1
|
Li X, Chen X, Li J, Wu P, Hu D, Zhong Q, Cheng D. Respiration in light of evergreen and deciduous woody species and its links to the leaf economic spectrum. TREE PHYSIOLOGY 2024; 44:tpad129. [PMID: 37847610 DOI: 10.1093/treephys/tpad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
Leaf respiration in the light (Rlight) is crucial for understanding the net CO2 exchange of individual plants and entire ecosystems. However, Rlight is poorly quantified and rarely discussed in the context of the leaf economic spectrum (LES), especially among woody species differing in plant functional types (PFTs) (e.g., evergreen vs. deciduous species). To address this gap in our knowledge, Rlight, respiration in the dark (Rdark), light-saturated photosynthetic rates (Asat), leaf dry mass per unit area (LMA), leaf nitrogen (N) and phosphorus (P) concentrations, and maximum carboxylation (Vcmax) and electron transport rates (Jmax) of 54 representative subtropical woody evergreen and deciduous species were measured. With the exception of LMA, the parameters quantified in this study were significantly higher in deciduous species than in evergreen species. The degree of light inhibition did not significantly differ between evergreen (52%) and deciduous (50%) species. Rlight was significantly correlated with LES traits such as Asat, Rdark, LMA, N and P. The Rlight vs. Rdark and N relationships shared common slopes between evergreen and deciduous species, but significantly differed in their y-intercepts, in which the rates of Rlight were slower or faster for any given Rdark or N in deciduous species, respectively. A model for Rlight based on three traits (i.e., Rdark, LMA and P) had an explanatory power of 84.9%. These results show that there is a link between Rlight and the LES, and highlight that PFTs is an important factor in affecting Rlight and the relationships of Rlight with Rdark and N. Thus, this study provides information that can improve the next generation of terrestrial biosphere models (TBMs).
Collapse
Affiliation(s)
- Xueqin Li
- Institute of Geography, Fujian Normal University, No.8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
| | - Xiaoping Chen
- Institute of Geography, Fujian Normal University, No.8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, No. 8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
| | - Jinlong Li
- Institute of Geography, Fujian Normal University, No.8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
| | - Panpan Wu
- Institute of Geography, Fujian Normal University, No.8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
| | - Dandan Hu
- Institute of Geography, Fujian Normal University, No.8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
| | - Quanlin Zhong
- Institute of Geography, Fujian Normal University, No.8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
| | - Dongliang Cheng
- Institute of Geography, Fujian Normal University, No.8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, No. 8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
| |
Collapse
|
2
|
Schmiege SC, Sharkey TD, Walker B, Hammer J, Way DA. Laisk measurements in the nonsteady state: Tests in plants exposed to warming and variable CO2 concentrations. PLANT PHYSIOLOGY 2023; 193:1045-1057. [PMID: 37232396 PMCID: PMC10517191 DOI: 10.1093/plphys/kiad305] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023]
Abstract
Light respiration (RL) is an important component of plant carbon balance and a key parameter in photosynthesis models. RL is often measured using the Laisk method, a gas exchange technique that is traditionally employed under steady-state conditions. However, a nonsteady-state dynamic assimilation technique (DAT) may allow for more rapid Laisk measurements. In 2 studies, we examined the efficacy of DAT for estimating RL and the parameter Ci* (the intercellular CO2 concentration where Rubisco's oxygenation velocity is twice its carboxylation velocity), which is also derived from the Laisk technique. In the first study, we compared DAT and steady-state RL and Ci* estimates in paper birch (Betula papyrifera) growing under control and elevated temperature and CO2 concentrations. In the second, we compared DAT-estimated RL and Ci* in hybrid poplar (Populus nigra L. × P. maximowiczii A. Henry "NM6") exposed to high or low CO2 concentration pre-treatments. The DAT and steady-state methods provided similar RL estimates in B. papyrifera, and we found little acclimation of RL to temperature or CO2; however, Ci* was higher when measured with DAT compared to steady-state methods. These Ci* differences were amplified by the high or low CO2 pre-treatments. We propose that changes in the export of glycine from photorespiration may explain these apparent differences in Ci*.
Collapse
Affiliation(s)
- Stephanie C Schmiege
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Thomas D Sharkey
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Berkley Walker
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Julia Hammer
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Danielle A Way
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
- Nicholas School of the Environment, Duke University, Durham, NC 27710, USA
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
3
|
Eckardt NA, Ainsworth EA, Bahuguna RN, Broadley MR, Busch W, Carpita NC, Castrillo G, Chory J, DeHaan LR, Duarte CM, Henry A, Jagadish SVK, Langdale JA, Leakey ADB, Liao JC, Lu KJ, McCann MC, McKay JK, Odeny DA, Jorge de Oliveira E, Platten JD, Rabbi I, Rim EY, Ronald PC, Salt DE, Shigenaga AM, Wang E, Wolfe M, Zhang X. Climate change challenges, plant science solutions. THE PLANT CELL 2023; 35:24-66. [PMID: 36222573 PMCID: PMC9806663 DOI: 10.1093/plcell/koac303] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.
Collapse
Affiliation(s)
- Nancy A Eckardt
- Senior Features Editor, The Plant Cell, American Society of Plant Biologists, USA
| | - Elizabeth A Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, Illinois 61801, USA
| | - Rajeev N Bahuguna
- Centre for Advanced Studies on Climate Change, Dr Rajendra Prasad Central Agricultural University, Samastipur 848125, Bihar, India
| | - Martin R Broadley
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Nicholas C Carpita
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Gabriel Castrillo
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Joanne Chory
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Amelia Henry
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - S V Krishna Jagadish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79410, USA
| | - Jane A Langdale
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Andrew D B Leakey
- Department of Plant Biology, Department of Crop Sciences, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - James C Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Kuan-Jen Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Maureen C McCann
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - John K McKay
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Damaris A Odeny
- The International Crops Research Institute for the Semi-Arid Tropics–Eastern and Southern Africa, Gigiri 39063-00623, Nairobi, Kenya
| | | | - J Damien Platten
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - Ismail Rabbi
- International Institute of Tropical Agriculture (IITA), PMB 5320 Ibadan, Oyo, Nigeria
| | - Ellen Youngsoo Rim
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
- Innovative Genomics Institute, Berkeley, California 94704, USA
| | - David E Salt
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alexandra M Shigenaga
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Marnin Wolfe
- Auburn University, Dept. of Crop Soil and Environmental Sciences, College of Agriculture, Auburn, Alabama 36849, USA
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
4
|
Faber AH, Griffin KL, Tjoelker MG, Pagter M, Yang J, Bruhn D. Consistent diurnal pattern of leaf respiration in the light among contrasting species and climates. THE NEW PHYTOLOGIST 2022; 236:71-85. [PMID: 35727175 PMCID: PMC9544685 DOI: 10.1111/nph.18330] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/12/2022] [Indexed: 05/02/2023]
Abstract
Leaf daytime respiration (leaf respiration in the light, RL ) is often assumed to constitute a fixed fraction of leaf dark respiration (RD ) (i.e. a fixed light inhibition of respiration (RD )) and vary diurnally due to temperature fluctuations. These assumptions were tested by measuring RL , RD and the light inhibition of RD in the field at a constant temperature using the Kok method. Measurements were conducted diurnally on 21 different species: 13 deciduous, four evergreen and four herbaceous from humid continental and humid subtropical climates. RL and RD showed significant diurnal variations and the diurnal pattern differed in trajectory and magnitude between climates, but not between plant functional types (PFTs). The light inhibition of RD varied diurnally and differed between climates and in trajectory between PFTs. The results highlight the entrainment of leaf daytime respiration to the diurnal cycle and that time of day should be accounted for in studies seeking to examine the environmental and biological drivers of leaf daytime respiration.
