1
|
Yaghobi M, Heidari P. Genome-Wide Analysis of Aquaporin Gene Family in Triticum turgidum and Its Expression Profile in Response to Salt Stress. Genes (Basel) 2023; 14:genes14010202. [PMID: 36672943 PMCID: PMC9859376 DOI: 10.3390/genes14010202] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
During the response of plants to water stresses, aquaporin (AQP) plays a prominent role in membrane water transport based on the received upstream signals. Due to the importance of the AQP gene family, studies have been conducted that investigate the function and regulatory system of these genes. However, many of their molecular aspects are still unknown. This study aims to carry out a genome-wide investigation of the AQP gene family in Triticum turgidum using bioinformatics tools and to investigate the expression patterns of some members in response to salt stress. Our results show that there are 80 TtAQP genes in T. turgidum, which are classified into four main groups based on phylogenetic analysis. Several duplications were observed between the members of the TtAQP gene family, and high diversity in response to post-translational modifications was observed between TtAQP family members. The expression pattern of TtAQP genes disclosed that these genes are primarily upregulated in response to salt stress. Additionally, the qPCR data revealed that TtAQPs are more induced in delayed responses to salinity stress. Overall, our findings illustrate that TtAQP members are diverse in terms of their structure, regulatory systems, and expression levels.
Collapse
|
2
|
Tayade R, Rana V, Shafiqul M, Nabi RBS, Raturi G, Dhar H, Thakral V, Kim Y. Genome-Wide Identification of Aquaporin Genes in Adzuki Bean ( Vigna angularis) and Expression Analysis under Drought Stress. Int J Mol Sci 2022; 23:ijms232416189. [PMID: 36555833 PMCID: PMC9782098 DOI: 10.3390/ijms232416189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
The adzuki bean Vigna angularis (Wild.) is an important leguminous crop cultivated mainly for food purposes in Asian countries; it represents a source of carbohydrates, digestible proteins, minerals, and vitamins. Aquaporins (AQPs) are crucial membrane proteins involved in the transmembrane diffusion of water and small solutes in all living organisms, including plants. In this study, we used the whole genome sequence of the adzuki bean for in silico analysis to comprehensively identify 40 Vigna angularis aquaporin (VaAQP) genes and reveal how these plants react to drought stress. VaAQPs were compared with AQPs from other closely-related leguminous plants, and the results showed that mustard (Brassica rapa) (59), barrel medic (Medicago truncatula) (46), soybean (Glycine max) (66), and common bean (Phaseolus vulgaris L.) (41) had more AQP genes. Phylogenetic analysis revealed that forty VaAQPs belong to five subfamilies, with the VaPIPs (fifteen) subfamily the largest, followed by the VaNIPs (ten), VaTIPs (ten), VaSIPs (three), and VaXIPs (two) subfamilies. Furthermore, all AQP subcellular locations were found at the plasma membrane, and intron-exon analysis revealed a relationship between the intron number and gene expression, duplication, evolution, and diversity. Among the six motifs identified, motifs one, two, five, and six were prevalent in VaTIP, VaNIP, VaPIP, and VaXIP, while motifs one, three, and four were not observed in VaPIP1-3 and VaPIP1-4. Under drought stress, two of the VaAQPs (VaPIP2-1 and VaPIP2-5) showed significantly higher expression in the root tissue while the other two genes (VaPIP1-1 and VaPIP1-7) displayed variable expression in leaf tissue. This finding revealed that the selected VaAQPs might have unique molecular functions linked with the uptake of water under drought stress or in the exertion of osmoregulation to transport particular substrates rather than water to protect plants from drought. This study presents the first thorough investigation of VaAQPs in adzuki beans, and it reveals the transport mechanisms and related physiological processes that may be utilized for the development of drought-tolerant adzuki bean cultivars.
Collapse
Affiliation(s)
- Rupesh Tayade
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Varnika Rana
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India
| | - Mohammad Shafiqul
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Rizwana Begum Syed Nabi
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India
| | - Hena Dhar
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India
| | - Vandana Thakral
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India
| | - Yoonha Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Correspondence: ; Tel./Fax: +82-53-950-5710
| |
Collapse
|
3
|
Yi X, Sun X, Tian R, Li K, Ni M, Ying J, Xu L, Liu L, Wang Y. Genome-Wide Characterization of the Aquaporin Gene Family in Radish and Functional Analysis of RsPIP2-6 Involved in Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:860742. [PMID: 35909741 PMCID: PMC9337223 DOI: 10.3389/fpls.2022.860742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Aquaporins (AQPs) constitute a highly diverse family of channel proteins that transport water and neutral solutes. AQPs play crucial roles in plant development and stress responses. However, the characterization and biological functions of RsAQPs in radish (Raphanus sativus L.) remain elusive. In this study, 61 non-redundant members of AQP-encoding genes were identified from the radish genome database and located on nine chromosomes. Radish AQPs (RsAQPs) were divided into four subfamilies, including 21 plasma membrane intrinsic proteins (PIPs), 19 tonoplast intrinsic proteins (TIPs), 16 NOD-like intrinsic proteins (NIPs), and 5 small basic intrinsic proteins (SIPs), through phylogenetic analysis. All RsAQPs contained highly conserved motifs (motifs 1 and 4) and transmembrane regions, indicating the potential transmembrane transport function of RsAQPs. Tissue- and stage-specific expression patterns of AQP gene analysis based on RNA-seq data revealed that the expression levels of PIPs were generally higher than TIPs, NIPs, and SIPs in radish. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) revealed that seven selected RsPIPs, according to our previous transcriptome data (e.g., RsPIP1-3, 1-6, 2-1, 2-6, 2-10, 2-13, and 2-14), exhibited significant upregulation in roots of salt-tolerant radish genotype. In particular, the transcriptional levels of RsPIP2-6 dramatically increased after 6 h of 150 mM NaCl treatment during the taproot thickening stage. Additionally, overexpression of RsPIP2-6 could enhance salt tolerance by Agrobacterium rhizogenes-mediated transgenic radish hairy roots, which exhibited the mitigatory effects of plant growth reduction, leaf relative water content (RWC) reduction and alleviation of O2- in cells, as shown by nitro blue tetrazolium (NBT) staining, under salt stress. These findings are helpful for deeply dissecting the biological function of RsAQPs on the salt stress response, facilitating practical application and genetic improvement of abiotic stress resistance in radish.
Collapse
Affiliation(s)
- Xiaofang Yi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiaochuan Sun
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Rong Tian
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kexin Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Meng Ni
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiali Ying
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Luo Y, Ma L, Du W, Yan S, Wang Z, Pang Y. Identification and Characterization of Salt- and Drought-Responsive AQP Family Genes in Medicagosativa L. Int J Mol Sci 2022; 23:ijms23063342. [PMID: 35328763 PMCID: PMC8950044 DOI: 10.3390/ijms23063342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
Aquaporins (AQP) are distributed ubiquitously in plants, and they play important roles in multiple aspects of plant growth and development, as well as in plant resistance to various environmental stresses. In this study, 43 MsAQP genes were identified in the forage crop Medicago sativa. All the MsAQP proteins were clustered into four subfamilies based on sequence similarity and phylogenetic relationship, including 17 TIPs, 14 NIPs, 9 PIPs and 3 SIPs. Analyses of gene structure and conserved domains indicated that the majority of the deduced MsAQP proteins contained the signature transmembrane domains and the NPA motifs. Analyses on cis-acting elements in the promoter region of MsAQP genes revealed the presence of multiple and diverse stress-responsive and hormone-responsive cis-acting elements. In addition, by analyzing the available and comprehensive gene expression data of M. truncatula, we screened ten representative MtAQP genes that were responsive to NaCl or drought stress. By analyzing the sequence similarity and phylogenetic relationship, we finally identified the corresponding ten salt- or drought-responsive AQP genes in M. sativa, including three MsTIPs, three MsPIPs and four MsNIPs. The qPCRs showed that the relative expression levels of these ten selected MsAQP genes responded differently to NaCl or drought treatment in M. sativa. Gene expression patterns showed that most MsAQP genes were preferentially expressed in roots or in leaves, which may reflect their tissue-specific functions associated with development. Our results lay an important foundation for the future characterization of the functions of MsAQP genes, and provide candidate genes for stress resistance improvement through genetic breeding in M. sativa.
Collapse
Affiliation(s)
- Yijing Luo
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (S.Y.)
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (L.M.); (W.D.)
| | - Lin Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (L.M.); (W.D.)
| | - Wenxuan Du
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (L.M.); (W.D.)
| | - Su Yan
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (S.Y.)
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (L.M.); (W.D.)
| | - Zengyu Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (S.Y.)
- Correspondence: (Z.W.); (Y.P.)
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (L.M.); (W.D.)
- Correspondence: (Z.W.); (Y.P.)
| |
Collapse
|
5
|
Reddy PS, Dhaware MG, Sivasakthi K, Divya K, Nagaraju M, Sri Cindhuri K, Kavi Kishor PB, Bhatnagar-Mathur P, Vadez V, Sharma KK. Pearl Millet Aquaporin Gene PgPIP2;6 Improves Abiotic Stress Tolerance in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2022; 13:820996. [PMID: 35356115 PMCID: PMC8959815 DOI: 10.3389/fpls.2022.820996] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/13/2022] [Indexed: 05/24/2023]
Abstract
Pearl millet [Pennisetum glaucum (L) R. Br.] is an important cereal crop of the semiarid tropics, which can withstand prolonged drought and heat stress. Considering an active involvement of the aquaporin (AQP) genes in water transport and desiccation tolerance besides several basic functions, their potential role in abiotic stress tolerance was systematically characterized and functionally validated. A total of 34 AQP genes from P. glaucum were identified and categorized into four subfamilies, viz., plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), nodulin-26-like intrinsic proteins (NIPs), and small basic intrinsic proteins (SIPs). Sequence analysis revealed that PgAQPs have conserved characters of AQP genes with a closer relationship to sorghum. The PgAQPs were expressed differentially under high vapor pressure deficit (VPD) and progressive drought stresses where the PgPIP2;6 gene showed significant expression under high VPD and drought stress. Transgenic tobacco plants were developed by heterologous expression of the PgPIP2;6 gene and functionally characterized under different abiotic stresses to further unravel their role. Transgenic tobacco plants in the T2 generations displayed restricted transpiration and low root exudation rates in low- and high-VPD conditions. Under progressive drought stress, wild-type (WT) plants showed a quick or faster decline of soil moisture than transgenics. While under heat stress, PgPIP2;6 transgenics showed better adaptation to heat (40°C) with high canopy temperature depression (CTD) and low transpiration; under low-temperature stress, they displayed lower transpiration than their non-transgenic counterparts. Cumulatively, lower transpiration rate (Tr), low root exudation rate, declined transpiration, elevated CTD, and lower transpiration indicate that PgPIP2;6 plays a role under abiotic stress tolerance. Since the PgPIP2;6 transgenic plants exhibited better adaptation against major abiotic stresses such as drought, high VPD, heat, and cold stresses by virtue of enhanced transpiration efficiency, it has the potential to engineer abiotic stress tolerance for sustained growth and productivity of crops.
