1
|
Solano Porras RC, Ghoreishi G, Sánchez A, Barrena R, Font X, Ballardo C, Artola A. Solid-state fermentation of green waste for the production of biostimulants to enhance lettuce (Lactuca sativa L.) cultivation under water stress: Closing the organic waste cycle. CHEMOSPHERE 2024; 370:143919. [PMID: 39647788 DOI: 10.1016/j.chemosphere.2024.143919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/18/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
Food production faces important challenges such as water scarcity and the overall need of novel sustainable strategies. This study assesses the effect of the biostimulant produced through solid-state fermentation (SSF) of green waste (wood chips and grass residues) inoculated with Trichoderma harzianum with and without l-tryptophan as a precursor for indole-3-acetic acid (IAA) production, a well-known plant hormone. The fermented solid demonstrated significant positive effects on the growth of lettuce (Lactuca sativa L.) under different irrigation conditions. Substantial enhancements were observed in growth parameters such as fresh weight, plant height, leaf area and leaf quantity, along with chemical parameters including total phenol content, chlorophylls, carotenoids, and antioxidant activity (DPPH). The results also showed a positive impact on the nutritional quality of lettuce, particularly under normal irrigation conditions. In conclusion, this study highlights the biostimulant potential to improve the yield and nutritional quality of lettuce crops by reusing plant residues. Additionally, it poses the relevance of applying circular economy principles in sustainable agriculture and organic waste management.
Collapse
Affiliation(s)
- Roberto Carlos Solano Porras
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Golafarin Ghoreishi
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Antoni Sánchez
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Raquel Barrena
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Xavier Font
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Cindy Ballardo
- Solid Waste Research Centre (CIRSO), Universidad Nacional del Centro del Perú, 12006, El Tambo, Huancayo, Peru
| | - Adriana Artola
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
2
|
Zuo A, He D, Sun C, Wen Y, Li H, Kou C, Shao G, Xue Z, Ma R, Wei J, Liu J, Ma P. Integration of induction, system optimization and genetic transformation in Veratrum californicum var. vitro cultures to enhance the production of cyclopamine and veratramine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109087. [PMID: 39241631 DOI: 10.1016/j.plaphy.2024.109087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/22/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Cyclopamine, a compound found in wild Veratrum has shown promising potential as a lead anti-cancer drug by effectively blocking cancer signaling pathways. However, its complex chemical structure poses challenges for artificial synthesis, thus limiting its supply and downstream drug production. This study comprehensively utilizes induction, system optimization, and transgenic technologies to establish an efficient suspension culture system for the high-yield production of cyclopamine and its precursor, veratramine. Experimental results demonstrate that methyl jasmonate (MeJA) effectively promotes the content of veratramine and cyclopamine in Veratrum californicum var. callus tissue, while yeast extract (YE) addition significantly increases cell biomass. The total content of veratramine and cyclopamine reached 0.0638 mg after synergistic treatment of suspension system with these two elicitors. And the content of the two substances was further increased to 0.0827 mg after the optimization by response surface methodology. Subsequently, a genetic transformation system for V. californicum callus was established and a crucial enzyme gene VnOSC1, involved in the steroidal alkaloid biosynthesis pathway, was screened and identified for genetic transformation. Combined suspension culture and synergistic induction system, the total content of the two substances in transgenic suspension system was further increased to 0.1228 mg, representing a 276.69% improvement compared to the initial culture system. This study proposes a complete and effective genetic transformation and cultivation scheme for V. californicum tissue cells, achieving milligram-level production of the anticancer agent cyclopamine and its direct precursor veratramine for the first time. It provides a theoretical basis for the industrial-scale production of these substances.
