and pathological angiogenesis, which can lead to the development of pre-eclampsia. Information was obtained through a review of articles available in PubMed Medline. Articles on the role of the C19MC miRNA in the development of pre-eclampsia published in 2009-2022 were analyzed. This review article summarizes the current data on the role of the C19MC miRNA in the development of pre-eclampsia. They indicate a significant increase in the expression of most C19MC miRNAs in placental tissue and a high level of circulating fractions in serum and plasma, both in the first and/or third trimester in women with PE. Only for miR-525-5p, low levels of plasma expression were noted in the first trimester, and in the placenta in the third trimester. The search for molecular factors indicating the development of pre-eclampsia before the onset of clinical symptoms seems to be a promising diagnostic route. Identifying women at risk of developing pre-eclampsia at the pre-symptomatic stage would avoid serious complications in both mothers and fetuses. We believe that miRNAs belonging to cluster C19MC could be promising biomarkers of pre-eclampsia development.
Collapse
Affiliation(s)
- Ilona Jaszczuk
- Department of Cancer Genetics with Cytogenetic Laboratory, Medical University of Lublin, Radziwillowska Street 11, 20-080 Lublin, Poland
| | - Izabela Winkler
- Second Department of Gynecological Oncology, St. John’s Center of Oncology of the Lublin Region, Jaczewski Street 7, 20-090 Lublin, Poland
- Correspondence:
| | - Dorota Koczkodaj
- Department of Cancer Genetics with Cytogenetic Laboratory, Medical University of Lublin, Radziwillowska Street 11, 20-080 Lublin, Poland
| | - Maciej Skrzypczak
- Second Department of Gynecology, Lublin Medical University, Jaczewski Street 8, 20-954 Lublin, Poland
| | - Agata Filip
- Department of Cancer Genetics with Cytogenetic Laboratory, Medical University of Lublin, Radziwillowska Street 11, 20-080 Lublin, Poland
| |
Collapse
|
20
|
Hayder H, Shan Y, Chen Y, O’Brien JA, Peng C. Role of microRNAs in trophoblast invasion and spiral artery remodeling: Implications for preeclampsia. Front Cell Dev Biol 2022; 10:995462. [PMID: 36263015 PMCID: PMC9575991 DOI: 10.3389/fcell.2022.995462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
It is now well-established that microRNAs (miRNAs) are important regulators of gene expression. The role of miRNAs in placental development and trophoblast function is constantly expanding. Trophoblast invasion and their ability to remodel uterine spiral arteries are essential for proper placental development and successful pregnancy outcome. Many miRNAs are reported to be dysregulated in pregnancy complications, especially preeclampsia and they exert various regulatory effects on trophoblasts. In this review, we provide a brief overview of miRNA biogenesis and their mechanism of action, as well as of trophoblasts differentiation, invasion and spiral artery remodeling. We then discuss the role of miRNAs in trophoblasts invasion and spiral artery remodeling, focusing on miRNAs that have been thoroughly investigated, especially using multiple model systems. We also discuss the potential role of miRNAs in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Heyam Hayder
- Department of Biology, York University, Toronto, ON, Canada
| | - Yanan Shan
- Department of Biology, York University, Toronto, ON, Canada
| | - Yan Chen
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng,
| |
Collapse
|
21
|
Xu N, Zhou X, Shi W, Ye M, Cao X, Chen S, Xu C. Integrative analysis of circulating microRNAs and the placental transcriptome in recurrent pregnancy loss. Front Physiol 2022; 13:893744. [PMID: 35991164 PMCID: PMC9390878 DOI: 10.3389/fphys.2022.893744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Recurrent pregnancy loss (RPL) is a major type of pathological pregnancy that still lacks reliable early diagnosis and effective treatment. The placenta is critical to fetal development and pregnancy success because it participates in critical processes such as early embryo implantation, vascular remodeling, and immunological tolerance. RPL is associated with abnormalities in the biological behavior of placental villous trophoblasts, resulting in aberrant placental function. MicroRNAs (miRNAs) are increasingly being recognized as essential regulators of placental development, as well as potential biomarkers. In this study, plasma miRNAs and placental messenger RNAs (mRNAs) from RPL patients and normal pregnant (NP) controls were sequenced and analyzed. Compared to those in NP controls, 108 circulating miRNAs and 1199 placental mRNAs were differentially expressed in RPL samples. A total of 140 overlapping genes (overlapping between plasma miRNA target genes and actual placental disorder genes) were identified, and functional enrichment analysis showed that these genes were mainly related to cell proliferation, angiogenesis, and cell migration. The regulatory network among miRNAs, overlapping genes, and downstream biological processes was analyzed by protein–protein interactions and Cytoscape. Moreover, enriched mRNAs, which were predictive targets of the differentially expressed plasma miRNAs miR-766-5p, miR-1285-3p, and miR-520a-3p, were accordingly altered in the placenta. These results suggest that circulating miRNAs may be involved in the pathogenesis of RPL and are potential noninvasive biomarkers for RPL.