Collapse
Affiliation(s)
| | - Mahamaya G. Dhaware
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Kaliamoorthy Sivasakthi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Kummari Divya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Marka Nagaraju
- Department of Biochemistry, ICMR – National Institute of Nutrition, Hyderabad, India
| | - Katamreddy Sri Cindhuri
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Polavarapu Bilhan Kavi Kishor
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, India
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Vincent Vadez
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Kiran K. Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| |
Collapse
|
6
|
Wang X, Lu K, Yao X, Zhang L, Wang F, Wu D, Peng J, Chen X, Du J, Wei J, Ma J, Chen L, Zou S, Zhang C, Zhang M, Dong H. The Aquaporin TaPIP2;10 Confers Resistance to Two Fungal Diseases in Wheat. PHYTOPATHOLOGY 2021; 111:2317-2331. [PMID: 34058861 DOI: 10.1094/phyto-02-21-0048-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plants employ aquaporins (AQPs) of the plasma membrane intrinsic protein (PIP) family to import environmental substrates, thereby affecting various processes, such as the cellular responses regulated by the signaling molecule hydrogen peroxide (H2O2). Common wheat (Triticum aestivum) contains 24 candidate members of the PIP family, designated as TaPIP1;1 to TaPIP1;12 and TaPIP2;1 to TaPIP2;12. None of these TaPIP candidates have been characterized for substrate selectivity or defense responses in their source plant. Here, we report that T. aestivum AQP TaPIP2;10 facilitates the cellular uptake of H2O2 to confer resistance against powdery mildew and Fusarium head blight, two devastating fungal diseases in wheat throughout the world. In wheat, the apoplastic H2O2 signal is induced by fungal attack, while TaPIP2;10 is stimulated to translocate this H2O2 into the cytoplasm, where it activates defense responses to restrict further attack. TaPIP2;10-mediated transport of H2O2 is essential for pathogen-associated molecular pattern-triggered plant immunity (PTI). Typical PTI responses are induced by the fungal infection and intensified by overexpression of the TaPIP2;10 gene. TaPIP2;10 overexpression causes a 70% enhancement in wheat resistance to powdery mildew and an 86% enhancement in resistance to Fusarium head blight. By reducing the disease severities, TaPIP2;10 overexpression brings about >37% increase in wheat grain yield. These results verify the feasibility of using an immunity-relevant AQP to concomitantly improve crop productivity and immunity.
Collapse
Affiliation(s)
- Xiaobing Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Kai Lu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Xiaohui Yao
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Liyuan Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Fubin Wang
- Institute of Environmental Sciences & Resources and Plant Protection, Jining Academy of Agricultural Sciences, Jining, Shandon Province 272000, China
| | - Degong Wu
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui Province 233100, China
| | - Jinfeng Peng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Xiaochen Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Junli Du
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui Province 233100, China
| | - Jiankun Wei
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Jingyu Ma
- Institute of Environmental Sciences & Resources and Plant Protection, Jining Academy of Agricultural Sciences, Jining, Shandon Province 272000, China
| | - Lei Chen
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Shenshen Zou
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Chunling Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Meixiang Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Hansong Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong Province 271018, China
| |
Collapse
|
7
|
Liu J, Qin G, Liu C, Liu X, Zhou J, Li J, Lu B, Zhao J. Genome-wide identification of candidate aquaporins involved in water accumulation of pomegranate outer seed coat. PeerJ 2021; 9:e11810. [PMID: 34316414 PMCID: PMC8286702 DOI: 10.7717/peerj.11810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/27/2021] [Indexed: 01/25/2023] Open
Abstract
Aquaporins (AQPs) are a class of highly conserved integral membrane proteins that facilitate the uptake and transport of water and other small molecules across cell membranes. However, little is known about AQP genes in pomegranate (Punica granatum L.) and their potential role in water accumulation of the outer seed coat. We identified 38 PgrAQP genes in the pomegranate genome and divided them into five subfamilies based on a comparative analysis. Purifying selection played a role in the evolution of PgrAQP genes and a whole-genome duplication event in Myrtales may have contributed to the expansion of PgrTIP, PgrSIP, and PgrXIP genes. Transcriptome data analysis revealed that the PgrAQP genes exhibited different tissue-specific expression patterns. Among them, the transcript abundance of PgrPIPs were significantly higher than that of other subfamilies. The mRNA transcription levels of PgrPIP1.3, PgrPIP2.8, and PgrSIP1.2 showed a significant linear relationship with water accumulation in seed coats, indicating that PgrPIP1.3/PgrPIP2.8 located in the plasma membrane and PgrSIP1.2 proteins located on the tonoplast may be involved in water accumulation and contribute to the cell expansion of the outer seed coat, which then develops into juicy edible flesh. Overall, our results provided not only information on the characteristics and evolution of PgrAQPs, but also insights on the genetic improvement of outer seed coats.
Collapse
Affiliation(s)
- Jianjian Liu
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China.,Institute of Horticultural Research (Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Anhui Province), Anhui Academy of Agricultural Sciences, Hefei, China
| | - Gaihua Qin
- Institute of Horticultural Research (Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Anhui Province), Anhui Academy of Agricultural Sciences, Hefei, China.,Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Chunyan Liu
- Institute of Horticultural Research (Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Anhui Province), Anhui Academy of Agricultural Sciences, Hefei, China.,Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xiuli Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiyu Li
- Institute of Horticultural Research (Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Anhui Province), Anhui Academy of Agricultural Sciences, Hefei, China.,Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Bingxin Lu
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| | - Jianrong Zhao
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| |
Collapse
|
8
|
Ovrutska I. Aquaporins in regulation of plant protective responses to drought. UKRAINIAN BOTANICAL JOURNAL 2021. [DOI: 10.15407/ukrbotj78.03.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plasmolemma permeability is an integral indicator of the functional state of plant cells under stress. Aquaporins (AQPs), specialized transmembrane proteins that form water channels and play an important role in the adaptation of plants to adverse conditions and, in particular, to lack or excess of water, are involved in the formation of the response to drought. The main function of AQPs is to facilitate the movement of water across cell membranes and maintain aqueous cell homeostasis. Under stressful conditions, there is both an increase and decrease in the expression of individual aquaporin genes. Analysis of the data revealed differences in the expression of AQPs genes in stable and sensitive plant genotypes. It turned out that aquaporins in different stress-resistant varieties of the same species also respond differently to drought. The review provides brief information on the history of the discovery of aquaporins, the structure and function of these proteins, summarizes the latest information on the role of aquaporins in the regulation of metabolism and the response of plants to stressors, with particular emphasis on aquaporins in drought protection. The discovery and study of AQPs expands the possibilities of using genetic engineering methods for the selection of new plant species, in particular, more resistant to drought and salinization of the soil, as well as to increase their productivity. The use of aquaporins in biotechnology to improve drought resistance of various species has many prospects.
Collapse
|
9
|
Leng H, Jiang C, Song X, Lu M, Wan X. Poplar aquaporin PIP1;1 promotes Arabidopsis growth and development. BMC PLANT BIOLOGY 2021; 21:253. [PMID: 34082706 PMCID: PMC8173918 DOI: 10.1186/s12870-021-03017-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/05/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Root hydraulic conductance is primarily determined by the conductance of living tissues to radial water flow. Plasma membrane intrinsic proteins (PIPs) in root cortical cells are important for plants to take up water and are believed to be directly involved in cell growth. RESULTS In this study, we found that constitutive overexpression of the poplar root-specific gene PtoPIP1;1 in Arabidopsis accelerated bolting and flowering. At the early stage of the developmental process, PtoPIP1;1 OE Arabidopsis exhibited faster cell growth in both leaves and roots. The turgor pressure of plants was correspondingly increased in PtoPIP1;1 OE Arabidopsis, and the water status was changed. At the same time, the expression levels of flowering-related genes (CRY1, CRY2 and FCA) and hub genes in the regulatory networks underlying floral timing (FT and SOC1) were significantly upregulated in OE plants, while the floral repressor FLC gene was significantly downregulated. CONCLUSIONS Taken together, the results of our study indicate that constitutive overexpression of PtoPIP1;1 in Arabidopsis accelerates bolting and flowering through faster cell growth in both the leaf and root at an early stage of the developmental process. The autonomous pathway of flowering regulation may be executed by monitoring developmental age. The increase in turgor and changes in water status with PtoPIP1;1 overexpression play a role in promoting cell growth.
Collapse
Affiliation(s)
- Huani Leng
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Cheng Jiang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Xueqin Song
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Jiangsu, 210037, China.
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Jiangsu, 210037, China
| | - Xianchong Wan
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
10
|
Patel J, Mishra A. Plant aquaporins alleviate drought tolerance in plants by modulating cellular biochemistry, root-architecture, and photosynthesis. PHYSIOLOGIA PLANTARUM 2021; 172:1030-1044. [PMID: 33421148 DOI: 10.1111/ppl.13324] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/04/2020] [Accepted: 12/21/2020] [Indexed: 05/09/2023]
Abstract
Water is a vital resource for plants to grow, thrive, and complete their life cycle. In recent years, drastic changes in the climate, especially drought frequency and severity, have increased, which reduces agricultural productivity worldwide. Aquaporins are membrane channels belonging to the major intrinsic protein superfamily, which play an essential role in cellular water and osmotic homeostasis of plants under both control and water deficit conditions. A genome-wide search reveals the vast availability of aquaporin isoforms, phylogenetic relationships, different families, conserved residues, chromosomal locations, and gene structure of aquaporins. Furthermore, aquaporins gating and subcellular trafficking are commonly controlled by phosphorylation, cytosolic pH, divalent cations, reactive oxygen species, and stoichiometry. Researchers have identified their involvement in regulating hydraulic conductance, root system architecture, modulation of abiotic stress-related genes, seed viability and germination, phloem loading, xylem water exit, photosynthetic parameters, and post-drought recovery. Remarkable effects following the change in aquaporin activity and/or gene expression have been observed on root water transport properties, nutrient acquisition, physiology, transpiration, stomatal aperture, gas exchange, and water use efficiency. The present review highlights the role of different aquaporin homologs under water-deficit stress condition in model and crop plants. Moreover, the opportunity and challenges encountered to explore aquaporins for engineering drought-tolerant crop plants are also discussed here.
