1
|
Wannitikul P, Dachphun I, Sakulkoo J, Suttangkakul A, Wonnapinij P, Simister R, Gomez LD, Vuttipongchaikij S. In Vivo Proximity Cross-Linking and Immunoprecipitation of Cell Wall Epitopes Identify Proteins Associated with the Biosynthesis of Matrix Polysaccharides. ACS OMEGA 2024; 9:31438-31454. [PMID: 39072051 PMCID: PMC11270709 DOI: 10.1021/acsomega.4c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024]
Abstract
Identification of proteins involved in cell wall matrix polysaccharide biosynthesis is crucial to understand plant cell wall biology. We utilized in vivo cross-linking and immunoprecipitation with cell wall antibodies that recognized xyloglucan, xylan, mannan, and homogalacturonan to capture proteins associated with matrix polysaccharides in Arabidopsis protoplasts. The use of cross-linkers allowed us to capture proteins actively associated with cell wall polymers, including those directly interacting with glycans via glycan-protein (GP) cross-linkers and those associated with proteins linked to glycans via a protein-protein (PP) cross-linker. Immunoprecipitations led to the identification of 65 Arabidopsis protein IDs localized in the Golgi, ER, plasma membrane, and others without subcellular localization data. Among these, we found several glycosyltransferases directly involved in polysaccharide synthesis, along with proteins related to cell wall modification and vesicle trafficking. Protein interaction networks from DeepAraPPI and AtMAD databases showed interactions between various IDs, including those related to cell-wall-associated proteins and membrane/vesicle trafficking proteins. Gene expression and coexpression analyses supported the presence and relevance of the proteins to the cell wall processes. Reverse genetic studies using T-DNA insertion mutants of selected proteins revealed changes in cell wall composition and saccharification, further supporting their potential roles in cell wall biosynthesis. Overall, our approach represents a novel approach for studying cell wall polysaccharide biosynthesis and associated proteins, providing advantages over traditional immunoprecipitation techniques. This study provides a list of putative proteins associated with different matrix polysaccharides for further investigation and highlights the complexity of cell wall biosynthesis and trafficking within plant cells.
Collapse
Affiliation(s)
- Pitchaporn Wannitikul
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
| | - Issariya Dachphun
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
| | - Jenjira Sakulkoo
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
| | - Anongpat Suttangkakul
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Center
of Advanced Studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Omics
Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Passorn Wonnapinij
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Center
of Advanced Studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Omics
Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Rachael Simister
- CNAP,
Department of Biology, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Leonardo D. Gomez
- CNAP,
Department of Biology, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Supachai Vuttipongchaikij
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Center
of Advanced Studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Omics
Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
2
|
Sinclair R, Wang M, Jawaid MZ, Longkumer T, Aaron J, Rossetti B, Wait E, McDonald K, Cox D, Heddleston J, Wilkop T, Drakakaki G. Four-dimensional quantitative analysis of cell plate development in Arabidopsis using lattice light sheet microscopy identifies robust transition points between growth phases. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2829-2847. [PMID: 38436428 PMCID: PMC11282576 DOI: 10.1093/jxb/erae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Cell plate formation during cytokinesis entails multiple stages occurring concurrently and requiring orchestrated vesicle delivery, membrane remodelling, and timely deposition of polysaccharides, such as callose. Understanding such a dynamic process requires dissection in time and space; this has been a major hurdle in studying cytokinesis. Using lattice light sheet microscopy (LLSM), we studied cell plate development in four dimensions, through the behavior of yellow fluorescent protein (YFP)-tagged cytokinesis-specific GTPase RABA2a vesicles. We monitored the entire duration of cell plate development, from its first emergence, with the aid of YFP-RABA2a, in both the presence and absence of cytokinetic callose. By developing a robust cytokinetic vesicle volume analysis pipeline, we identified distinct behavioral patterns, allowing the identification of three easily trackable cell plate developmental phases. Notably, the phase transition between phase I and phase II is striking, indicating a switch from membrane accumulation to the recycling of excess membrane material. We interrogated the role of callose using pharmacological inhibition with LLSM and electron microscopy. Loss of callose inhibited the phase transitions, establishing the critical role and timing of the polysaccharide deposition in cell plate expansion and maturation. This study exemplifies the power of combining LLSM with quantitative analysis to decode and untangle such a complex process.
Collapse
Affiliation(s)
- Rosalie Sinclair
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Minmin Wang
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Muhammad Zaki Jawaid
- Department of Physics and Astronomy, University of California Davis, Davis, CA, USA
| | | | | | | | - Eric Wait
- Janelia Research Campus, Ashburn, VA, USA
| | - Kent McDonald
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Daniel Cox
- Department of Physics and Astronomy, University of California Davis, Davis, CA, USA
| | | | - Thomas Wilkop
- Department of Molecular and Cellular Biology, Light Microscopy Imaging Facility, University of California Davis, Davis, CA, USA
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| |
Collapse
|
3
|
Delmer D, Dixon RA, Keegstra K, Mohnen D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. THE PLANT CELL 2024; 36:1257-1311. [PMID: 38301734 PMCID: PMC11062476 DOI: 10.1093/plcell/koad325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.
Collapse
Affiliation(s)
- Deborah Delmer
- Section of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kenneth Keegstra
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Liu M, Li Z, Kang Y, Lv J, Jin Z, Mu S, Yue H, Li L, Chen P, Li Y. A mutation in CsGME encoding GDP-mannose 3,5-epimerase results in little and wrinkled leaf in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:114. [PMID: 38678513 DOI: 10.1007/s00122-024-04600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/13/2024] [Indexed: 05/01/2024]
Abstract
KEY MESSAGE Map-based cloning revealed that a mutation in a highly conserved amino acid of the CsGME gene encoding GDP-mannose 3,5-epimerase, causes the phenotype of little and wrinkled leaves in cucumbers. Leaf size is a critical determinant of plant architecture in cucumbers, yet only a few genes associated with this trait have been mapped or cloned. Here, we identified and characterized a mutant with little and wrinkled leaves, named lwl-1. Genetic analysis revealed that the phenotype of the lwl-1 was controlled by a single recessive gene. Through map-based cloning, the lwl-1 locus was narrowed down to a 12.22-kb region exclusively containing one fully annotated gene CsGME (CsaV3_2G004170). CsGME encodes GDP-mannose 3,5-epimerase, which is involved in the synthesis of ascorbic acid (ASA) and one of the components of pectin, RG-II. Whole-length sequencing of the 12.22 kb DNA fragment revealed the presence of only a non-synonymous mutation located in the sixth exon of CsGME in lwl-1, resulting in an amino acid alteration from Pro363 to Leu363. This mutation was unique among 118 inbred lines from cucumber natural populations. CsGME expression significantly reduced in various organs of lwl-1, accompanied by a significant decrease in ASA and pectin content in leaves. Both CsGME and Csgme proteins were localized to the cytoplasm. The mutant phenotype exhibited partial recovery after the application of exogenous boric acid. Silencing CsGME in cucumber through VIGS confirmed its role as the causal gene for lwl-1. Transcriptome profiling revealed that CsGME greatly affected the expression of genes related to the cell division process and cell plate formation. This study represents the first report to characterize and clone the CsGME in cucumber, indicating its crucial role in regulating leaf size and development.
Collapse
Affiliation(s)
- Mengying Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhaowei Li
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yunfeng Kang
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jinzhao Lv
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhuoshuai Jin
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Siyu Mu
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongzhong Yue
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Lixia Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Dash L, Swaminathan S, Šimura J, Gonzales CLP, Montes C, Solanki N, Mejia L, Ljung K, Zabotina OA, Kelley DR. Changes in cell wall composition due to a pectin biosynthesis enzyme GAUT10 impact root growth. PLANT PHYSIOLOGY 2023; 193:2480-2497. [PMID: 37606259 PMCID: PMC10663140 DOI: 10.1093/plphys/kiad465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) root development is regulated by multiple dynamic growth cues that require central metabolism pathways such as β-oxidation and auxin. Loss of the pectin biosynthesizing enzyme GALACTURONOSYLTRANSFERASE 10 (GAUT10) leads to a short-root phenotype under sucrose-limited conditions. The present study focused on determining the specific contributions of GAUT10 to pectin composition in primary roots and the underlying defects associated with gaut10 roots. Using live-cell microscopy, we determined reduced root growth in gaut10 is due to a reduction in both root apical meristem size and epidermal cell elongation. In addition, GAUT10 was required for normal pectin and hemicellulose composition in primary Arabidopsis roots. Specifically, loss of GAUT10 led to a reduction in galacturonic acid and xylose in root cell walls and altered the presence of rhamnogalacturonan-I (RG-I) and homogalacturonan (HG) polymers in the root. Transcriptomic analysis of gaut10 roots compared to wild type uncovered hundreds of genes differentially expressed in the mutant, including genes related to auxin metabolism and peroxisome function. Consistent with these results, both auxin signaling and metabolism were modified in gaut10 roots. The sucrose-dependent short-root phenotype in gaut10 was linked to β-oxidation based on hypersensitivity to indole-3-butyric acid (IBA) and an epistatic interaction with TRANSPORTER OF IBA1 (TOB1). Altogether, these data support a growing body of evidence suggesting that pectin composition may influence auxin pathways and peroxisome activity.
Collapse
Affiliation(s)
- Linkan Dash
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Sivakumar Swaminathan
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| | - Caitlin Leigh P Gonzales
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Christian Montes
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Iowa City, IA 50011, USA
| | - Neel Solanki
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Ludvin Mejia
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| | - Olga A Zabotina
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Dior R Kelley
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| |
Collapse
|
6
|
Willet AH, Wos M, Igarashi MG, Ren L, Turner LA, Gould KL. Elevated levels of sphingolipid MIPC in the plasma membrane disrupt the coordination of cell growth with cell wall formation in fission yeast. PLoS Genet 2023; 19:e1010987. [PMID: 37792890 PMCID: PMC10578601 DOI: 10.1371/journal.pgen.1010987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/16/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023] Open
Abstract
Coupling cell wall expansion with cell growth is a universal challenge faced by walled organisms. Mutations in Schizosaccharomyces pombe css1, which encodes a PM inositol phosphosphingolipid phospholipase C, prevent cell wall expansion but not synthesis of cell wall material. To probe how Css1 modulates cell wall formation we used classical and chemical genetics coupled with quantitative mass spectrometry. We found that elevated levels of the sphingolipid biosynthetic pathway's final product, mannosylinositol phosphorylceramide (MIPC), specifically correlated with the css1-3 phenotype. We also found that an apparent indicator of sphingolipids and a sterol biosensor accumulated at the cytosolic face of the PM at cell tips and the division site of css1-3 cells and, in accord, the PM in css1-3 was less dynamic than in wildtype cells. Interestingly, disrupting the protein glycosylation machinery recapitulated the css1-3 phenotype and led us to investigate Ghs2, a glycosylated PM protein predicted to modify cell wall material. Disrupting Ghs2 function led to aberrant cell wall material accumulation suggesting Ghs2 is dysfunctional in css1-3. We conclude that preventing an excess of MIPC in the S. pombe PM is critical to the function of key PM-localized proteins necessary for coupling growth with cell wall formation.