Collapse
Affiliation(s)
- Naixin Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xuanyou Zhou
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Weihui Shi
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Mujin Ye
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xianling Cao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Songchang Chen
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- *Correspondence: Songchang Chen, ; Chenming Xu,
| | - Chenming Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- *Correspondence: Songchang Chen, ; Chenming Xu,
| |
Collapse
|
22
|
Thibeault K, Légaré C, Desgagné V, White F, Clément AA, Scott MS, Jacques PÉ, Guérin R, Perron P, Hivert MF, Bouchard L. Maternal Body Mass Index Is Associated with Profile Variation in Circulating MicroRNAs at First Trimester of Pregnancy. Biomedicines 2022; 10:1726. [PMID: 35885031 PMCID: PMC9313007 DOI: 10.3390/biomedicines10071726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022] Open
Abstract
Many women enter pregnancy with overweight and obesity, which are associated with complications for both the expectant mother and her child. MicroRNAs (miRNAs) are short non-coding RNAs that regulate many biological processes, including energy metabolism. Our study aimed to identify first trimester plasmatic miRNAs associated with maternal body mass index (BMI) in early pregnancy. We sequenced a total of 658 plasma samples collected between the 4th and 16th week of pregnancy from two independent prospective birth cohorts (Gen3G and 3D). In each cohort, we assessed associations between early pregnancy maternal BMI and plasmatic miRNAs using DESeq2 R package, adjusting for sequencing run and lane, gestational age, maternal age at the first trimester of pregnancy and parity. A total of 38 miRNAs were associated (FDR q < 0.05) with BMI in the Gen3G cohort and were replicated (direction and magnitude of the fold change) in the 3D cohort, including 22 with a nominal p-value < 0.05. Some of these miRNAs were enriched in fatty acid metabolism-related pathways. We identified first trimester plasmatic miRNAs associated with maternal BMI. These miRNAs potentially regulate fatty acid metabolism-related pathways, supporting the hypothesis of their potential contribution to energy metabolism regulation in early pregnancy.
Collapse
Affiliation(s)
- Kathrine Thibeault
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (K.T.); (C.L.); (V.D.); (A.-A.C.); (M.S.S.); (R.G.)
| | - Cécilia Légaré
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (K.T.); (C.L.); (V.D.); (A.-A.C.); (M.S.S.); (R.G.)
| | - Véronique Desgagné
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (K.T.); (C.L.); (V.D.); (A.-A.C.); (M.S.S.); (R.G.)
- Clinical Department of Laboratory Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Saguenay-Lac-Saint-Jean—Hôpital de Chicoutimi, Saguenay, QC G7H 5H6, Canada
| | - Frédérique White
- Département de Biologie, Faculté des Science, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (F.W.); (P.-É.J.)
| | - Andrée-Anne Clément
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (K.T.); (C.L.); (V.D.); (A.-A.C.); (M.S.S.); (R.G.)
| | - Michelle S. Scott
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (K.T.); (C.L.); (V.D.); (A.-A.C.); (M.S.S.); (R.G.)
| | - Pierre-Étienne Jacques
- Département de Biologie, Faculté des Science, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (F.W.); (P.-É.J.)