Collapse
Affiliation(s)
- Jaykumar Patel
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Avinash Mishra
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
11
|
Vats S, Sudhakaran S, Bhardwaj A, Mandlik R, Sharma Y, Kumar S, Tripathi DK, Sonah H, Sharma TR, Deshmukh R. Targeting aquaporins to alleviate hazardous metal(loid)s imposed stress in plants. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124910. [PMID: 33453583 DOI: 10.1016/j.jhazmat.2020.124910] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Uptake of hazardous metal(loid)s adversely affects plants and imposes a threat to the entire food chain. Here, the role of aquaporins (AQPs) providing tolerance against hazardous metal(loid)s in plants is discussed to provide a perspective on the present understanding, knowledge gaps, and opportunities. Plants adopt complex molecular and physiological mechanisms for better tolerance, adaptability, and survival under metal(loid)s stress. Water conservation in plants is one such primary strategies regulated by AQPs, a family of channel-forming proteins facilitating the transport of water and many other solutes. The strategy is more evident with reports suggesting differential expression of AQPs adopted by plants to cope with the heavy metal stress. In this regard, numerous studies showing enhanced tolerance against hazardous elements in plants due to AQPs activity are discussed. Consequently, present understanding of various aspects of AQPs, such as tertiary-structure, transport activity, solute-specificity, differential expression, gating mechanism, and subcellular localization, are reviewed. Similarly, various tools and techniques are discussed in detail aiming at efficient utilization of resources and knowledge to combat metal(loid)s stress. The scope of AQP transgenesis focusing on heavy metal stresses is also highlighted. The information provided here will be helpful to design efficient strategies for the development of metal(loid)s stress-tolerant crops.
Collapse
Affiliation(s)
- Sanskriti Vats
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Sreeja Sudhakaran
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India; Department of Biotechnology, Punjab University, Chandigarh, India
| | - Anupriya Bhardwaj
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India; Department of Biotechnology, Punjab University, Chandigarh, India
| | - Rushil Mandlik
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India; Department of Biotechnology, Punjab University, Chandigarh, India
| | - Yogesh Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Sudhir Kumar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.
| |
Collapse
|
12
|
Characterization of Plant Growth-Promoting Traits and Inoculation Effects on Triticum durum of Actinomycetes Isolates under Salt Stress Conditions. SOIL SYSTEMS 2021. [DOI: 10.3390/soilsystems5020026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study aimed to characterize the halotolerant capability, in vitro, of selected actinomycetes strains and to evaluate their competence in promoting halo stress tolerance in durum wheat in a greenhouse experiment. Fourteen isolates were tested for phosphate solubilization, indole acetic acid, hydrocyanic acid, and ammonia production under different salt concentrations (i.e., 0, 0.25, 0.5, 0.75, 1, 1.25, and 1.5 M NaCl). The presence of 1-aminocyclopropane-1-carboxylate deaminase activity was also investigated. Salinity tolerance was evaluated in durum wheat through plant growth and development parameters: shoot and root length, dry and ash-free dry weight, and the total chlorophyll content, as well as proline accumulation. In vitro assays have shown that the strains can solubilize inorganic phosphate and produce indole acetic acid, hydrocyanic acid, and ammonia under different salt concentrations. Most of the strains (86%) had 1-aminocyclopropane-1-carboxylate deaminase activity, with significant amounts of α-ketobutyric acid. In the greenhouse experiment, inoculation with actinomycetes strains improved the morpho-biochemical parameters of durum wheat plants, which also recorded significantly higher content of chlorophylls and proline than those uninoculated, both under normal and stressed conditions. Our results suggest that inoculation of halotolerant actinomycetes can mitigate the negative effects of salt stress and allow normal growth and development of durum wheat plants.
Collapse
|
13
|
Barzana G, Rios JJ, Lopez-Zaplana A, Nicolas-Espinosa J, Yepes-Molina L, Garcia-Ibañez P, Carvajal M. Interrelations of nutrient and water transporters in plants under abiotic stress. PHYSIOLOGIA PLANTARUM 2021; 171:595-619. [PMID: 32909634 DOI: 10.1111/ppl.13206] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 05/12/2023]
Abstract
Environmental changes cause abiotic stress in plants, primarily through alterations in the uptake of the nutrients and water they require for their metabolism and growth and to maintain their cellular homeostasis. The plasma membranes of cells contain transporter proteins, encoded by their specific genes, responsible for the uptake of nutrients and water (aquaporins). However, their interregulation has rarely been taken into account. Therefore, in this review we identify how the plant genome responds to abiotic stresses such as nutrient deficiency, drought, salinity and low temperature, in relation to both nutrient transporters and aquaporins. Some general responses or regulation mechanisms can be observed under each abiotic stress such as the induction of plasma membrane transporter expression during macronutrient deficiency, the induction of tonoplast transporters and reduction of aquaporins during micronutrients deficiency. However, drought, salinity and low temperatures generally cause an increase in expression of nutrient transporters and aquaporins in tolerant plants. We propose that both types of transporters (nutrients and water) should be considered jointly in order to better understand plant tolerance of stresses.
Collapse
Affiliation(s)
- Gloria Barzana
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Juan J Rios
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Alvaro Lopez-Zaplana
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Juan Nicolas-Espinosa
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Lucía Yepes-Molina
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Paula Garcia-Ibañez
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| |
Collapse
|
14
|
The pip1s Quintuple Mutants Demonstrate the Essential Roles of PIP1s in the Plant Growth and Development of Arabidopsis. Int J Mol Sci 2021; 22:ijms22041669. [PMID: 33562315 PMCID: PMC7915877 DOI: 10.3390/ijms22041669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 11/17/2022] Open
Abstract
Plasma membrane intrinsic proteins (PIPs) transport water, CO2 and small neutral solutes across the plasma membranes. In this study, we used the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 system (CRISPR/Cas9) to mutate PIP1;4 and PIP1;5 in a pip1;1,2,3 triple mutant to generate a pip1;1,2,3,4,5 (pip1s−) quintuple mutant. Compared to the wild-type (WT) plant, the pip1s− mutants had smaller sized rosette leaves and flowers, less rosette leaf number, more undeveloped siliques, shorter silique and less seeds. The pollen germination rate of the pip1s− mutant was significantly lower than that of the WT and the outer wall of the pip1s− mutant’s pollen was deformed. The transcriptomic analysis showed significant alterations in the expression of many key genes and transcription factors (TFs) in the pip1s− mutant which involved in the development of leaf, flower and pollen, suggesting that the mutant of PIP1s not only directly affects hydraulics and carbon fixation, but also regulates the expression of related genes to affect plant growth and development.
Collapse
|
15
|
Arsova B, Foster KJ, Shelden MC, Bramley H, Watt M. Dynamics in plant roots and shoots minimize stress, save energy and maintain water and nutrient uptake. THE NEW PHYTOLOGIST 2020; 225:1111-1119. [PMID: 31127613 DOI: 10.1111/nph.15955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/19/2019] [Indexed: 05/12/2023]
Abstract
Plants are inherently dynamic. Dynamics minimize stress while enabling plants to flexibly acquire resources. Three examples are presented for plants tolerating saline soil: transport of sodium chloride (NaCl), water and macronutrients is nonuniform along a branched root; water and NaCl redistribute between shoot and soil at night-time; and ATP for salt exclusion is much lower in thinner branch roots than main roots, quantified using a biophysical model and geometry from anatomy. Noninvasive phenotyping and precision agriculture technologies can be used together to harness plant dynamics, but analytical methods are needed. A plant advancing in time through a soil and atmosphere space is proposed as a framework for dynamic data and their relationship to crop improvement.
Collapse
Affiliation(s)
- Borjana Arsova
- Root Dynamics Group, Institute for Bio and Geosciences-2, Plant Sciences, Forschungszentrum Juelich GmbH, Juelich, 52428, Germany
| | - Kylie J Foster
- Phenomics and Bioinformatics Research Centre, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Megan C Shelden
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Helen Bramley
- School of Life and Environmental Sciences, Plant Breeding Institute and Sydney Institute of Agriculture, The University of Sydney, Narrabri, NSW, 2390, Australia
| | - Michelle Watt
- Root Dynamics Group, Institute for Bio and Geosciences-2, Plant Sciences, Forschungszentrum Juelich GmbH, Juelich, 52428, Germany
| |
Collapse
|
16
|
Zhu YX, Yang L, Liu N, Yang J, Zhou XK, Xia YC, He Y, He YQ, Gong HJ, Ma DF, Yin JL. Genome-wide identification, structure characterization, and expression pattern profiling of aquaporin gene family in cucumber. BMC PLANT BIOLOGY 2019; 19:345. [PMID: 31390991 PMCID: PMC6686268 DOI: 10.1186/s12870-019-1953-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 07/31/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Aquaporin (AQP) proteins comprise a group of membrane intrinsic proteins (MIPs) that are responsible for transporting water and other small molecules, which is crucial for plant survival under stress conditions including salt stress. Despite the vital role of AQPs, little is known about them in cucumber (Cucumis sativus L.). RESULTS In this study, we identified 39 aquaporin-encoding genes in cucumber that were separated by phylogenetic analysis into five sub-families (PIP, TIP, NIP, SIP, and XIP). Their substrate specificity was then assessed based on key amino acid residues such as the aromatic/Arginine (ar/R) selectivity filter, Froger's positions, and specificity-determining positions. The putative cis-regulatory motifs available in the promoter region of each AQP gene were analyzed and results revealed that their promoter regions contain many abiotic related cis-regulatory elements. Furthermore, analysis of previously released RNA-seq data revealed tissue- and treatment-specific expression patterns of cucumber AQP genes (CsAQPs). Three aquaporins (CsTIP1;1, CsPIP2;4, and CsPIP1;2) were the most transcript abundance genes, with CsTIP1;1 showing the highest expression levels among all aquaporins. Subcellular localization analysis in Nicotiana benthamiana epidermal cells revealed the diverse and broad array of sub-cellular localizations of CsAQPs. We then performed RNA-seq to identify the expression pattern of CsAQPs under salt stress and found a general decreased expression level of root CsAQPs. Moreover, qRT-PCR revealed rapid changes in the expression levels of CsAQPs in response to diverse abiotic stresses including salt, polyethylene glycol (PEG)-6000, heat, and chilling stresses. Additionally, transient expression of AQPs in N. benthamiana increased leaf water loss rate, suggesting their potential roles in the regulation of plant water status under stress conditions. CONCLUSIONS Our results indicated that CsAQPs play important roles in response to salt stress. The genome-wide identification and primary function characterization of cucumber aquaporins provides insight to elucidate the complexity of the AQP gene family and their biological functions in cucumber.