Collapse
Affiliation(s)
- Alaina H. Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States of America
| | - Marcin Wos
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States of America
| | - Maya G. Igarashi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States of America
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States of America
| | - Lesley A. Turner
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States of America
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States of America
| |
Collapse
|
7
|
Domozych DS, Bagdan K. The cell biology of charophytes: Exploring the past and models for the future. PLANT PHYSIOLOGY 2022; 190:1588-1608. [PMID: 35993883 PMCID: PMC9614468 DOI: 10.1093/plphys/kiac390] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Charophytes (Streptophyta) represent a diverse assemblage of extant green algae that are the sister lineage to land plants. About 500-600+ million years ago, a charophyte progenitor successfully colonized land and subsequently gave rise to land plants. Charophytes have diverse but relatively simple body plans that make them highly attractive organisms for many areas of biological research. At the cellular level, many charophytes have been used for deciphering cytoskeletal networks and their dynamics, membrane trafficking, extracellular matrix secretion, and cell division mechanisms. Some charophytes live in challenging habitats and have become excellent models for elucidating the cellular and molecular effects of various abiotic stressors on plant cells. Recent sequencing of several charophyte genomes has also opened doors for the dissection of biosynthetic and signaling pathways. While we are only in an infancy stage of elucidating the cell biology of charophytes, the future application of novel analytical methodologies in charophyte studies that include a broader survey of inclusive taxa will enhance our understanding of plant evolution and cell dynamics.
Collapse
Affiliation(s)
| | - Kaylee Bagdan
- Department of Biology, Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York 12866, USA
| |
Collapse
|
8
|
Yanagui K, Camargo ELO, Abreu LGFD, Nagamatsu ST, Fiamenghi MB, Silva NV, Carazzolle MF, Nascimento LC, Franco SF, Bressiani JA, Mieczkowski PA, Grassi MCB, Pereira GAG. Internode elongation in energy cane shows remarkable clues on lignocellulosic biomass biosynthesis in Saccharum hybrids. Gene 2022; 828:146476. [PMID: 35413393 DOI: 10.1016/j.gene.2022.146476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/17/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022]
Abstract
Energy cane is a dedicated crop to high biomass production and selected during Saccharum breeding programs to fit specific industrial needs for 2G bioethanol production. Internode elongation is one of the most important characteristics in Saccharum hybrids due to its relationship with crop yield. In this study, we selected the third internode elongation of the energy cane. To characterize this process, we divided the internode into five sections and performed a detailed transcriptome analysis (RNA-Seq) and cell wall characterization. The histological analyses revealed a remarkable gradient that spans from cell division and protoxylem lignification to the internode maturation and complete vascular bundle lignification. RNA-Seq analysis revealed more than 11,000 differentially expressed genes between the sections internal. Gene ontology analyzes showed enriched categories in each section, as well as the most expressed genes in each section, presented different biological processes. We found that the internode elongation and division zones have a large number of unique genes. Evaluated the specific profile of genes related to primary and secondary cell wall formation, cellulose synthesis, hemicellulose, lignin, and growth-related genes. For each section these genes presented different profiles along the internode in elongation in energy cane. The results of this study provide an overview of the regulation of gene expression of an internode elongation in energy cane. Gene expression analysis revealed promising candidates for transcriptional regulation of energy cane lignification and evidence key genes for the regulation of internode development, which can serve as a basis for understanding the molecular regulatory mechanisms that support the growth and development of plants in the Saccahrum complex.
Collapse
Affiliation(s)
- Karina Yanagui
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - Eduardo L O Camargo
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - Luís Guilherme F de Abreu
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - Sheila T Nagamatsu
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - Mateus B Fiamenghi
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - Nicholas V Silva
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - Marcelo F Carazzolle
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - Leandro C Nascimento
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - Sulamita F Franco
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - José A Bressiani
- GranBio Investimentos SA, AV. Brigadeiro Faria Lima, 2777, cj. 1503, Alto de Pinheiros, São Paulo 01452-000, SP, Brazil
| | - Piotr A Mieczkowski
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maria Carolina B Grassi
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil; Roundtable on Sustainable Biomaterials (RSB), Impact Hub Geneva, Rue Fendt 1, 1201, Geneva, Switzerland
| | - Gonçalo Amarante G Pereira
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil.
| |
Collapse
|
9
|
Sinclair R, Hsu G, Davis D, Chang M, Rosquete M, Iwasa JH, Drakakaki G. Plant cytokinesis and the construction of new cell wall. FEBS Lett 2022; 596:2243-2255. [PMID: 35695093 DOI: 10.1002/1873-3468.14426] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022]
Abstract
Cytokinesis in plants is fundamentally different from that in animals and fungi. In plant cells, a cell plate forms through the fusion of cytokinetic vesicles and then develops into the new cell wall, partitioning the cytoplasm of the dividing cell. The formation of the cell plate entails multiple stages that involve highly orchestrated vesicle accumulation, fusion, and membrane maturation, which occur concurrently with the timely deposition of polysaccharides such as callose, cellulose, and cross-linking glycans. This review summarizes the major stages in cytokinesis, endomembrane components involved in cell plate assembly and its transition to a new cell wall. An animation that can be widely used for educational purposes further summarizes the process.
Collapse
Affiliation(s)
- Rosalie Sinclair
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| | - Grace Hsu
- Department of Biochemistry University of Utah, School of Medicine, Salt Lake City, UT, 84112, USA
| | - Destiny Davis
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA.,Current address: Lawrence Berkeley National Lab, Emeryville, CA, 94608, USA
| | - Mingqin Chang
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| | - Michel Rosquete
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA.,Current address: Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Janet H Iwasa
- Department of Biochemistry University of Utah, School of Medicine, Salt Lake City, UT, 84112, USA
| | - Georgia Drakakaki
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
10
|
Genome wide Identification and Characterization of Wheat GH9 Genes Reveals Their Roles in Pollen Development and Anther Dehiscence. Int J Mol Sci 2022; 23:ijms23116324. [PMID: 35683004 PMCID: PMC9181332 DOI: 10.3390/ijms23116324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 12/10/2022] Open
Abstract
Glycoside hydrolase family 9 (GH9) is a key member of the hydrolase family in the process of cellulose synthesis and hydrolysis, playing important roles in plant growth and development. In this study, we investigated the phenotypic characteristics and gene expression involved in pollen fertility conversion and anther dehiscence from a genomewide level. In total, 74 wheat GH9 genes (TaGH9s) were identified, which were classified into Class A, Class B and Class C and unevenly distributed on chromosomes. We also investigated the gene duplication and reveled that fragments and tandem repeats contributed to the amplification of TaGH9s. TaGH9s had abundant hormone-responsive elements and light-responsive elements, involving JA–ABA crosstalk to regulate anther development. Ten TaGH9s, which highly expressed stamen tissue, were selected to further validate their function in pollen fertility conversion and anther dehiscence. Based on the cell phenotype and the results of the scanning electron microscope at the anther dehiscence period, we found that seven TaGH9s may target miRNAs, including some known miRNAs (miR164 and miR398), regulate the level of cellulose by light and phytohormone and play important roles in pollen fertility and anther dehiscence. Finally, we proposed a hypothesis model to reveal the regulation pathway of TaGH9 on fertility conversion and anther dehiscence. Our study provides valuable insights into the GH9 family in explaining the male sterility mechanism of the wheat photo-thermo-sensitive genetic male sterile (PTGMS) line and generates useful male sterile resources for improving wheat hybrid breeding.
Collapse
|
11
|
Zhang S, Sheng H, Ma Y, Wei Y, Liu D, Dou Y, Cui H, Liang B, Liesche J, Li J, Chen S. Mutation of CESA1 phosphorylation site influences pectin synthesis and methylesterification with a role in seed development. JOURNAL OF PLANT PHYSIOLOGY 2022; 270:153631. [PMID: 35180541 DOI: 10.1016/j.jplph.2022.153631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 05/27/2023]
Abstract
Cell wall biogenesis is required for the production of seeds of higher plants. However, little is known about regulatory mechanisms underlying cell wall biogenesis during seed formation. Here we show a role for the phosphorylation of Arabidopsis cellulose synthase 1 (AtCESA1) in modulating pectin synthesis and methylesterification in seed coat mucilage. A phosphor-null mutant of AtCESA1 on T166 (AtCESA1T166A) was constructed and introduced into a null mutant of AtCESA1 (Atcesa1-1). The resulting transgenic lines showed a slight but significant decrease in cellulose contents in mature seeds. Defects in cellulosic ray architecture along with reduced levels of non-adherent and adherent mucilage were observed on the seeds of the AtCESA1T166A mutant. Reduced mucilage pectin synthesis was also reflected by a decrease in the level of uronic acid. Meanwhile, an increase in the degree of pectin methylesterification was also observed in the seed coat mucilage of AtCESA1T166A mutant. Change in seed development was further reflected by a delayed germination and about 50% increase in the accumulation of proanthocyanidins, which is known to bind pectin and inhibit seed germination as revealed by previous studies. Taken together, the results suggest a role of AtCESA1 phosphorylation on T166 in modulating mucilage pectin synthesis and methylesterification as well as cellulose synthesis with a role in seed development.
Collapse
Affiliation(s)
- Shuangxi Zhang
- Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huachun Sheng
- Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yue Ma
- Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanping Wei
- Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dan Liu
- Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanhua Dou
- Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huiying Cui
- Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Boyou Liang
- Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Johannes Liesche
- Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jisheng Li
- Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shaolin Chen
- Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
12
|
Jawaid MZ, Sinclair R, Bulone V, Cox DL, Drakakaki G. A biophysical model for plant cell plate maturation based on the contribution of a spreading force. PLANT PHYSIOLOGY 2022; 188:795-806. [PMID: 34850202 PMCID: PMC8825336 DOI: 10.1093/plphys/kiab552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Plant cytokinesis, a fundamental process of plant life, involves de novo formation of a "cell plate" partitioning the cytoplasm of dividing cells. Cell plate formation is directed by orchestrated delivery, fusion of cytokinetic vesicles, and membrane maturation to form a nascent cell wall by timely deposition of polysaccharides. During cell plate maturation, the fragile membrane network transitions to a fenestrated sheet and finally a young cell wall. Here, we approximated cell plate sub-structures with testable shapes and adopted the Helfrich-free energy model for membranes, including a stabilizing and spreading force, to understand the transition from a vesicular network to a fenestrated sheet and mature cell plate. Regular cell plate development in the model was possible, with suitable bending modulus, for a two-dimensional late stage spreading force of 2-6 pN/nm, an osmotic pressure difference of 2-10 kPa, and spontaneous curvature between 0 and 0.04 nm-1. With these conditions, stable membrane conformation sizes and morphologies emerged in concordance with stages of cell plate development. To reach a mature cell plate, our model required the late-stage onset of a spreading/stabilizing force coupled with a concurrent loss of spontaneous curvature. Absence of a spreading/stabilizing force predicts failure of maturation. The proposed model provides a framework to interrogate different players in late cytokinesis and potentially other membrane networks that undergo such transitions. Callose, is a polysaccharide that accumulates transiently during cell plate maturation. Callose-related observations were consistent with the proposed model's concept, suggesting that it is one of the factors involved in establishing the spreading force.