Collapse
Affiliation(s)
- Anqi Zuo
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Di He
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| | - Chongrui Sun
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yashi Wen
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - He Li
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Chengxi Kou
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Gaige Shao
- Xian Agricultural Technology Extension Center, Xian, China
| | - Zheyong Xue
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Rui Ma
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jia Wei
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jingying Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
3
|
Yang Q, Xiong C, Zhang J, Ming Y, Zhang S, Wang L, Wang H, Xu R, Wang B. Chemical and Transcriptomic Analyses Provide New Insights into Key Genes for Ginsenoside Biosynthesis in the Rhizome of Panax japonicus C. A. Meyer. Molecules 2024; 29:4936. [PMID: 39459304 PMCID: PMC11510602 DOI: 10.3390/molecules29204936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Panax japonicus C. A. Meyer is renowned for its significant therapeutic effects and is commonly used worldwide. Its active ingredients, triterpenoid saponins, show variation in content among different tissues. The tissue-specific distribution of saponins is potentially related to the expression of vital genes in the biosynthesis pathway. In this study, the contents of five saponins (ginsenoside Ro, chikusetsusaponin IV, chikusetsusaponin IVa, ginsenoside Rg1, and ginsenoside Rb1) in three different tissues were determined by HPLC. Transcriptome sequencing analysis identified differentially expressed genes (DEGs) involved in triterpenoid saponin biosynthesis, highlighting significant correlations between saponin contents and the expression levels of 10 cytochrome p450 monooxygenase (CYP) and 3 UDP-glycosyltransferase (UGT) genes. Cloning, sequencing, and prokaryotic expression of UGT genes confirmed the molecular weights of UGT proteins. Gene sequence alignment and phylogenetic analysis provided preliminary insights into UGT gene functions. Meanwhile, the function of one UGT gene was characterized in the yeast. These findings advance our understanding of the triterpenoid saponin biosynthesis in P. japonicus and support future research in traditional Chinese medicine (TCM) and synthetic biology.
Collapse
Affiliation(s)
- Qichun Yang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Q.Y.); (C.X.); (Y.M.); (S.Z.); (L.W.); (H.W.)
| | - Chao Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Q.Y.); (C.X.); (Y.M.); (S.Z.); (L.W.); (H.W.)
| | - Jiao Zhang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Yue Ming
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Q.Y.); (C.X.); (Y.M.); (S.Z.); (L.W.); (H.W.)
| | - Shaopeng Zhang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Q.Y.); (C.X.); (Y.M.); (S.Z.); (L.W.); (H.W.)
| | - Limei Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Q.Y.); (C.X.); (Y.M.); (S.Z.); (L.W.); (H.W.)
| | - Hongxun Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Q.Y.); (C.X.); (Y.M.); (S.Z.); (L.W.); (H.W.)
| | - Ran Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Q.Y.); (C.X.); (Y.M.); (S.Z.); (L.W.); (H.W.)
| | - Bo Wang
- Hubei Institute for Drug Control, Hubei Provincial Drug Quality Inspection and Control Technology Research Center, Wuhan 430075, China
| |
Collapse
|
4
|
Mishra B, Bansal S, Tripathi S, Mishra S, Yadav RK, Sangwan NS. Differential regulation of key triterpene synthase gene under abiotic stress in Withania somnifera L. Dunal and its co-relation to sterols and withanolides. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108419. [PMID: 38377888 DOI: 10.1016/j.plaphy.2024.108419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Withania somnifera (Ashwagandha), is one of the most reputed Indian medicinal plants, having immense pharmacological activities due to the occurrence of withanolides. The withanolides are biosynthesized through triterpenoid biosynthetic pathway with the involvement of WsCAS leading to cyclization of 2, 3 oxidosqualene, which is a key metabolite to further diversify to a myriad of phytochemicals. In contrast to the available reports on the studies of WsCAS in withanolide biosynthesis, its involvement in phytosterol biosynthesis needs investigation. Present work deals with the understanding of role of WsCAS triterpenoid synthase gene in the regulation of biosynthesis of phytosterols & withanolides. Docking studies of WsCAS protein revealed Conserved amino acids, DCATE motif, and QW motif which are involved in efficient substrate binding, structure stabilization, and catalytic activity. Overexpression/silencing of WsCAS leading to increment/decline of phytosterols confers its stringent regulation in phytosterols biosynthesis. Differential regulation of WsCAS on the metabolic flux towards phytosterols and withanolide biosynthesis was observed under abiotic stress conditions. The preferential channelization of 2, 3 oxidosqualene towards withanolides and/or phytosterols occurred under heat/salt stress and cold/water stress, respectively. Stigmasterol and β-sitosterol showed major contribution in high/low temperature and salt stress, and campesterol in water stress management. Overexpression of WsCAS in Arabidopsis thaliana led to the increment in phytosterols in general. Thus, the WsCAS plays important regulatory role in the biosynthetic pathway of phytosterols and withanolides under abiotic stress conditions.