Collapse
Affiliation(s)
- Yong-Xing Zhu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Lei Yang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Ning Liu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Jie Yang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Xiao-Kang Zhou
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Yu-Chen Xia
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Yang He
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Yi-Qin He
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Hai-Jun Gong
- College of Horticulture, Northwest A and F University, Yangling, 712100 Shaanxi China
| | - Dong-Fang Ma
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Jun-Liang Yin
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| |
Collapse
|
17
|
Ayadi M, Brini F, Masmoudi K. Overexpression of a Wheat Aquaporin Gene, TdPIP2;1, Enhances Salt and Drought Tolerance in Transgenic Durum Wheat cv. Maali. Int J Mol Sci 2019; 20:E2389. [PMID: 31091755 PMCID: PMC6566926 DOI: 10.3390/ijms20102389] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 01/24/2023] Open
Abstract
In this study, we generated transgenic durum wheat cv. Maali overexpressing the wheat plasma membrane aquaporin TdPIP2;1 gene under the control of PrTdPIP2;1 promoter or under the constitutive PrCaMV35S promoter. Histochemical analysis of the fusion PrTdPIP2;1::TdPIP2;1::GusA in wheat plants showed that the β-glucuronidase (GUS) activity was detected in the leaves, stems and roots of stably transformed wheat T3 plants. Our results showed that transgenic wheat lines overexpressing the TdPIP2;1 gene exhibited improved germination rates and biomass production and retained low Na+ and high K+ concentrations in their shoots under high salt and osmotic stress conditions. In a long-term study under greenhouse conditions on salt or drought stress, transgenic TdPIP2;1 lines produced filled grains, whereas wild-type (WT) plants either died at the vegetative stage under salt stress or showed drastically reduced grain filling under drought stress. Performing real time RT-PCR experiments on wheat plants transformed with the fusion PrTdPIP2;1::GusA, we showed an increase in the accumulation of GusA transcripts in the roots of plants challenged with salt and drought stress. Study of the antioxidant defence system in transgenic wheat TdPIP2;1 lines showed that these lines induced the antioxidative enzymes Catalase (CAT) and Superoxide dismutase (SOD) activities more efficiently than the WT plants, which is associated with lower malondialdehyde and hydrogen peroxide contents. Taken together, these results indicate the high potential of the TdPIP2;1 gene for reducing water evaporation from leaves (water loss) in response to water deficit through the lowering of transpiration per unit leaf area (stomatal conductance) and engineering effective drought and salt tolerance in transgenic TdPIP2;1 lines.
Collapse
Affiliation(s)
- Malika Ayadi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P 1177, 3018 Sfax, Tunisia.
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P 1177, 3018 Sfax, Tunisia.
| | - Khaled Masmoudi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P 1177, 3018 Sfax, Tunisia.
| |
Collapse
|
18
|
Overexpression of the Jojoba Aquaporin Gene, ScPIP1, Enhances Drought and Salt Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2019; 20:ijms20010153. [PMID: 30609831 PMCID: PMC6337393 DOI: 10.3390/ijms20010153] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/25/2018] [Accepted: 12/26/2018] [Indexed: 11/16/2022] Open
Abstract
Plasma membrane intrinsic proteins (PIPs) are a subfamily of aquaporin proteins located on plasma membranes where they facilitate the transport of water and small uncharged solutes. PIPs play an important role throughout plant development, and in response to abiotic stresses. Jojoba (Simmondsia chinensis (Link) Schneider), as a typical desert plant, tolerates drought, salinity and nutrient-poor soils. In this study, a PIP1 gene (ScPIP1) was cloned from jojoba and overexpressed in Arabidopsis thaliana. The expression of ScPIP1 at the transcriptional level was induced by polyethylene glycol (PEG) treatment. ScPIP1 overexpressed Arabidopsis plants exhibited higher germination rates, longer roots and higher survival rates compared to the wild-type plants under drought and salt stresses. The results of malonaldehyde (MDA), ion leakage (IL) and proline content measurements indicated that the improved drought and salt tolerance conferred by ScPIP1 was correlated with decreased membrane damage and improved osmotic adjustment. We assume that ScPIP1 may be applied to genetic engineering to improve plant tolerance based on the resistance effect in transgenic Arabidopsis overexpressing ScPIP1.
Collapse
|
19
|
Watts-Williams SJ, Cavagnaro TR, Tyerman SD. Variable effects of arbuscular mycorrhizal fungal inoculation on physiological and molecular measures of root and stomatal conductance of diverse Medicago truncatula accessions. PLANT, CELL & ENVIRONMENT 2019; 42:285-294. [PMID: 29933517 DOI: 10.1111/pce.13369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/17/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Association with arbuscular mycorrhizal fungi (AMF) can impact on plant water relations; mycorrhizal plants can exhibit increased stomatal conductance (gs ) and root hydraulic conductance (normalized to root dry weight, Lo ), and altered expression of aquaporins (AQP). Many factors regulate such responses; however, plant intraspecific diversity effects have yet to be explored. Twenty geographically diverse accessions of Medicago truncatula were inoculated with the AMF Funneliformis mosseae or mock-inoculated, and grown under well-watered conditions. Biomass, gs , shoot nutrient concentrations and mycorrhizal colonization were measured in all accessions, and Lo and gene expression in five accessions. The diverse accessions varied in physiology and gene expression; some accessions were also larger or had higher gs when colonized by F. mosseae. In the five accessions, Lo was higher in two accessions when colonized by AMF and also maintained within a much smaller range than the mock-inoculated plants. Expression of MtPIP1 correlated with both gs and Lo , and when plants were more than 3% colonized, mycorrhizal colonization correlated with Lo . Accession and AMF treatments had profound effects on M. truncatula, including several measures of plant water relations. Correlations between response variables, especially between molecular and physiological variables, across genotypes, highlight the findings of this study.
Collapse
Affiliation(s)
- Stephanie J Watts-Williams
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Adelaide, Glen Osmond, South Australia, Australia
| | - Timothy R Cavagnaro
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, Australia
| | - Stephen D Tyerman
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Adelaide, Glen Osmond, South Australia, Australia
| |
Collapse
|
20
|
Molecular insights into the plasma membrane intrinsic proteins roles for abiotic stress and metalloids tolerance and transport in plants. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40502-018-0425-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Nowicka B, Ciura J, Szymańska R, Kruk J. Improving photosynthesis, plant productivity and abiotic stress tolerance - current trends and future perspectives. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:415-433. [PMID: 30412849 DOI: 10.1016/j.jplph.2018.10.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 05/02/2023]
Abstract
With unfavourable climate changes and an increasing global population, there is a great need for more productive and stress-tolerant crops. As traditional methods of crop improvement have probably reached their limits, a further increase in the productivity of crops is expected to be possible using genetic engineering. The number of potential genes and metabolic pathways, which when genetically modified could result in improved photosynthesis and biomass production, is multiple. Photosynthesis, as the only source of carbon required for the growth and development of plants, attracts much attention is this respect, especially the question concerning how to improve CO2 fixation and limit photorespiration. The most promising direction for increasing CO2 assimilation is implementating carbon concentrating mechanisms found in cyanobacteria and algae into crop plants, while hitherto performed experiments on improving the CO2 fixation versus oxygenation reaction catalyzed by Rubisco are less encouraging. On the other hand, introducing the C4 pathway into C3 plants is a very difficult challenge. Among other points of interest for increased biomass production is engineering of metabolic regulation, certain proteins, nucleic acids or phytohormones. In this respect, enhanced sucrose synthesis, assimilate translocation to sink organs and starch synthesis is crucial, as is genetic engineering of the phytohormone metabolism. As abiotic stress tolerance is one of the key factors determining crop productivity, extensive studies are being undertaken to develop transgenic plants characterized by elevated stress resistance. This can be accomplished due to elevated synthesis of antioxidants, osmoprotectants and protective proteins. Among other promising targets for the genetic engineering of plants with elevated stress resistance are transcription factors that play a key role in abiotic stress responses of plants. In this review, most of the approaches to improving the productivity of plants that are potentially promising and have already been undertaken are described. In addition to this, the limitations faced, potential challenges and possibilities regarding future research are discussed.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Joanna Ciura
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Renata Szymańska
- Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Kraków, Poland.
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
22
|
Sun H, Wang S, Lou Y, Zhu C, Zhao H, Li Y, Li X, Gao Z. Whole-Genome and Expression Analyses of Bamboo Aquaporin Genes Reveal Their Functions Involved in Maintaining Diurnal Water Balance in Bamboo Shoots. Cells 2018; 7:cells7110195. [PMID: 30400256 PMCID: PMC6262470 DOI: 10.3390/cells7110195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
Water supply is essential for maintaining normal physiological function during the rapid growth of bamboo. Aquaporins (AQPs) play crucial roles in water transport for plant growth and development. Although 26 PeAQPs in bamboo have been reported, the aquaporin-led mechanism of maintaining diurnal water balance in bamboo shoots remains unclear. In this study, a total of 63 PeAQPs were identified, based on the updated genome of moso bamboo (Phyllostachys edulis), including 22 PePIPs, 20 PeTIPs, 17 PeNIPs, and 4 PeSIPs. All of the PeAQPs were differently expressed in 26 different tissues of moso bamboo, based on RNA sequencing (RNA-seq) data. The root pressure in shoots showed circadian rhythm changes, with positive values at night and negative values in the daytime. The quantitative real-time PCR (qRT-PCR) result showed that 25 PeAQPs were detected in the base part of the shoots, and most of them demonstrated diurnal rhythm changes. The expression levels of some PeAQPs were significantly correlated with the root pressure. Of the 86 sugar transport genes, 33 had positive co-expression relationships with 27 PeAQPs. Two root pressure-correlated PeAQPs, PeTIP4;1 and PeTIP4;2, were confirmed to be highly expressed in the parenchyma and epidermal cells of bamboo culm, and in the epidermis, pith, and primary xylem of bamboo roots by in situ hybridization. The authors’ findings provide new insights and a possible aquaporin-led mechanism for bamboo fast growth.
Collapse
Affiliation(s)
- Huayu Sun
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China.
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA.
| | - Sining Wang
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China.
| | - Yongfeng Lou
- Jiangxi Academy of Forestry, Nanchang 330013, China.
| | - Chenglei Zhu
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China.
| | - Hansheng Zhao
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China.
| | - Ying Li
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China.
| | - Xueping Li
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China.
| | - Zhimin Gao
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China.
| |
Collapse
|
23
|
Kumar J, Gunapati S, Kianian SF, Singh SP. Comparative analysis of transcriptome in two wheat genotypes with contrasting levels of drought tolerance. PROTOPLASMA 2018; 255:1487-1504. [PMID: 29651660 DOI: 10.1007/s00709-018-1237-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/05/2018] [Indexed: 05/19/2023]
Abstract
Drought tolerance is a complex trait that is governed by multiple genes. The study presents differential transcriptome analysis between drought-tolerant (Triticum aestivum Cv. C306) and drought-sensitive (Triticum aestivum Cv. WL711) genotypes, using Affymetrix GeneChip® Wheat Genome Array. Both genotypes exhibited diverse global transcriptional responses under control and drought conditions. Pathway analysis suggested significant induction or repression of genes involved in secondary metabolism, nucleic acid synthesis, protein synthesis, and transport in C306, as compared to WL711. Significant up- and downregulation of transcripts for enzymes, hormone metabolism, and stress response pathways were observed in C306 under drought. The elevated expression of plasma membrane intrinsic protein 1 and downregulation of late embryogenesis abundant in the leaf tissues could play an important role in delayed wilting in C306. The other regulatory genes such as MT, FT, AP2, SKP1, ABA2, ARF6, WRKY6, AOS, and LOX2 are involved in defense response in C306 genotype. Additionally, transcripts with unknown functions were identified as differentially expressed, which could participate in drought responses.