- Department of Medicine, FMHS, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Renée Guérin
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (K.T.); (C.L.); (V.D.); (A.-A.C.); (M.S.S.); (R.G.)
- Clinical Department of Laboratory Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Saguenay-Lac-Saint-Jean—Hôpital de Chicoutimi, Saguenay, QC G7H 5H6, Canada
| | - Patrice Perron
- Department of Medicine, FMHS, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CR-CHUS), Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Marie-France Hivert
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CR-CHUS), Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA 02115, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (K.T.); (C.L.); (V.D.); (A.-A.C.); (M.S.S.); (R.G.)
- Clinical Department of Laboratory Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Saguenay-Lac-Saint-Jean—Hôpital de Chicoutimi, Saguenay, QC G7H 5H6, Canada
- Department of Medicine, FMHS, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| |
Collapse
|
23
|
Murrieta-Coxca JM, Fuentes-Zacarias P, Ospina-Prieto S, Markert UR, Morales-Prieto DM. Synergies of Extracellular Vesicles and Microchimerism in Promoting Immunotolerance During Pregnancy. Front Immunol 2022; 13:837281. [PMID: 35844513 PMCID: PMC9285877 DOI: 10.3389/fimmu.2022.837281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of biological identity has been traditionally a central issue in immunology. The assumption that entities foreign to a specific organism should be rejected by its immune system, while self-entities do not trigger an immune response is challenged by the expanded immunotolerance observed in pregnancy. To explain this "immunological paradox", as it was first called by Sir Peter Medawar, several mechanisms have been described in the last decades. Among them, the intentional transfer and retention of small amounts of cells between a mother and her child have gained back attention. These microchimeric cells contribute to expanding allotolerance in both organisms and enhancing genetic fitness, but they could also provoke aberrant alloimmune activation. Understanding the mechanisms used by microchimeric cells to exert their function in pregnancy has proven to be challenging as per definition they are extremely rare. Profiting from studies in the field of transplantation and cancer research, a synergistic effect of microchimerism and cellular communication based on the secretion of extracellular vesicles (EVs) has begun to be unveiled. EVs are already known to play a pivotal role in feto-maternal tolerance by transferring cargo from fetal to maternal immune cells to reshape their function. A further aspect of EVs is their function in antigen presentation either directly or on the surface of recipient cells. Here, we review the current understanding of microchimerism in the feto-maternal tolerance during human pregnancy and the potential role of EVs in mediating the allorecognition and tropism of microchimeric cells.
Collapse
Affiliation(s)
| | | | | | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | | |
Collapse
|
24
|
Žarković M, Hufsky F, Markert UR, Marz M. The Role of Non-Coding RNAs in the Human Placenta. Cells 2022; 11:1588. [PMID: 35563893 PMCID: PMC9104507 DOI: 10.3390/cells11091588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs (ncRNAs) play a central and regulatory role in almost all cells, organs, and species, which has been broadly recognized since the human ENCODE project and several other genome projects. Nevertheless, a small fraction of ncRNAs have been identified, and in the placenta they have been investigated very marginally. To date, most examples of ncRNAs which have been identified to be specific for fetal tissues, including placenta, are members of the group of microRNAs (miRNAs). Due to their quantity, it can be expected that the fairly larger group of other ncRNAs exerts far stronger effects than miRNAs. The syncytiotrophoblast of fetal origin forms the interface between fetus and mother, and releases permanently extracellular vesicles (EVs) into the maternal circulation which contain fetal proteins and RNA, including ncRNA, for communication with neighboring and distant maternal cells. Disorders of ncRNA in placental tissue, especially in trophoblast cells, and in EVs seem to be involved in pregnancy disorders, potentially as a cause or consequence. This review summarizes the current knowledge on placental ncRNA, their transport in EVs, and their involvement and pregnancy pathologies, as well as their potential for novel diagnostic tools.