Collapse
Affiliation(s)
- Bhawana Mishra
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Department of Metabolic and Structural Biology, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR) (An Institution of National Importance by an Act of Parliament), AcSIR Campus, CSIR-HRDC, Sector-19, Kamla Nehru Nagar, Ghaziabad, Ghaziabad, 201002, Uttar Pradesh, India
| | - Shilpi Bansal
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Department of Metabolic and Structural Biology, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR) (An Institution of National Importance by an Act of Parliament), AcSIR Campus, CSIR-HRDC, Sector-19, Kamla Nehru Nagar, Ghaziabad, Ghaziabad, 201002, Uttar Pradesh, India
| | - Sandhya Tripathi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Department of Metabolic and Structural Biology, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR) (An Institution of National Importance by an Act of Parliament), AcSIR Campus, CSIR-HRDC, Sector-19, Kamla Nehru Nagar, Ghaziabad, Ghaziabad, 201002, Uttar Pradesh, India
| | - Smrati Mishra
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Department of Metabolic and Structural Biology, Uttar Pradesh, India
| | - Ritesh K Yadav
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Department of Metabolic and Structural Biology, Uttar Pradesh, India
| | - Neelam S Sangwan
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Department of Metabolic and Structural Biology, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR) (An Institution of National Importance by an Act of Parliament), AcSIR Campus, CSIR-HRDC, Sector-19, Kamla Nehru Nagar, Ghaziabad, Ghaziabad, 201002, Uttar Pradesh, India; School of Interdisciplinary and Applied Sciences, Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana 123031, India.
| |
Collapse
|
5
|
Dos Santos TB, Dos Santos Gomes D, Dos Santos Neto AG, do Amorim Costa Gaspar LM, Droppa-Almeida D. Botanical Extracts and Compounds of Castanea Plants and Methods of Use: US20190125818A1 - The United States Patent Evaluation. Recent Pat Biotechnol 2024; 18:152-161. [PMID: 38282444 DOI: 10.2174/1872208317666230420105000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Bacterial infections are increasingly difficult to combat, which makes them a threat to public health on a global level. Staphylococcus aureus is considered one of the main causes of infections in hospitals, as it has a variety of virulence factors, as well as is able to produce bacterial biofilms, which, consequently, bring numerous damages to public health as a result of increased resistance to conventional antibiotics and a longer hospital stay. Therefore, the use of compounds extracted from medicinal plants is a potential pharmaceutically acceptable target, as they do not have toxicity and the potential to disrupt biofilms produced by Staphylococcus aureus already evidenced, thus revealing their relevance to our study. OBJECTIVE The objective of this work was to perform a critical analysis of a patent with natural extracts against bacterial biofilms found in the United States Patent and Trademark Office (USPTO) database, to map the possible bioactive compounds that may serve as potential future antimicrobial drugs. METHODS A technological survey was carried out to verify existing patents using natural extracts with anti-biofilm potential. For this, it was searched with the keywords: Botanical extracts AND biofilms; which were performed in the United States Patent and Trademark Office (USPTO) database. Thus, the selected patent used a non-aqueous extract partitioned and vacuum-contracted, subsequently lyophilized for assays with antimicrobial potential. Because of this, a patent was analyzed regarding its chemistry, and