Collapse
Affiliation(s)
- Muhammad Zaki Jawaid
- Department of Physics and Astronomy, University of California, Davis, California, USA
| | - Rosalie Sinclair
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Vincent Bulone
- School of Food, Agriculture and Wine, The University of Adelaide, Waite Campus, Adelaide SA 5064, Australia
- Department of Chemistry, Division of Glycoscience, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Daniel L Cox
- Department of Physics and Astronomy, University of California, Davis, California, USA
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis, California, USA
| |
Collapse
|
13
|
Codjoe JM, Miller K, Haswell ES. Plant cell mechanobiology: Greater than the sum of its parts. THE PLANT CELL 2022; 34:129-145. [PMID: 34524447 PMCID: PMC8773992 DOI: 10.1093/plcell/koab230] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/09/2021] [Indexed: 05/04/2023]
Abstract
The ability to sense and respond to physical forces is critical for the proper function of cells, tissues, and organisms across the evolutionary tree. Plants sense gravity, osmotic conditions, pathogen invasion, wind, and the presence of barriers in the soil, and dynamically integrate internal and external stimuli during every stage of growth and development. While the field of plant mechanobiology is growing, much is still poorly understood-including the interplay between mechanical and biochemical information at the single-cell level. In this review, we provide an overview of the mechanical properties of three main components of the plant cell and the mechanoperceptive pathways that link them, with an emphasis on areas of complexity and interaction. We discuss the concept of mechanical homeostasis, or "mechanostasis," and examine the ways in which cellular structures and pathways serve to maintain it. We argue that viewing mechanics and mechanotransduction as emergent properties of the plant cell can be a useful conceptual framework for synthesizing current knowledge and driving future research.
Collapse
Affiliation(s)
- Jennette M Codjoe
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St Louis, St Louis, Missouri, 63130, USA
| | - Kari Miller
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St Louis, St Louis, Missouri, 63130, USA
| | | |
Collapse
|
14
|
Gu Y, Rasmussen CG. Cell biology of primary cell wall synthesis in plants. THE PLANT CELL 2022; 34:103-128. [PMID: 34613413 PMCID: PMC8774047 DOI: 10.1093/plcell/koab249] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/01/2021] [Indexed: 05/07/2023]
Abstract
Building a complex structure such as the cell wall, with many individual parts that need to be assembled correctly from distinct sources within the cell, is a well-orchestrated process. Additional complexity is required to mediate dynamic responses to environmental and developmental cues. Enzymes, sugars, and other cell wall components are constantly and actively transported to and from the plasma membrane during diffuse growth. Cell wall components are transported in vesicles on cytoskeletal tracks composed of microtubules and actin filaments. Many of these components, and additional proteins, vesicles, and lipids are trafficked to and from the cell plate during cytokinesis. In this review, we first discuss how the cytoskeleton is initially organized to add new cell wall material or to build a new cell wall, focusing on similarities during these processes. Next, we discuss how polysaccharides and enzymes that build the cell wall are trafficked to the correct location by motor proteins and through other interactions with the cytoskeleton. Finally, we discuss some of the special features of newly formed cell walls generated during cytokinesis.
Collapse
Affiliation(s)
- Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| |
Collapse
|
15
|
Rehschuh R, Rehschuh S, Gast A, Jakab AL, Lehmann MM, Saurer M, Gessler A, Ruehr NK. Tree allocation dynamics beyond heat and hot drought stress reveal changes in carbon storage, belowground translocation and growth. THE NEW PHYTOLOGIST 2022; 233:687-704. [PMID: 34668198 DOI: 10.1111/nph.17815] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Heatwaves combined with drought affect tree functioning with as yet undetermined legacy effects on carbon (C) and nitrogen (N) allocation. We continuously monitored shoot and root gas exchange, δ13 CO2 of respiration and stem growth in well-watered and drought-treated Pinus sylvestris (Scots pine) seedlings exposed to increasing daytime temperatures (max. 42°C) and evaporative demand. Following stress release, we used 13 CO2 canopy pulse-labeling, supplemented by soil-applied 15 N, to determine allocation to plant compartments, respiration and soil microbial biomass (SMB) over 2.5 wk. Previously heat-treated seedlings rapidly translocated 13 C along the long-distance transport path, to root respiration (Rroot ; 7.1 h) and SMB (3 d). Furthermore, 13 C accumulated in branch cellulose, suggesting secondary growth enhancement. However, in recovering drought-heat seedlings, the mean residence time of 13 C in needles increased, whereas C translocation to Rroot was delayed (13.8 h) and 13 C incorporated into starch rather than cellulose. Concurrently, we observed stress-induced low N uptake and aboveground allocation. C and N allocation during early recovery were affected by stress type and impact. Although C uptake increased quickly in both treatments, drought-heat in combination reduced the above-belowground coupling and starch accumulated in leaves at the expense of growth. Accordingly, C allocation during recovery depends on phloem translocation capacity.
Collapse
Affiliation(s)
- Romy Rehschuh
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Stephanie Rehschuh
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Andreas Gast
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Andrea-Livia Jakab
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Marco M Lehmann
- Swiss Federal Research Institute WSL, Research Unit Forest Dynamics, Birmensdorf, 8903, Switzerland
| | - Matthias Saurer
- Swiss Federal Research Institute WSL, Research Unit Forest Dynamics, Birmensdorf, 8903, Switzerland
| | - Arthur Gessler
- Swiss Federal Research Institute WSL, Research Unit Forest Dynamics, Birmensdorf, 8903, Switzerland
- Department of Environmental System Sciences, ETH Zurich, Zurich, 8092, Switzerland
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| |
Collapse
|
16
|
Lucas JR. Appearance of microtubules at the cytokinesis to interphase transition in Arabidopsis thaliana. Cytoskeleton (Hoboken) 2021; 78:361-371. [PMID: 34569724 DOI: 10.1002/cm.21689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 11/06/2022]
Abstract
Microtubule arrays drastically reorganize during the cell cycle to facilitate specific events. Many cells contain a centrosome that dictates the assembly and organization of microtubule arrays. However, plant cells and many others do not contain centrosomes or discrete microtubule organizing centers. In plants, microtubules nucleate and polymerize from gamma-tubulin-containing complexes in the interphase cell cortex. During plant cell division, microtubules nucleate near nuclei to form the mitotic spindle and plant-specific phragmoplast required for cytokinesis. Therefore, during the plant cell cycle, microtubule nucleation shifts from cell cortex to the perinuclear region. While it is unclear how this shift occurs, previous studies observed microtubules that appeared to extend from nuclei into the cortex as cells transitioned into interphase in small cells. These data led to the hypothesis that microtubule nucleation complexes move from the nuclear surface to the cortex at the transition from cytokinesis into interphase. Here we document GFP labeled microtubules in living plant cells during the transition from cytokinesis to interphase. We observed apparent groups of microtubules spanning between the nucleus and cell cortex in large, vacuolated epidermal leaf cells. We also observed microtubules in the cell cortex that appeared separate from perinuclear-associated microtubules. While these cortical microtubules were not always seen, when present they were apparent before cytokinesis was complete and/or before nuclear-associated microtubules were obvious. These data add to and deepen the knowledge of microtubule reorganization at this cell cycle transition.
Collapse
Affiliation(s)
- Jessica R Lucas
- Department of Biology, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin, USA
| |
Collapse
|
17
|
Kohorn BD, Greed BE, Mouille G, Verger S, Kohorn SL. Effects of Arabidopsis wall associated kinase mutations on ESMERALDA1 and elicitor induced ROS. PLoS One 2021; 16:e0251922. [PMID: 34015001 PMCID: PMC8136723 DOI: 10.1371/journal.pone.0251922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022] Open
Abstract
Angiosperm cell adhesion is dependent on interactions between pectin polysaccharides which make up a significant portion of the plant cell wall. Cell adhesion in Arabidopsis may also be regulated through a pectin-related signaling cascade mediated by a putative O-fucosyltransferase ESMERALDA1 (ESMD1), and the Epidermal Growth Factor (EGF) domains of the pectin binding Wall associated Kinases (WAKs) are a primary candidate substrate for ESMD1 activity. Genetic interactions between WAKs and ESMD1 were examined using a dominant hyperactive allele of WAK2, WAK2cTAP, and a mutant of the putative O-fucosyltransferase ESMD1. WAK2cTAP expression results in a dwarf phenotype and activation of the stress response and reactive oxygen species (ROS) production, while esmd1 is a suppressor of a pectin deficiency induced loss of adhesion. Here we find that esmd1 suppresses the WAK2cTAP dwarf and stress response phenotype, including ROS accumulation and gene expression. Additional analysis suggests that mutations of the potential WAK EGF O-fucosylation site also abate the WAK2cTAP phenotype, yet only evidence for an N-linked but not O-linked sugar addition can be found. Moreover, a WAK locus deletion allele has no effect on the ability of esmd1 to suppress an adhesion deficiency, indicating WAKs and their modification are not a required component of the potential ESMD1 signaling mechanism involved in the control of cell adhesion. The WAK locus deletion does however affect the induction of ROS but not the transcriptional response induced by the elicitors Flagellin, Chitin and oligogalacturonides (OGs).