Collapse
Affiliation(s)
- Milena Žarković
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Franziska Hufsky
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
- FLI Leibniz Institute for Age Research, Beutenbergstraße 11, 07745 Jena, Germany
- Aging Research Center (ARC), 07745 Jena, Germany
| |
Collapse
|
25
|
Block LN, Schmidt JK, Keuler NS, McKeon MC, Bowman BD, Wiepz GJ, Golos TG. Zika virus impacts extracellular vesicle composition and cellular gene expression in macaque early gestation trophoblasts. Sci Rep 2022; 12:7348. [PMID: 35513694 PMCID: PMC9072346 DOI: 10.1038/s41598-022-11275-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/13/2022] [Indexed: 11/26/2022] Open
Abstract
Zika virus (ZIKV) infection at the maternal-placental interface is associated with adverse pregnancy outcomes including fetal demise and pregnancy loss. To determine how infection impacts placental trophoblasts, we utilized rhesus macaque trophoblast stem cells (TSC) that can be differentiated into early gestation syncytiotrophoblasts (ST) and extravillous trophoblasts (EVT). TSCs and STs, but not EVTs, were highly permissive to productive infection with ZIKV strain DAK AR 41524. The impact of ZIKV on the cellular transcriptome showed that infection of TSCs and STs increased expression of immune related genes, including those involved in type I and type III interferon responses. ZIKV exposure altered extracellular vesicle (EV) mRNA, miRNA and protein cargo, including ZIKV proteins, regardless of productive infection. These findings suggest that early gestation macaque TSCs and STs are permissive to ZIKV infection, and that EV analysis may provide a foundation for identifying non-invasive biomarkers of placental infection in a highly translational model.
Collapse
Affiliation(s)
- Lindsey N. Block
- grid.14003.360000 0001 2167 3675Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Ct., Madison, WI 53715-1299 USA ,grid.14003.360000 0001 2167 3675Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI USA ,grid.25879.310000 0004 1936 8972Present Address: University of Pennsylvania, Philadelphia, PA USA
| | - Jenna Kropp Schmidt
- grid.14003.360000 0001 2167 3675Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Ct., Madison, WI 53715-1299 USA
| | - Nicholas S. Keuler
- grid.14003.360000 0001 2167 3675Department of Statistics, University of Wisconsin-Madison, Madison, WI USA
| | - Megan C. McKeon
- grid.14003.360000 0001 2167 3675Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Brittany D. Bowman
- grid.14003.360000 0001 2167 3675Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Ct., Madison, WI 53715-1299 USA ,grid.266813.80000 0001 0666 4105Present Address: University of Nebraska Medical Center, Omaha, NE USA
| | - Gregory J. Wiepz
- grid.14003.360000 0001 2167 3675Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Ct., Madison, WI 53715-1299 USA
| | - Thaddeus G. Golos
- grid.14003.360000 0001 2167 3675Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Ct., Madison, WI 53715-1299 USA ,grid.14003.360000 0001 2167 3675Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI USA ,grid.14003.360000 0001 2167 3675Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
26
|
Than NG, Posta M, Györffy D, Orosz L, Orosz G, Rossi SW, Ambrus-Aikelin G, Szilágyi A, Nagy S, Hupuczi P, Török O, Tarca AL, Erez O, Papp Z, Romero R. Early pathways, biomarkers and four distinct molecular subclasses of preeclampsia: The intersection of clinical, pathological and high dimensional biology studies. Placenta 2022; 125:10-19. [DOI: 10.1016/j.placenta.2022.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 01/08/2023]
|
27
|
Sørensen AE, van Poppel MNM, Desoye G, Simmons D, Damm P, Jensen DM, Dalgaard LT. The Temporal Profile of Circulating miRNAs during Gestation in Overweight and Obese Women with or without Gestational Diabetes Mellitus. Biomedicines 2022; 10:biomedicines10020482. [PMID: 35203692 PMCID: PMC8962411 DOI: 10.3390/biomedicines10020482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Circulating non-coding microRNAs (miRNAs) are important for placentation, but their expression profiles across gestation in pregnancies, which are complicated by gestational diabetes mellitus (GDM), have not been fully established. Investigating a single time point is insufficient, as pregnancy is