Collapse
Affiliation(s)
- Jitendra Kumar
- National Agri-Food Biotechnology Institute, Mohali, India
- USDA-ARS Cereal Disease Laboratory, St. Paul, MN, USA
| | - Samatha Gunapati
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | | | - Sudhir P Singh
- National Agri-Food Biotechnology Institute, Mohali, India.
- Center of Innovative and Applied Bioprocessing, Mohali, India.
| |
Collapse
|
24
|
Cooperativity in Plant Plasma Membrane Intrinsic Proteins (PIPs): Mechanism of Increased Water Transport in Maize PIP1 Channels in Hetero-tetramers. Sci Rep 2018; 8:12055. [PMID: 30104609 PMCID: PMC6089885 DOI: 10.1038/s41598-018-30257-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/10/2018] [Indexed: 11/08/2022] Open
Abstract
Plant aquaporins (AQPs) play vital roles in several physiological processes. Plasma membrane intrinsic proteins (PIPs) belong to the subfamily of plant AQPs. They are further subdivided into two closely related subgroups PIP1s and PIP2s. While PIP2 members are efficient water channels, PIP1s from some plant species have been shown to be functionally inactive. Aquaporins form tetramers under physiological conditions. PIP2s can enhance the water transport of PIP1s when they form hetero-tetramers. However, the role of monomer-monomer interface and the significance of specific residues in enhancing the water permeation of PIP1s have not been investigated at atomic level. We have performed all-atom molecular dynamics (MD) simulations of homo-tetramers and four different hetero-tetramers containing ZmPIP1;2 and ZmPIP2;5 from Zea mays. ZmPIP1;2 in a tetramer assembly will have two interfaces, one formed by transmembrane segments TM4 and TM5 and the other formed by TM1 and TM2. We have analyzed channel radius profiles, water transport and potential of mean force profiles of ZmPIP1;2 monomers. Results of MD simulations clearly revealed the influence of TM4-TM5 interface in modulating the water transport of ZmPIP1;2. MD simulations indicate the importance of I93 residue from the TM2 segment of ZmPIP2;5 for the increased water transport in ZmPIP1;2.
Collapse
|
25
|
Vajpai M, Mukherjee M, Sankararamakrishnan R. Cooperativity in Plant Plasma Membrane Intrinsic Proteins (PIPs): Mechanism of Increased Water Transport in Maize PIP1 Channels in Hetero-tetramers. Sci Rep 2018; 8:12055. [PMID: 30104609 DOI: 10.1101/239780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/10/2018] [Indexed: 05/26/2023] Open
Abstract
Plant aquaporins (AQPs) play vital roles in several physiological processes. Plasma membrane intrinsic proteins (PIPs) belong to the subfamily of plant AQPs. They are further subdivided into two closely related subgroups PIP1s and PIP2s. While PIP2 members are efficient water channels, PIP1s from some plant species have been shown to be functionally inactive. Aquaporins form tetramers under physiological conditions. PIP2s can enhance the water transport of PIP1s when they form hetero-tetramers. However, the role of monomer-monomer interface and the significance of specific residues in enhancing the water permeation of PIP1s have not been investigated at atomic level. We have performed all-atom molecular dynamics (MD) simulations of homo-tetramers and four different hetero-tetramers containing ZmPIP1;2 and ZmPIP2;5 from Zea mays. ZmPIP1;2 in a tetramer assembly will have two interfaces, one formed by transmembrane segments TM4 and TM5 and the other formed by TM1 and TM2. We have analyzed channel radius profiles, water transport and potential of mean force profiles of ZmPIP1;2 monomers. Results of MD simulations clearly revealed the influence of TM4-TM5 interface in modulating the water transport of ZmPIP1;2. MD simulations indicate the importance of I93 residue from the TM2 segment of ZmPIP2;5 for the increased water transport in ZmPIP1;2.
Collapse
Affiliation(s)
- Manu Vajpai
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Mishtu Mukherjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | | |
Collapse
|
26
|
Song S, Xu Y, Huang D, Miao H, Liu J, Jia C, Hu W, Valarezo AV, Xu B, Jin Z. Identification of a novel promoter from banana aquaporin family gene (MaTIP1;2) which responses to drought and salt-stress in transgenic Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 128:163-169. [PMID: 29778840 DOI: 10.1016/j.plaphy.2018.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Drought and salt stresses often affect plant growth and crop yields. Identification of promoters involved in drought and salt stress responses is of great significance for genetic improvement of crop resistance. Our previous studies showed that aquaporin can respond to drought and salt stresses, but its promoter has not yet been reported in plants. In the present study, cis-acting elements of MaAQP family member promoters were systematically analyzed in banana. Expression of MaTIP1; 2 was induced by drought and salt stresses but not sensitive to cold stress, waterlogging stress, or mechanical damage, and its promoter contained five stress-related cis-acting elements. The MaTIP1; 2 promoter (841 bp upstream of translation initiation site) from banana (Musa acuminata L. AAA group cv. Brazilian) was isolated through genome walking polymerase chain reaction, and found to contain a TATA Box, CAAT box, ABRE element, CCGTCC box, CGTCA motif, and TCA element. Transformation of the MaTIP1; 2 promoter into Arabidopsis to assess its function indicated that it responds to both drought and salt stress treatments. These results suggest that MaTIP1; 2 utilization may improve drought and salt stresses resistance of the transgenic plants by promoting banana aquaporin expression.
Collapse
Affiliation(s)
- Shun Song
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China; National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research(Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yi Xu
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dongmei Huang
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hongxia Miao
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Juhua Liu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Caihong Jia
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wei Hu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Ana Valeria Valarezo
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Biyu Xu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| | - Zhiqiang Jin
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| |
Collapse
|
27
|
Chen Q, Yang S, Kong X, Wang C, Xiang N, Yang Y, Yang Y. Molecular cloning of a plasma membrane aquaporin in Stipa purpurea, and exploration of its role in drought stress tolerance. Gene 2018; 665:41-48. [PMID: 29709638 DOI: 10.1016/j.gene.2018.04.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 11/18/2022]
Abstract
Stipa purpurea is widely distributed on the Tibetan Plateau, and has high drought resistance. Plasma membrane intrinsic proteins are a type of aquaporin. They regulate the movement of water and are associated with plant protective reactions to biotic and abiotic stresses. We characterized a plasma membrane intrinsic protein from S. purpurea (SpPIP1) and elucidated its role in molecular aspects of the plant's response to drought stress. The full-length open reading frame of SpPIP1 was 870 bp and encoded 289 amino acids. The transcript level of SpPIP1 was higher in the root of S. purpurea than in the flower, leaf and stem. The level of SpPIP1 transcript increased significantly when treated with drought treatment. Subcellular localization result showed that SpPIP1 was localized in the plasma membrane. Ectopic expression of SpPIP1 in Arabidopsis thaliana resulted in plants with higher tolerance to drought treatment. SpPIP1 of S. purpurea may mediate plant response to arid environments.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, China; Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Shihai Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, China; Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiangxiang Kong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, China; Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Chuntao Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, China; Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Nan Xiang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, China; Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yunqiang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, China; Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, China; Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
28
|
Kapilan R, Vaziri M, Zwiazek JJ. Regulation of aquaporins in plants under stress. Biol Res 2018; 51:4. [PMID: 29338771 PMCID: PMC5769316 DOI: 10.1186/s40659-018-0152-0] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/11/2018] [Indexed: 01/16/2023] Open
Abstract
Aquaporins (AQP) are channel proteins belonging to the Major Intrinsic Protein (MIP) superfamily that play an important role in plant water relations. The main role of aquaporins in plants is transport of water and other small neutral molecules across cellular biological membranes. AQPs have remarkable features to provide an efficient and often, specific water flow and enable them to transport water into and out of the cells along the water potential gradient. Plant AQPs are classified into five main subfamilies including the plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), nodulin 26 like intrinsic proteins (NIPs), small basic intrinsic proteins (SIPs) and X intrinsic proteins (XIPs). AQPs are localized in the cell membranes and are found in all living cells. However, most of the AQPs that have been described in plants are localized to the tonoplast and plasma membranes. Regulation of AQP activity and gene expression, are also considered as a part of the adaptation mechanisms to stress conditions and rely on complex processes and signaling pathways as well as complex transcriptional, translational and posttranscriptional factors. Gating of AQPs through different mechanisms, such as phosphorylation, tetramerization, pH, cations, reactive oxygen species, phytohormones and other chemical agents, may play a key role in plant responses to environmental stresses by maintaining the uptake and movement of water in the plant body.
Collapse
Affiliation(s)
| | - Maryam Vaziri
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
29
|
Rabeh K, Gaboun F, Belkadi B, Filali-Maltouf A. In Silico development of new SSRs primer for aquaporin linked to drought tolerance in plants. PLANT SIGNALING & BEHAVIOR 2018; 13:e1536630. [PMID: 30380988 PMCID: PMC6279315 DOI: 10.1080/15592324.2018.1536630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plants are exposed to various stress factors including biotic and abiotic stresses. Drought is a limiting factor that minimizes the development and growth of several plants in arid and semi-arid regions. Stress response is usually occur at different levels, Morphological, physiological and biochemical while at the molecular level a large number of genes are involved. This study aims at developing a new SSR primer for aquaporin related to drought stress in plants. A total of 177 complete coding sequences (CDS) available in the NCBI database are downloaded. After analyzing with BLAST, 163 sequences are selected. 1294 SSR derived from these sequences are characterized with MISA and indicating that all sequences contained SSRs. The most abundant SSR has been tetra-nucleotide repeat motif (36%) and among all the tetra-nucleotide repeats, the motif AAAG/CTTT was the most common type, whereas in tri-nucleotide, the motif CCG/CGG has been the predominate type. By using Primer3, 1120 primer pairs are generated and after analyzing, only 735 non redundant primer pairs that present the good characteristics are selected. Among them, some of the pairs of primers are randomly selected and validated on DNA of various species using PCR and agarose gel.