Collapse
Affiliation(s)
- Bruce D. Kohorn
- Department of Biology, Bowdoin College, Brunswick, Maine, United States of America
- * E-mail:
| | - Bridgid E. Greed
- Department of Biology, Bowdoin College, Brunswick, Maine, United States of America
| | - Gregory Mouille
- IJPB, INRAE, AgroParisTech, Université Paris-Saclay, RD10, Versailles Cedex, France
| | - Stéphane Verger
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Susan L. Kohorn
- Department of Biology, Bowdoin College, Brunswick, Maine, United States of America
| |
Collapse
|
18
|
Kohorn BD, Zorensky FDH, Dexter-Meldrum J, Chabout S, Mouille G, Kohorn S. Mutation of an Arabidopsis Golgi membrane protein ELMO1 reduces cell adhesion. Development 2021; 148:268319. [PMID: 34015094 DOI: 10.1242/dev.199420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/16/2021] [Indexed: 11/20/2022]
Abstract
Plant growth, morphogenesis and development involve cellular adhesion, a process dependent on the composition and structure of the extracellular matrix or cell wall. Pectin in the cell wall is thought to play an essential role in adhesion, and its modification and cleavage are suggested to be highly regulated so as to change adhesive properties. To increase our understanding of plant cell adhesion, a population of ethyl methanesulfonate-mutagenized Arabidopsis were screened for hypocotyl adhesion defects using the pectin binding dye Ruthenium Red that penetrates defective but not wild-type (WT) hypocotyl cell walls. Genomic sequencing was used to identify a mutant allele of ELMO1 which encodes a 20 kDa Golgi membrane protein that has no predicted enzymatic domains. ELMO1 colocalizes with several Golgi markers and elmo1-/- plants can be rescued by an ELMO1-GFP fusion. elmo1-/- exhibits reduced mannose content relative to WT but no other cell wall changes and can be rescued to WT phenotype by mutants in ESMERALDA1, which also suppresses other adhesion mutants. elmo1 describes a previously unidentified role for the ELMO1 protein in plant cell adhesion.
Collapse
Affiliation(s)
| | | | | | - Salem Chabout
- IJPB, INRAE, AgroParisTech, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Gregory Mouille
- IJPB, INRAE, AgroParisTech, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Susan Kohorn
- Department of Biology, Bowdoin College, ME 04011, USA
| |
Collapse
|
19
|
Abstract
The plant cell wall is an extracellular matrix that envelopes cells, gives them structure and shape, constitutes the interface with symbionts, and defends plants against external biotic and abiotic stress factors. The assembly of this matrix is regulated and mediated by the cytoskeleton. Cytoskeletal elements define where new cell wall material is added and how fibrillar macromolecules are oriented in the wall. Inversely, the cytoskeleton is also key in the perception of mechanical cues generated by structural changes in the cell wall as well as the mediation of intracellular responses. We review the delivery processes of the cell wall precursors that are required for the cell wall assembly process and the structural continuity between the inside and the outside of the cell. We provide an overview of the different morphogenetic processes for which cell wall assembly is a crucial element and elaborate on relevant feedback mechanisms.
Collapse
|
20
|
Chemical composition of cell wall changes during developmental stages of galls on Matayba guianensis (Sapindaceae): perspectives obtained by immunocytochemistry analysis. Naturwissenschaften 2021; 108:16. [PMID: 33871712 DOI: 10.1007/s00114-021-01732-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/16/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
The development of plant organs depends on cell division, elongation, structural and chemical changes, and reorganization of cell wall components. As phenotype manipulators, galling insects can manipulate the structure and metabolism of host tissues to build the gall. The gall formation depends on the rearrangement of cell wall components to allow cell growth and elongation, key step for the knowledge regarding gall development, and shape acquisition. Herein, we used an immunocytochemical approach to investigate the chemical composition of the cell wall during the development of galls induced by Bystracoccus mataybae (Eriococcidae) on leaflets of Matayba guianensis (Sapindaceae). Different developmental stages of non-galled leaflets (n = 10) and of leaflet galls (n = 10) were collected from the Cerrado (Brazilian savanna) for anatomical and immunocytochemical analysis. We found that the epitopes of (1 → 4) β-D-galactans and (1 → 5) α-L-arabinans were evident in the tissues of the young and senescent galls. These epitopes seem to be associated with the mechanical stability maintenance and increased gall porosity. As well, the degree of methyl-esterification of pectins changed from the young to the senescent galls and revealed the conservation of juvenile cell and tissue features even in the senescent galls. The extensins detected in senescent galls seem to support their rigidity and structural reinforcement of these bodies. Our results showed a disruption in the pattern of deposition of leaflet cell wall for the construction of M. guianensis galls, with pectin and protein modulation associated with the change of the developmental gall stages.
Collapse
|
21
|
Cheng X, Bezanilla M. SABRE populates ER domains essential for cell plate maturation and cell expansion influencing cell and tissue patterning. eLife 2021; 10:65166. [PMID: 33687329 PMCID: PMC7987345 DOI: 10.7554/elife.65166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
SABRE, which is found throughout eukaryotes and was originally identified in plants, mediates cell expansion, division plane orientation, and planar polarity in plants. How and where SABRE mediates these processes remain open questions. We deleted SABRE in Physcomitrium patens, an excellent model for cell biology. SABRE null mutants were stunted, similar to phenotypes in seed plants. Additionally, polarized growing cells were delayed in cytokinesis, sometimes resulting in catastrophic failures. A functional SABRE fluorescent fusion protein localized to dynamic puncta on regions of the endoplasmic reticulum (ER) during interphase and at the cell plate during cell division. Without SABRE, cells accumulated ER aggregates and the ER abnormally buckled along the developing cell plate. Notably, callose deposition was delayed in ∆sabre, and in cells that failed to divide, abnormal callose accumulations formed at the cell plate. Our findings revealed a surprising and fundamental role for the ER in cell plate maturation.
Collapse
Affiliation(s)
- Xiaohang Cheng
- Department of Biological Sciences, Dartmouth College, Hanover, United States
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, United States
| |
Collapse
|
22
|
Cytokinesis in fra2 Arabidopsis thaliana p60-Katanin Mutant: Defects in Cell Plate/Daughter Wall Formation. Int J Mol Sci 2021; 22:ijms22031405. [PMID: 33573354 PMCID: PMC7866812 DOI: 10.3390/ijms22031405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 11/21/2022] Open
Abstract
Cytokinesis is accomplished in higher plants by the phragmoplast, creating and conducting the cell plate to separate daughter nuclei by a new cell wall. The microtubule-severing enzyme p60-katanin plays an important role in the centrifugal expansion and timely disappearance of phragmoplast microtubules. Consequently, aberrant structure and delayed expansion rate of the phragmoplast have been reported to occur in p60-katanin mutants. Here, the consequences of p60-katanin malfunction in cell plate/daughter wall formation were investigated by transmission electron microscopy (TEM), in root cells of the fra2Arabidopsis thaliana loss-of-function mutant. In addition, deviations in the chemical composition of cell plate/new cell wall were identified by immunolabeling and confocal microscopy. It was found that, apart from defective phragmoplast microtubule organization, cell plates/new cell walls also appeared faulty in structure, being unevenly thick and perforated by large gaps. In addition, demethylesterified homogalacturonans were prematurely present in fra2 cell plates, while callose content was significantly lower than in the wild type. Furthermore, KNOLLE syntaxin disappeared from newly formed cell walls in fra2 earlier than in the wild type. Taken together, these observations indicate that delayed cytokinesis, due to faulty phragmoplast organization and expansion, results in a loss of synchronization between cell plate growth and its chemical maturation.
Collapse
|
23
|
Peaucelle A, Wightman R, Haas KT. Multicolor 3D-dSTORM Reveals Native-State Ultrastructure of Polysaccharides' Network during Plant Cell Wall Assembly. iScience 2020; 23:101862. [PMID: 33336161 PMCID: PMC7733027 DOI: 10.1016/j.isci.2020.101862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/07/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
The plant cell wall, a form of the extracellular matrix, is a complex and dynamic network of polymers mediating a plethora of physiological functions. How polysaccharides assemble into a coherent and heterogeneous matrix remains mostly undefined. Further progress requires improved molecular-level visualization methods that would gain a deeper understanding of the cell wall nanoarchitecture. dSTORM, a type of super-resolution microscopy, permits quantitative nanoimaging of the cell wall. However, due to the lack of single-cell model systems and the requirement of tissue-level imaging, its use in plant science is almost absent. Here we overcome these limitations; we compare two methods to achieve three-dimensional dSTORM and identify optimal photoswitching dyes for tissue-level multicolor nanoscopy. Combining dSTORM with spatial statistics, we reveal and characterize the ultrastructure of three major polysaccharides, callose, mannan, and cellulose, in the plant cell wall precursor and provide evidence for cellulose structural re-organization related to callose content.
Collapse
Affiliation(s)
- Alexis Peaucelle
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Raymond Wightman
- Microscopy Core Facility, Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
| | - Kalina Tamara Haas
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| |
Collapse
|
24
|
NMR spectroscopy analysis reveals differential metabolic responses in arabidopsis roots and leaves treated with a cytokinesis inhibitor. PLoS One 2020; 15:e0241627. [PMID: 33156865 PMCID: PMC7647083 DOI: 10.1371/journal.pone.0241627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/16/2020] [Indexed: 12/26/2022] Open
Abstract
In plant cytokinesis, de novo formation of a cell plate evolving into the new cell wall partitions the cytoplasm of the dividing cell. In our earlier chemical genomics studies, we identified and characterized the small molecule endosidin-7, that specifically inhibits callose deposition at the cell plate, arresting late-stage cytokinesis in arabidopsis. Endosidin-7 has emerged as a very valuable tool for dissecting this essential plant process. To gain insights regarding its mode of action and the effects of cytokinesis inhibition on the overall plant response, we investigated the effect of endosidin-7 through a nuclear magnetic resonance spectroscopy (NMR) metabolomics approach. In this case study, metabolomics profiles of arabidopsis leaf and root tissues were analyzed at different growth stages and endosidin-7 exposure levels. The results show leaf and root-specific metabolic profile changes and the effects of endosidin-7 treatment on these metabolomes. Statistical analyses indicated that the effect of endosidin-7 treatment was more significant than the developmental impact. The endosidin-7 induced metabolic profiles suggest compensations for cytokinesis inhibition in central metabolism pathways. This study further shows that long-term treatment of endosidin-7 profoundly changes, likely via alteration of hormonal regulation, the primary metabolism of arabidopsis seedlings. Hormonal pathway-changes are likely reflecting the plant’s responses, compensating for the arrested cell division, which in turn are leading to global metabolite modulation. The presented NMR spectral data are made available through the Metabolomics Workbench, providing a reference resource for the scientific community.