dynamic, involving several processes, including placenta development, trophoblast proliferation and differentiation and oxygen sensing. Thus, the aim of this study was to compare the temporal expression of serum miRNAs in pregnant women with and without GDM. This is a nested case-control study of longitudinal data obtained from a multicentric European study (the ‘DALI’ study). All women (n = 82) were overweight/obese (BMI ≥ 29 kg/m2) and were normal glucose tolerant (NGT) at baseline (before 20 weeks of gestation). We selected women (n = 41) who were diagnosed with GDM at 24–28 weeks, according to the IADPSG/WHO2013 criteria. They were matched with 41 women who remained NGT in their pregnancy. miRNA (miR-16-5p, -29a-3p, -103-3p, -134-5p, -122-5p, -223-3p, -330-3p and miR-433-3p) were selected based on their suggested importance for placentation, and measurements were performed at baseline and at 24–28 and 35–37 weeks of gestation. Women with GDM presented with overall miRNA levels above those observed for women remaining NGT. In both groups, levels of miR-29a-3p and miR-134-5p increased consistently with progressing gestation. The change over time only differed for miR-29a-3p when comparing women with GDM with those remaining NGT (p = 0.044). Our findings indicate that among overweight/obese women who later develop GDM, miRNA levels are already elevated early in pregnancy and remain above those of women who remain NGT during their pregnancy. Maternal circulating miRNAs may provide further insight into placentation and the cross talk between the maternal and fetal compartments.
Collapse
Affiliation(s)
- Anja Elaine Sørensen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark;
- Correspondence: ; Tel.: +45-4674-3994
| | - Mireille N. M. van Poppel
- Faculty of Environmental and Regional Sciences and Education, Institute of Human Movement Science, Sport and Health, University of Graz, 8010 Graz, Austria;
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria;
- Center for Pregnant Women with Diabetes, Department of Obstetrics, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - David Simmons
- Macarthur Clinical School, School of Medicine, Western Sydney University, Campbelltown, NSE 2560, Australia;
| | - Peter Damm
- Center for Pregnant Women with Diabetes, Department of Obstetrics, Rigshospitalet, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Dorte Møller Jensen
- Department of Gynecology and Obstetrics, Odense University Hospital, 5000 Odense, Denmark;
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense, Denmark
- Steno Diabetes Center Odense, Department of Gynecology and Obstetrics, Odense University Hospital, 5000 Odense, Denmark
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark;
| | | |
Collapse
|
28
|
Yang X, Wu N. MicroRNAs and Exosomal microRNAs May Be Possible Targets to Investigate in Gestational Diabetes Mellitus. Diabetes Metab Syndr Obes 2022; 15:321-330. [PMID: 35140490 PMCID: PMC8820256 DOI: 10.2147/dmso.s330323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/11/2022] [Indexed: 12/30/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is defined as glucose intolerance that occurs during the second or third trimester of pregnancy. As the incidence of GDM rises, so does the risk of maternal and fetal complications with short- and long-term consequences. As a result, early diagnosis and treatment of this condition are important to avoiding adverse pregnancy outcomes. Exosomes are tiny vesicles secreted by living cells which contain a variety of bioactive substances. They are released by cells to facilitate cell-to-cell communication and regulate a variety of biological processes such as cellular immune response, inflammatory response, and apoptosis, among others. Many studies have recently confirmed that changes in the expression and secretion of exosomal miRNAs can be used as novel markers for the diagnosis, prognosis, and treatment of GDM. In this review, we summarized the various roles of exosomal miRNAs and circulating miRNAs in GDM. We found that the changes in the expression of certain miRNAs could be used to diagnosing GDM. Exosomal miRNAs target metabolic pathways, resulting in insulin resistance. We also highlighted the potential for miRNAs and exosomal miRNAs to be used as biomarkers for diagnosis or therapeutic agents.