Collapse
Affiliation(s)
- Karim Rabeh
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Fatima Gaboun
- Biotechnology Unit, National Institute for Agronomic Research (INRA), Rabat, Morocco
| | - Bouchra Belkadi
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Abdelkarim Filali-Maltouf
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
- CONTACT Abdelkarim Filali-Maltouf ; a.
| |
Collapse
|
30
|
Bienert MD, Diehn TA, Richet N, Chaumont F, Bienert GP. Heterotetramerization of Plant PIP1 and PIP2 Aquaporins Is an Evolutionary Ancient Feature to Guide PIP1 Plasma Membrane Localization and Function. FRONTIERS IN PLANT SCIENCE 2018; 9:382. [PMID: 29632543 PMCID: PMC5879115 DOI: 10.3389/fpls.2018.00382] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/08/2018] [Indexed: 05/21/2023]
Abstract
Aquaporins (AQPs) are tetrameric channel proteins regulating the transmembrane flux of small uncharged solutes and in particular water in living organisms. In plants, members of the plasma membrane intrinsic protein (PIP) AQP subfamily are important for the maintenance of the plant water status through the control of cell and tissue hydraulics. The PIP subfamily is subdivided into two groups: PIP1 and PIP2 that exhibit different water-channel activities when expressed in Xenopus oocytes or yeast cells. Most PIP1 and PIP2 isoforms physically interact and assemble in heterotetramers to modulate their subcellular localization and channel activity when they are co-expressed in oocytes, yeasts, and plants. Whether the interaction between different PIPs is stochastic or controlled by cell regulatory processes is still unknown. Here, we analyzed the water transport activity and the subcellular localization behavior of the complete PIP subfamily (SmPIP1;1, SmPIP2;1, and SmPIP2;2) of the lycophyte Selaginella moellendorffii upon (co-)expression in yeast and Xenopus oocytes. As observed for most of the PIP1 and PIP2 isoforms in other species, SmPIP1;1 was retained in the ER while SmPIP2;1 was found in the plasma membrane but, upon co-expression, both isoforms were found in the plasma membrane, leading to a synergistic effect on the water membrane permeability. SmPIP2;2 behaves as a PIP1, being retained in the endoplasmic reticulum when expressed alone in oocytes or in yeasts. Interestingly, in contrast to the oocyte system, in yeasts no synergistic effect on the membrane permeability was observed upon SmPIP1;1/SmPIP2;1 co-expression. We also demonstrated that SmPIP2;1 is permeable to water and the signaling molecule hydrogen peroxide. Moreover, growth- and complementation assays in the yeast system showed that heteromerization in all possible SmPIP combinations did not modify the substrate specificity of the channels. These results suggest that the characteristics known for angiosperm PIP1 and PIP2 isoforms in terms of their water transport activity, trafficking, and interaction emerged already as early as in non-seed vascular plants. The existence and conservation of these characteristics may argue for the fact that PIP2s are indeed involved in the delivery of PIP1s to the plasma membrane and that the formation of functional heterotetramers is of biological relevance.
Collapse
Affiliation(s)
- Manuela D. Bienert
- Metalloid Transport Group, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Till A. Diehn
- Metalloid Transport Group, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Nicolas Richet
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Gerd P. Bienert
- Metalloid Transport Group, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- *Correspondence: Gerd P. Bienert,
| |
Collapse
|
31
|
Are Aquaporins (AQPs) the Gateway that Conduits Nutrients, Persistent Organic Pollutants and Perfluoroalkyl Substances (PFASs) into Plants? ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40362-017-0045-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Roche JV, Törnroth-Horsefield S. Aquaporin Protein-Protein Interactions. Int J Mol Sci 2017; 18:ijms18112255. [PMID: 29077056 PMCID: PMC5713225 DOI: 10.3390/ijms18112255] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022] Open
Abstract
Aquaporins are tetrameric membrane-bound channels that facilitate transport of water and other small solutes across cell membranes. In eukaryotes, they are frequently regulated by gating or trafficking, allowing for the cell to control membrane permeability in a specific manner. Protein–protein interactions play crucial roles in both regulatory processes and also mediate alternative functions such as cell adhesion. In this review, we summarize recent knowledge about aquaporin protein–protein interactions; dividing the interactions into three types: (1) interactions between aquaporin tetramers; (2) interactions between aquaporin monomers within a tetramer (hetero-tetramerization); and (3) transient interactions with regulatory proteins. We particularly focus on the structural aspects of the interactions, discussing the small differences within a conserved overall fold that allow for aquaporins to be differentially regulated in an organism-, tissue- and trigger-specific manner. A deep knowledge about these differences is needed to fully understand aquaporin function and regulation in many physiological processes, and may enable design of compounds targeting specific aquaporins for treatment of human disease.
Collapse
Affiliation(s)
- Jennifer Virginia Roche
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Box 124, 221 00 Lund, Sweden.
| | - Susanna Törnroth-Horsefield
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Box 124, 221 00 Lund, Sweden.
| |
Collapse
|
33
|
Groszmann M, Osborn HL, Evans JR. Carbon dioxide and water transport through plant aquaporins. PLANT, CELL & ENVIRONMENT 2017; 40:938-961. [PMID: 27739588 DOI: 10.1111/pce.12844] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/01/2016] [Accepted: 09/22/2016] [Indexed: 05/25/2023]
Abstract
Aquaporins are channel proteins that function to increase the permeability of biological membranes. In plants, aquaporins are encoded by multigene families that have undergone substantial diversification in land plants. The plasma membrane intrinsic proteins (PIPs) subfamily of aquaporins is of particular interest given their potential to improve plant water relations and photosynthesis. Flowering plants have between 7 and 28 PIP genes. Their expression varies with tissue and cell type, through development and in response to a variety of factors, contributing to the dynamic and tissue specific control of permeability. There are a growing number of PIPs shown to act as water channels, but those altering membrane permeability to CO2 are more limited. The structural basis for selective substrate specificities has not yet been resolved, although a few key amino acid positions have been identified. Several regions important for dimerization, gating and trafficking are also known. PIP aquaporins assemble as tetramers and their properties depend on the monomeric composition. PIPs control water flux into and out of veins and stomatal guard cells and also increase membrane permeability to CO2 in mesophyll and stomatal guard cells. The latter increases the effectiveness of Rubisco and can potentially influence transpiration efficiency.
Collapse
Affiliation(s)
- Michael Groszmann
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Hannah L Osborn
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - John R Evans
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
34
|
|
35
|
Song J, Ye G, Qian Z, Ye Q. Virus-induced plasma membrane aquaporin PsPIP2;1 silencing inhibits plant water transport of Pisum sativum. BOTANICAL STUDIES 2016; 57:15. [PMID: 28597425 PMCID: PMC5430582 DOI: 10.1186/s40529-016-0135-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/13/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND Aquaporins (AQPs) are known to facilitate water transport across cell membranes, but the role of a single AQP in regulating plant water transport, particularly in plants other than Arabidopsis remains largely unexplored. In the present study, a virus-induced gene silencing (VIGS) technique was employed to suppress the expression of a specific plasma membrane aquaporin PsPIP2;1 of Pea plants (Pisum sativum), and subsequent effects of the gene suppression on root hydraulic conductivity (Lpr), leaf hydraulic conductivity (K leaf ), root cell hydraulic conductivity (Lprc), and leaf cell hydraulic conductivity (Lplc) were investigated, using hydroponically grown Pea plants. RESULTS Compared with control plants, VIGS-PsPIP2;1 plants displayed a significant suppression of PsPIP2;1 in both roots and leaves, while the expression of other four PIP isoforms (PsPIP1;1, PsPIP1;2, PsPIP2;2, and PsPIP2;3) that were simultaneously monitored were not altered. As a consequence, significant declines in water transport of VIGS-PsPIP2;1 plants were observed at both organ and cell levels, i.e., as compared to control plants, Lpr and K leaf were reduced by 29 %, and Lprc and Lplc were reduced by 20 and 29 %, respectively. CONCLUSION Our results demonstrate that PsPIP2;1 alone contributes substantially to root and leaf water transport in Pea plants, and highlight VIGS a useful tool for investigating the role of a single AQP in regulating plant water transport.
Collapse
Affiliation(s)
- Juanjuan Song
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, 510650 China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, 510650 Guangdong China
| | - Guoliang Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049 China
| | - Zhengjiang Qian
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049 China
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, 510650 China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, 510650 Guangdong China
| |
Collapse
|
36
|
Li R, Wang J, Li S, Zhang L, Qi C, Weeda S, Zhao B, Ren S, Guo YD. Plasma Membrane Intrinsic Proteins SlPIP2;1, SlPIP2;7 and SlPIP2;5 Conferring Enhanced Drought Stress Tolerance in Tomato. Sci Rep 2016; 6:31814. [PMID: 27545827 PMCID: PMC4992886 DOI: 10.1038/srep31814] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/26/2016] [Indexed: 11/30/2022] Open
Abstract
The function of aquaporin (AQP) protein in transporting water is crucial for plants to survive in drought stress. With 47 homologues in tomato (Solanum lycopersicum) were reported, but the individual and integrated functions of aquaporins involved in drought response remains unclear. Here, three plasma membrane intrinsic protein genes, SlPIP2;1, SlPIP2;7 and SlPIP2;5, were identified as candidate aquaporins genes because of highly expressed in tomato roots. Assay on expression in Xenopus oocytes demonstrated that SlPIP2s protein displayed water channel activity and facilitated water transport into the cells. With real-time PCR and in situ hybridization analysis, SlPIP2s were considered to be involved in response to drought treatment. To test its function, transgenic Arabidopsis and tomato lines overexpressing SlPIP2;1, SlPIP2;7 or SlPIP2;5 were generated. Compared with wild type, the over-expression of SlPIP2;1, SlPIP2;7 or SlPIP2;5 transgenic Arabidopsis and tomato plants all showed significantly higher hydraulic conductivity levels and survival rates under both normal and drought conditions. Taken together, this study concludes that aquaporins (SlPIP2;1, SlPIP2;7 and SlPIP2;5) contribute substantially to root water uptake in tomato plants through improving plant water content and maintaining osmotic balance.
Collapse
Affiliation(s)
- Ren Li
- College of Horticulture, China Agricultural University, 100193 Beijing, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Jinfang Wang
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Shuangtao Li
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Lei Zhang
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Chuandong Qi
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Sarah Weeda
- School of Agriculture, Virginia State University, PO Box 9061, Petersburg, VA 23806, USA
| | - Bing Zhao
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Shuxin Ren
- School of Agriculture, Virginia State University, PO Box 9061, Petersburg, VA 23806, USA
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| |
Collapse
|
37
|
Berny MC, Gilis D, Rooman M, Chaumont F. Single Mutations in the Transmembrane Domains of Maize Plasma Membrane Aquaporins Affect the Activity of Monomers within a Heterotetramer. MOLECULAR PLANT 2016; 9:986-1003. [PMID: 27109604 DOI: 10.1016/j.molp.2016.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/16/2016] [Accepted: 04/10/2016] [Indexed: 05/23/2023]
Abstract
Aquaporins are channels facilitating the diffusion of water and/or small uncharged solutes across biological membranes. They assemble as homotetramers but some of them also form heterotetramers, especially in plants. In Zea mays, aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily are clustered into two groups, PIP1 and PIP2, which exhibit different water-channel activities when expressed in Xenopus oocytes. When PIP1 and PIP2 isoforms are co-expressed, they physically interact to modulate their subcellular localization and channel activity. Here, we demonstrated by affinity chromatography purification that, when co-expressed in Xenopus oocytes, the maize PIP1;2 and PIP2;5 isoforms assemble as homo- and heterodimers within heterotetramers. We built the 3D structure of such heterotetramers by comparative modeling on the basis of the spinach SoPIP2;1 X-ray structure and identified amino acid residues in the transmembrane domains which putatively interact at the interfaces between monomers. Their roles in the water-channel activity, subcellular localization, protein abundance, and physical interaction were investigated by mutagenesis. We highlighted single-residue substitutions that either inactivated PIP2;5 or activated PIP1;2 without affecting their interaction. Interestingly, the Phe220Ala mutation in the transmembrane domain 5 of PIP1;2 activated its water-channel activity and, at the same time, inactivated PIP2;5 within a heterotetramer. Altogether, these data contribute to a better understanding of the interaction mechanisms between PIP isoforms and the role of heterotetramerization on their water-channel activity.