Collapse
|
25
|
Davis DJ, Wang M, Sørensen I, Rose JKC, Domozych DS, Drakakaki G. Callose deposition is essential for the completion of cytokinesis in the unicellular alga Penium margaritaceum. J Cell Sci 2020; 133:jcs249599. [PMID: 32895244 DOI: 10.1242/jcs.249599] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/27/2020] [Indexed: 11/20/2022] Open
Abstract
Cytokinesis in land plants involves the formation of a cell plate that develops into the new cell wall. Callose, a β-1,3 glucan, accumulates at later stages of cell plate development, presumably to stabilize this delicate membrane network during expansion. Cytokinetic callose is considered specific to multicellular plant species, because it has not been detected in unicellular algae. Here we present callose at the cytokinesis junction of the unicellular charophyte, Penium margaritaceum Callose deposition at the division plane of P. margaritaceum showed distinct, spatiotemporal patterns likely representing distinct roles of this polymer in cytokinesis. Pharmacological inhibition of callose deposition by endosidin 7 resulted in cytokinesis defects, consistent with the essential role for this polymer in P. margaritaceum cell division. Cell wall deposition at the isthmus zone was also affected by the absence of callose, demonstrating the dynamic nature of new wall assembly in P. margaritaceum The identification of candidate callose synthase genes provides molecular evidence for callose biosynthesis in P. margaritaceum The evolutionary implications of cytokinetic callose in this unicellular zygnematopycean alga is discussed in the context of the conquest of land by plants.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Destiny J Davis
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Minmin Wang
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - David S Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
26
|
Hertig C, Melzer M, Rutten T, Erbe S, Hensel G, Kumlehn J, Weschke W, Weber H, Thiel J. Barley HISTIDINE KINASE 1 (HvHK1) coordinates transfer cell specification in the young endosperm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1869-1884. [PMID: 32530511 DOI: 10.1111/tpj.14875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Cereal endosperm represents the most important source of the world's food; nevertheless, the molecular mechanisms underlying cell and tissue differentiation in cereal grains remain poorly understood. Endosperm cellularization commences at the maternal-filial intersection of grains and generates endosperm transfer cells (ETCs), a cell type with a prominent anatomy optimized for efficient nutrient transport. Barley HISTIDINE KINASE1 (HvHK1) was identified as a receptor component with spatially restricted expression in the syncytial endosperm where ETCs emerge. Here, we demonstrate its function in ETC fate acquisition using RNA interference-mediated downregulation of HvHK1. Repression of HvHK1 impairs cell specification in the central ETC region and the development of transfer cell morphology, and consecutively defects differentiation of adjacent endosperm tissues. Coinciding with reduced expression of HvHK1, disturbed cell plate formation and fusion were observed at the initiation of endosperm cellularization, revealing that HvHK1 triggers initial cytokinesis of ETCs. Cell-type-specific RNA sequencing confirmed loss of transfer cell identity, compromised cell wall biogenesis and reduced transport capacities in aberrant cells and elucidated two-component signaling and hormone pathways that are mediated by HvHK1. Gene regulatory network modeling was used to specify the direct targets of HvHK1; this predicted non-canonical auxin signaling elements as the main regulatory links governing cellularization of ETCs, potentially through interaction with type-B response regulators. This work provides clues to previously unknown molecular mechanisms directing ETC specification, a process with fundamental impact on grain yield in cereals.
Collapse
Affiliation(s)
- Christian Hertig
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Michael Melzer
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Twan Rutten
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Stephan Erbe
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Götz Hensel
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Jochen Kumlehn
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Winfriede Weschke
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Hans Weber
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Johannes Thiel
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| |
Collapse
|
27
|
Oda Y, Asatsuma S, Nakasone H, Matsuoka K. Sucrose starvation induces the degradation of proteins in trans-Golgi network and secretory vesicle cluster in tobacco BY-2 cells. Biosci Biotechnol Biochem 2020; 84:1652-1666. [PMID: 32338160 DOI: 10.1080/09168451.2020.1756736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
Endomembrane transport system begins at the endoplasmic reticulum (ER), continues to the Golgi apparatus and subsequent compartment called trans-Golgi network (TGN). We found that SUT2, a tobacco sucrose-transporter ortholog and was localized in the TGN, decreased significantly under a sucrose-starvation condition. The tobacco SNARE protein SYP41, localized in the TGN and secretory vesicle cluster (SVC), also decreased under the starvation. Similarly, the SCAMP2-RFP fusion protein, which is localized in TGN, SVC, and plasma membrane (PM), was distributed solely in the PM under the starvation. Under the same starvation condition, protein secretion was not arrested but pectin deposition to cell wall was suppressed. These data indicated that the protein composition in TGN and existence of the SVC are regulated by sugar availability. Furthermore, our findings as well as the involvement of SVC in pectin secretion suggested that synthesis and transport of pectin are regulated by the level of extracellular sugars. ABBREVIATIONS ER: endoplasmic reticulum; GI-TGN: Golgi-released independent TGN; GFP: green fluorescent protein; mRFP: monomeric red fluorescent protein; P4H1.1: prolyl 4-hydroxylase 1.1; PM: plasma membrane; SCAMP2: secretory carrier membrane protein 2; SUT2: sucrose transporter 2; SVC: secretory vesicle cluster; SYP41: syntaxin of plant 41; TGN: trans-Golgi network; YFP: yellow fluorescent protein.
Collapse
Affiliation(s)
- Yamato Oda
- Department of Bioscience and Biotechnology, Graduate School of Bioenvironmental Sciences, Kyushu University , Fukuoka, Japan
| | - Satoru Asatsuma
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University , Fukuoka, Japan
- RIKEN Plant Science Center , Yokohama, Japan
| | - Hiroaki Nakasone
- Department of Bioscience and Biotechnology, Graduate School of Bioenvironmental Sciences, Kyushu University , Fukuoka, Japan
| | - Ken Matsuoka
- Department of Bioscience and Biotechnology, Graduate School of Bioenvironmental Sciences, Kyushu University , Fukuoka, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University , Fukuoka, Japan
- RIKEN Plant Science Center , Yokohama, Japan
| |
Collapse
|
28
|
BIDHENDI A, CHEBLI Y, GEITMANN A. Fluorescence visualization of cellulose and pectin in the primary plant cell wall. J Microsc 2020; 278:164-181. [DOI: 10.1111/jmi.12895] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/07/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
Affiliation(s)
- A.J. BIDHENDI
- Department of Plant ScienceMcGill UniversityMacdonald Campus Ste‐Anne‐de‐Bellevue Québec Canada
| | - Y. CHEBLI
- Department of Plant ScienceMcGill UniversityMacdonald Campus Ste‐Anne‐de‐Bellevue Québec Canada
| | - A. GEITMANN
- Department of Plant ScienceMcGill UniversityMacdonald Campus Ste‐Anne‐de‐Bellevue Québec Canada
| |
Collapse
|
29
|
Shao W, Sharma R, Clausen MH, Scheller HV. Microscale thermophoresis as a powerful tool for screening glycosyltransferases involved in cell wall biosynthesis. PLANT METHODS 2020; 16:99. [PMID: 32742297 PMCID: PMC7389378 DOI: 10.1186/s13007-020-00641-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/20/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Identification and characterization of key enzymes associated with cell wall biosynthesis and modification is fundamental to gain insights into cell wall dynamics. However, it is a challenge that activity assays of glycosyltransferases are very low throughput and acceptor substrates are generally not available. RESULTS We optimized and validated microscale thermophoresis (MST) to achieve high throughput screening for glycosyltransferase substrates. MST is a powerful method for the quantitative analysis of protein-ligand interactions with low sample consumption. The technique is based on the motion of molecules along local temperature gradients, measured by fluorescence changes. We expressed glycosyltransferases as YFP-fusion proteins in tobacco and optimized the MST method to allow the determination of substrate binding affinity without purification of the target protein from the cell lysate. The application of this MST method to the β-1,4-galactosyltransferase AtGALS1 validated the capability to screen both nucleotide-sugar donor substrates and acceptor substrates. We also expanded the application to members of glycosyltransferase family GT61 in sorghum for substrate screening and function prediction. CONCLUSIONS This method is rapid and sensitive to allow determination of both donor and acceptor substrates of glycosyltransferases. MST enables high throughput screening of glycosyltransferases for likely substrates, which will narrow down their in vivo function and help to select candidates for further studies. Additionally, this method gives insight into biochemical mechanism of glycosyltransferase function.
Collapse
Affiliation(s)
- Wanchen Shao
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Rita Sharma
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Mads H. Clausen
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Henrik V. Scheller
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
30
|
Buschmann H, Müller S. Update on plant cytokinesis: rule and divide. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:97-105. [PMID: 31542698 DOI: 10.1016/j.pbi.2019.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/28/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Many decisions made during plant development depend on the placement of the cytokinetic wall. Cytokinesis involves the biogenesis of the cell plate that progresses centrifugally and until the fusion of the cell plate with the parental cell wall. The phragmoplast facilitates the growth of the cell plate and directs it's insertion at the cell cortex by a mechanism known as phragmoplast guidance. Communication between the phragmoplast and its destination, the cortical division zone, however, is not well understood. The preprophase band predicts the site of cell plate fusion, seemingly controlling the site of the cortical division zone establishment, but recent results suggest the role of this cytoskeletal array to be rather subtle. This is indirectly supported by certain types of phragmoplast-driven cell division in mosses and algae, which lack preprophase bands. In this review article, we summarize recent insight concerning phragmoplast expansion and guidance.
Collapse
Affiliation(s)
| | - Sabine Müller
- Center for Plant Molecular Biology, University of Tübingen, Germany.
| |
Collapse
|
31
|
Abstract
Plant cells divide their cytoplasmic content by forming a new membrane compartment, the cell plate, via a rerouting of the secretory pathway toward the division plane aided by a dynamic cytoskeletal apparatus known as the phragmoplast. The phragmoplast expands centrifugally and directs the cell plate to the preselected division site at the plasma membrane to fuse with the parental wall. The division site is transiently decorated by the cytoskeletal preprophase band in preprophase and prophase, whereas a number of proteins discovered over the last decade reside continuously at the division site and provide a lasting spatial reference for phragmoplast guidance. Recent studies of membrane fusion at the cell plate have revealed the contribution of functionally conserved eukaryotic proteins to distinct stages of cell plate biogenesis and emphasize the coupling of cell plate formation with phragmoplast expansion. Together with novel findings concerning preprophase band function and the setup of the division site, cytokinesis and its spatial control remain an open-ended field with outstanding and challenging questions to resolve.
Collapse
Affiliation(s)
- Pantelis Livanos
- Department of Developmental Genetics, Center for Plant Molecular Biology, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany; ,
| | - Sabine Müller
- Department of Developmental Genetics, Center for Plant Molecular Biology, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany; ,
| |
Collapse
|
32
|
Rivas-Sendra A, Corral-Martínez P, Porcel R, Camacho-Fernández C, Calabuig-Serna A, Seguí-Simarro JM. Embryogenic competence of microspores is associated with their ability to form a callosic, osmoprotective subintinal layer. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1267-1281. [PMID: 30715473 PMCID: PMC6382338 DOI: 10.1093/jxb/ery458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/19/2018] [Indexed: 05/05/2023]
Abstract
Microspore embryogenesis is an experimental morphogenic pathway with important applications in basic research and applied plant breeding, but its genetic, cellular, and molecular bases are poorly understood. We applied a multidisciplinary approach using confocal and electron microscopy, detection of Ca2+, callose, and cellulose, treatments with caffeine, digitonin, and endosidin7, morphometry, qPCR, osmometry, and viability assays in order to study the dynamics of cell wall formation during embryogenesis induction in a high-response rapeseed (Brassica napus) line and two recalcitrant rapeseed and eggplant (Solanum melongena) lines. Formation of a callose-rich subintinal layer (SL) was common to microspore embryogenesis in the different genotypes. However, this process was directly related to embryogenic response, being greater in high-response genotypes. A link could be established between Ca2+ influx, abnormal callose/cellulose deposition, and the genotype-specific embryogenic competence. Callose deposition in inner walls and SLs are independent processes, regulated by different callose synthases. Viability and control of internal osmolality are also related to SL formation. In summary, we identified one of the causes of recalcitrance to embryogenesis induction: a reduced or absent protective SL. In responding genotypes, SLs are markers for changes in cell fate and serve as osmoprotective barriers to increase viability in imbalanced in vitro environments. Genotype-specific differences relate to different responses against abiotic (heat/osmotic) stresses.