Collapse
Affiliation(s)
- Andreas H. Faber
- Department of Chemistry and BioscienceAalborg UniversityFredrik Bajers Vej 7H9220AalborgDenmark
| | - Kevin L. Griffin
- Department of Earth and Environmental SciencesColumbia UniversityPalisadesNY10964USA
- Department of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkNY10027USA
- Lamont‐Doherty Earth ObservatoryColumbia UniversityPalisadesNY10964USA
| | - Mark G. Tjoelker
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2750Australia
| | - Majken Pagter
- Department of Chemistry and BioscienceAalborg UniversityFredrik Bajers Vej 7H9220AalborgDenmark
| | - Jinyan Yang
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2750Australia
| | - Dan Bruhn
- Department of Chemistry and BioscienceAalborg UniversityFredrik Bajers Vej 7H9220AalborgDenmark
| |
Collapse
|
5
|
Respiratory and Photosynthetic Responses of Antarctic Vascular Plants Are Differentially Affected by CO2 Enrichment and Nocturnal Warming. PLANTS 2022; 11:plants11111520. [PMID: 35684292 PMCID: PMC9182836 DOI: 10.3390/plants11111520] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
Projected rises in atmospheric CO2 concentration and minimum night-time temperatures may have important effects on plant carbon metabolism altering the carbon balance of the only two vascular plant species in the Antarctic Peninsula. We assessed the effect of nocturnal warming (8/5 °C vs. 8/8 °C day/night) and CO2 concentrations (400 ppm and 750 ppm) on gas exchange, non-structural carbohydrates, two respiratory-related enzymes, and mitochondrial size and number in two species of vascular plants. In Colobanthus quitensis, light-saturated photosynthesis measured at 400 ppm was reduced when plants were grown in the elevated CO2 or in the nocturnal warming treatments. Growth in elevated CO2 reduced stomatal conductance but nocturnal warming did not. The short-term sensitivity of respiration, relative protein abundance, and mitochondrial traits were not responsive to either treatment in this species. Moreover, some acclimation to nocturnal warming at ambient CO2 was observed. Altogether, these responses in C. quitensis led to an increase in the respiration-assimilation ratio in plants grown in elevated CO2. The response of Deschampsia antarctica to the experimental treatments was quite distinct. Photosynthesis was not affected by either treatment; however, respiration acclimated to temperature in the elevated CO2 treatment. The observed short-term changes in thermal sensitivity indicate type I acclimation of respiration. Growth in elevated CO2 and nocturnal warming resulted in a reduction in mitochondrial numbers and an increase in mitochondrial size in D. antarctica. Overall, our results suggest that with climate change D. antarctica could be more successful than C. quitensis, due to its ability to make metabolic adjustments to maintain its carbon balance.
Collapse
|
6
|
Fan Y, Asao S, Furbank RT, von Caemmerer S, Day DA, Tcherkez G, Sage TL, Sage RF, Atkin OK. The crucial roles of mitochondria in supporting C 4 photosynthesis. THE NEW PHYTOLOGIST 2022; 233:1083-1096. [PMID: 34669188 DOI: 10.1111/nph.17818] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
C4 photosynthesis involves a series of biochemical and anatomical traits that significantly improve plant productivity under conditions that reduce the efficiency of C3 photosynthesis. We explore how evolution of the three classical biochemical types of C4 photosynthesis (NADP-ME, NAD-ME and PCK types) has affected the functions and properties of mitochondria. Mitochondria in C4 NAD-ME and PCK types play a direct role in decarboxylation of metabolites for C4 photosynthesis. Mitochondria in C4 PCK type also provide ATP for C4 metabolism, although this role for ATP provision is not seen in NAD-ME type. Such involvement has increased mitochondrial abundance/size and associated enzymatic capacity, led to changes in mitochondrial location and ultrastructure, and altered the role of mitochondria in cellular carbon metabolism in the NAD-ME and PCK types. By contrast, these changes in mitochondrial properties are absent in the C4 NADP-ME type and C3 leaves, where mitochondria play no direct role in photosynthesis. From an eco-physiological perspective, rates of leaf respiration in darkness vary considerably among C4 species but does not differ systematically among the three C4 types. This review outlines further mitochondrial research in key areas central to the engineering of the C4 pathway into C3 plants and to the understanding of variation in rates of C4 dark respiration.
Collapse
Affiliation(s)
- Yuzhen Fan
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Shinichi Asao
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Robert T Furbank
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Susanne von Caemmerer
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - David A Day
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Guillaume Tcherkez
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Institut de Recherche en Horticulture et Semences, INRA and University of Angers, Beaucouzé, 49070, France
| | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
7
|
Poorter H, Knopf O, Wright IJ, Temme AA, Hogewoning SW, Graf A, Cernusak LA, Pons TL. A meta-analysis of responses of C 3 plants to atmospheric CO 2 : dose-response curves for 85 traits ranging from the molecular to the whole-plant level. THE NEW PHYTOLOGIST 2022; 233:1560-1596. [PMID: 34657301 DOI: 10.1111/nph.17802] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/03/2021] [Indexed: 05/20/2023]
Abstract
Generalised dose-response curves are essential to understand how plants acclimate to atmospheric CO2 . We carried out a meta-analysis of 630 experiments in which C3 plants were experimentally grown at different [CO2 ] under relatively benign conditions, and derived dose-response curves for 85 phenotypic traits. These curves were characterised by form, plasticity, consistency and reliability. Considered over a range of 200-1200 µmol mol-1 CO2 , some traits more than doubled (e.g. area-based photosynthesis; intrinsic water-use efficiency), whereas others more than halved (area-based transpiration). At current atmospheric [CO2 ], 64% of the total stimulation in biomass over the 200-1200 µmol mol-1 range has already been realised. We also mapped the trait responses of plants to [CO2 ] against those we have quantified before for light intensity. For most traits, CO2 and light responses were of similar direction. However, some traits (such as reproductive effort) only responded to light, others (such as plant height) only to [CO2 ], and some traits (such as area-based transpiration) responded in opposite directions. This synthesis provides a comprehensive picture of plant responses to [CO2 ] at different integration levels and offers the quantitative dose-response curves that can be used to improve global change simulation models.
Collapse
Affiliation(s)
- Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Oliver Knopf
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Andries A Temme
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, 14195, Berlin, Germany
| | | | - Alexander Graf
- Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Qld, 4879, Australia
| | - Thijs L Pons
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3512 PN, Utrecht, the Netherlands
| |
Collapse
|
8
|
Li X, Zhang Z, Guo F, Duan J, Sun J. Shoot-Root Interplay Mediates Defoliation-Induced Plant Legacy Effect. FRONTIERS IN PLANT SCIENCE 2021; 12:684503. [PMID: 34421941 PMCID: PMC8374956 DOI: 10.3389/fpls.2021.684503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Shoot defoliation by grazers or mowing can affect root traits of grassland species, which may subsequently affect its aboveground traits and ecosystem functioning (e.g., aboveground primary production). However, experimental evidence for such reciprocal feedback between shoots and roots is limited. We grew the perennial grass Leymus chinensis-common across the eastern Eurasian steppe-as model species in a controlled-hydroponics experiment, and then removed half of its shoots, half of its roots, or a combination of both. We measured a range of plant aboveground and belowground traits (e.g., phenotypic characteristics, photosynthetic traits, root architecture) in response to the shoot and/or root removal treatments. We found the regenerated biomass was less than the lost biomass under both shoot defoliation and root severance, generating a under-compensatory growth. Root biomass was reduced by 60.11% in the defoliation treatment, while root severance indirectly reduced shoot biomass by 40.49%, indicating a feedback loop between shoot and root growth. This defoliation-induced shoot-root feedback was mediated by the disproportionate response and allometry of plant traits. Further, the effect of shoot defoliation and root severance on trait plasticity of L. chinensis was sub-additive. That is, the combined effects of the two treatments were less than the sum of their independent effects, resulting in a buffering effect on the existing negative influences on plant persistence by increased photosynthesis. Our results highlight the key role of trait plasticity in driving shoot-root reciprocal feedbacks and growth persistence in grassland plants, especially perennial species. This knowledge adds to earlier findings of legacy effects and can be used to determine the resilience of grasslands.