biological activity, followed by a critical analysis of the technology proposed in the invention. RESULTS When using the keywords Botanical extracts AND biofilms in the USPTO, it was possible to find twenty-two inventions; however, only four patents in the USPTO were in agreement with the proposal of the natural extract having antimicrobial activity and an anti-biofilm potential, of which two belonged to the same applicant with similar proposals. The key point of this invention was to enable the compounds of the Castanea sativa plant and its methods of obtaining the extract to present a significant antimicrobial action associated or not with antibiotics, promoting the development of new therapies against bacterial infections capable of disrupting biofilms. The invention developed a methodology for extracting Castanea sativa, in which pentacyclic triterpene compounds were found mostly in its leaves. Whereas for the extraction, the crude methanol extracts called extracts 224 from the ground leaves were made by maceration, filtered, combined, concentrated under pressure in rotary evaporators, and lyophilized. After that, they were resuspended in water and partitioned in succession with hexane, ethyl acetate, and butanol. The most active refined partition was the 224C extract with the solvent ethyl acetate, which was subjected to further fractionation using silica column chromatography. Resulting in the most refined extract, which was 224C-F2, capable of acting directly on the quorum sensing of bacteria, mainly Staphylococcus aureus, blocking the translation of RNAIII, including a series of exotoxins. Regarding the antimicrobial capacity against Staphylococcus aureus, it presented Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of 1.56 μg/mL-1 and > 100 μg/mL -1, respectively. CONCLUSION Given the analyzed patent, it was possible to verify the importance of alternatives to reduce the impact of bacterial biofilms, which causes damage to industries in general and to health. From this, the invention analyzed has a promising proposal with antimicrobial potential focusing on the great impact of bacterial biofilms. Therefore, natural extracts with antibiofilmic potential can help to minimize the economic losses caused to health due to these multidrug-resistant microorganisms with different virulence mechanisms.
Collapse
|
6
|
Lee DJ, Choi JW, Kang JN, Lee SM, Park GH, Kim CK. Chromosome-Scale Genome Assembly and Triterpenoid Saponin Biosynthesis in Korean Bellflower (Platycodon grandiflorum). Int J Mol Sci 2023; 24:ijms24076534. [PMID: 37047506 PMCID: PMC10095269 DOI: 10.3390/ijms24076534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Platycodon grandiflorum belongs to the Campanulaceae family and is an important medicinal and food plant in East Asia. However, on the whole, the genome evolution of P. grandiflorum and the molecular basis of its major biochemical pathways are poorly understood. We reported a chromosome-scale genome assembly of P. grandiflorum based on a hybrid method using Oxford Nanopore Technologies, Illumina sequences, and high-throughput chromosome conformation capture (Hi-C) analysis. The assembled genome was finalized as 574 Mb, containing 41,355 protein-coding genes, and the genome completeness was assessed as 97.6% using a Benchmarking Universal Single-Copy Orthologs analysis. The P. grandiflorum genome comprises nine pseudo-chromosomes with 56.9% repeat sequences, and the transcriptome analysis revealed an expansion of the 14 beta-amylin genes related to triterpenoid saponin biosynthesis. Our findings provide an understanding of P. grandiflorum genome evolution and enable genomic-assisted breeding for the mass production of important components such as triterpenoid saponins.