Collapse
Affiliation(s)
- Xiyao Yang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
- Clinical Skills Practice Teaching Center, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
- Correspondence: Na Wu, Department of Endocrinology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, Shenyang, Liaoning Province, 110004, People’s Republic of China, Tel +86 18940258445, Email
| |
Collapse
|
29
|
Fudono A, Imai C, Takimoto H, Tarui I, Aoyama T, Yago S, Okamitsu M, Muramatsu M, Sato N, Miyasaka N. Trimester-specific associations between extracellular vesicle microRNAs and fetal growth. J Matern Fetal Neonatal Med 2021; 35:8728-8734. [PMID: 34779347 DOI: 10.1080/14767058.2021.2000598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Placenta-derived extracellular vesicles and their cargoes, especially microRNAs (EV-miRNAs), may contribute to fetal and placental development. During pregnancy, the levels of several maternal blood EV-miRNAs, including miRNAs of placental origin, vary among individuals and change throughout gestation. However, the effects of these miRNAs on fetal growth and trimester-specificity have not been fully elucidated. The purpose of this study is to test the hypothesis that the serum levels of two extracellular vesicles (EV)-miRNAs (miR-127-3p and miR-26b-5p), which may be involved in fetoplacental regulation, would be significantly associated with fetal growth in a trimester-specific manner. MATERIALS AND METHODS This is a single-center birth cohort of maternal serum samples obtained at both the second and third trimesters. To minimize the influence of confounding factors, the analysis was limited to singleton vaginal deliveries, resulting in 27 participants being included in this study. EV RNAs were isolated using a membrane affinity method, and the relative expression levels of miR-127-3p and miR-26b-5p were measured using the RT-qPCR method with miR-484 as control. The associations between the two EV-miRNAs and fetal and placental growth were evaluated using a linear regression model and compared between the two trimesters. RESULTS EV-miR-127-3p levels tended to correlate inversely with the z-scores of birth weight for gestational age (BWGA) and placental weight for gestational age (PWGA) in the second trimester, but not in the third trimester. EV-miR-26b-5p levels were positively associated with birth weight in the second trimester, but this association was weakened in the third trimester. CONCLUSION Our results suggest a trimester-specific association of circulating miRNA levels with fetal and placental growth. The precise roles of EV-miR-127-3p and EV-miR-26b-5p in fetal and placental development warrant further investigation.
Collapse
Affiliation(s)
- Ayako Fudono
- Comprehensive Reproductive Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chihiro Imai
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidemi Takimoto
- Department of Nutritional Epidemiology and Shokuiku, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Iori Tarui
- Department of Nutritional Epidemiology and Shokuiku, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Tomoko Aoyama
- Department of Nutritional Epidemiology and Shokuiku, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Satoshi Yago
- Child and Family Nursing, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Motoko Okamitsu
- Child and Family Nursing, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaaki Muramatsu
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Noriko Sato
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naoyuki Miyasaka
- Comprehensive Reproductive Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
30
|
Marinello WP, Patisaul HB. Endocrine disrupting chemicals (EDCs) and placental function: Impact on fetal brain development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:347-400. [PMID: 34452690 DOI: 10.1016/bs.apha.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Pregnancy is a critical time of vulnerability for the development of the fetal brain. Exposure to environmental pollutants at any point in pregnancy can negatively impact many aspects of fetal development, especially the organization and differentiation of the brain. The placenta performs a variety of functions that can help protect the fetus and sustain brain development. However, disruption of any of these functions can have negative impacts on both the pregnancy outcome and fetal neurodevelopment. This review presents current understanding of how environmental exposures, specifically to endocrine disrupting chemicals (EDCs), interfere with placental function and, in turn, neurodevelopment. Some of the key differences in placental development between animal models are presented, as well as how placental functions such as serving as a xenobiotic barrier and exchange organ, immune interface, regulator of growth and fetal oxygenation, and a neuroendocrine organ, could be vulnerable to environmental exposure. This review illustrates the importance of the placenta as a modulator of fetal brain development and suggests critical unexplored areas and possible vulnerabilities to environmental exposure.