Collapse
Affiliation(s)
- Alba Rivas-Sendra
- Cell Biology Group - COMAV Institute, Universitat Politècnica de València (UPV), Valencia, Spain
- Present address: Universidad Regional Amazónica IKIAM, Tena, Ecuador
| | - Patricia Corral-Martínez
- Cell Biology Group - COMAV Institute, Universitat Politècnica de València (UPV), Valencia, Spain
| | - Rosa Porcel
- Cell Biology Group - COMAV Institute, Universitat Politècnica de València (UPV), Valencia, Spain
| | | | - Antonio Calabuig-Serna
- Cell Biology Group - COMAV Institute, Universitat Politècnica de València (UPV), Valencia, Spain
| | | |
Collapse
|
33
|
Tang H, de Keijzer J, Overdijk EJR, Sweep E, Steentjes M, Vermeer JEM, Janson ME, Ketelaar T. Exocyst subunit Sec6 is positioned by microtubule overlaps in the moss phragmoplast prior to cell plate membrane arrival. J Cell Sci 2019; 132:jcs222430. [PMID: 30635445 DOI: 10.1242/jcs.222430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022] Open
Abstract
During plant cytokinesis a radially expanding membrane-enclosed cell plate is formed from fusing vesicles that compartmentalizes the cell in two. How fusion is spatially restricted to the site of cell plate formation is unknown. Aggregation of cell-plate membrane starts near regions of microtubule overlap within the bipolar phragmoplast apparatus of the moss Physcomitrella patens Since vesicle fusion generally requires coordination of vesicle tethering and subsequent fusion activity, we analyzed the subcellular localization of several subunits of the exocyst, a tethering complex active during plant cytokinesis. We found that the exocyst complex subunit Sec6 but not the Sec3 or Sec5 subunits localized to microtubule overlap regions in advance of cell plate construction in moss. Moreover, Sec6 exhibited a conserved physical interaction with an ortholog of the Sec1/Munc18 protein KEULE, an important regulator for cell-plate membrane vesicle fusion in Arabidopsis Recruitment of the P. patens protein KEULE and vesicles to the early cell plate was delayed upon Sec6 gene silencing. Our findings, thus, suggest that vesicle-vesicle fusion is, in part, enabled by a pool of exocyst subunits at microtubule overlaps, which is recruited independently of vesicle delivery.
Collapse
Affiliation(s)
- Han Tang
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jeroen de Keijzer
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Elysa J R Overdijk
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Els Sweep
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Maikel Steentjes
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Joop E M Vermeer
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Marcel E Janson
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
34
|
Ivanov S, Austin J, Berg RH, Harrison MJ. Extensive membrane systems at the host-arbuscular mycorrhizal fungus interface. NATURE PLANTS 2019; 5:194-203. [PMID: 30737512 DOI: 10.1038/s41477-019-0364-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/08/2019] [Indexed: 05/08/2023]
Abstract
During arbuscular mycorrhizal (AM) symbiosis, cells within the root cortex develop a matrix-filled apoplastic compartment in which differentiated AM fungal hyphae called arbuscules reside. Development of the compartment occurs rapidly, coincident with intracellular penetration and rapid branching of the fungal hypha, and it requires much of the plant cell's secretory machinery to generate the periarbuscular membrane that delimits the compartment. Despite recent advances, our understanding of the development of the periarbuscular membrane and the transfer of molecules across the symbiotic interface is limited. Here, using electron microscopy and tomography, we reveal that the periarbuscular matrix contains two types of membrane-bound compartments. We propose that one of these arises as a consequence of biogenesis of the periarbuscular membrane and may facilitate movement of molecules between symbiotic partners. Additionally, we show that the arbuscule contains massive arrays of membrane tubules located between the protoplast and the cell wall. We speculate that these tubules may provide the absorptive capacity needed for nutrient assimilation and possibly water absorption to enable rapid hyphal expansion.
Collapse
Affiliation(s)
| | - Jotham Austin
- Advanced Electron Microscopy Facility, University of Chicago, Chicago, IL, USA
| | - R Howard Berg
- Integrated Microscopy Facility, Donald Danforth Plant Science Center, St Louis, MS, USA
| | | |
Collapse
|
35
|
Amos RA, Mohnen D. Critical Review of Plant Cell Wall Matrix Polysaccharide Glycosyltransferase Activities Verified by Heterologous Protein Expression. FRONTIERS IN PLANT SCIENCE 2019; 10:915. [PMID: 31379900 PMCID: PMC6646851 DOI: 10.3389/fpls.2019.00915] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/27/2019] [Indexed: 05/02/2023]
Abstract
The life cycle and development of plants requires the biosynthesis, deposition, and degradation of cell wall matrix polysaccharides. The structures of the diverse cell wall matrix polysaccharides influence commercially important properties of plant cells, including growth, biomass recalcitrance, organ abscission, and the shelf life of fruits. This review is a comprehensive summary of the matrix polysaccharide glycosyltransferase (GT) activities that have been verified using in vitro assays following heterologous GT protein expression. Plant cell wall (PCW) biosynthetic GTs are primarily integral transmembrane proteins localized to the endoplasmic reticulum and Golgi of the plant secretory system. The low abundance of these enzymes in plant tissues makes them particularly difficult to purify from native plant membranes in quantities sufficient for enzymatic characterization, which is essential to study the functions of the different GTs. Numerous activities in the synthesis of the major cell wall matrix glycans, including pectins, xylans, xyloglucan, mannans, mixed-linkage glucans (MLGs), and arabinogalactan components of AGP proteoglycans have been mapped to specific genes and multi-gene families. Cell wall GTs include those that synthesize the polymer backbones, those that elongate side branches with extended glycosyl chains, and those that add single monosaccharide linkages onto polysaccharide backbones and/or side branches. Three main strategies have been used to identify genes encoding GTs that synthesize cell wall linkages: analysis of membrane fractions enriched for cell wall biosynthetic activities, mutational genetics approaches investigating cell wall compositional phenotypes, and omics-directed identification of putative GTs from sequenced plant genomes. Here we compare the heterologous expression systems used to produce, purify, and study the enzyme activities of PCW GTs, with an emphasis on the eukaryotic systems Nicotiana benthamiana, Pichia pastoris, and human embryonic kidney (HEK293) cells. We discuss the enzymatic properties of GTs including kinetic rates, the chain lengths of polysaccharide products, acceptor oligosaccharide preferences, elongation mechanisms for the synthesis of long-chain polymers, and the formation of GT complexes. Future directions in the study of matrix polysaccharide biosynthesis are proposed.
Collapse
Affiliation(s)
- Robert A. Amos
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Debra Mohnen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- *Correspondence: Debra Mohnen
| |
Collapse
|
36
|
Zhang C, Shen Y, Tang D, Shi W, Zhang D, Du G, Zhou Y, Liang G, Li Y, Cheng Z. The zinc finger protein DCM1 is required for male meiotic cytokinesis by preserving callose in rice. PLoS Genet 2018; 14:e1007769. [PMID: 30419020 PMCID: PMC6258382 DOI: 10.1371/journal.pgen.1007769] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/26/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022] Open
Abstract
Meiotic cytokinesis influences the fertility and ploidy of gametes. However, limited information is available on the genetic control of meiotic cytokinesis in plants. Here, we identified a rice mutant with low male fertility, defective callose in meiosis 1 (dcm1). The pollen grains of dcm1 are proved to be defective in exine formation. Meiotic cytokinesis is disrupted in dcm1, resulting in disordered spindle orientation during meiosis II and formation of pollen grains with varied size and DNA content. We demonstrated that meiotic cytokinesis defect in dcm1 is caused by prematurely dissolution of callosic plates. Furthermore, peripheral callose surrounding the dcm1 pollen mother cells (PMCs) also disappeared untimely around pachytene. The DCM1 protein contains five tandem CCCH motifs and interacts with nuclear poly (A) binding proteins (PABNs) in nuclear speckles. The expression profiles of genes related to callose synthesis and degradation are significantly modified in dcm1. Together, we propose that DCM1 plays an essential role in male meiotic cytokinesis by preserving callose from prematurely dissolution in rice. Meiosis comprises two successive cell divisions after a single S phase, generating four haploid products. Meiotic caryokinesis (nuclear division) has been extensively studied in many organisms, while mechanisms underlying meiotic cytokinesis remain elusive. Here, we identified a novel CCCH-tandem zinc finger protein DCM1 that prevent the premature dissolution of callose both around the PMCs and at the dividing site (callosic plates). Loss of the callosic plates disrupts the meiotic cytokinesis, leading to the random distribution of spindles during meiosis II and aberrant meiotic products. DCM1 interacts with the two rice poly (A) binding proteins, independently of the conserved CCCH domain. Moreover, DCM1 coordinates the expression profiles of genes related to callose synthesis and degradation. We suspect monocots and dicots may adopt distinct meiotic cytokinesis patterns during male gamete generation.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenqing Shi
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dongmei Zhang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guijie Du
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guohua Liang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (YL); (ZC)
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (YL); (ZC)
| |
Collapse
|
37
|
Chen HW, Persson S, Grebe M, McFarlane HE. Cellulose synthesis during cell plate assembly. PHYSIOLOGIA PLANTARUM 2018; 164:17-26. [PMID: 29418000 DOI: 10.1111/ppl.12703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/12/2018] [Accepted: 02/04/2018] [Indexed: 05/07/2023]
Abstract
The plant cell wall surrounds and protects the cells. To divide, plant cells must synthesize a new cell wall to separate the two daughter cells. The cell plate is a transient polysaccharide-based compartment that grows between daughter cells and gives rise to the new cell wall. Cellulose constitutes a key component of the cell wall, and mutants with defects in cellulose synthesis commonly share phenotypes with cytokinesis-defective mutants. However, despite the importance of cellulose in the cell plate and the daughter cell wall, many open questions remain regarding the timing and regulation of cellulose synthesis during cell division. These questions represent a critical gap in our knowledge of cell plate assembly, cell division and growth. Here, we review what is known about cellulose synthesis at the cell plate and in the newly formed cross-wall and pose key questions about the molecular mechanisms that govern these processes. We further provide an outlook discussing outstanding questions and possible future directions for this field of research.