Collapse
Affiliation(s)
- Xiliang Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Zhen Zhang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Fenghui Guo
- College of Grassland Science, Shanxi Agricultural University, Taigu, China
| | - Junjie Duan
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Juan Sun
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
9
|
Tcherkez G, Atkin OK. Unravelling mechanisms and impacts of day respiration in plant leaves: an introduction to a Virtual Issue. THE NEW PHYTOLOGIST 2021; 230:5-10. [PMID: 33650185 DOI: 10.1111/nph.17164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Guillaume Tcherkez
- Division of Plant Sciences, Research School of Biology, ANU College of Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Owen K Atkin
- Division of Plant Sciences, Research School of Biology, ANU College of Science, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
10
|
Bunce JA. Three new methods indicate that CO 2 concentration affects plant respiration in the range relevant to global change. AOB PLANTS 2021; 13:plab004. [PMID: 33604016 PMCID: PMC7877694 DOI: 10.1093/aobpla/plab004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Short-term responses of plant dark respiration to carbon dioxide concentration ([CO2]) in the range anticipated in the atmosphere with global change remain controversial, primarily because it is difficult to convincingly eliminate the many possible sources of experimental error in measurements of carbon dioxide or oxygen exchange rates. Plant dark respiration is a major component of the carbon balance of many ecosystems. In seedlings without senescent tissue, the rate of loss of dry mass during darkness indicates the rate of respiration. This method of measuring respiration was used to test for [CO2] effects on respiration in seedlings of three species with relatively large seeds. The time it took respiration to exhaust substrates and cause seedling death in darkness was used as an indicator of respiration rate in four other species with smaller seeds. The third method was measuring rates of CO2 exchange in excised petioles sealed in a cuvette submerged in water to prevent leaks. Petioles were utilized as the plant tissue type with the most reliable rates of respiration, for excised tissue. The rate of loss of dry mass in the dark decreased with increasing [CO2] in the range of 200-800 μmol mol-1 in all three large-seeded species. The seedling survival time in the dark increased with [CO2] in the same concentration range in all four of the smaller-seeded species. Respiration rates of excised petioles of several species also decreased over this [CO2] range. The data provide new evidence that the rate of dark respiration in plant tissue often decreases with increasing [CO2] in the 200-800 μmol mol-1 range.
Collapse
Affiliation(s)
- James A Bunce
- Adaptive Cropping Systems Laboratory (retired), USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD, USA
| |
Collapse
|
11
|
da Silva JR, Boaretto RM, Lavorenti JAL, dos Santos BCF, Coletta-Filho HD, Mattos D. Effects of Deficit Irrigation and Huanglongbing on Sweet Orange Trees. FRONTIERS IN PLANT SCIENCE 2021; 12:731314. [PMID: 34721459 PMCID: PMC8554030 DOI: 10.3389/fpls.2021.731314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/14/2021] [Indexed: 05/21/2023]
Abstract
This study addresses the interactive effects of deficit irrigation and huanglongbing (HLB) infection on the physiological, biochemical, and oxidative stress responses of sweet orange trees. We sought to answer: (i) What are the causes for the reduction in water uptake in HLB infected plants? (ii) Is the water status of plants negatively affected by HLB infection? (iii) What are the key physiological traits impaired in HLB-infected plants? and (iv) What conditions can mitigate both disease severity and physiological/biochemical impairments in HLB-infected plants? Two water management treatments were applied for 11 weeks to 1-year-old-trees that were either healthy (HLB-) or infected with HLB (+) and grown in 12-L pots. Half of the trees were fully irrigated (FI) to saturation, whereas half were deficit-irrigated (DI) using 40% of the water required to saturate the substrate. Our results demonstrated that: reduced water uptake capacity in HLB+ plants was associated with reduced root growth, leaf area, stomatal conductance, and transpiration. Leaf water potential was not negatively affected by HLB infection. HLB increased leaf respiration rates (ca. 41%) and starch synthesis, downregulated starch breakdown, blocked electron transport, improved oxidative stress, and reduced leaf photosynthesis (ca. 57%) and photorespiration (ca.57%). Deficit irrigation reduced both leaf respiration (ca. 45%) and accumulation of starch (ca.53%) by increasing maltose (ca. 20%), sucrose, glucose, and fructose contents in the leaves, decreasing bacterial population (ca. 9%) and triggering a series of protective measures against further impairments in the physiology and biochemistry of HLB-infected plants. Such results provide a more complete physiological and biochemical overview of HLB-infected plants and can guide future studies to screen genetic tolerance to HLB and improve management strategies under field orchard conditions.
Collapse
|
12
|
Gauthier PPG, Saenz N, Griffin KL, Way D, Tcherkez G. Is the Kok effect a respiratory phenomenon? Metabolic insight using 13 C labeling in Helianthus annuus leaves. THE NEW PHYTOLOGIST 2020; 228:1243-1255. [PMID: 32564374 DOI: 10.1111/nph.16756] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The Kok effect is a well-known phenomenon in which the quantum yield of photosynthesis changes abruptly at low light. This effect has often been interpreted as a shift in leaf respiratory metabolism and thus used widely to measure day respiration. However, there is still no formal evidence that the Kok effect has a respiratory origin. Here, both gas exchange and isotopic labeling were carried out on sunflower leaves, using glucose that was 13 C-enriched at specific C-atom positions. Position-specific decarboxylation measurements and NMR analysis of metabolites were used to trace the fate of C-atoms in metabolism. Decarboxylation rates were significant at low light (including above the Kok break point) and increased with decreasing irradiance below 100 µmol photons m-2 s-1 . The variation in several metabolite pools such as malate, fumarate or citrate, and flux calculations suggest the involvement of several decarboxylating pathways in the Kok effect, including the malic enzyme. Our results show that day respiratory CO2 evolution plays an important role in the Kok effect. However, the increase in the apparent quantum yield of photosynthesis below the Kok break point is also probably related to malate metabolism, which participates in maintaining photosynthetic linear electron flow.
Collapse
Affiliation(s)
- Paul P G Gauthier
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| | - Natalie Saenz
- Department of Chemistry, Columbia University, 3000 Broadway NYC, New York, NY, 10025, USA
| | - Kevin L Griffin
- Department of Ecology, Evolution and Environmental Biology (E3B), Columbia University, 1200 Amsterdam Avenue, New York, NY, 10027, USA
- Department of Earth and Environmental Sciences, Lamont Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY, 10964, USA
| | - Danielle Way
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, USA
| | - Guillaume Tcherkez
- Research School of Biology, Joint College of Sciences, Australian National University, Canberra, ACT, 2601, Australia
- Seedling Metabolism and Stress, Institut de Recherche en Horticulture et Semences, INRAE Angers, Université d'Angers, 42 rue Georges Morel, Beaucouzé Cedex, 49780, France
| |
Collapse
|
13
|
Li X, Xu C, Li Z, Feng J, Tissue DT, Griffin KL. Late growing season carbon subsidy in native gymnosperms in a northern temperate forest. TREE PHYSIOLOGY 2019; 39:971-982. [PMID: 31086983 DOI: 10.1093/treephys/tpz024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/25/2019] [Accepted: 02/24/2019] [Indexed: 05/05/2023]
Abstract
Evergreen tree species that maintain positive carbon balance during the late growing season may subsidize extra carbon in a mixed forest. To test this concept of 'carbon subsidy', leaf gas exchange characteristics and related leaf traits were measured for three gymnosperm evergreen species (Chamaecyparis thyoides, Tsuga canadensis and Pinus strobus) native to the oak-hickory deciduous forest in northeast USA from March (early Spring) to October (late Autumn) in a single year. All three species were photosynthetically active in Autumn. During the Summer-Autumn transition, photosynthetic capacity (Amax) of T. canadensis and P. strobus increased (T-test, P < 0.001) and was maintained in C. thyoides (T-test, P = 0.49), while dark respiration at 20 °C (Rn) and its thermal sensitivity were generally unchanged for all species (one-way ANOVA, P > 0.05). In Autumn, reductions in mitochondrial respiration rate in the daylight (RL) and the ratio of RL to Rn (RL/Rn) were observed in P. strobus (46.3% and 44.0% compared to Summer, respectively). Collectively, these physiological adjustments resulted in higher ratios of photosynthesis to respiration (A/Rnand A/RL) in Autumn for all species. Across season, photosynthetic biochemistry and respiratory variables were not correlated with prevailing growth temperature. Physiological adjustments allowed all three gymnosperm species to maintain positive carbon balance into late Autumn, suggesting that gymnosperm evergreens may benefit from Autumn warming trends relative to deciduous trees that have already lost their leaves.