Collapse
|
7
|
Choi HB, Shim S, Wang MH, Choi YE. De Novo Transcriptome Sequencing of Codonopsis lanceolata for Identification of Triterpene Synthase and Triterpene Acetyltransferase. Int J Mol Sci 2023; 24:ijms24065769. [PMID: 36982844 PMCID: PMC10056628 DOI: 10.3390/ijms24065769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Codonopsis lanceolata (Campanulaceae) is a perennial plant commonly known as the bonnet bellflower. This species is widely used in traditional medicine and is considered to have multiple medicinal properties. In this study, we found that shoots and roots of C. lanceolata contained various types of free triterpenes (taraxerol, β-amyrin, α-amyrin, and friedelin) and triterpene acetates (taraxerol acetate, β-amyrin acetate, and α-amyrin acetate). The content of triterpenes and triterpene acetates by GC analysis was higher in the shoot than in the roots. To investigate the transcriptional activity of genes involved in triterpenes and triterpene acetate biosynthesis, we performed de novo transcriptome analysis of shoots and roots of C. lanceolata by sequencing using the Illumina platform. A total of 39,523 representative transcripts were obtained. After functional annotation of the transcripts, the differential expression of genes involved in triterpene biosynthetic pathways was investigated. Generally, the transcriptional activity of unigenes in the upstream region (MVA and MEP pathway) of triterpene biosynthetic pathways was higher in shoots than in roots. Various triterpene synthases (2,3-oxidosqualene cyclase, OSC) participate to produce triterpene skeletons by the cyclization of 2,3-oxidosqualene. A total of fifteen contigs were obtained in annotated OSCs in the representative transcripts. Functional characterization of four OSC sequences by heterologous expression in yeast revealed that ClOSC1 was determined as taraxerol synthase, and ClOSC2 was a mixed-amyrin synthase producing α-amyrin and β-amyrin. Five putative contigs of triterpene acetyltransferases showed high homology to the lettuce triterpene acetyltransferases. Conclusively, this study provides the basis of molecular information, particularly for the biosynthesis of triterpenes and triterpene acetates in C. lanceolata.
Collapse
Affiliation(s)
- Han-Bin Choi
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sangrea Shim
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yong-Eui Choi
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
8
|
Wang Y, Wang B, Xu F, Ma X. Molecular Cloning and Functional Characterization of Oxidosqualene Cyclases from Panax vietnamensis. Chem Biodivers 2023; 20:e202200874. [PMID: 36635849 DOI: 10.1002/cbdv.202200874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023]
Abstract
Panax vietnamensis is a valuable medicinal resource with promising preclinical applications. Ginsenosides, which are triterpenoids, are the primary active components in P. vietnamensis. Oxidosqualene cyclases (OSCs) catalyze the formation of the basic skeleton of triterpenes from 2,3-oxidosqualene, which is a crucial step in the biosynthesis of triterpenoids. The OSCs involved in triterpenoid biosynthesis in P. vietnamensis have not yet been characterized. Four OSC genes (PvOSC1-4) were cloned from P. vietnamensis and functionally characterized via heterologous expression in yeast. Transgenic yeast expressing PvOSC1, PvOSC3, and PvOSC4 produced the corresponding products β-amyrin, cycloartenol, and dammarenediol-II, respectively. PvOSC1, PvOSC3, and PvOSC4 are monofunctional OSCs. In this study, we characterized three PvOSC genes, providing a better understanding of the biosynthesis of triterpenoids in P. vietnamensis and the multiple choices of plant OSCs for metabolic engineering in yeast and other hosts.
Collapse
Affiliation(s)
- Yibo Wang
- Key Laboratory of Yunnan Provincial Department of Education on Substance Benchmark Research of Ethnic Medicines, Yunnan University of Chinese Medicine, Kunming, 650500, China.,College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Baojie Wang
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Furong Xu
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xiaohui Ma
- Key Laboratory of Yunnan Provincial Department of Education on Substance Benchmark Research of Ethnic Medicines, Yunnan University of Chinese Medicine, Kunming, 650500, China.,College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| |
Collapse
|
9
|
Rodrigues JPB, Liberal Â, Petropoulos SA, Ferreira ICFR, Oliveira MBPP, Fernandes Â, Barros L. Agri-Food Surplus, Waste and Loss as Sustainable Biobased Ingredients: A Review. Molecules 2022; 27:molecules27165200. [PMID: 36014439 PMCID: PMC9412510 DOI: 10.3390/molecules27165200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Ensuring a sustainable supply of food for the world’s fast growing population is a major challenge in today’s economy, as modern lifestyle and increasing consumer concern with maintaining a balanced and nutritious diet is an important challenge for the agricultural sector worldwide. This market niche for healthier products, especially fruits and vegetables, has increased their production, consequently resulting in increased amounts of agri-food surplus, waste, and loss (SWL) generated during crop production, transportation, storage, and processing. Although many of these materials are not utilized, negatively affecting the environmental, economic, and social segments, they are a rich source of valuable compounds that could be used for different purposes, thus preventing the losses of natural resources and boosting a circular economy. This review aimed to give insights on the efficient management of agri-food SWL, considering conventional and emerging recovery and reuse techniques. Particularly, we explored and summarized the chemical composition of three worldwide cultivated and consumed vegetables (carrots, broccoli and lettuce) and evaluate the potential of their residues as a sustainable alternative for extracting value-added ingredients for the development of new biodynamic products.