Collapse
Affiliation(s)
- Hsiang-Wen Chen
- School of Biosciences, University of Melbourne, Melbourne, Victoria 3010, Australia
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, Potsdam D-14476, Germany
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Markus Grebe
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, Potsdam D-14476, Germany
| | - Heather E McFarlane
- School of Biosciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
38
|
Gigli-Bisceglia N, Hamann T. Outside-in control - does plant cell wall integrity regulate cell cycle progression? PHYSIOLOGIA PLANTARUM 2018; 164:82-94. [PMID: 29652097 DOI: 10.1111/ppl.12744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 05/12/2023]
Abstract
During recent years it has become accepted that plant cell walls are not inert objects surrounding all plant cells but are instead highly dynamic, plastic structures. They are involved in a large number of cell biological processes and contribute actively to plant growth, development and interaction with environment. Therefore, it is not surprising that cellular processes can control plant cell wall integrity (CWI) while, simultaneously, CWI can influence cellular processes. In yeast and animal cells such a bidirectional relationship also exists between the yeast/animal extracellular matrices and the cell cycle. In yeast, the CWI maintenance mechanism and a dedicated plasma membrane integrity checkpoint are mediating this relationship. Recent research has yielded insights into the mechanism controlling plant cell wall metabolism during cytokinesis. However, the knowledge regarding putative regulatory pathways controlling adaptive modifications in plant cell cycle activity in response to changes in the state of the plant cell wall are not yet identified. In this review, we summarize similarities and differences in regulatory mechanisms coordinating extracellular matrices and cell cycle activity in animal and yeast cells, discuss the available evidence supporting the existence of such a mechanism in plants and suggest that the plant CWI maintenance mechanism might also control cell cycle activity in plant cells.
Collapse
Affiliation(s)
- Nora Gigli-Bisceglia
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Thorsten Hamann
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| |
Collapse
|
39
|
Speicher TL, Li PZ, Wallace IS. Phosphoregulation of the Plant Cellulose Synthase Complex and Cellulose Synthase-Like Proteins. PLANTS (BASEL, SWITZERLAND) 2018; 7:E52. [PMID: 29966291 PMCID: PMC6161211 DOI: 10.3390/plants7030052] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 02/04/2023]
Abstract
Cellulose, the most abundant biopolymer on the planet, is synthesized at the plasma membrane of plant cells by the cellulose synthase complex (CSC). Cellulose is the primary load-bearing polysaccharide of plant cell walls and enables cell walls to maintain cellular shape and rigidity. The CSC is comprised of functionally distinct cellulose synthase A (CESA) proteins, which are responsible for synthesizing cellulose, and additional accessory proteins. Moreover, CESA-like (CSL) proteins are proposed to synthesize other essential non-cellulosic polysaccharides that comprise plant cell walls. The deposition of cell-wall polysaccharides is dynamically regulated in response to a variety of developmental and environmental stimuli, and post-translational phosphorylation has been proposed as one mechanism to mediate this dynamic regulation. In this review, we discuss CSC composition, the dynamics of CSCs in vivo, critical studies that highlight the post-translational control of CESAs and CSLs, and the receptor kinases implicated in plant cell-wall biosynthesis. Furthermore, we highlight the emerging importance of post-translational phosphorylation-based regulation of CSCs on the basis of current knowledge in the field.
Collapse
Affiliation(s)
- Tori L Speicher
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| | - Patrick Ziqiang Li
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| | - Ian S Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
40
|
Smertenko A, Hewitt SL, Jacques CN, Kacprzyk R, Liu Y, Marcec MJ, Moyo L, Ogden A, Oung HM, Schmidt S, Serrano-Romero EA. Phragmoplast microtubule dynamics - a game of zones. J Cell Sci 2018; 131:jcs.203331. [PMID: 29074579 DOI: 10.1242/jcs.203331] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Plant morphogenesis relies on the accurate positioning of the partition (cell plate) between dividing cells during cytokinesis. The cell plate is synthetized by a specialized structure called the phragmoplast, which consists of microtubules, actin filaments, membrane compartments and associated proteins. The phragmoplast forms between daughter nuclei during the transition from anaphase to telophase. As cells are commonly larger than the originally formed phragmoplast, the construction of the cell plate requires phragmoplast expansion. This expansion depends on microtubule polymerization at the phragmoplast forefront (leading zone) and loss at the back (lagging zone). Leading and lagging zones sandwich the 'transition' zone. A population of stable microtubules in the transition zone facilitates transport of building materials to the midzone where the cell plate assembly takes place. Whereas microtubules undergo dynamic instability in all zones, the overall balance appears to be shifted towards depolymerization in the lagging zone. Polymerization of microtubules behind the lagging zone has not been reported to date, suggesting that microtubule loss there is irreversible. In this Review, we discuss: (1) the regulation of microtubule dynamics in the phragmoplast zones during expansion; (2) mechanisms of the midzone establishment and initiation of cell plate biogenesis; and (3) signaling in the phragmoplast.
Collapse
Affiliation(s)
- Andrei Smertenko
- Institute of Biological Chemistry, Pullman, WA 99164, USA .,Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Seanna L Hewitt
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,Department of Horticulture, Washington State University, Pullman, WA 99164, USA
| | - Caitlin N Jacques
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | - Rafal Kacprzyk
- Institute of Biological Chemistry, Pullman, WA 99164, USA
| | - Yan Liu
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Matthew J Marcec
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Lindani Moyo
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Aaron Ogden
- Institute of Biological Chemistry, Pullman, WA 99164, USA.,Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Hui Min Oung
- Institute of Biological Chemistry, Pullman, WA 99164, USA.,Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Sharol Schmidt
- Institute of Biological Chemistry, Pullman, WA 99164, USA.,Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Erika A Serrano-Romero
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
41
|
Sinclair R, Rosquete MR, Drakakaki G. Post-Golgi Trafficking and Transport of Cell Wall Components. FRONTIERS IN PLANT SCIENCE 2018; 9:1784. [PMID: 30581448 PMCID: PMC6292943 DOI: 10.3389/fpls.2018.01784] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/16/2018] [Indexed: 05/13/2023]
Abstract
The cell wall, a complex macromolecular composite structure surrounding and protecting plant cells, is essential for development, signal transduction, and disease resistance. This structure is also integral to cell expansion, as its tensile resistance is the primary balancing mechanism against internal turgor pressure. Throughout these processes, the biosynthesis, transport, deposition, and assembly of cell wall polymers are tightly regulated. The plant endomembrane system facilitates transport of polysaccharides, polysaccharide biosynthetic and modifying enzymes and glycoproteins through vesicle trafficking pathways. Although a number of enzymes involved in cell wall biosynthesis have been identified, comparatively little is known about the transport of cell wall polysaccharides and glycoproteins by the endomembrane system. This review summarizes our current understanding of trafficking of cell wall components during cell growth and cell division. Emerging technologies, such as vesicle glycomics, are also discussed as promising avenues to gain insights into the trafficking of structural polysaccharides to the apoplast.
Collapse
|
42
|
Rydahl MG, Hansen AR, Kračun SK, Mravec J. Report on the Current Inventory of the Toolbox for Plant Cell Wall Analysis: Proteinaceous and Small Molecular Probes. FRONTIERS IN PLANT SCIENCE 2018; 9:581. [PMID: 29774041 PMCID: PMC5943554 DOI: 10.3389/fpls.2018.00581] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/13/2018] [Indexed: 05/18/2023]
Abstract
Plant cell walls are highly complex structures composed of diverse classes of polysaccharides, proteoglycans, and polyphenolics, which have numerous roles throughout the life of a plant. Significant research efforts aim to understand the biology of this cellular organelle and to facilitate cell-wall-based industrial applications. To accomplish this, researchers need to be provided with a variety of sensitive and specific detection methods for separate cell wall components, and their various molecular characteristics in vitro as well as in situ. Cell wall component-directed molecular detection probes (in short: cell wall probes, CWPs) are an essential asset to the plant glycobiology toolbox. To date, a relatively large set of CWPs has been produced-mainly consisting of monoclonal antibodies, carbohydrate-binding modules, synthetic antibodies produced by phage display, and small molecular probes. In this review, we summarize the state-of-the-art knowledge about these CWPs; their classification and their advantages and disadvantages in different applications. In particular, we elaborate on the recent advances in non-conventional approaches to the generation of novel CWPs, and identify the remaining gaps in terms of target recognition. This report also highlights the addition of new "compartments" to the probing toolbox, which is filled with novel chemical biology tools, such as metabolic labeling reagents and oligosaccharide conjugates. In the end, we also forecast future developments in this dynamic field.
Collapse
Affiliation(s)
- Maja G. Rydahl
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Aleksander R. Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Stjepan K. Kračun
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- GlycoSpot IVS, Frederiksberg, Denmark
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- *Correspondence: Jozef Mravec
| |
Collapse
|
43
|
Oh Y, Schreiter JH, Okada H, Wloka C, Okada S, Yan D, Duan X, Bi E. Hof1 and Chs4 Interact via F-BAR Domain and Sel1-like Repeats to Control Extracellular Matrix Deposition during Cytokinesis. Curr Biol 2017; 27:2878-2886.e5. [PMID: 28918945 PMCID: PMC5658023 DOI: 10.1016/j.cub.2017.08.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/07/2017] [Accepted: 08/15/2017] [Indexed: 11/24/2022]
Abstract
Localized extracellular matrix (ECM) remodeling is thought to stabilize the cleavage furrow and maintain cell shape during cytokinesis [1-14]. This remodeling is spatiotemporally coordinated with a cytoskeletal structure pertaining to a kingdom of life, for example the FtsZ ring in bacteria [15], the phragmoplast in plants [16], and the actomyosin ring in fungi and animals [17, 18]. Although the cytoskeletal structures have been analyzed extensively, the mechanisms of ECM remodeling remain poorly understood. In the budding yeast Saccharomyces cerevisiae, ECM remodeling refers to sequential formations of the primary and secondary septa that are catalyzed by chitin synthase-II (Chs2) and chitin synthase-III (the catalytic subunit Chs3 and its activator Chs4), respectively [18, 19]. Surprisingly, both Chs2 and Chs3 are delivered to the division site at the onset of cytokinesis [6, 20]. What keeps Chs3 inactive until secondary septum formation remains unknown. Here, we show that Hof1 binds to the Sel1-like repeats (SLRs) of Chs4 via its F-BAR domain and inhibits Chs3-mediated chitin synthesis during cytokinesis. In addition, Hof1 is required for rapid accumulation as well as efficient removal of Chs4 at the division site. This study uncovers a mechanism by which Hof1 controls timely activation of Chs3 during cytokinesis and defines a novel interaction and function for the conserved F-BAR domain and SLR that are otherwise known for their abilities to bind membrane lipids [21, 22] and scaffold protein complex formation [23].