Collapse
Affiliation(s)
- Ximeng Li
- College of life and Environmental Science, Minzu University of China, 27 Zhongguancun south Avenue, Beijing, China
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag, Penrith NSW 2751, Australia
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Chengyuan Xu
- School of Health, Medical and Applied Sciences, Central Queensland University, Bundaberg QLD, Australia
| | - Zhengzhen Li
- College of life and Environmental Science, Minzu University of China, 27 Zhongguancun south Avenue, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, China
| | - Jinchao Feng
- College of life and Environmental Science, Minzu University of China, 27 Zhongguancun south Avenue, Beijing, China
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag, Penrith NSW 2751, Australia
| | - Kevin L Griffin
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
- Departments of Earth and Environmental Sciences, and Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| |
Collapse
|
14
|
Huang J, Hammerbacher A, Weinhold A, Reichelt M, Gleixner G, Behrendt T, van Dam NM, Sala A, Gershenzon J, Trumbore S, Hartmann H. Eyes on the future - evidence for trade-offs between growth, storage and defense in Norway spruce. THE NEW PHYTOLOGIST 2019; 222:144-158. [PMID: 30289558 DOI: 10.1111/nph.15522] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/28/2018] [Indexed: 05/20/2023]
Abstract
Carbon (C) allocation plays a central role in tree responses to environmental changes. Yet, fundamental questions remain about how trees allocate C to different sinks, for example, growth vs storage and defense. In order to elucidate allocation priorities, we manipulated the whole-tree C balance by modifying atmospheric CO2 concentrations [CO2 ] to create two distinct gradients of declining C availability, and compared how C was allocated among fluxes (respiration and volatile monoterpenes) and biomass C pools (total biomass, nonstructural carbohydrates (NSC) and secondary metabolites (SM)) in well-watered Norway spruce (Picea abies) saplings. Continuous isotope labelling was used to trace the fate of newly-assimilated C. Reducing [CO2 ] to 120 ppm caused an aboveground C compensation point (i.e. net C balance was zero) and resulted in decreases in growth and respiration. By contrast, soluble sugars and SM remained relatively constant in aboveground young organs and were partially maintained with a constant allocation of newly-assimilated C, even at expense of root death from C exhaustion. We conclude that spruce trees have a conservative allocation strategy under source limitation: growth and respiration can be downregulated to maintain 'operational' concentrations of NSC while investing newly-assimilated C into future survival by producing SM.
Collapse
Affiliation(s)
- Jianbei Huang
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Almuth Hammerbacher
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, 0028, Pretoria, South Africa
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Michael Reichelt
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Gerd Gleixner
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Thomas Behrendt
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Dornburger-Str. 159, 07743, Jena, Germany
| | - Anna Sala
- Division of Biological Sciences, The University of Montana, Missoula, MT, 59812, USA
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Susan Trumbore
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Henrik Hartmann
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| |
Collapse
|
15
|
Paixão JS, Da Silva JR, Ruas KF, Rodrigues WP, Filho JAM, Bernado WDP, Abreu DP, Ferreira LS, Gonzalez JC, Griffin KL, Ramalho JC, Campostrini E. Photosynthetic capacity, leaf respiration and growth in two papaya ( Carica papaya) genotypes with different leaf chlorophyll concentrations. AOB PLANTS 2019; 11:plz013. [PMID: 30949326 PMCID: PMC6441136 DOI: 10.1093/aobpla/plz013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/29/2019] [Accepted: 03/07/2019] [Indexed: 06/06/2023]
Abstract
Golden genotype of papaya (Carica papaya), named for its yellowish leaves, produces fruits very much appreciated by consumers worldwide. However, its growth and yield are considerably lower than those of other genotypes, such as 'Sunrise Solo', which has intensely green leaves. We undertook an investigation with the goal of evaluating key physiological traits that can affect biomass accumulation of both Golden and Sunrise Solo genotypes. Papaya seeds from two different genotypes with contrasting leaf colour 'Sunrise Solo' and Golden were grown in greenhouse conditions. Plant growth (plant height, leaf number, stem diameter, leaf area, plant dry weight), leaf gas exchanges, leaf carbon balance, RuBisCO oxygenation and carboxylation rates, nitrogen, as well as chlorophyll concentrations and fluorescence variables were assessed. Although no significant differences were observed for photosynthetic rates between genotypes, the accumulation of small differences in photosynthesis, day after day, over a long period, might contribute to some extend to a higher C-budget in Sunrise Solo, higher leaf area and, thus, to higher productivity. Additionally, we consider that physiological processes other than photosynthesis and leaf respiration can be as well involved in lower growth and yield of Golden. One of these aspects could be related to the higher rates of photorespiration observed in Sunrise Solo, which could improve the rate of N assimilation into organic compounds, such as amino acids, thus contributing to the higher biomass production in Sunrise Solo relative to Golden. Further experiments to evaluate the effects of N metabolism on physiology and growth of Golden are required as it has the potential to limit its yield.
Collapse
Affiliation(s)
- Jéssica Sousa Paixão
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Jefferson Rangel Da Silva
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Rodovia Anhanguera, Cordeirópolis, São Paulo, Brazil
| | - Katherine Fraga Ruas
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Weverton Pereira Rodrigues
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - José Altino Machado Filho
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rual, Rua Afonso Sarlo, Bento, Ferreira, Vitória, Espírito Santo, Brazil
| | - Wallace de Paula Bernado
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Deivisson Pelegrino Abreu
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Luciene Souza Ferreira
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | | - Kevin Lee Griffin
- Department of Earth and Environmental Sciences, Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY, USA
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - José Cochicho Ramalho
- Lab. Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food (LEAF), Departamento de Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Av. República, Oeiras, Portugal
- GeoBioTec, Faculdade de Ciências Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Eliemar Campostrini
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Dusenge ME, Duarte AG, Way DA. Plant carbon metabolism and climate change: elevated CO 2 and temperature impacts on photosynthesis, photorespiration and respiration. THE NEW PHYTOLOGIST 2019; 221:32-49. [PMID: 29983005 DOI: 10.1111/nph.15283] [Citation(s) in RCA: 311] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/11/2018] [Indexed: 05/18/2023]
Abstract
Contents Summary 32 I. The importance of plant carbon metabolism for climate change 32 II. Rising atmospheric CO2 and carbon metabolism 33 III. Rising temperatures and carbon metabolism 37 IV. Thermal acclimation responses of carbon metabolic processes can be best understood when studied together 38 V. Will elevated CO2 offset warming-induced changes in carbon metabolism? 40 VI. No plant is an island: water and nutrient limitations define plant responses to climate drivers 41 VII. Conclusions 42 Acknowledgements 42 References 42 Appendix A1 48 SUMMARY: Plant carbon metabolism is impacted by rising CO2 concentrations and temperatures, but also feeds back onto the climate system to help determine the trajectory of future climate change. Here we review how photosynthesis, photorespiration and respiration are affected by increasing atmospheric CO2 concentrations and climate warming, both separately and in combination. We also compile data from the literature on plants grown at multiple temperatures, focusing on net CO2 assimilation rates and leaf dark respiration rates measured at the growth temperature (Agrowth and Rgrowth , respectively). Our analyses show that the ratio of Agrowth to Rgrowth is generally homeostatic across a wide range of species and growth temperatures, and that species that have reduced Agrowth at higher growth temperatures also tend to have reduced Rgrowth , while species that show stimulations in Agrowth under warming tend to have higher Rgrowth in the hotter environment. These results highlight the need to study these physiological processes together to better predict how vegetation carbon metabolism will respond to climate change.