Collapse
Affiliation(s)
- William P Marinello
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| | - Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
31
|
Extracellular vesicles and their role in gestational diabetes mellitus. Placenta 2021; 113:15-22. [PMID: 33714611 DOI: 10.1016/j.placenta.2021.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/19/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
Gestational diabetes mellitus (GDM) is a complex disorder that is defined by glucose intolerance with onset during pregnancy. The incidence of GDM is increasing worldwide. Pregnancies complicated with GDM have higher rates of maternal and fetal morbidity with short- and long-term consequences, including increased rates of cardiovascular disease and type II diabetes for both the mother and offspring. The pathophysiology of GDM still remains unclear and there has been interest in the role of small extracellular vesicles (sEVs) in the maternal metabolic adaptations that occur in pregnancy and GDM. Small EVs are nanosized particles that contain bioactive content, including miRNAs and proteins, which are released by cells to provide cell-to-cell communication. Pregnancy induces an increase in total and placental-secreted sEVs across gestation, with a further increase in sEV number and changes in the protein and miRNA composition of these sEVs in GDM. Research has suggested that these sEVs have an impact on maternal adaptations during pregnancy, including targeting the pancreas, skeletal muscle and adipose tissue. Consequently, this review will focus on the differences in total and placental sEVs in GDM compared to normal pregnancy, the role of sEVs in the pathophysiology of GDM and their clinical application as potential GDM biomarkers.
Collapse
|
32
|
Aengenheister L, Favaro RR, Morales-Prieto DM, Furer LA, Gruber M, Wadsack C, Markert UR, Buerki-Thurnherr T. Research on nanoparticles in human perfused placenta: State of the art and perspectives. Placenta 2020; 104:199-207. [PMID: 33418345 DOI: 10.1016/j.placenta.2020.12.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/27/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022]
Abstract
Increasing human exposure to nanoparticles (NPs) from various sources raises concerns for public health, especially for vulnerable risk groups like pregnant women and their developing fetuses. However, nanomedicine and the prospect of creating safe and effective NP-based formulations of drugs hold great promise to revolutionize treatment during pregnancy. With maternal and fetal health at stake, risks and opportunities of NPs in pregnancy need to be carefully investigated. Importantly, a comprehensive understanding of NP transport and effects at the placenta is urgently needed considering the central position of the placenta at the maternal-fetal interface and its many essential functions to enable successful pregnancy. The perfusion of human placental tissue provides a great opportunity to achieve predictive human relevant insights, circumventing uncertainties due to considerable differences in placental structure and function across species. Here, we have reviewed the current literature on the ex vivo human placenta perfusion of NPs. From 16 available studies, it was evident that placental uptake and transfer of NPs are highly dependent on their characteristics like size and surface modifications, which is in line with previous observations from in vitro and animal transport studies. These studies further revealed that special considerations apply for the perfusion of NPs and we identified relevant controls that should be implemented in future perfusion studies. While current studies mostly focused on placental transfer of NPs to conclude on potential fetal exposure, the ex vivo placental perfusion model has considerable potential to reveal novel insights on NP effects on placental tissue functionality and signaling that could indirectly affect maternal-fetal health.
Collapse
Affiliation(s)
- Leonie Aengenheister
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland; Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Rodolfo R Favaro
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Diana M Morales-Prieto
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Lea A Furer
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Michael Gruber
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036, Graz, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036, Graz, Austria
| | - Udo R Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.
| |
Collapse
|