Collapse
Affiliation(s)
- Younghoon Oh
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Jennifer H Schreiter
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Carsten Wloka
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AE Groningen, the Netherlands
| | - Satoshi Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Department of Medical Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Di Yan
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Xudong Duan
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
44
|
Plant Cytokinesis: Terminology for Structures and Processes. Trends Cell Biol 2017; 27:885-894. [PMID: 28943203 DOI: 10.1016/j.tcb.2017.08.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 11/22/2022]
Abstract
Plant cytokinesis is orchestrated by a specialized structure, the phragmoplast. The phragmoplast first occurred in representatives of Charophyte algae and then became the main division apparatus in land plants. Major cellular activities, including cytoskeletal dynamics, vesicle trafficking, membrane assembly, and cell wall biosynthesis, cooperate in the phragmoplast under the guidance of a complex signaling network. Furthermore, the phragmoplast combines plant-specific features with the conserved cytokinetic processes of animals, fungi, and protists. As such, the phragmoplast represents a useful system for understanding both plant cell dynamics and the evolution of cytokinesis. We recognize that future research and knowledge transfer into other fields would benefit from standardized terminology. Here, we propose such a lexicon of terminology for specific structures and processes associated with plant cytokinesis.
Collapse
|
45
|
Galletti R, Verger S, Hamant O, Ingram GC. Developing a 'thick skin': a paradoxical role for mechanical tension in maintaining epidermal integrity? Development 2017; 143:3249-58. [PMID: 27624830 DOI: 10.1242/dev.132837] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plant aerial epidermal tissues, like animal epithelia, act as load-bearing layers and hence play pivotal roles in development. The presence of tension in the epidermis has morphogenetic implications for organ shapes but it also constantly threatens the integrity of this tissue. Here, we explore the multi-scale relationship between tension and cell adhesion in the plant epidermis, and we examine how tensile stress perception may act as a regulatory input to preserve epidermal tissue integrity and thus normal morphogenesis. From this, we identify parallels between plant epidermal and animal epithelial tissues and highlight a list of unexplored questions for future research.
Collapse
Affiliation(s)
- Roberta Galletti
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| | - Stéphane Verger
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| | - Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| |
Collapse
|
46
|
Brembu T, Chauton MS, Winge P, Bones AM, Vadstein O. Dynamic responses to silicon in Thalasiossira pseudonana - Identification, characterisation and classification of signature genes and their corresponding protein motifs. Sci Rep 2017; 7:4865. [PMID: 28687794 PMCID: PMC5501833 DOI: 10.1038/s41598-017-04921-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/22/2017] [Indexed: 11/10/2022] Open
Abstract
The diatom cell wall, or frustule, is a highly complex, three-dimensional structure consisting of nanopatterned silica as well as proteins and other organic components. While some key components have been identified, knowledge on frustule biosynthesis is still fragmented. The model diatom Thalassiosira pseudonana was subjected to silicon (Si) shift-up and shift-down situations. Cellular and molecular signatures, dynamic changes and co-regulated clusters representing the hallmarks of cellular and molecular responses to changing Si availabilities were characterised. Ten new proteins with silaffin-like motifs, two kinases and a novel family of putatively frustule-associated transmembrane proteins induced by Si shift-up with a possible role in frustule biosynthesis were identified. A separate cluster analysis performed on all significantly regulated silaffin-like proteins (SFLPs), as well as silaffin-like motifs, resulted in the classification of silaffins, cingulins and SFLPs into distinct clusters. A majority of the genes in the Si-responsive clusters are highly divergent, but positive selection does not seem to be the driver behind this variability. This study provides a high-resolution map over transcriptional responses to changes in Si availability in T. pseudonana. Hallmark Si-responsive genes are identified, characteristic motifs and domains are classified, and taxonomic and evolutionary implications outlined and discussed.
Collapse
Affiliation(s)
- Tore Brembu
- NTNU Norwegian University of Science and Technology, Departments of Biology, N-7491, Trondheim, Norway.
| | | | - Per Winge
- NTNU Norwegian University of Science and Technology, Departments of Biology, N-7491, Trondheim, Norway
| | - Atle M Bones
- NTNU Norwegian University of Science and Technology, Departments of Biology, N-7491, Trondheim, Norway
| | - Olav Vadstein
- Biotechnology and Food Science, N-7491, Trondheim, Norway
| |
Collapse
|
47
|
Abstract
In plant tissues, cells are glued to each other by a pectic polysaccharide rich material known as middle lamella (ML). Along with many biological functions, the ML plays a crucial role in maintaining the structural integrity of plant tissues and organs, as it prevents the cells from separating or sliding against each other. The macromolecular organization and the material properties of the ML are different from those of the adjacent primary cell walls that envelop all plant cells and provide them with a stiff casing. Due to its nanoscale dimensions and the extreme challenge to access the structure for material characterization, the ML is poorly characterized in terms of its distinct material properties. This review explores the ML beyond its functionality as a gluing agent. The putative molecular interactions of constituent macromolecules within the ML and at the interface between ML and primary cell wall are discussed. The correlation between the spatiotemporal distribution of pectic polysaccharides in the different portions of the ML and the subcellular distribution of mechanical stresses within the plant tissue are analyzed.
Collapse
Affiliation(s)
- M S Zamil
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | | |
Collapse
|
48
|
de Keijzer J, Kieft H, Ketelaar T, Goshima G, Janson ME. Shortening of Microtubule Overlap Regions Defines Membrane Delivery Sites during Plant Cytokinesis. Curr Biol 2017; 27:514-520. [PMID: 28132815 DOI: 10.1016/j.cub.2016.12.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/11/2016] [Accepted: 12/20/2016] [Indexed: 02/01/2023]
Abstract
Different from animal cells that divide by constriction of the cortex inward, cells of land plants divide by initiating a new cell-wall segment from their center. For this, a disk-shaped, membrane-enclosed precursor termed the cell plate is formed that radially expands toward the parental cell wall [1-3]. The synthesis of the plate starts with the fusion of vesicles into a tubulo-vesicular network [4-6]. Vesicles are putatively delivered to the division plane by transport along microtubules of the bipolar phragmoplast network that guides plate assembly [7-9]. How vesicle immobilization and fusion are then locally triggered is unclear. In general, a framework for how the cytoskeleton spatially defines cell-plate formation is lacking. Here we show that membranous material for cell-plate formation initially accumulates along regions of microtubule overlap in the phragmoplast of the moss Physcomitrella patens. Kinesin-4-mediated shortening of these overlaps at the onset of cytokinesis proved to be required to spatially confine membrane accumulation. Without shortening, the wider cell-plate membrane depositions evolved into cell walls that were thick and irregularly shaped. Phragmoplast assembly thus provides a regular lattice of short overlaps on which a new cell-wall segment can be scaffolded. Since similar patterns of overlaps form in central spindles of animal cells, involving the activity of orthologous proteins [10, 11], we anticipate that our results will help uncover universal features underlying membrane-cytoskeleton coordination during cytokinesis.
Collapse
Affiliation(s)
- Jeroen de Keijzer
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands; Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA
| | - Henk Kieft
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Gohta Goshima
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA; Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Marcel E Janson
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands; Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.
| |
Collapse
|
49
|
van de Meene AML, Doblin MS, Bacic A. The plant secretory pathway seen through the lens of the cell wall. PROTOPLASMA 2017; 254:75-94. [PMID: 26993347 DOI: 10.1007/s00709-016-0952-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 05/18/2023]
Abstract
Secretion in plant cells is often studied by looking at well-characterised, evolutionarily conserved membrane proteins associated with particular endomembrane compartments. Studies using live cell microscopy and fluorescent proteins have illuminated the highly dynamic nature of trafficking, and electron microscopy studies have resolved the ultrastructure of many compartments. Biochemical and molecular analyses have further informed about the function of particular proteins and endomembrane compartments. In plants, there are over 40 cell types, each with highly specialised functions, and hence potential variations in cell biological processes and cell wall structure. As the primary function of secretion in plant cells is for the biosynthesis of cell wall polysaccharides and apoplastic transport complexes, it follows that utilising our knowledge of cell wall glycosyltransferases (GTs) and their polysaccharide products will inform us about secretion. Indeed, this knowledge has led to novel insights into the secretory pathway, including previously unseen post-TGN secretory compartments. Conversely, our knowledge of trafficking routes of secretion will inform us about polarised and localised deposition of cell walls and their constituent polysaccharides/glycoproteins. In this review, we look at what is known about cell wall biosynthesis and the secretory pathway and how the different approaches can be used in a complementary manner to study secretion and provide novel insights into these processes.
Collapse
Affiliation(s)
- A M L van de Meene
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - M S Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
50
|
Song L, Wang R, Zhang L, Wang Y, Yao S. CRR1 encoding callose synthase functions in ovary expansion by affecting vascular cell patterning in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:620-632. [PMID: 27464824 DOI: 10.1111/tpj.13287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
The ovary of rice undergoes rapid expansion immediately after fertilization, and this process determines the final sink strength potential of caryopses. To date, work on rice grain development has mainly focused on endosperm filling, whereas information on the essential elements for ovary expansion remains limited. We report here a functional analysis of the ovary expansion retarded mutant crr1 in rice. Map-based cloning revealed that CRR1 encodes a protein homologous to the Arabidopsis callose synthases AtGSL8 and AtGSL10. Point mutation in crr1 resulted in alternative splicing, which led to the formation of the truncated crr1 protein without the β-glucan synthase domain. Iodine staining showed that there were few starch granules and these were unevenly distributed in the pericarp of crr1, and a 5,6-carboxyfluorescein diacetate transport assay revealed that carbohydrates were less efficiently unloaded from the lateral vasculature into the developing caryopsis. CRR1 transcripts were detected in all plant organs, with the highest level found in receptacles, which are mainly composed of vascular tissues. Analysis of pCRR1::GUS transgenic plants showed that CRR1 was specifically expressed in vascular bundle cells. Consistently, loss of function of CRR1 led to disordered patterns of vascular cells in the ovaries and receptacles of the mutant. Furthermore, a small portion of cells in the vascular bundles of crr1 showed defective cell wall formation, and callose deposition was specifically reduced at the plasmodesmata (PD) of cells with aberrant walls. Our results suggest that CRR1 performs a pivotal role in determining initial ovary expansion in rice, possibly via the PD-mediated permeability of cell fate determinants for vascular cell differentiation.
Collapse
Affiliation(s)
- Longzhen Song
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruci Wang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Li Zhang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yueming Wang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shanguo Yao
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|