Collapse
Affiliation(s)
- Mirindi Eric Dusenge
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - André Galvao Duarte
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Danielle A Way
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
17
|
Heskel MA, Tang J. Environmental controls on light inhibition of respiration and leaf and canopy daytime carbon exchange in a temperate deciduous forest. TREE PHYSIOLOGY 2018; 38:1886-1902. [PMID: 30252110 DOI: 10.1093/treephys/tpy103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Uncertainty in the estimation of daytime ecosystem carbon cycling due to the light inhibition of leaf respiration and photorespiration, and how these small fluxes vary through the growing season in the field, remains a confounding element in calculations of gross primary productivity and ecosystem respiration. Our study focuses on how phenology, short-term temperature changes and canopy position influence leaf-level carbon exchange in Quercus rubra L. (red oak) at Harvard Forest in central Massachusetts, USA. Using leaf measurements and eddy covariance, we also quantify the effect of light inhibition on estimates of daytime respiration at leaf and ecosystem scales. Measured rates of leaf respiration in the light and dark were highest in the early growing season and declined in response to 10-day prior air temperatures (P < 0.01), evidence of within-season thermal acclimation. Leaf respiration was significantly inhibited by light (27.1 ± 2.82% inhibited across all measurements), and this inhibition varied with the month of measurement; greater inhibition was observed in mid-summer leaves compared with early- and late-season leaves. Increases in measurement temperature led to higher rates of respiration and photorespiration, though with a less pronounced positive effect on photosynthesis; as a result, carbon-use efficiency declined with increasing leaf temperature. Over the growing season when we account for seasonally variable light inhibition and basal respiration rates, our modeling approaches found a cumulative 12.9% reduction of leaf-level respiration and a 12.8% reduction of canopy leaf respiration, resulting in a 3.7% decrease in total ecosystem respiration compared with estimates that do not account for light inhibition in leaves. Our study sheds light on the environmental controls of the light inhibition of daytime leaf respiration and how integrating this phenomenon and other small fluxes can reduce uncertainty in current and future projections of terrestrial carbon cycling.
Collapse
Affiliation(s)
- Mary A Heskel
- The Ecosystems Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, USA
- Department of Biology, Macalester College, 1600 Grand Avenue, Saint Paul, MN, USA
| | - Jianwu Tang
- The Ecosystems Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, USA
| |
Collapse
|
18
|
|
19
|
Tcherkez G, Gauthier P, Buckley TN, Busch FA, Barbour MM, Bruhn D, Heskel MA, Gong XY, Crous KY, Griffin K, Way D, Turnbull M, Adams MA, Atkin OK, Farquhar GD, Cornic G. Leaf day respiration: low CO 2 flux but high significance for metabolism and carbon balance. THE NEW PHYTOLOGIST 2017; 216:986-1001. [PMID: 28967668 DOI: 10.1111/nph.14816] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/13/2017] [Indexed: 05/04/2023]
Abstract
Contents 986 I. 987 II. 987 III. 988 IV. 991 V. 992 VI. 995 VII. 997 VIII. 998 References 998 SUMMARY: It has been 75 yr since leaf respiratory metabolism in the light (day respiration) was identified as a low-flux metabolic pathway that accompanies photosynthesis. In principle, it provides carbon backbones for nitrogen assimilation and evolves CO2 and thus impacts on plant carbon and nitrogen balances. However, for a long time, uncertainties have remained as to whether techniques used to measure day respiratory efflux were valid and whether day respiration responded to environmental gaseous conditions. In the past few years, significant advances have been made using carbon isotopes, 'omics' analyses and surveys of respiration rates in mesocosms or ecosystems. There is substantial evidence that day respiration should be viewed as a highly dynamic metabolic pathway that interacts with photosynthesis and photorespiration and responds to atmospheric CO2 mole fraction. The view of leaf day respiration as a constant and/or negligible parameter of net carbon exchange is now outdated and it should now be regarded as a central actor of plant carbon-use efficiency.
Collapse
Affiliation(s)
- Guillaume Tcherkez
- Research School of Biology, College of Science, and ARC Center of Excellence for Translational Photosynthesis, Australian National University, Canberra, ACT, 2601, Australia
| | - Paul Gauthier
- Department of Geosciences, Princeton University, Princeton, NJ, 08540, USA
| | - Thomas N Buckley
- IA Watson Grains Research Centre, University of Sydney, 12656 Newell Hwy, Narrabri, NSW, 2390, Australia
| | - Florian A Busch
- Research School of Biology, College of Science, and ARC Center of Excellence for Translational Photosynthesis, Australian National University, Canberra, ACT, 2601, Australia
| | - Margaret M Barbour
- Centre for Carbon, Water and Food, University of Sydney, 380 Werombi Rd, Brownlow Hill, NSW, 2570, Australia
| | - Dan Bruhn
- Section of Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg East, Denmark
| | - Mary A Heskel
- The Ecosystems Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Xiao Ying Gong
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, 85354, Freising, Germany
| | - Kristine Y Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Kevin Griffin
- Department of Ecology, Evolution and Environmental Biology (E3B), Columbia University, 1200 Amsterdam Avenue, New York, NY, 10027, USA
| | - Danielle Way
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Matthew Turnbull
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, PB 4800, Christchurch, New Zealand
| | - Mark A Adams
- Centre for Carbon, Water and Food, University of Sydney, 380 Werombi Rd, Brownlow Hill, NSW, 2570, Australia
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Science, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Graham D Farquhar
- Research School of Biology, College of Science, and ARC Center of Excellence for Translational Photosynthesis, Australian National University, Canberra, ACT, 2601, Australia
| | - Gabriel Cornic
- Ecologie Systématique Evolution, Université Paris-Sud, 91405, Orsay Cedex, France
| |
Collapse
|
20
|
Turnbull MH, Ogaya R, Barbeta A, Peñuelas J, Zaragoza-Castells J, Atkin OK, Valladares F, Gimeno TE, Pías B, Griffin KL. Light inhibition of foliar respiration in response to soil water availability and seasonal changes in temperature in Mediterranean holm oak (Quercus ilex) forest. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:1178-1193. [PMID: 32480643 DOI: 10.1071/fp17032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/23/2017] [Indexed: 06/11/2023]
Abstract
In the present study we investigated variations in leaf respiration in darkness (RD) and light (RL), and associated traits in response to season, and along a gradient of soil moisture, in Mediterranean woodland dominated by holm oak (Quercus ilex L.) in central and north-eastern Spain respectively. On seven occasions during the year in the central Spain site, and along the soil moisture gradient in north-eastern Spain, we measured rates of leaf RD, RL (using the Kok method), light-saturated photosynthesis (A) and related light response characteristics, leaf mass per unit area (MA) and leaf nitrogen (N) content. At the central Spain site, significant seasonal changes in soil water content and ambient temperature (T) were associated with changes in MA, foliar N, A and stomatal conductance. RD measured at the prevailing daily T and in instantaneous R-T responses, displayed signs of partial acclimation and was not significantly affected by time of year. RL was always less than, and strongly related to, RD, and RL/RD did not vary significantly or systematically with seasonal changes in T or soil water content. Averaged over the year, RL/RD was 0.66±0.05s.e. (n=14) at the central Spain site. At the north-eastern Spain site, the soil moisture gradient was characterised by increasing MA and RD, and reduced foliar N, A, and stomatal conductance as soil water availability decreased. Light inhibition of R occurred across all sites (mean RL/RD=0.69±0.01s.e. (n=18)), resulting in ratios of RL/A being lower than for RD/A. Importantly, the degree of light inhibition was largely insensitive to changes in soil water content. Our findings provide evidence for a relatively constrained degree of light inhibition of R (RL/RD ~ 0.7, or inhibition of ~30%) across gradients of water availability, although the combined impacts of seasonal changes in both T and soil water content increase the range of values expressed. The findings thus have implications in terms of the assumptions made by predictive models that seek to account for light inhibition of R, and for our understanding of how environmental gradients impact on leaf trait relationships in Mediterranean plant communities.