Collapse
Affiliation(s)
- Joana P. B. Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ângela Liberal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Spyridon A. Petropoulos
- Laboratory of Vegetable Production, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, N. Ionia, 384 46 Volos, Greece
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Beatriz P. P. Oliveira
- REQUIMTE/Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (Â.F.); (L.B.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (Â.F.); (L.B.)
| |
Collapse
|
10
|
Jiao F, Tan Z, Yu Z, Zhou B, Meng L, Shi X. The phytochemical and pharmacological profile of taraxasterol. Front Pharmacol 2022; 13:927365. [PMID: 35991893 PMCID: PMC9386448 DOI: 10.3389/fphar.2022.927365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Taraxasterol is one of the bioactive triterpenoids found in dandelion, a member of the family Asteraceae. In the animal or cellular models of several ailments, including liver damage, gastritis, colitis, arthritis, pneumonia, tumors, and immune system diseases, taraxasterol has been shown to have significant preventive and therapeutic effects. This review aims to evaluate the current state of research and provide an overview of the possible applications of taraxasterol in various diseases. The reported phytochemical properties and pharmacological actions of taraxasterol, including anti-inflammatory, anti-oxidative, and anti-carcinogenic properties, and its potential molecular mechanisms in developing these diseases are highlighted. Finally, we further explored whether taraxasterol has protective effects on neuronal death in neurodegenerative diseases. In addition, more animal and clinical studies are also required on the metabolism, bioavailability, and safety of taraxasterol to support its applications in pharmaceuticals and medicine.
Collapse
Affiliation(s)
- Fengjuan Jiao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
- *Correspondence: Fengjuan Jiao,
| | - Zengyue Tan
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Zhonghua Yu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Bojie Zhou
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Lingyan Meng
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Xinyue Shi
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
11
|
Ye S, Feng L, Zhang S, Lu Y, Xiang G, Nian B, Wang Q, Zhang S, Song W, Yang L, Liu X, Feng B, Zhang G, Hao B, Yang S. Integrated Metabolomic and Transcriptomic Analysis and Identification of Dammarenediol-II Synthase Involved in Saponin Biosynthesis in Gynostemma longipes. FRONTIERS IN PLANT SCIENCE 2022; 13:852377. [PMID: 35401630 PMCID: PMC8990310 DOI: 10.3389/fpls.2022.852377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/28/2022] [Indexed: 05/17/2023]
Abstract
Gynostemma longipes contains an abundance of dammarane-type ginsenosides and gypenosides that exhibit extensive pharmacological activities. Increasing attention has been paid to the elucidation of cytochrome P450 monooxygenases (CYPs) and UDP-dependent glycosyltransferases (UGTs) that participate downstream of ginsenoside biosynthesis in the Panax genus. However, information on oxidosqualene cyclases (OSCs), the upstream genes responsible for the biosynthesis of different skeletons of ginsenoside and gypenosides, is rarely reported. Here, an integrative study of the metabolome and the transcriptome in the leaf, stolon, and rattan was conducted and the function of GlOSC1 was demonstrated. In total, 46 triterpenes were detected and found to be highly abundant in the stolon, whereas gene expression analysis indicated that the upstream OSC genes responsible for saponin skeleton biosynthesis were highly expressed in the leaf. These findings indicated that the saponin skeletons were mainly biosynthesized in the leaf by OSCs, and subsequently transferred to the stolon via CYPs and UGTs biosynthesis to form various ginsenoside and gypenosides. Additionally, a new dammarane-II synthase (DDS), GlOSC1, was identified by bioinformatics analysis, yeast expression assay, and enzyme assays. The results of the liquid chromatography-mass spectrometry (LC-MS) analysis proved that GlOSC1 could catalyze 2,3-oxidosqualene to form dammarenediol-II via cyclization. This work uncovered the biosynthetic mechanism of dammarenediol-II, an important starting substrate for ginsenoside and gypenosides biosynthesis, and may achieve the increased yield of valuable ginsenosides and gypenosides produced under excess substrate in a yeast cell factory through synthetic biology strategy.