Collapse
Affiliation(s)
- Marie C Berny
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Dimitri Gilis
- Bioinformatique génomique et structurale, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Marianne Rooman
- Bioinformatique génomique et structurale, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
38
|
Genome-wide identification and characterization of aquaporin gene family in moso bamboo (Phyllostachys edulis). Mol Biol Rep 2016; 43:437-50. [PMID: 26993482 DOI: 10.1007/s11033-016-3973-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
Aquaporins (AQPs) are known to play a major role in maintaining water and hydraulic conductivity balance in the plant system. Numerous studies have showed AQPs execute multi-function throughout plant growth and development, including water transport, nitrogen, carbon, and micronutrient acquisition etc. However, little information on AQPs is known in bamboo. In this study, we present the first genome-wide identification and characterization of AQP genes in moso bamboo (Phyllostachys edulis) using bioinformatics. In total, 26 AQP genes were identified by homologous analysis, which were divided into four groups (PIPs, TIPs, NIPs, and SIPs) based on the phylogenetic analysis. All the genes were located on 26 different scaffolds respectively on basis of the gene mapped to bamboo genome. Evolutionary analysis indicated that Ph. edulis was more close to Oryza sativa than Zea mays in the genetic relationship. Besides, qRT-PCR was used to analyze gene expression profiles, which revealed that AQP genes were expressed constitutively in all the detected tissues, and were all responsive to the environmental cues such as drought, water, and NaCl stresses. This data suggested that AQPs may play fundamental roles in maintaining normal growth and development of bamboo, which would contribute to better understanding for the complex regulation mechanism involved in the fast-growing process of bamboo. Furthermore, the result could provide valuable information for further research on bamboo functional genomics.
Collapse
|
39
|
Sutka MR, Manzur ME, Vitali VA, Micheletto S, Amodeo G. Evidence for the involvement of hydraulic root or shoot adjustments as mechanisms underlying water deficit tolerance in two Sorghum bicolor genotypes. JOURNAL OF PLANT PHYSIOLOGY 2016; 192:13-20. [PMID: 26803215 DOI: 10.1016/j.jplph.2016.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 05/26/2023]
Abstract
Sorghum bicolor (L.) Moench is an ancient drought-tolerant crop with potential to sustain high yields even in those environments where water is limiting. Understanding the performance of this species in early phenological stages could be a useful tool for future yield improvement programs. The aim of this work was to study the response of Sorghum seedlings under water deficit conditions in two genotypes (RedLandB2 and IS9530) that are currently employed in Argentina. Morphological and physiological traits were studied to present an integrated analysis of the shoot and root responses. Although both genotypes initially developed a conserved and indistinguishable response in terms of drought tolerance parameters (growth rate, biomass reallocation, etc.), water regulation displayed different underlying strategies. To avoid water loss, both genotypes adjusted their plant hydraulic resistance at different levels: RedLandB2 regulated shoot resistance through stomata (isohydric strategy), while IS9530 controlled root resistance (anisohydric strategy). Moreover, only in IS9530 was root hydraulic conductance restricted in the presence of HgCl2, in agreement with water movement through cell-to-cell pathways and aquaporins activity. The different responses between genotypes suggest a distinct strategy at the seedling stage and add new information that should be considered when evaluating Sorghum phenotypic plasticity in changing environments.
Collapse
Affiliation(s)
- Moira R Sutka
- Departamento de Biodiversidad y Biología Experimental e Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, (C1428EGA) Buenos Aires, Argentina
| | - Milena E Manzur
- Departamento de Biodiversidad y Biología Experimental e Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, (C1428EGA) Buenos Aires, Argentina
| | - Victoria A Vitali
- Departamento de Biodiversidad y Biología Experimental e Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, (C1428EGA) Buenos Aires, Argentina
| | - Sandra Micheletto
- CERZOS-CONICET, Camino La Carrindanga Km 7, (8000) Bahía Blanca, Argentina
| | - Gabriela Amodeo
- Departamento de Biodiversidad y Biología Experimental e Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, (C1428EGA) Buenos Aires, Argentina.
| |
Collapse
|
40
|
The Roles of Aquaporins in Plant Stress Responses. J Dev Biol 2016; 4:jdb4010009. [PMID: 29615577 PMCID: PMC5831814 DOI: 10.3390/jdb4010009] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 12/26/2022] Open
Abstract
Aquaporins are membrane channel proteins ubiquitously present in all kingdoms of life. Although aquaporins were originally discovered as water channels, their roles in the transport of small neutral solutes, gasses, and metal ions are now well established. Plants contain the largest number and greatest diversity of aquaporin homologs with diverse subcellular localization patterns, gating properties, and solute specificity. The roles of aquaporins in physiological functions throughout plant growth and development are well known. As an integral regulator of plant–water relations, they are presumed to play an important role in plant defense responses against biotic and abiotic stressors. This review highlights involvement of various aquaporin homologs in plant stress responses against a variety of environmental stresses that disturb plant cell osmotic balance and nutrient homeostasis.
Collapse
|
41
|
Skorupa-Kłaput M, Szczepanek J, Kurnik K, Tretyn A, Tyburski J. The expression patterns of plasma membrane aquaporins in leaves of sugar beet and its halophyte relative, Beta vulgaris ssp. maritima, in response to salt stress. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
42
|
Yaneff A, Vitali V, Amodeo G. PIP1 aquaporins: Intrinsic water channels or PIP2 aquaporin modulators? FEBS Lett 2015; 589:3508-15. [PMID: 26526614 DOI: 10.1016/j.febslet.2015.10.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
Abstract
The highly conserved plant aquaporins, known as Plasma membrane Intrinsic Proteins (PIPs), are the main gateways for cell membrane water exchange. Years of research have described in detail the properties of the PIP2 subfamily. However, characterizing the PIP1 subfamily has been difficult due to the failure to localize to the plasma membrane. In addition, the discovery of the PIP1-PIP2 interaction suggested that PIP1 aquaporins could be regulated by a complex posttranslational mechanism that involves trafficking, heteromerization and fine-tuning of channel activity. This review not only considers the evidence and findings but also discusses the complexity of PIP aquaporins. To establish a new benchmark in PIP regulation, we propose to consider PIP1-PIP2 pairs as functional units for the purpose of future research into their physiological roles.
Collapse
Affiliation(s)
- Agustín Yaneff
- Departamento de Biodiversidad de Biología Experimental and Instituto de Biodiversidad y Biología Experimental (IBBEA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Victoria Vitali
- Departamento de Biodiversidad de Biología Experimental and Instituto de Biodiversidad y Biología Experimental (IBBEA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gabriela Amodeo
- Departamento de Biodiversidad de Biología Experimental and Instituto de Biodiversidad y Biología Experimental (IBBEA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
43
|
Changes in the Physiological Parameters of SbPIP1-Transformed Wheat Plants under Salt Stress. Int J Genomics 2015; 2015:384356. [PMID: 26495278 PMCID: PMC4606197 DOI: 10.1155/2015/384356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 11/30/2022] Open
Abstract
The SbPIP1 gene is a new member of the plasma membrane major intrinsic gene family cloned from the euhalophyte Salicornia bigelovii Torr. In order to understand the physiological responses in plants that are mediated by the SbPIP1 gene, SbPIP1-overexpressing wheat lines and WT plants of the wheat cv. Ningmai 13 were treated with salt stress. Several physiological parameters, such as the proline content, the malondialdehyde (MDA) content, and the content of soluble sugars and proteins, were compared between SbPIP1-transformed lines and WT plants under normal growth or salt stress conditions. The results indicate that overexpression of the SbPIP1 gene can increase the accumulation of the osmolyte proline, decrease the MDA content, and enhance the soluble sugar biosynthesis in the early period but has no influence on the regulation of soluble protein biosynthesis in wheat. The results suggest that SbPIP1 contributes to salt tolerance by facilitating the accumulation of the osmolyte proline, increasing the antioxidant response, and increasing the biosynthesis of soluble sugar in the early period. These results indicate SbPIP1 plays an important role in the salt stress response. Overexpression of SbPIP1 might be used to improve the salt tolerance of important crop plants.
Collapse
|
44
|
Miniussi M, Del Terra L, Savi T, Pallavicini A, Nardini A. Aquaporins in Coffea arabica L.: Identification, expression, and impacts on plant water relations and hydraulics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 95:92-102. [PMID: 26241904 DOI: 10.1016/j.plaphy.2015.07.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/21/2015] [Indexed: 05/02/2023]
Abstract
Plant aquaporins (AQPs) are involved in the transport of water and other small solutes across cell membranes, and thus play major roles in the regulation of plant water balance, as well as in growth regulation and response to abiotic stress factors. Limited information is currently available about the presence and role of AQPs in Coffea arabica L., despite the economic importance of the species and its vulnerability to drought stress. We identified candidate AQP genes by screening a proprietary C. arabica transcriptome database, resulting in the identification of nine putative aquaporins. A phylogenetic analysis based on previously characterized AQPs from Arabidopsis thaliana and Solanum tuberosum allowed to assign the putative coffee AQP sequences to the Tonoplast (TIP) and Plasma membrane (PIP) subfamilies. The possible functional role of coffee AQPs was explored by measuring hydraulic conductance and aquaporin gene expression on leaf and root tissues of two-year-old plants (C. arabica cv. Pacamara) subjected to different experimental conditions. In a first experiment, we tested plants for root and leaf hydraulic conductance both before dawn and at mid-day, to check the eventual impact of light on AQP activity and plant hydraulics. In a second experiment, we measured plant hydraulic responses to different water stress levels as eventually affected by changes in AQPs expression levels. Our results shed light on the possible roles of AQPs in the regulation of C. arabica hydraulics and water balance, opening promising research lines to improve the sustainability of coffee cultivation under global climate change scenarios.
Collapse
Affiliation(s)
- Matilda Miniussi
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| | | | - Tadeja Savi
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| | - Alberto Pallavicini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy.
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy.
| |
Collapse
|
45
|
Li J, Cai W. A ginseng PgTIP1 gene whose protein biological activity related to Ser(128) residue confers faster growth and enhanced salt stress tolerance in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:74-85. [PMID: 25804811 DOI: 10.1016/j.plantsci.2015.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/06/2015] [Accepted: 02/08/2015] [Indexed: 05/14/2023]
Abstract
Water movement across cellular membranes is mostly regulated by aquaporins. A tonoplast intrinsic protein PgTIP1 from Panax ginseng has been found to play an important role in plant growth and development, and also in the response of plants to abiotic stress. However, the regulation of its function and activity remains unknown. To answer this question, mutated forms of PgTIP1 were made by replacing Ser(128) with Ala (named S128A) or Asp (named S128D), and also by replacing Thr(54) with Ala (named T54A) or Asp (named T54D). Then, wild type or mutated PgTIP1 was expressed in yeast and water transport was monitored in protoplasts. The substitution of Ser(128) abolished the water channel activity of PgTIP1, while the substitution of Thr(54) did not inhibit its activity. Moreover, the overexpression of PgTIP1 but not S128A or S128D in Arabidopsis significantly increased plant growth as determined by biomass production, it also had a beneficial effect on salt stress tolerance. Importantly, the overexpression of PgTIP1 led to the altered expression of stress-related genes, which made the plants more tolerant to salt stress. Our results demonstrated that PgTIP1 conferred faster growth and enhanced tolerance to salt in Arabidopsis, and that its biological activity related to Ser(128) residue.