Collapse
Affiliation(s)
- Matthew H Turnbull
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Romà Ogaya
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Adrià Barbeta
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | | | - Joana Zaragoza-Castells
- Geography, College of Life and Environmental Sciences, University of Exeter, Amory Building, Rennes Drive, Exeter EX4 4RJ, UK
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601, Australia
| | - Fernando Valladares
- Museo Nacional de Ciencias Naturales, CSIC, Serrano 115, E-28006 Madrid, Spain
| | - Teresa E Gimeno
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked bag 1797, Penrith, NSW 2751, Australia
| | - Beatriz Pías
- Departamento de Botánica, Universidad Complutense de Madrid, José Antonio Novais 2, 28040, Madrid, Spain
| | - Kevin L Griffin
- Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, 6 Biology, Palisades, NY 10964, USA
| |
Collapse
|
21
|
Aspinwall MJ, Jacob VK, Blackman CJ, Smith RA, Tjoelker MG, Tissue DT. The temperature response of leaf dark respiration in 15 provenances of Eucalyptus grandis grown in ambient and elevated CO 2. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:1075-1086. [PMID: 32480634 DOI: 10.1071/fp17110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/01/2017] [Indexed: 06/11/2023]
Abstract
The effects of elevated CO2 on the short-term temperature response of leaf dark respiration (R) remain uncertain for many forest tree species. Likewise, variation in leaf R among populations within tree species and potential interactive effects of elevated CO2 are poorly understood. We addressed these uncertainties by measuring the short-term temperature response of leaf R in 15 provenances of Eucalyptus grandis W. Hill ex Maiden from contrasting thermal environments grown under ambient [CO2] (aCO2; 400µmolmol-1) and elevated [CO2] (640µmolmol-1; eCO2). Leaf R per unit area (Rarea) measured across a range of temperatures was higher in trees grown in eCO2 and varied up to 104% among provenances. However, eCO2 increased leaf dry mass per unit area (LMA) by 21%, and when R was expressed on a mass basis (i.e. Rmass), it did not differ between CO2 treatments. Likewise, accounting for differences in LMA among provenances, Rmass did not differ among provenances. The temperature sensitivity of R (i.e. Q10) did not differ between CO2 treatments or among provenances. We conclude that eCO2 had no direct effect on the temperature response of R in E. grandis, and respiratory physiology was similar among provenances of E. grandis regardless of home-climate temperature conditions.
Collapse
Affiliation(s)
- Michael J Aspinwall
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Vinod K Jacob
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Chris J Blackman
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Renee A Smith
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| |
Collapse
|
22
|
Crous KY, Wallin G, Atkin OK, Uddling J, Af Ekenstam A. Acclimation of light and dark respiration to experimental and seasonal warming are mediated by changes in leaf nitrogen in Eucalyptus globulus. TREE PHYSIOLOGY 2017; 37:1069-1083. [PMID: 28541536 DOI: 10.1093/treephys/tpx052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Quantifying the adjustments of leaf respiration in response to seasonal temperature variation and climate warming is crucial because carbon loss from vegetation is a large but uncertain part of the global carbon cycle. We grew fast-growing Eucalyptus globulus Labill. trees exposed to +3 °C warming and elevated CO2 in 10-m tall whole-tree chambers and measured the temperature responses of leaf mitochondrial respiration, both in light (RLight) and in darkness (RDark), over a 20-40 °C temperature range and during two different seasons. RLight was assessed using the Laisk method. Respiration rates measured at a standard temperature (25 °C - R25) were higher in warm-grown trees and in the warm season, related to higher total leaf nitrogen (N) investment with higher temperatures (both experimental and seasonal), indicating that leaf N concentrations modulated the respiratory capacity to changes in temperature. Once differences in leaf N were accounted for, there were no differences in R25 but the Q10 (i.e., short-term temperature sensitivity) was higher in late summer compared with early spring. The variation in RLight between experimental treatments and seasons was positively correlated with carboxylation capacity and photorespiration. RLight was less responsive to short-term changes in temperature than RDark, as shown by a lower Q10 in RLight compared with RDark. The overall light inhibition of R was ∼40%. Our results highlight the dynamic nature of leaf respiration to temperature variation and that the responses of RLight do not simply mirror those of RDark. Therefore, it is important not to assume that RLight is the same as RDark in ecosystem models, as doing so may lead to large errors in predicting plant CO2 release and productivity.
Collapse
Affiliation(s)
- K Y Crous
- Hawkesbury Institute for Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - G Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, SE-40530 Gothenburg, Sweden
| | - O K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601, Australia
| | - J Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, SE-40530 Gothenburg, Sweden
| | - A Af Ekenstam
- Hawkesbury Institute for Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, SE-40530 Gothenburg, Sweden
| |
Collapse
|
23
|
Huang J, Hammerbacher A, Forkelová L, Hartmann H. Release of resource constraints allows greater carbon allocation to secondary metabolites and storage in winter wheat. PLANT, CELL & ENVIRONMENT 2017; 40:672-685. [PMID: 28010041 DOI: 10.1111/pce.12885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/12/2016] [Indexed: 05/29/2023]
Abstract
The atmospheric CO2 concentration ([CO2 ]) is rapidly increasing, and this may have substantial impact on how plants allocate metabolic resources. A thorough understanding of allocation priorities can be achieved by modifying [CO2 ] over a large gradient, including low [CO2 ], thereby altering plant carbon (C) availability. Such information is of critical importance for understanding plant responses to global environmental change. We quantified the percentage of daytime whole-plant net assimilation (A) allocated to night-time respiration (R), structural growth (SG), nonstructural carbohydrates (NSC) and secondary metabolites (SMs) during 8 weeks of vegetative growth in winter wheat (Triticum aestivum) growing at low, ambient and elevated [CO2 ] (170, 390 and 680 ppm). R/A remained relatively constant over a large gradient of [CO2 ]. However, with increasing C availability, the fraction of assimilation allocated to biomass (SG + NSC + SMs), in particular NSC and SMs, increased. At low [CO2 ], biomass and NSC increased in leaves but decreased in stems and roots, which may help plants achieve a functional equilibrium, that is, overcome the most severe resource limitation. These results reveal that increasing C availability from rising [CO2 ] releases allocation constraints, thereby allowing greater investment into long-term survival in the form of NSC and SMs.
Collapse
Affiliation(s)
- Jianbei Huang
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Almuth Hammerbacher
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Lenka Forkelová
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Henrik Hartmann
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| |
Collapse
|
24
|
Martínez-García E, Dadi T, Rubio E, García-Morote FA, Andrés-Abellán M, López-Serrano FR. Aboveground autotrophic respiration in a Spanish black pine forest: Comparison of scaling methods to improve component partitioning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:1505-1517. [PMID: 28040216 DOI: 10.1016/j.scitotenv.2016.12.136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
Total wood CO2 efflux (Rw) varies vertically within individual trees, and leaves experience large variations in foliar respiration (Rf) rates over their life spans and during daily periods. Therefore, accurate sampling approaches are required to improve aboveground autotrophic respiration (RAa) estimations in stand-scale carbon cycling studies. We scaled-up Rw (comprising stem and branch CO2 efflux; ES and EB, respectively) and Rf from biometric and flux-chamber measurements taken between 2011 and 2013 in a Spanish black pine (Pinus nigra Arn. ssp. salzmannii) forest at an unburnt (UB) site and a low burn-severity (LS) site. We measured seasonal ES at breast height (1.30m) on 9 trees at each site, which was also vertically examined on 5 of those trees. We also measured seasonal Rf in current- and previous-year needles on 3 trees at each site, and quantified Rf variations in darkness and light. Finally, we compared complex and simple scale-up methods which did or did not account for the vertical variation in Rw and the effects of leaf ageing and light inhibition on Rf, respectively. The simple methods underestimated the annual stand-level stem, branch, and total wood respiration ≈35%, 55%, and 41%, respectively, and overestimated annual stand-level whole-canopy foliage respiration ≈43% at both sites. Both methods provided similar annual stand-level RAa estimates, although the complex methods improved estimations of the relative contribution of RAa components. Thus, based on the complex methods the mean annual RAa at the stand-level was 4.53±0.25 and 4.45±0.12MgCha-1year-1 at the UB and LS sites, respectively. Our data also confirmed that the low-severity fire did not alter the RAa rates. Collectively, this study reveals that complex approaches, applicable in other forest ecosystems, enhance the accuracy of partitioning RAa sources by reducing the error in scaling-up in chamber-based measurements.