Collapse
Affiliation(s)
- Shuang Ye
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Lei Feng
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Shiyu Zhang
- Centre for Mountain Futures, Kunming Institute of Botany, Kunming, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Yingchun Lu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Guisheng Xiang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Bo Nian
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Qian Wang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Shuangyan Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Wanling Song
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Ling Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Xiangyu Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Baowen Feng
- Honwin Pharma (Lianghe) Co., LTD., Dehong, China
| | - Guanghui Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Bing Hao
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
12
|
Vilkickyte G, Raudone L. Phenological and Geographical Effects on Phenolic and Triterpenoid Content in Vaccinium vitis-idaea L. Leaves. PLANTS 2021; 10:plants10101986. [PMID: 34685794 PMCID: PMC8539284 DOI: 10.3390/plants10101986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023]
Abstract
Lingonberry leaves have been proposed as a potential raw material for nutraceutical products and functional food due to the richness of phenolic and triterpenic compounds. However, contents of these bioactive compounds tend to vary greatly with physiological, climatic, and edaphic conditions, resulting in lingonberry leaves’ nutritional-pharmaceutical quality changes. In this context, we examined the effects of seasonal and geographical factors on phenolic and triterpenoid contents in lingonberry leaves. Quantitative and qualitative differences between samples were determined using validated HPLC-PDA methods. A total of 43 bioactive compounds were found at a detectable level throughout the year in young and old lingonberry leaves, with the highest contents of most compounds observed in samples collected in autumn–first half of spring. This suggests the potential to exploit the continuous biosynthesis for a longer harvesting season. Considerable variations in phytochemical profiles of lingonberry leaves, obtained from 28 locations in Lithuania, were found. Correlation analyses revealed significant negative correlations between contents of particular constituents and sunshine duration, temperature, and precipitation, and positive correlation with air humidity, longitudes, and altitudes of collecting locations and macronutrients in soil. These results suggest that harsh weather is favorable for most identified compounds and it may be possible to achieve appropriate accumulation of secondary metabolites by adjusting edaphic conditions. Taken together, the accumulation of phenolics and triterpenoids in lingonberry leaves highly depends on phenological and geographical factors and the influence of both variables differ for the particular compounds due to different metabolic processes in response to stresses.