Collapse
Affiliation(s)
- Jia Li
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| | - Weiming Cai
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
46
|
Li J, Ban L, Wen H, Wang Z, Dzyubenko N, Chapurin V, Gao H, Wang X. An aquaporin protein is associated with drought stress tolerance. Biochem Biophys Res Commun 2015; 459:208-213. [PMID: 25701792 DOI: 10.1016/j.bbrc.2015.02.052] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/10/2015] [Indexed: 11/29/2022]
Abstract
Water channel proteins known as aquaporins (AQPs) regulate the movement of water and other small molecules across plant vacuolar and plasma membranes; they are associated with plant tolerance of biotic and abiotic stresses. In this study, a PIP type AQPs gene, designated as GoPIP1, was cloned from Galega orientalis, a high value leguminous forage crop. The GoPIP1 gene consists of an 870 bp open reading frame encoding a protein of 289 amino acids, and belongs to the PIP1 subgroup of the PIP subfamily. The transcript level of GoPIP1 was higher in the root of G. orientalis than in the leaf and stem. The level of GoPIP1 transcript increased significantly when treated with 200 mM NaCl or 20% polyethylene glycol (PEG) 6000. Transient expression of GoPIP1 in onion epidermal cells revealed that the GoPIP1 protein was localized to the plasma membrane. Over-expression of GoPIP1 increased the rosette/root ratio and increased sensitivity to drought in transgenic Arabidopsis plants. However, GoPIP1 over-expression in Arabidopsis had no significant effect under saline condition. The present data provides a gene resource that contributes to furthering our understanding of water channel protein and their application in plant stress tolerance.
Collapse
Affiliation(s)
- Jun Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China; Institute of Grassland Research, Chinese Academy of Agricultural Sciences / SharaQin Key Wild Scientific Monitoring Station for Forage Resources of Ministry of Agriculture, 120 Wulanchabu East Street, Saihan District, Hohhot 010010, People's Republic of China
| | - Liping Ban
- College Animal Science & Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Hongyu Wen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Zan Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Nikolay Dzyubenko
- N.I.Vavilov All-Russian Research Institute of Plant Industry, St. Petersburg 190000, Russia
| | - Vladimir Chapurin
- N.I.Vavilov All-Russian Research Institute of Plant Industry, St. Petersburg 190000, Russia
| | - Hongwen Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Xuemin Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| |
Collapse
|
47
|
Melloul M, Iraqi D, El Alaoui M, Erba G, Alaoui S, Ibriz M, Elfahime E. Identification of Differentially Expressed Genes by
cDNA-AFLP Technique in Response to Drought Stress
in Triticum durum. Food Technol Biotechnol 2014; 52:479-488. [PMID: 27904321 PMCID: PMC5079143 DOI: 10.17113/ftb.52.04.14.3701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/12/2014] [Indexed: 12/27/2022] Open
Abstract
Drought is the single largest abiotic stress factor leading to reduced crop yields. The identification of differentially expressed genes and the understanding of their functions in environmentally stressful conditions are essential to improve drought tolerance. Transcriptomics is a powerful approach for the global analysis of molecular mechanisms under abiotic stress. To identify genes that are important for drought tolerance, we analyzed mRNA populations from untreated and drought-stressed leaves of Triticum durum by cDNA- -amplified fragment length polymorphism (cDNA-AFLP) technique. Overall, 76 transcript- -derived fragments corresponding to differentially induced transcripts were successfully sequenced. Most of the transcripts identified here, using basic local alignment search tool (BLAST) database, were genes belonging to different functional categories related to metabolism, energy, cellular biosynthesis, cell defense, signal transduction, transcription regulation, protein degradation and transport. The expression patterns of these genes were confirmed by quantitative reverse transcriptase real-time polymerase chain reaction (qRT- -PCR) based on ten selected genes representing different patterns. These results could facilitate the understanding of cellular mechanisms involving groups of genes that act in coordination in response to stimuli of water deficit. The identification of novel stress-responsive genes will provide useful data that could help develop breeding strategies aimed at improving durum wheat tolerance to field stress.
Collapse
Affiliation(s)
- Marouane Melloul
- Genetic and Biometry Laboratory, Faculty of Sciences, University Ibn Tofail, BP 133,
14000 Kenitra, Morocco
- Functional Genomic Platform, Technical Unit (UATRS), National Center for Scientific and Technical Research (CNRST), Angle Allal Fassi, Avenue des FAR, Hay Riad, BP 8027, 10102 Rabat, Morocco
| | - Driss Iraqi
- National Institute of Agronomical Research, Avenue de la Victoire, BP 415, Rabat, Morocco
| | - MyAbdelaziz El Alaoui
- Genetic and Biometry Laboratory, Faculty of Sciences, University Ibn Tofail, BP 133,
14000 Kenitra, Morocco
- Functional Genomic Platform, Technical Unit (UATRS), National Center for Scientific and Technical Research (CNRST), Angle Allal Fassi, Avenue des FAR, Hay Riad, BP 8027, 10102 Rabat, Morocco
| | - Gilles Erba
- Labgene Scientific Instruments, Athens Building, Business Park, 74160 Archamps, France
| | - Sanaa Alaoui
- Functional Genomic Platform, Technical Unit (UATRS), National Center for Scientific and Technical Research (CNRST), Angle Allal Fassi, Avenue des FAR, Hay Riad, BP 8027, 10102 Rabat, Morocco
| | - Mohammed Ibriz
- Genetic and Biometry Laboratory, Faculty of Sciences, University Ibn Tofail, BP 133,
14000 Kenitra, Morocco
| | - Elmostafa Elfahime
- Functional Genomic Platform, Technical Unit (UATRS), National Center for Scientific and Technical Research (CNRST), Angle Allal Fassi, Avenue des FAR, Hay Riad, BP 8027, 10102 Rabat, Morocco
| |
Collapse
|
48
|
Mansour MMF. The plasma membrane transport systems and adaptation to salinity. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1787-800. [PMID: 25262536 DOI: 10.1016/j.jplph.2014.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/18/2014] [Accepted: 08/21/2014] [Indexed: 05/09/2023]
Abstract
Salt stress represents one of the environmental challenges that drastically affect plant growth and yield. Evidence suggests that glycophytes and halophytes have a salt tolerance mechanisms working at the cellular level, and the plasma membrane (PM) is believed to be one facet of the cellular mechanisms. The responses of the PM transport proteins to salinity in contrasting species/cultivars were discussed. The review provides a comprehensive overview of the recent advances describing the crucial roles that the PM transport systems have in plant adaptation to salt. Several lines of evidence were presented to demonstrate the correlation between the PM transport proteins and adaptation of plants to high salinity. How alterations in these transport systems of the PM allow plants to cope with the salt stress was also addressed. Although inconsistencies exist in some of the information related to the responses of the PM transport proteins to salinity in different species/cultivars, their key roles in adaptation of plants to high salinity is obvious and evident, and cannot be precluded. Despite the promising results, detailed investigations at the cellular/molecular level are needed in some issues of the PM transport systems in response to salinity to further evaluate their implication in salt tolerance.
Collapse
|
49
|
Li X, Han L, Zhao Y, You Z, Dong H, Zhang C. Hpa1 harpin needs nitroxyl terminus to promote vegetative growth and leaf photosynthesis in Arabidopsis. J Biosci 2014; 39:127-37. [PMID: 24499797 DOI: 10.1007/s12038-013-9408-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hpa1 is a harpin protein produced by Xanthomonas oryzae, an important bacterial pathogen of rice, and has the growth-promoting activity in plants. To understand the molecular basis for the function of Hpa1, we generated an inactive variant protein, Hpa1 delta NT, by deleting the nitroxyl-terminal region of the Hpa1 sequence and compared Hpa1 delta NT with the full-length protein in terms of the effects on vegetative growth and related physiological responses in Arabidopsis. When Hpa1 was applied to plants, it acted to enhance the vegetative growth but did not affect the floral development. Enhanced plant growth was accompanied by induced expression of growth-promoting genes in plant leaves. The growth-promoting activity of Hpa1 was further correlated with a physiological consequence shown as promoted leaf photosynthesis as a result of facilitated CO2 conduction through leaf stomata and mesophyll cells. On the contrary, plant growth, growth-promoting gene expression, and the physiological consequence changed little in response to the Hpa1 delta NT treatment. These analyses suggest that Hpa1 requires the nitroxyl-terminus to facilitate CO2 transport inside leaf cells and promote leaf photosynthesis and vegetative growth of the plant.
Collapse
Affiliation(s)
- Xiaojie Li
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Jiangsu, 210095, China
| | | | | | | | | | | |
Collapse
|
50
|
Chevalier AS, Bienert GP, Chaumont F. A new LxxxA motif in the transmembrane Helix3 of maize aquaporins belonging to the plasma membrane intrinsic protein PIP2 group is required for their trafficking to the plasma membrane. PLANT PHYSIOLOGY 2014; 166:125-38. [PMID: 24989232 PMCID: PMC4149701 DOI: 10.1104/pp.114.240945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Aquaporins play important roles in maintaining plant water status under challenging environments. The regulation of aquaporin density in cell membranes is essential to control transcellular water flows. This work focuses on the maize (Zea mays) plasma membrane intrinsic protein (ZmPIP) aquaporin subfamily, which is divided into two sequence-related groups (ZmPIP1s and ZmPIP2s). When expressed alone in mesophyll protoplasts, ZmPIP2s are efficiently targeted to the plasma membrane, whereas ZmPIP1s are retained in the endoplasmic reticulum (ER). A protein domain-swapping approach was utilized to demonstrate that the transmembrane domain3 (TM3), together with the previously identified N-terminal ER export diacidic motif, account for the differential localization of these proteins. In addition to protoplasts, leaf epidermal cells transiently transformed by biolistic particle delivery were used to confirm and refine these results. By generating artificial proteins consisting of a single transmembrane domain, we demonstrated that the TM3 of ZmPIP1;2 or ZmPIP2;5 discriminates between ER and plasma membrane localization, respectively. More specifically, a new LxxxA motif in the TM3 of ZmPIP2;5, which is highly conserved in plant PIP2s, was shown to regulate its anterograde routing along the secretory pathway, particularly its export from the ER.
Collapse
Affiliation(s)
- Adrien S Chevalier
- Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Gerd Patrick Bienert
- Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|