Collapse
Affiliation(s)
- E Martínez-García
- Department of Science and Agroforestry Technology and Genetics, Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario s/n, CP 02071 Albacete, Spain; Environmental Department, Renewable Energy Research Institute, University of Castilla-La Mancha, Campus Universitario s/n, CP 02071 Albacete, Spain.
| | - T Dadi
- Department of Science and Agroforestry Technology and Genetics, Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario s/n, CP 02071 Albacete, Spain; Environmental Department, Renewable Energy Research Institute, University of Castilla-La Mancha, Campus Universitario s/n, CP 02071 Albacete, Spain
| | - E Rubio
- Department of Applied Physics, School of Industrial Engineering, University of Castilla-La Mancha, Campus Universitario s/n, CP 02071 Albacete, Spain; Environmental Department, Renewable Energy Research Institute, University of Castilla-La Mancha, Campus Universitario s/n, CP 02071 Albacete, Spain
| | - F A García-Morote
- Department of Science and Agroforestry Technology and Genetics, Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario s/n, CP 02071 Albacete, Spain; Environmental Department, Renewable Energy Research Institute, University of Castilla-La Mancha, Campus Universitario s/n, CP 02071 Albacete, Spain
| | - M Andrés-Abellán
- Department of Science and Agroforestry Technology and Genetics, Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario s/n, CP 02071 Albacete, Spain; Environmental Department, Renewable Energy Research Institute, University of Castilla-La Mancha, Campus Universitario s/n, CP 02071 Albacete, Spain
| | - F R López-Serrano
- Department of Science and Agroforestry Technology and Genetics, Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario s/n, CP 02071 Albacete, Spain; Environmental Department, Renewable Energy Research Institute, University of Castilla-La Mancha, Campus Universitario s/n, CP 02071 Albacete, Spain
| |
Collapse
|
25
|
Atkin OK, Bahar NHA, Bloomfield KJ, Griffin KL, Heskel MA, Huntingford C, de la Torre AM, Turnbull MH. Leaf Respiration in Terrestrial Biosphere Models. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2017. [DOI: 10.1007/978-3-319-68703-2_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Caldera HIU, De Costa WAJM, Woodward FI, Lake JA, Ranwala SMW. Effects of elevated carbon dioxide on stomatal characteristics and carbon isotope ratio of Arabidopsis thaliana ecotypes originating from an altitudinal gradient. PHYSIOLOGIA PLANTARUM 2017; 159:74-92. [PMID: 27514017 DOI: 10.1111/ppl.12486] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/02/2016] [Accepted: 06/08/2016] [Indexed: 05/15/2023]
Abstract
Stomatal functioning regulates the fluxes of CO2 and water vapor between vegetation and atmosphere and thereby influences plant adaptation to their habitats. Stomatal traits are controlled by external environmental and internal cellular signaling. The objective of this study was to quantify the effects of CO2 enrichment (CE) on stomatal density (SD)-related properties, guard cell length (GCL) and carbon isotope ratio (δ13 C) of a range of Arabidopsis thaliana ecotypes originating from a wide altitudinal range [50-1260 m above sea level (asl)], and grown at 400 and 800 ppm [CO2 ], and thereby elucidate the possible adaptation and acclimation responses controlling stomatal traits and water use efficiency (WUE). There was a highly significant variation among ecotypes in the magnitude and direction of response of stomatal traits namely, SD and stomatal index (SI) and GCL, and δ13 C to CE, which represented a short-term acclimation response. A majority of ecotypes showed increased SD and SI with CE with the response not depending on the altitude of origin. Significant ecotypic variation was shown in all stomatal traits and δ13 C at each [CO2 ]. At 400 ppm, means of SD, SI and GCL for broad altitudinal ranges, i.e. low (<100 m), mid (100-400 m) and high (>400 m), increased with increasing altitude, which represented an adaptation response to decreased availability of CO2 with altitude. δ13 C was negatively correlated to SD and SI at 800 ppm but not at 400 ppm. Our results highlight the diversity in the response of key stomatal characters to CE and altitude within the germplasm of A. thaliana and the need to consider this diversity when using A. thaliana as a model plant.
Collapse
Affiliation(s)
- H Iroja U Caldera
- Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - W A Janendra M De Costa
- Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - F Ian Woodward
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Janice A Lake
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Sudheera M W Ranwala
- Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
27
|
Kroner Y, Way DA. Carbon fluxes acclimate more strongly to elevated growth temperatures than to elevated CO2 concentrations in a northern conifer. GLOBAL CHANGE BIOLOGY 2016; 22:2913-28. [PMID: 26728638 DOI: 10.1111/gcb.13215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/29/2015] [Indexed: 05/21/2023]
Abstract
Increasing temperatures and atmospheric CO2 concentrations will affect tree carbon fluxes, generating potential feedbacks between forests and the global climate system. We studied how elevated temperatures and CO2 impacted leaf carbon dynamics in Norway spruce (Picea abies), a dominant northern forest species, to improve predictions of future photosynthetic and respiratory fluxes from high-latitude conifers. Seedlings were grown under ambient (AC, c. 435 μmol mol(-1) ) or elevated (EC, 750 μmol mol(-1) ) CO2 concentrations at ambient, +4 °C, or +8 °C growing temperatures. Photosynthetic rates (Asat ) were high in +4 °C/EC seedlings and lowest in +8 °C spruce, implying that moderate, but not extreme, climate change may stimulate carbon uptake. Asat , dark respiration (Rdark ), and light respiration (Rlight ) rates acclimated to temperature, but not CO2 : the thermal optimum of Asat increased, and Rdark and Rlight were suppressed under warming. In all treatments, the Q10 of Rlight (the relative increase in respiration for a 10 °C increase in leaf temperature) was 35% higher than the Q10 of Rdark , so the ratio of Rlight to Rdark increased with rising leaf temperature. However, across all treatments and a range of 10-40 °C leaf temperatures, a consistent relationship between Rlight and Rdark was found, which could be used to model Rlight in future climates. Acclimation reduced daily modeled respiratory losses from warm-grown seedlings by 22-56%. When Rlight was modeled as a constant fraction of Rdark , modeled daily respiratory losses were 11-65% greater than when using measured values of Rlight . Our findings highlight the impact of acclimation to future climates on predictions of carbon uptake and losses in northern trees, in particular the need to model daytime respiratory losses from direct measurements of Rlight or appropriate relationships with Rdark .