Collapse
Affiliation(s)
- Gabriele Vilkickyte
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania;
- Correspondence: ; Tel.: +370-622-34977
| | - Lina Raudone
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania;
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania
| |
Collapse
|
13
|
Yang D, Han N, Wang YW, Zhai JX, Liu ZH, Li SK, Yin J. Pentacyclic Triterpenoid Saponins, Poterinasides A-J, from Silverweed Cinquefoil Roots Promising Hepatoprotective and Anti-inflammatory Agents. J Org Chem 2021; 86:11220-11236. [PMID: 34288682 DOI: 10.1021/acs.joc.1c00812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Silverweed cinquefoil roots, as dietary supplements, foods, and medicines, are widely used in western areas of China, specifically in Tibet Autonomous Region and Gansu and Qinghai Provinces. In this paper, 10 new natural pentacyclic triterpenoid saponins (1-10), named poterinasides A-J, along with 14 known compounds (11-24) were isolated and purified from silverweed cinquefoil roots. The chemical structures of 1-10 were established by extensive analysis of 1D and 2D NMR data and mass spectrometric data. Poterinasides A (1), B (2), and G (7) with the unique position of substituents on the E ring had never been discovered in natural products before. Saponins 1-8, 14, and 22 displayed potent hepatoprotective activities, and 1-8, 10, 11, 14, 16, 19, and 22-24 showed outstanding anti-inflammatory effects. On the basis of the present results, some structure-activity relationships were summarized, in which 3α-OH, 19β-CH3, 20α-CH3, 20β-CH3, 21α-OH, and 30-OH groups in isolated pentacyclic triterpenoid saponins were found to strengthen the hepatoprotective and anti-inflammatory activities, respectively. Further, the following pharmacophore-based virtual screening and docking studies on special targets proteins, SIRT1 and COX-2, revealed roughly similar results with the structure-activity relationships, and this combination method was used for the first time for active natural compound screening.
Collapse
Affiliation(s)
- Dan Yang
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Na Han
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu-Wei Wang
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian-Xiu Zhai
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhi-Hui Liu
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Si-Kai Li
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jun Yin
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
14
|
Choi HS, Han JY, Cheong EJ, Choi YE. Characterization of a Pentacyclic Triterpene Acetyltransferase Involved in the Biosynthesis of Taraxasterol and ψ-Taraxasterol Acetates in Lettuce. FRONTIERS IN PLANT SCIENCE 2021; 12:788356. [PMID: 35046976 PMCID: PMC8762322 DOI: 10.3389/fpls.2021.788356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/26/2021] [Indexed: 05/05/2023]
Abstract
Triterpenoids exist in a free state and/or in conjugated states, such as triterpene glycosides (saponins) or triterpene esters. There is no information on the enzyme participating in the production of triterpene esters from free triterpenes. Lettuce (Lactuca sativa) contains various pentacyclic triterpene acetates (taraxasterol acetates, ψ-taraxasterol acetates, taraxerol acetates, lupeol acetates, α-amyrin acetates, β-amyrin acetates, and germanicol acetate). In this study, we report a novel triterpene acetyltransferase (LsTAT1) in lettuce involved in the biosynthesis of pentacyclic triterpene acetates from free triterpenes. The deduced amino acid sequences of LsTAT1 showed a phylogenetic relationship (43% identity) with those of sterol O-acyltransferase (AtSAT1) of Arabidopsis thaliana and had catalytic amino acid residues (Asn and His) that are typically conserved in membrane-bound O-acyltransferase (MBOAT) family proteins. An analysis of LsTAT1 enzyme activity in a cell-free system revealed that the enzyme exhibited activity for the acetylation of taraxasterol, ψ-taraxasterol, β-amyrin, α-amyrin, lupeol, and taraxerol using acetyl-CoA as an acyl donor but no activity for triterpene acylation using a fatty acyl donor. Lettuce oxidosqualene cyclase (LsOSC1) is a triterpene synthase that produces ψ-taraxasterol, taraxasterol, β-amyrin and α-amyrin. The ectopic expression of both the LsOSC1 and LsTAT1 genes in yeast and tobacco could produce taraxasterol acetate, ψ-taraxasterol acetate, β-amyrin acetate, and α-amyrin acetate. However, expression of the LsTAT1 gene in tobacco was unable to induce the conversion of intrinsic sterols (campesterol, stigmasterol, and β-sitosterol) to sterol acetates. The results demonstrate that the LsTAT1 enzyme is a new class of acetyltransferase belong to the MBOAT family that have a particular role in the acetylation of pentacyclic triterpenes and are thus functionally different from sterol acyltransferase conjugating fatty acyl esters.
Collapse
|