Collapse
Affiliation(s)
- Yulia Kroner
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Danielle A Way
- Department of Biology, University of Western Ontario, London, ON, Canada
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| |
Collapse
|
28
|
Xu Z, Jiang Y, Zhou G. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:701. [PMID: 26442017 PMCID: PMC4564695 DOI: 10.3389/fpls.2015.00701] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/21/2015] [Indexed: 05/19/2023]
Abstract
It is well known that plant photosynthesis and respiration are two fundamental and crucial physiological processes, while the critical role of the antioxidant system in response to abiotic factors is still a focus point for investigating physiological stress. Although one key metabolic process and its response to climatic change have already been reported and reviewed, an integrative review, including several biological processes at multiple scales, has not been well reported. The current review will present a synthesis focusing on the underlying mechanisms in the responses to elevated CO2 at multiple scales, including molecular, cellular, biochemical, physiological, and individual aspects, particularly, for these biological processes under elevated CO2 with other key abiotic stresses, such as heat, drought, and ozone pollution, as well as nitrogen limitation. The present comprehensive review may add timely and substantial information about the topic in recent studies, while it presents what has been well established in previous reviews. First, an outline of the critical biological processes, and an overview of their roles in environmental regulation, is presented. Second, the research advances with regard to the individual subtopics are reviewed, including the response and adaptation of the photosynthetic capacity, respiration, and antioxidant system to CO2 enrichment alone, and its combination with other climatic change factors. Finally, the potential applications for plant responses at various levels to climate change are discussed. The above issue is currently of crucial concern worldwide, and this review may help in a better understanding of how plants deal with elevated CO2 using other mainstream abiotic factors, including molecular, cellular, biochemical, physiological, and whole individual processes, and the better management of the ecological environment, climate change, and sustainable development.
Collapse
Affiliation(s)
- Zhenzhu Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yanling Jiang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Guangsheng Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Chinese Academy of Meteorological SciencesBeijing, China
| |
Collapse
|
29
|
Way DA, Oren R, Kroner Y. The space-time continuum: the effects of elevated CO2 and temperature on trees and the importance of scaling. PLANT, CELL & ENVIRONMENT 2015; 38:991-1007. [PMID: 25737035 DOI: 10.1111/pce.12527] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/15/2015] [Accepted: 02/17/2015] [Indexed: 05/27/2023]
Abstract
To predict how forests will respond to rising temperatures and atmospheric CO₂ concentrations, we need to understand how trees respond to both of these environmental factors. In this review, we discuss the importance of scaling, moving from leaf-level responses to those of the canopy, and from short-term to long-term responses of vegetation to climate change. While our knowledge of leaf-level, instantaneous responses of photosynthesis, respiration, stomatal conductance, transpiration and water-use efficiency to elevated CO₂ and temperature is quite good, our ability to scale these responses up to larger spatial and temporal scales is less developed. We highlight which physiological processes are least understood at various levels of study, and discuss how ignoring differences in the spatial or temporal scale of a physiological process impedes our ability to predict how forest carbon and water fluxes forests will be altered in the future. We also synthesize data from the literature to show that light respiration follows a generalized temperature response across studies, and that the light compensation point of photosynthesis is reduced by elevated growth CO₂. Lastly, we emphasize the need to move beyond single factorial experiments whenever possible, and to combine both CO₂ and temperature treatments in studies of tree performance.
Collapse
Affiliation(s)
- Danielle A Way
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada; Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | | | | |
Collapse
|
30
|
Atkin OK, Bloomfield KJ, Reich PB, Tjoelker MG, Asner GP, Bonal D, Bönisch G, Bradford MG, Cernusak LA, Cosio EG, Creek D, Crous KY, Domingues TF, Dukes JS, Egerton JJG, Evans JR, Farquhar GD, Fyllas NM, Gauthier PPG, Gloor E, Gimeno TE, Griffin KL, Guerrieri R, Heskel MA, Huntingford C, Ishida FY, Kattge J, Lambers H, Liddell MJ, Lloyd J, Lusk CH, Martin RE, Maksimov AP, Maximov TC, Malhi Y, Medlyn BE, Meir P, Mercado LM, Mirotchnick N, Ng D, Niinemets Ü, O'Sullivan OS, Phillips OL, Poorter L, Poot P, Prentice IC, Salinas N, Rowland LM, Ryan MG, Sitch S, Slot M, Smith NG, Turnbull MH, VanderWel MC, Valladares F, Veneklaas EJ, Weerasinghe LK, Wirth C, Wright IJ, Wythers KR, Xiang J, Xiang S, Zaragoza-Castells J. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. THE NEW PHYTOLOGIST 2015; 206:614-36. [PMID: 25581061 DOI: 10.1111/nph.13253] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 11/29/2014] [Indexed: 05/18/2023]
Abstract
Leaf dark respiration (Rdark ) is an important yet poorly quantified component of the global carbon cycle. Given this, we analyzed a new global database of Rdark and associated leaf traits. Data for 899 species were compiled from 100 sites (from the Arctic to the tropics). Several woody and nonwoody plant functional types (PFTs) were represented. Mixed-effects models were used to disentangle sources of variation in Rdark . Area-based Rdark at the prevailing average daily growth temperature (T) of each site increased only twofold from the Arctic to the tropics, despite a 20°C increase in growing T (8-28°C). By contrast, Rdark at a standard T (25°C, Rdark (25) ) was threefold higher in the Arctic than in the tropics, and twofold higher at arid than at mesic sites. Species and PFTs at cold sites exhibited higher Rdark (25) at a given photosynthetic capacity (Vcmax (25) ) or leaf nitrogen concentration ([N]) than species at warmer sites. Rdark (25) values at any given Vcmax (25) or [N] were higher in herbs than in woody plants. The results highlight variation in Rdark among species and across global gradients in T and aridity. In addition to their ecological significance, the results provide a framework for improving representation of Rdark in terrestrial biosphere models (TBMs) and associated land-surface components of Earth system models (ESMs).
Collapse
Affiliation(s)
- Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 0200, Australia; Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 0200, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Haworth M, Moser G, Raschi A, Kammann C, Grünhage L, Müller C. Carbon dioxide fertilisation and supressed respiration induce enhanced spring biomass production in a mixed species temperate meadow exposed to moderate carbon dioxide enrichment. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 43:26-39. [PMID: 32480439 DOI: 10.1071/fp15232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 10/18/2015] [Indexed: 06/11/2023]
Abstract
The rising concentration of carbon dioxide in the atmosphere ([CO2]) has a direct effect on terrestrial vegetation through shifts in the rates of photosynthetic carbon uptake and transpirational water-loss. Free Air CO2 Enrichment (FACE) experiments aim to predict the likely responses of plants to increased [CO2] under normal climatic conditions. The Giessen FACE system operates a lower [CO2] enrichment regime (480μmolmol-1) than standard FACE (550-600μmolmol-1), permitting the analysis of a mixed species temperate meadow under a [CO2] level equivalent to that predicted in 25-30 years. We analysed the physiological and morphological responses of six species to investigate the effect of moderate [CO2] on spring biomass production. Carbon dioxide enrichment stimulated leaf photosynthetic rates and supressed respiration, contributing to enhanced net assimilation and a 23% increase in biomass. The capacity for photosynthetic assimilation was unaffected by [CO2] enrichment, with no downregulation of rates of carboxylation of Rubisco or regeneration of ribulose-1,5-bisphosphate. Foliar N content was also not influenced by increased [CO2]. Enhanced [CO2] reduced stomatal size, but stomatal density and leaf area index remained constant, suggesting that the effect on gas exchange was minimal.
Collapse
Affiliation(s)
- Matthew Haworth
- Consiglio Nazionale delle Ricerche - Istituto di Biometeorologia, Via Giovanni Caproni 8, 50145 Florence, Italy
| | - Gerald Moser
- Department of Plant Ecology, Interdisciplinary Research Centre, University of Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Antonio Raschi
- Consiglio Nazionale delle Ricerche - Istituto di Biometeorologia, Via Giovanni Caproni 8, 50145 Florence, Italy
| | - Claudia Kammann
- Department of Plant Ecology, Interdisciplinary Research Centre, University of Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Ludger Grünhage
- Department of Plant Ecology, Interdisciplinary Research Centre, University of Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Christoph Müller
- Department of Plant Ecology, Interdisciplinary Research Centre, University of Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| |
Collapse
|